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Abstract

Did trade integration suppress inflation in the United States? We say no, in contradiction to the
conventional wisdom. Our answer leverages two basic facts about the rise of trade: offshoring accounts
for a large share of it, and it was a long-lasting, phased-in shock. Incorporating these features into a
New Keynesian model, we show trade integration was inflationary. This result continues to hold when
we extend the model to account for US trade deficits, the pro-competitive effects of trade on domestic
markups, and cross-sector heterogeneity in trade integration in a multisector model. Further, using the
multisector model, we demonstrate that neither cross-sector evidence on trade and prices, nor aggregate
time series price level decompositions are informative about the impact of trade on inflation.
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Recent decades have seen large increases in trade integration. On the flip side, recent trade wars and other de-
globalizing forces have policymakers concerned about the macroeconomic fallout of unwinding international
integration. In this paper, we shed light on the macro-effects of trade (dis-)integration by looking backwards
to the rise of trade since the mid-1990s in the United States. The particular question we ask is monetary in
nature: has globalization in general, and trade integration in particular, suppressed inflation? Flipping this
question around, will de-globalization let the inflation genie back out of the bottle?

To answer this question, we develop an open economy new Keynesian (NK) framework with trade in
both intermediate inputs and final goods, and we apply the framework to analyze the inflationary impacts
of rising trade in the United States during recent decades. The framework extends the canonical small
open economy NK model [Galí and Monacelli (2005); Galí (2015)] to incorporate “offshoring” – the use of
foreign intermediate inputs in production – in addition to trade in final goods.1 This extension is more than
window dressing: increases in offshoring are large in the data, so any quantitative account of the impacts of
trade on inflation must emphasize offshoring. Nonetheless, offshoring is omitted from workhorse NK models;
Consequently, we will argue that its impacts are commonly misunderstood in policy discussions [Carney
(2017, 2019)].

In addition to this extension, we also apply the model in new ways to analyze the rise of trade. First, we
use domestic sourcing shares as “sufficient statistics” to assess the impacts of trade in the model, borrowing
from the international trade literature [Costinot and Rodríguez-Clare (2014)].2 This allows us to overcome
challenges regarding measurement of the impacts of trade on prices in the data, and to sidestep thorny
questions about currency invoicing. Further, it enables us to analyze the impacts of trade in a concise “three
equation model,” in which dynamics of the domestic sourcing shares influence inflation via both the Phillips
Curve and IS curve. Organizing the model in this way also allows us to treat changes in sourcing shares as
shocks in analysis of retrospective inflation dynamics.

Second, we analyze the impact of long-lived (arguably permanent) shocks to trade openness, with long
phase-in dynamics. Allowing for permanent, phased-in shocks captures an essential feature of the data –
globalization involved a shift in steady states, from a less open to more open world, which took place slowly
over time. We show that taking this aspect of globalization into account is important for inflation dynamics
in the open economy NK model. Permanent, phased-in shocks yield inflation dynamics that are completely
different than the temporary shocks typically analyzed in linearized NK models.

To open the analysis, we develop an accounting framework to link changes in trade to output and consumer
prices. This framework serves two purposes. First, it highlights that there are two channels via which trade
may impact consumer prices. The “old” channel operates via trade in consumption goods directly. Falling
prices for imported consumption goods, and substitution of imports for domestic goods, lowers the consumer
price level. The “new” channel that we emphasize operates via the use of imported inputs in production of
domestic goods. Falling prices for imported inputs reduce domestic production costs, and substitution from
domestic to foreign input suppliers amplifies this decline. Lower production costs then bring down prices
for domestically produced goods and services. Further, because industries are connected to one another via
behind-the-border input linkages, exposure to this offshoring-driven decline in costs depend not only on an
industry’s own sourcing behavior, but also that of its upstream industry suppliers.3

1Other recent open economy monetary models that incorporate inputs include Gopinath et al. (2020) and Auray, Devereux
and Eyquem (2020). Relatedly, Amiti, Itskhoki and Konings (2014) study the impact of imported inputs on pricing in a real
model.

2Our approach is also related to the macro-application of sufficient statistics in Baqaee and Fahri (2019), though we apply
in a monetary (rather than real) context.

3These direct and indirect input cost effects are qualitatively similar to the role of firm-level changes in input sourcing
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We use this framework to perform an accounting exercise that links changes in trade to industry-level
output prices, and then industry-level output prices together with import prices to aggregate consumer
prices. Using data from the BEA, we show that the rise of offshoring drives industry-level price dynamics:
industries that are more exposed to offshoring have experienced lower output price inflation over the long
run. Further, increases in trade over time appear to restrain consumer price inflation, lowering consumer
price inflation by 10-40 basis points per year. Increases in offshoring are as important as increases in foreign
sourcing of consumption goods in this result. This demonstrates both the potential importance of trade,
and the importance of offshoring in particular, in accounting for aggregate prices.

Motivated by these accounting results, we then turn to a full-fledged NK model. In this transition, we
emphasize that data alone cannot answer important macro-counterfactual questions about inflation. At a
very basic level, inflation is a monetary phenomenon – endogenous model responses to trade shocks combined
with the conduct of monetary policy determine inflation.4 Further, inflation is a forward-looking variable
in the NK framework, so both contemporary and future changes in trade matter for determining current
inflation. Thus, in addition to the facts developed via the accounting exercise, we need a model to provide
a full analysis of inflation dynamics.

Using the model, we argue that the basic accounting results we presented at the outset are surprisingly
uninformative about the role of rising trade in explaining inflation. Given the historical path of shocks, the
NK model predicts that the rise of trade during the late 1990’s and early 2000’s was inflationary, rather than
deflationary.

To unpack this result, we collapse the full model down to an equivalent “three equation model” – including
the NK Phillips curve, the dynamic IS curve, and the (inflation targeting) monetary policy rule. We show
that only shocks to domestic sourcing of final goods shift the Phillips Curve. Further, because changes in
domestic sourcing of final goods were relatively small over this period, this channel is quantitatively modest.
In contrast, both offshoring and final goods trade shocks appear in the IS curve – specifically, the time path
for these shocks is embedded in the real natural rate of interest. A sustained rise in offshoring – where
domestic sourcing shares are falling over time – generates an increase in the real natural rate, which is itself
inflationary. This dynamic response to the rise in offshoring over time drives current inflation up at the
outset.

We extend the model in three main ways to probe this result. First, we incorporate financial inflow
shocks into the model to match changes in the trade balance over time, which allow the model to match the
dynamics of the global savings glut in the early 2000’s. We find that capital inflow shocks have minor effects
on inflation in the model; Surprisingly, the rise of the US trade deficit in the early 2000’s actually pushes
inflation up, though the magnitude of this effect is modest. Second, we introduce variable markups in the
model, by that preferences and technologies take the Kimball (1995) form (as in Gopinath et al. (2020)).
This set up allows trade to have pro-competitive effects, whereby increases in foreign sourcing of final goods
and inputs restrains markups set by domestic producers. Despite these pro-competitive effects, we find again
that trade integration increases inflation, even more than in the baseline model due to general equilibrium
effects on the supply side of the economy by which lower markups raise domestic output.

analyzed by Blaum, Lelarge and Peters (2018). Our study of them is both more aggregated (sector-level rather than firm-level)
and focused on the monetary implications of these shocks.

4Just to fix ideas clearly, suppose that the central bank has a price level (not inflation targeting) objective. In this event,
the central bank would perfectly offset any impacts of trade shocks on inflation. This thought experiment emphasizes that how
the economy and monetary policy respond to trade shocks matters for interpreting the accounting results. Nonetheless, the
actual explanation we give for how inflation responds to trade shocks is not highly contingent on the specifics of policy, as long
as the central bank does not perfectly target the price level.
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Third, we build out the model to include multiple sectors, with heterogeneous sourcing dynamics across
sectors and end uses. In the multisector model, we again find trade integration is inflationary. Further, we
show the multisector model yields a decline in the relative price of manufacturing output, as observed in
the data. Further, rising trade appears to restrain trade – in an accounting sense – in the model, as in our
initial exploration of the data. These results serve to emphasize that one cannot draw conclusions about the
impact of trade on inflation from studies linking cross-sectional changes in output prices to changes in trade,
or studies that decompose prices into components attributable to domestic and import prices.

Given our conclusion, it is worth pointing out that academics and policymakers almost universally think
that globalization was deflationary. For example, Carney (2019) states: “The integration of low-cost produc-
ers into the global economy has imparted a steady disinflationary bias.”5 This follows a large literature that
has studied the role of trade in explaining the slope of the Phillips Curve, the role of “global slack” in inflation
dynamics, and inflation synchronization across countries [Romer (1993); Rogoff (2003); Ball (2006); Rogoff
(2007); Bianchi and Civelli (2015); Carney (2017); Auer, Levchenko and Saurè (2019); Forbes (2019)].6 Our
conclusions differ from prevailing consensus because our analysis captures two salient features of globaliza-
tion overlooked in prior work. First, existing approaches largely ignore input trade, and input trade impacts
inflation differently than does trade in final goods. Further, in our empirical context, changes in input trade
are of first order importance. Second, existing work studies short-run dynamics for transitory shocks, while
we study medium-term dynamics for persistent (possibly permanent) shocks.

Our paper is also related to a body of work that shows that higher import penetration leads to lower
price inflation at the industry level. Using differences-in-differences style empirical designs, recent papers
have documented this result for both consumer prices [Bai and Stumpner (2019); Jaravel and Sager (2019)]
and output prices [Auer and Fischer (2010); Auer, Degen and Fischer (2013)]. One clarifying point to make
is that these papers focus on the role of imports in providing competition for domestic producers, which
restrains markups on domestic goods.7 In contrast, our baseline model emphasizes the imported input cost
channel, which is operative even with constant markups. We do consider variable markups in an extension
to this baseline model, however. Beyond this, we also emphasize that these differences-in-differences type
results – though informative about particular mechanisms operative in the data – do not directly translate
to results for inflation, which is a general equilibrium, monetary phenomenon.

Lastly, our work is also broadly informed by recent work on trade dynamics. We adopt a perfect foresight
approach in analyzing trade shocks in the model, similar to Eaton et al. (2011), Reyes-Heroles (2016), Kehoe,
Ruhl and Steinberg (2018), and Ravikumar, Santacreu and Sposi (2019).8 Whereas these papers focus on
real outcomes following trade shocks, we study a monetary economy. The framework in our paper can also
be applied to analysis of the inflationary impacts of trade policy, which connects to recent papers on trade
policy and macro outcomes [Erceg, Prestipino and Raffo (2018); Barbiero et al. (2018); Barattieri, Cacciatore
and Ghironi (2019)]. Finally, our paper is also related to Rodríguez-Clare, Ulate and Vasquez (2020), which
examines the impacts of the China shock on employment and unemployment across local labor markets in

5Carney is far from alone in this opinion. Yellen (2006) states: “the IMF calculates that non-oil import price reductions
lowered US inflation by an average of 1/2 percentage point a year over 1997 to 2005. These results are in line with those
from...the Federal Reserve Board that estimates that lower (core) import prices have reduced core US inflation by an annual
average of 1/2 to 1 percentage point over the last 10 years.” See also IMF (2006) and Bean (2007).

6Much of this literature focuses on how globalization changes the slope of the Phillips Curve. It is therefore useful to point
out that our argument is entirely different. In fact, because we solve the model via linearization around an initial equilibrium
prior to the rise of trade, the slope of the Phillips Curve is held fixed in our analysis. We could, however, also solve the model
exactly (without linearization), in which case the slope of the implicit Phillips Curve would be changing over time. We have in
fact done this, and it does not substantially change our argument, thus we prefer to focus on the simpler linearized model.

7See also Feentra and Weinstein (2017) on the impacts of trade on markups in the United States.
8Relatedly, Alessandria and Choi (2019) study very persistent, but stationary trade cost shocks.
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a model with downward nominal wage rigidity.

1 An Account of Offshoring, Trade, and Inflation

In this section, we develop an accounting framework that ties the rise of trade to industry-level and aggregate
prices. This framework shares its basic structure with the multisector model that we analyze in Section 4.
However, we present the framework here with a few simplifying assumptions, in order to get to data as
quickly as possible. We then revisit this accounting exercise in the complete multisector model in Section 4.

To begin, we characterize how industry-level prices for domestic output depend on offshoring – the use
of imported inputs, both in the producer’s own sector and in upstream sectors – and domestic factor costs.
We then discuss how the aggregate consumer price level is linked to changes in the prices of domestic output
versus imported final goods. Combining these results, we decompose changes in the aggregate consumer price
level into components attributable to changes in offshoring, domestic factor costs, and imported consumption
goods. We implement this decomposition using input-output and price data for the United States from 1997-
2018.

1.1 Prices for Domestic Output

Consider a two country environment, with Home (H) and Foreign (F ) countries, and many industries
s ∈ {1, . . . , S}.9 Within each Home industry, there is a unit continuum of varieties, which are produced
under monopolistic competition. These varieties are aggregated into composite goods, which are then used
at Home as final or intermediate goods and exported. Each producer has a nested, constant elasticity of
substitution (CES) production function. At the top level, they substitute between labor and a composite
intermediate input, in a Cobb-Douglas production function.10 At the middle level, they substitute across
inputs originating from different upstream sectors in forming the composite input, again with Cobb-Douglas
aggregation. At the bottom level, they substitute between sector-level inputs coming from Home versus
Foreign sources, which are aggregated via a CES function. Because this basic CES monopolistic competition
structure is standard, we jump right into discussion of results for prices that come from it.

Prices for each Home variety can be written as a time-varying markup over marginal costs, and all
producers are symmetric. Thus, Home sector-level output prices in sector s at date t are given by:

PHt(s) = µt(s)MCt(s) (1)

with MCt(s) = Zt(s)
−1W

1−α(s)
t PMt(s)

α(s), (2)

where µt(s) and MCt(s) are time-varying markups and marginal costs in sector s. Marginal costs depend
on productivity (Zt(s)), the price of a composite primary factor (Wt), and the price of a sector-specific
composite input (PMt(s)). The parameter α(s) is the Cobb-Douglas share for the composite input in total

9Our focus will be entirely on accounting for changes in Home output and consumer prices, so Foreign is merely a composite
source of imports.

10We adopt Cobb-Douglas production functions here in order to simplify the exact solution for this model. We adopt a
similar assumption for preferences below. Both assumptions are consistent with how we parameterize the multisector model for
quantitative analysis in Section 4.
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costs.11 The composite input price in turn is given by:

PMt(s) =
∏
s

Pt(s
′, s)α(s′,s)/α(s) (3)

with Pt(s
′
, s) =

[
ξ(s′, s)PHt(s

′)1−η(s′) + (1− ξ(s′, s)) (τMt(s
′)PFt(s

′))
1−η(s′)

]1/(1−η(s′))

, (4)

where Pt(s′, s) is the composite price of inputs purchased from sector s′ by sector s, α(s′, s)/α(s) is the share
of inputs from s′ in total input expenditure by sector s, PFt(s′) is the price of a composite bundle of foreign
varieties, and τMt(s

′) is an iceberg-type trade cost paid on imports of intermediate inputs.
Consider now the change in prices over time interval [0, t]. Further, for a given variableXt, let X̂t = Xt/X0

denote the ratio of its value in period t to its value in the base period. Then, the price of output in period t
relative to baseline is:

P̂Ht(s) = µ̂t(s)M̂Ct(s) = P̂V t(s)
1−α(s)P̂Mt(s)

α(s), (5)

where P̂V t(s) = Ŵt

(
µ̂t(s)/Ẑt(s)

)1/(1−α(s))

is the price of real value added in sector s (equivalently, the
sector-specific GDP price deflator). Changes in composite input prices are:

P̂Mt(s) =
∏
s

P̂t(s
′, s)α(s′,s)/α(s) (6)

P̂t(s
′
, s) =

[
ΛMH0(s′, s)P̂Ht(s

′)1−η(s′) + ΛMF0(s′, s)P̂Ft(s
′)1−η(s′)

]1/(1−η(s′))

, (7)

where ΛMit (s′, s) = Pit(s
′)Mit(s

′,s)
Pt(s′,s)Mt(s′,s)

is the share of input spending on inputs from country i ∈ {H,F} and sector
s′by Home sector s in total spending in inputs from s′ by s by Home, and ΛMi0 (s′, s) is the base period value
of these shares.

This exposition suggests that we could quantify the impact of offshoring on gross output prices using
import price data. That is, we could measure price changes for foreign goods P̂Ft(s′), and feed them through
Equations 5-7 to arrive at predicted changes in output prices. While this approach is straightforward in
the model as written, it is not a practical route forward due to shortcomings in standard data sources; We
discuss these shortcomings further in Appendix A.

Instead, we proceed here by invoking a sufficient-statistics argument. Using the usual first order conditions
for the purchases of domestic inputs, we can write the expenditure share on domestic goods as: ΛMHt(s

′, s) =

PHt(s
′)MHt(s

′,s)
Pt(s′,s)Mt(s′,s)

= ξ(s′, s)
(
PHt(s

′)
Pt(s′,s)

)1−η(s′)

. Taking ratios across time, we write P̂t(s′, s) as follows:

P̂t(s
′, s) = P̂Ht(s

′)Λ̂MHt(s
′, s)1/(η(s′)−1). (8)

This expression is an analog to the sufficient-statistics approach to counterfactual analysis of the the gains
from trade, advocated by Arkolakis, Costinot and Rodríguez-Clare (2012) and Costinot and Rodríguez-Clare
(2014). Like Blaum, Lelarge and Peters (2018), we apply it on the production side of the economy. When
the share of inputs sourced domestically falls (Λ̂MHt(s

′, s) < 1) – i.e., when offshoring rises – then the cost of
the input bundle falls, as long as foreign inputs are gross substitutes for domestic inputs (η(s′) > 1).

11The time-varying markup µt(s) could be due either to price adjustment frictions, or variable demand elasticities. We
consider versions of the model that incorporate these micro-foundations below, and just take the pricing rule in Equation 1 as
given here.
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Combining Equations 5, 6, and 8, we can write:

P̂Ht(s) = P̂V t(s)
1−α(s)

∏
s′

P̂Ht(s
′)α(s′,s)

∏
s′

Λ̂MHt(s
′, s)α(s′,s)/(η(s′)−1)

 . (9)

The first term captures changes in total factor productivity, markups, or primary factor costs. The second
term captures changes in the prices of domestically produced inputs purchased by s from all upstream sectors,
including sector s itself. The third term captures the impact of offshoring on unit costs.

Taking logs of Equation 9, and using lower case to denote the log of an upper case variable (i.e., x̂t = lnX̂t),
yields:

p̂Ht(s) = (1− α(s))p̂V t(s) +
∑
s′

α(s′, s)p̂Ht(s
′) +

∑
s′

(
α(s′, s)

η(s′)− 1

)
λ̂MHt(s

′, s), (10)

This expression has input-output logic embedded in it, because the price of Home output in sector s depends
on prices of output in all sectors at Home, including itself. The direct effect of a rise in foreign sourcing of
inputs is to lower prices in sector s, and then this price reduction spills over across sectors, as sector s is
used downstream as an input.

Stacking Equation 10 across sectors, we manipulate it to isolate domestic output prices:

p̂Ht = [I−A′]
−1

[I− α] p̂V t + [I−A′]
−1
[
A′ ◦

(
λ̂MHt

)′]
[H− I]

−1
ι, (11)

where α is a matrix with α(s) along the diagonal and zeros elsewhere, A is an input-output matrix with
elements α(s, s′),λ̂MHt is a matrix with elements λ̂MHt(s, s

′), and H is a matrix with η(s) along the diagonal.
Further, ιis a conformable column vector of ones, and ◦ denotes the Hadamard (entrywise) product of
matrices. The first term is the downstream propagation of cost-push shocks to the price of real value added
in all sectors. The second term is the downstream propagation of cost-push shocks attributable to offshoring,
where an increase in domestic sourcing of inputs raises the price of domestic gross output. Intuitively, if
inputs are increasingly sourced from home, we infer that that the price of imported inputs is rising relative
to the price of domestic inputs, which implies that gross output prices will grow faster than implied by
domestic value-added costs alone.

1.2 Data on Offshoring and Output Prices

We now turn to studying the impact of offshoring on domestic producer prices through the lens to Equation
11. We draw on two complementary data sets from the Industry Economic Accounts of the US Bureau of
Economic Analysis (BEA). The first is a data set on the price of gross output by industry, from the GDP-
by-industry statistics.12 The second data set is the Input-Output Accounts, from which we construct annual
input-output tables and domestic sourcing shares.13 Both data sets include annual data for 1997-2018 for
71 summary-level industries, of which 26 are goods producing industries.

12These data are constructed primarily from PPI and CPI data collected by the BLS, and they are used by the BEA to deflate
gross output in order to compute real GDP by industry. See BEA Gross-Domestic-Product-(GDP)-by-Industry Data. A useful
point to emphasize that neither CPI data, nor PPI data, have appropriate product coverage to match up to industry-level data
sources. The BEA combines various data sources in order to generate prices series that match the industry definitions and
national accounts coverage in BEA data.

13We use make and use tables (after redefinitions, at producer value) and import use matrices (after redefinitions) to form
industry-by-industry input-output tables split by domestic and imported input use, and to measure domestic and foreign
sourcing of final goods. See BEA Input-Output Accounts Data.
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Figure 1: Industry-Level Price Changes vs. the Offshoring Shock from 1997-2018
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Note: Agriculture and Natural Resources includes BEA summary-level industries 1-7, Manufacturing includes 8-26, and Services
includes 27-71. Each observation is the log difference between sector-level prices in 2018 and 1997:
p̂Ht(s) = ln pH,2018(s)− ln pH,1997(s).

From these data, we construct data analogs to p̂Ht, A and λ̂MHt in Equation 11. We measure p̂Ht using
the log of the ratio of gross output price deflators in year t relative to 1997 in each industry. We take averages
of the annual input-output matrices to form the time-invariant industry-to-industry input-output matrix:
A ≡ (1/20)

∑2018
t=1997 At, where At = AHt + AFt is the total direct requirements matrix for year t, AHt is

the domestic requirements matrix, and AFt is the import requirements matrix.14 We then define domestic
sourcing shares ΛM

Ht ≡ AHt � At, and we construct ratios Λ̂M
Ht = ΛM

Ht � ΛM
H,1997, where � represents

Hadamard (elementwise) division.
As a first pass, we assume that elasticities of substitution between home and foreign goods are equal in

all sectors: η(s) = η. This implies that we can rewrite Equation 11 as:

p̂Ht = [I−A′]
−1

[I− α]p̂V t +

(
1

η − 1

)
[I−A′]

−1
[
A′ ◦

(
λ̂MHt

)′]
ι︸ ︷︷ ︸

Offshoring Shock

. (12)

Each element of the term labeled Offshoring Shock is the cumulative impact of upstream offshoring on unit
costs, accounting for both direct and indirect effects via the input-output structure. We can then relate price
changes over a given horizon p̂Ht to the change in unit costs attributable to offshoring.

We plot long-run changes in p̂Ht versus the Offshoring Shock at the industry level in Figure 1. There
is a positive correlation between the offshoring shock and price changes in the figure – industries with high

14The (i, j) elements in these matrices are the value of inputs purchased by industry j from industry i as a share of total gross
output in industry j. AHt records purchases from domestic sources, while AFt records purchases from international sources.
Note that we suppress changes in this domestic requirements matrix over time in the model, and thus in our empirical analysis
as well.
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Figure 2: Price Changes and the Offshoring Shock from 1997-2018
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-.1
-.0

8
-.0

6
-.0

4
-.0

2
0

O
ffs

ho
rin

g 
Sh

oc
k 

(m
ea

n)

1995 2000 2005 2010 2015 2020

Manufacturing
Non-Manufacturing

(b) Relative Price and Offshoring Shock for Manufacturing
vs. Non-Manufacturing
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Note: The relative price of manufacturing in each year is 1
|M|

∑
s∈M p̂Ht(s) − 1

|N|
∑
s∈N p̂Ht(s), where M and N denote the set

of manufacturing and non-manufacturing industries, respectively. The relative offshoring shock is a similar difference in unweighted
averages for manufacturing and non-manufacturing industries.

exposure to offshoring, and thus the largest declines in direct and indirect home sourcing shares, experienced
smaller output price changes. One point that is clear in the figure is that this correlation is driven by two
aspects of the data: (a) there is a tight correlation within manufacturing between offshoring exposure and
price changes, and (b) there are differences in the evolution of offshoring and prices across composite industry
groups (e.g., manufacturing vs. agriculture, natural resources, and services). In contrast, there is only a
weak relationship between the offshoring shock and price changes within non-manufacturing industries, in
part because variation in offshoring changes within non-manufacturing industries are small.

To illustrate the time path of offshoring and price changes, we take simple averages of p̂Ht and the
Offshoring Shock for manufacturing and non-manufacturing industries in each year. We plot the time series
for these average offshoring shocks in manufacturing and non-manufacturing in Figure 3a. Manufacturing
industries are impacted more than are Non-Manufacturing industries by offshoring, nearly five times as in-
tensively. Turning to Figure 3b, we plot average log changes in the prices for manufactured manufacturing
industries minus the same for non-manufacturing; More simply, this is an average relative price of manu-
facturing output. We also include the gap between the offshoring shock that hits the manufacturing and
non-manufacturing sectors, which captures the relative offshoring shock across the two sectors. The relative
price of manufacturing output declines over the period, coincident with the large relative offshoring shock
that hit manufacturing industries.

Together, these data point to a role for offshoring in explaining output price changes over time. To put
these in macro-context, we now turn to the evolution of consumer prices.

1.3 Final Goods and Aggregate Consumer Prices

The representative Home consumer has nested, constant elasticity of substitution (CES) preferences. We
assume that she has Cobb-Douglas preferences across composite industry-level final goods, and that industry-
level final goods are themselves CES composites of Home and Foreign final goods. The aggregate consumer
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price level is then given by:

PCt =
∏
s

PCt(s)
γ(s) (13)

with PCt(s) =
(
ν(s)PHt(s)

1−η(s) + (1− ν(s)) (τCt(s)PFt(s))
)1/(1−η(s))

, (14)

where PCt(s) is the price of a composite consumption good for industry s and τCt(s) is an iceberg-type trade
cost paid on imports of final goods.

Similar to the sufficient statistics argument for input use, we use first order conditions for the purchases of
domestic consumption goods to write the expenditure share on domestic goods as: ΛCHt(s) = PHt(s)CHt(s)

PCt(s)Ct(s)
=

ν(s)
(
Pit(s)
PCt(s)

)1−η(s)

. Taking ratios across time yields:

P̂Ct(s) = P̂Ht(s)Λ̂
C
Ht(s)

1/(η(s)−1). (15)

If η(s) > 1, this says that aggregate consumer prices decline relative to the price of domestically produced
goods when the share of spending on domestic goods falls over time. That is, Λ̂CHt(s) < 1 implies P̂Ct(s) <
P̂Ht(s).

The ratio of aggregate consumer prices in period t relative to the base period is: P̂Ct =
∏
s P̂Ct(s)

γ(s).
We combine this with Equation 15 and take logs to obtain:

p̂Ct =
∑
s

γ(s)

[
p̂Ht(s) +

(
1

η(s)− 1

)
λ̂CHt(s)

]
= γp̂Ht + γ [H− I]

−1
λ̂CHt, (16)

where γ is a row vector with elements γ(s), η is a diagonal matrix with elements η(s), and λ̂CHt is a column
vector with elements λ̂CHt(s). The second term in this expression captures the idea that falling prices for
imported final goods– e.g., finished manufactured goods from China, like iPhones, clothing, shoes, or laptops
– has restrained consumer price growth. This mechanism is the conventional channel featured in prior
analyses of globalization and inflation.

To this, our model adds an additional link between foreign sourcing and consumer prices. Specifically,
we can insert Equation 12 into Equation 16 to decompose domestic prices:

p̂Ct = γ [I−A′]
−1

[I− α] p̂V t +

(
1

η − 1

)
γ [I−A′]

−1
[
A′ ◦

(
λ̂MHt

)′]
ι︸ ︷︷ ︸

Offshoring

+

(
1

η − 1

)
γλ̂CHt︸ ︷︷ ︸

C Imports

, (17)

where we have imposed η(s) = η to simplify the expression. The first term is a measure of the dependence
of consumer prices on domestic cost growth – changes in the the productivity-adjusted prices of domestic
factors, i.e., domestic real value added. The second term is an adjustment for the impact of offshoring on
consumer prices, which works through the impact that offshoring has in lowering prices for domestically
produced goods. The third term captures the role of changes in trade in final goods on consumer prices.
Note in both these terms, the formula tells us to aggregate sector-level changes in sourcing using sector
expenditure shares in final demand, collected in γ.

We now turn to data to quantify the aggregate roles for offshoring and consumption imports in accounting
for consumer prices. Using input-output data, we construct consumption of domestic goods as total personal
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Figure 3: The Role of Offshoring and Consumption Imports in Accounting for Consumer Price Changes
from 1997-2018
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of changes in trade is
(

1
η−1

)
γ
[
I−A′

]−1
[
A′ ◦

(
λ̂MHt

)′]
ι+

(
1

η−1

)
γλ̂CHt.

consumption expenditures (from the use table) less personal consumption expenditures reported in the import
use table. From this, we compute ΛCHt as the ratio of consumption of domestic goods to total consumption
expenditure (as elsewhere, λ̂CHt = ln(ΛCHt/Λ

C
H,1997)), and we compute the time-average share of consumption

expenditure allocated to each sector, encoded in γ. To aggregate changes in offshoring, we use γ together
with the input output matrix A, defined previously. We plot the aggregate “shocks” – aggregated changes in

domestic sourcing, given by and γλ̂CHt and γ [I−A′]
−1

[
A′ ◦

(
λ̂MHt

)′]
ι – in Figure 3a. As is evident, both

“shocks” are negative, consistent with falling domestic sourcing in the aggregate over time. Further, most
of the decline is concentrated in the first half of the sample period (before 2010), and it is phased in slowly
over time.15

To compute the impact of these changes on consumer prices requires taking a stand on the (matrix) value
of η, the industry-level elasticities between home and foreign output. Estimating these separately for the 71
industries is beyond the scope of the exercise we want to perform here, so we impose a homogeneous elasticity
(η = ηI). We then consider two alternative values for illustration: η = {2, 4}.16 We plot the results – i.e., the
composite Offshoring and C Imports terms in Equation 17 – in Figure 3b. The cumulative impact of declines
in domestic sourcing is to lower consumer prices relative to domestic value-added prices by between 2 and
8 percent over the sample period, depending on the elasticity. Translated into annual effects, rising trade
lowers consumer price growth by between 10 and 40 basis points per year relative to growth in value-added
prices. Increases in offshoring account for about 40% of this gap, while foreign sourcing of consumer goods
accounts for the remainder.

15To head off possible confusion later, we note that this aggregation focuses entirely on consumption goods. In it, declines
in domestic sourcing of consumption goods are more important than changes in offshoring in determining aggregate consumer
prices. In the model below, we will combine sourcing of consumption and investment goods in calibrating shocks, which conforms
to standard practice for models without physical capital in the literature.

16The value η = 2 is near standard values of the Armington trade elasticity in the international macroeconomics literature. It
is also close to a naive estimate of η obtained from the slope of a regression line through the scatter plot in Figure 1, as well as
recent estimates of long run macro-elasticities based on tariff changes in Boehm, Levchenko and Pandalai-Nayar (2020). In the
trade literature, η = 4 is in the vicinity of standard values for estimated gravity trade elasticities (see Simonovska and Waugh
(2014) for example). In calibrated models below, we set the elasticity between home and foreign goods equal to 3, which is the
midpoint between these bounds.
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1.4 Beyond Accounting

These results suggest that offshoring plays an important quantitative role in explaining the evolution of
domestic prices across industries, and further that rising trade has lowered the aggregate consumer price
level (depressed inflation). We now advance a word of caution about this second conclusion – that rising
trade lowers the level of consumer prices – which motivates the model-based exercises that follow.

All the discussion of the aggregate consumer price level above is based on accounting decompositions.
While it is tempting to interpret these decompositions as saying that offshoring lowered the consumer price
level (i.e., lowered consumer price inflation), it is not possible to reach this conclusion from the accounting
decomposition alone. In the aggregate, the evolution of the consumer price level is determined jointly by
real factors (e.g., trade) and the reaction of monetary policy to them. Thus, we need a full-fledged model in
which we specify how monetary policy reacts in order to make causal statements about how changes in trade
– specifically, the exogenous driving forces that underlie those changes in trade – influence the evolution of
the price level.

Notwithstanding this concern, we also emphasize that the earlier results about price changes across
industries do speak to an important potential mechanism linking offshoring and prices. These results relate
differences in price changes across sectors to differences in offshoring intensity, as in partial equilibrium
differences-in-differences type analysis. If we treat differences in offshoring intensity as exogenous, then we
could conclude that sectors with higher offshoring intensity have lower price growth. While this analysis does
not identity the aggregate effects of offshoring, it does point to a mechanism that may give rise to aggregate
price level effects. Thus, we turn to a full general equilibrium model in which we can evaluate the impact of
trade in both inputs and final goods on inflation.

2 Baseline New Keynesian Model

This section develops a baseline New Keynesian model with trade in both inputs and final goods. In contrast
to the multi-sector framework in Section 1, we focus on a one sector model in this section, which serves to
isolate the distinct roles for final goods and intermediate inputs in the model and highlight the importance
of trade dynamics for inflation outcomes. In particular, we are able to collapse this one sector model into a
transparent “three equation model” – consisting of a Phillips curve, IS equation, and monetary policy rule –
that yields sharp analytic results and crystallizes intuition. Having developed the baseline model, we then
use it to explore the role of shocks to financial inflows and variable markups in shaping inflation outcomes
in Section 3. We then return to a multisector version of the model in Section 4.

To outline this section, we first present the baseline model and illustrate how we link changes in domestic
sourcing for inputs and final goods to inflation in the model. We then present model simulations to establish
a “puzzling” result: according to the model, trade integration drove inflation up. To interpret this result,
we then turn to the three equation representation of the model. We conclude by discussing the relationship
between our results and “conventional wisdom” regarding the impact of trade on inflation.

2.1 The model

The model draws on the standard small open economy New Keynesian structure, as exposited by Galí (2015).
We deviate from the textbook model by replacing Calvo-style pricing with Rotemberg pricing, which has
no first order consequences for the questions we address (but accelerates exposition of the model). More
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importantly, we alter the production structure of the textbook model, allowing for trade in both final goods
and inputs.17 Further, we develop a new sufficient statistics approach to model analysis.

2.1.1 Consumers

Consumer preferences over labor supply Lt and consumption Ct are represented by:

U ({Ct, Lt}∞t=0) = E0

∞∑
t=0

βt

[
C1−ρ
t

1− ρ
− µL

1+ψ
t

1 + ψ

]
(18)

Ct =
(
ν1/ηC

(η−1)/η
Ht + (1− ν)

1/η
C

(η−1)/η
Ft

)η/(η−1)

(19)

CHt =

(∫ 1

0

CHt(i)
(ε−1)/εdi

)ε/(ε−1)

, (20)

where CFt is a composite foreign consumption good. The elasticity ε > 1 controls substitution among
domestic varieties, while η controls substitution between domestic and foreign goods. The parameter ν ∈
(0, 1) controls relative demand for home consumption goods, conditional on prices. The parameters ρ ≥ 0

and ψ > 0 govern intertemporal substitution and labor supply in standard ways.
We assume that financial markets are complete, such that the consumer has access to a complete set of

Arrow-Debreu securities that are traded internationally. The representative consumer faces the following
budget constraint: ∫ 1

0

PHt(i)CHt(i)di+ PFtτCtCFt + Et [Qt,t+1Bt+1] ≤ Bt +WtLt, (21)

where Bt is the nominal, domestic currency payoff in period t of the portfolio of assets held by the consumer
and Qt,t+1 is the stochastic discount factor for nominal payments. The price of the foreign consumption
good in domestic currency is PFt, and τCt > 1 is an iceberg-type trade cost paid on consumption imports.
The prices of individual domestic goods are{PHt(i)} and the nominal wage is Wt.

Given prices {{PHt(i)}, PFt, Qt,t+1,Wt} and initial asset holdings B0, the consumer chooses consumption
{Ct, {CHt(i)}, CFt}, labor supply {Lt} ,and asset holdings {Bt+1} to maximize Equations 18-20 subject to
21 and the standard transversality condition.

2.1.2 Production

The production function for individual domestic varieties is:

Yt(i) = Zt (Lt(i))
1−α

(Mt(i))
α (22)

Mt(i) =
[
ξ1/ηMHt(i)

(η−1)/η + (1− ξ)1/ηMFt(i)
(η−1)/η

]η/(η−1)

(23)

MHt(i) =

(∫ 1

0

MHt(j, i)
(ε−1)/εdj

)ε/(ε−1)

, (24)

where Lt(i) and Mt(i) are quantities of labor and a composite input used by firm i. The composite input
is a nested CES composite of inputs sourced from home and abroad: MHt(j, i) is the quantity of inputs

17We allow for different levels and changes in foreign sourcing of inputs and final goods, unlike Gopinath et al. (2020), who
also allow for input trade.
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from Home firm j purchased by firm i, MHt(i) is the composite home input used by firm i, and MFt(i)

is the quantity of a foreign composite input purchased by firm i. Similar to consumption, ε > 1 controls
substitution among domestic varieties, while η controls substitution across country sources for inputs. The
parameter ξ ∈ (0, 1) controls relative demand for home inputs, conditional on prices.

Producers of differentiated output set the prices of their goods under monopolistic competition, and they
select the input mix to satisfy the implied demand. These two problems can be analyzed separately.

Pricing Each Home firm sets its price in domestic currency, which applies to both output sold domestically
and exports.18 It chooses a sequence for PHt(i) to maximize the present discounted value of profits, inclusive
of quadratic adjustment costs incurred when it changes prices, as in Rotemberg (1982a,b). Letting MCt(i)

be the firm’s marginal cost of production (defined below), the present value of profits is:

E

∞∑
t=0

βt
C−ρt
C−ρ0

1

PCt

[
PHt(i)Yt(i)−MCt(i)Yt(i)−

φ

2

(
PHt(i)

PH,t−1(i)
− 1

)2

PHtYt

]
,

where the last term records the quadratic price adjustment costs. In this adjustment cost term, φ is a
parameter that controls the degree of price rigidity, Yt =

∫ 1

0
Yt(i)di is total home output, and PHt =(∫ 1

0
PHt(i)

(1−ε)/εdi
)1/(1−ε)

is the price of the CES bundle of home output.

Input Demand Firm i in sector s chooses {Lt(i),Mt(i),MHt(i),MFt(i),MHt(j, i)} to minimize the cost
of producing output Yt(i). Similar to consumers, firms pay iceberg trade costs τMt on inputs they import
from abroad. Thus, variable production costs are WtLt(i) + PMtMt(i), with PMtMt(i) = PHtMHt(i) +

τMtPFtMFt(i) and PHtMHt(i) =
∫ 1

0
PHt(j)MHt(j, i)dj. Here PMt =

[
ξP 1−η

Ht + (1− ξ) (τMtPFt)
1−η
]1/(1−η)

is the price of the composite input.

2.1.3 Closing the Model

Demand for exports of individual domestic varieties Xt(i) has a CES structure, such that demand for firm
i’s exports is given by:

Xt(i) =

(
pHt(i)

PHt

)−ε
Xt, (25)

with Xt =

(
PHt
StP ∗Ct

)−η
C∗t , (26)

where St is the nominal exchange rate (units of domestic currency to buy 1 unit of foreign currency), P ∗Ct is
the foreign price index in foreign currency, and C∗t is foreign consumption.

The market clearing conditions for output of each variety and the labor market are:

Yt(i) = CHt(i) +

∫ 1

0

MHt(i, j)dj +Xt(i) +
φ

2

(
PHt(i)

PH,t−1(i)
− 1

)2

Yt (27)∫ 1

0

Lt(i) = Lt. (28)

18This producer currency pricing assumption for exports is consistent with the body of evidence on dollar pricing of US
exports [Gopinath et al. (2020)].
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Further, due to trade in the stage contingent asset, the usual international risk sharing condition applies:(
Ct
C∗t

)−ρ(
StP

∗
Ct

PCt

)
= Ξ, (29)

where Ξ is a constant, which depends on initial conditions.19

Finally, we specify a Taylor-type monetary policy rule to close the model:

1 + it = (1 + i0)

(
PCt
PC,t−1

)ω
, (30)

where we assume the central bank responds to consumer price inflation and i0 is the steady state (date 0)
interest rate.

2.1.4 Equilibrium

We define an equilibrium for the small open economy taking foreign variables as given, including the price of
foreign goods in domestic currency.20 As is standard, we focus on a symmetric equilibrium, where all domestic
producers are identical, so drop the firm/variety index. Given exogenous variables {PFt, C∗t , P ∗t , Zt, τCt, τMt},
an equilibrium (up to a normalization) is a collection of prices {Wt, PHt, PCt, PMt,MCt, St, it} and quan-
tities {Ct, CHt, CFt, Lt, Xt, Yt,Mt,MHt,MFt} that solve the consumer’s utility maximization problem, the
producer’s pricing and input demand problems (maximize profits), and clear the markets for goods, labor,
and state-contingent assets. Further, interest rates are set based on the monetary policy rule. For reference,
we collect the symmetric equilibrium conditions in Table 1.

2.1.5 Equilibrium with Domestic Sourcing Shares as Sufficient Statistics

To analyze the model, we first redefine variables to highlight the role of trade openness in driving the results.
Let ΛCHt ≡

PHtCHt
PCtCt

and ΛMHt = PHtMHt

PMtMt
be the shares of final and input expenditure that falls on home

produced goods, which we refer to as the “domestic sourcing shares.” We use the first order conditions
describing demand for final goods and inputs to solve for the relative price of home goods:

PHt
PCt

=

(
ΛCHt
ν

)1/(1−η)

(31)

PHt
PMt

=

(
ΛMHt
ξ

)1/(1−η)

. (32)

These equations say that we can use domestic sourcing shares, together with the value of the trade elasticity
(η), to infer the price of home goods relative to the final goods and input bundles. Put differently, the
domestic sourcing shares and the trade elasticity are sufficient statistics for these relative prices, as in
Arkolakis, Costinot and Rodríguez-Clare (2012).

Using this result, we can substitute out for these relative prices throughout the equilibrium system in
Table 1, and thus redefine the equilibrium for given values of the domestic sourcing shares. Using this

19Introducing additional notation, Ξ = E0θ0
θ∗0

, where E0 is the date zero exchange rate, and θ0 and θ∗0 are date zero Lagrange
multipliers on lifetime budget constraints of home and foreign agents.

20Ordinarily, the domestic price of foreign goods (PFt) would be an equilibrium object in a small open economy model, and
its behavior would depend on pricing assumptions. We treat it as exogenous here for brevity, since it will not be needed to
define the equilibrium in terms of sourcing shares below. We discuss the redundancy of dollar currency import prices again
when we model foreign price setting in Section 3.2 and Appendix E.
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Table 1: Baseline Model Summary

Consumption-Leisure C−ρt
Wt

PCt
= µLψt

Consumption Allocation CHt = ν
(
PHt
PCt

)−η
Ct

CFt = (1− ν)
(
τCtPFt
PCt

)−η
Ct

Euler Equation 1 = Et

[
β
(
Ct+1

Ct

)−ρ
PCt
PC,t+1

(1 + it)

]

Input Choices

WtLt = (1− α)MCtYt

PMtMt = αMCtYt

MHt = ξ
(
PHt
PMt

)−η
Mt

MFt = (1− ξ)
(
τMtPFt
PMt

)−η
Mt

Marginal Cost MCt =
W 1−α
t PαMt

αα(1−α)(1−α)Zt

Price Setting
(1− ε) + ε

MCt
PHt

− φ
(

PHt
PH,t−1

− 1

)
PHt
PH,t−1

+Et

[
β
C
−ρ
t+1

C
−ρ
t

PCt
PC,t+1

φ
(
PH,t+1
PH,t

−1
)
PH,t+1Yt+1

PHtYt

PH,t+1
PHt

]
=0

Price Indexes PCt =
[
νP 1−η

Ht + (1− ν) (τCtPFt)
1−η
]1/(1−η)

PMt =
[
ξP 1−η

Ht + (1− ξ) (τMtPFt)
1−η
]1/(1−η)

Market Clearing
Yt = CHt +MHt +Xt + φ

2

(
PHt

PH,t−1
− 1
)2

Yt

Xt =
(

PHt
StP∗Ct

)−η
C∗t(

Ct
C∗t

)−ρ (
StP

∗
Ct

PCt

)
= Υ

Monetary Policy Rule 1 + it = (1 + i0)
(

PCt
PC,t−1

)ω
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Table 2: Log-Linearization of the Baseline Model

Consumption-Leisure l̂t = − ρ
ψ ĉt + 1

ψ r̂wt −
1

ψ(η−1) λ̂
C
Ht

Consumption Allocation ĉHt = η
η−1 λ̂

C
Ht + ĉt

Euler Equation ĉt = Etĉt+1 − 1
ρ (r̂t − EtπCt+1)

Input Choices
l̂t = r̂mct + ŷt − r̂wt

m̂t = r̂mct + ŷt − 1
η−1 λ̂

M
Ht

m̂Ht = η
η−1 λ̂

M
Ht + m̂t

Real Marginal Cost r̂mct = (1− α)r̂wt + α
η−1 λ̂

M
Ht − ẑt

Domestic Price Inflation πHt =

(
ε− 1

φ

)
r̂mct + βEt (πHt+1)

Consumer Price Index πCt = πHt + 1
(η−1)

(
λ̂CHt − λ̂CHt−1

)
Market Clearing

ŷt =
(
CH0

Y0

)
ĉHt +

(
MH0

Y0

)
m̂Ht +

(
X0

Y0

)
x̂t

x̂t = η
η−1 λ̂

C
Ht + ηq̂t + ĉ∗t

ĉt = ĉ∗t + 1
ρ q̂t

Monetary Policy Rule r̂t = ωπCt

method to reduce down the model, the log-linearized equilibrium conditions are presented in Table 2, where
all variables are expressed as log deviations from steady state (i.e., x̂t = ln (Xt) − ln (X0) for variable X
and the subscript 0 indexes an initial steady state). In the table, we define r̂mct ≡ m̂ct − p̂Ht to be real
marginal costs and r̂wt ≡ ŵt − p̂Ht to be the real wage. Further, r̂t ≡ ln (1 + it) − ln (1 + i0) ≈ it − i0,
and q̂t ≡ ŝt + p̂∗Ct − p̂Ct is the consumption real exchange rate. Finally, inflation rates are given by:
πHt = p̂Ht − p̂H,t−1 and πCt = p̂Ct − p̂C,t−1.

We will analyze the dynamic equilibrium in this reduced model taking the path of domestic sourcing
shares as given. Given domestic sourcing shares {λ̂CHt, λ̂MHt} and exogenous shocks {ẑt, ĉ∗t }, an equilibrium
is a path for prices {q̂t, êt, πCt, πHt, r̂wt, r̂mct, r̂t} and quantities {ĉt, ŷt, l̂t, x̂t, ĉHt, m̂Ht} that satisfies the
equilibrium conditions in Table 2.21

This equilibrium definition highlights the value of the sufficient statistics approach in the model. In this
equilibrium, we need not directly track trade costs, or the price of foreign goods, over time. As a result,
this method sidesteps a host of difficult data and theoretical issues. On the data side, we avoid needing to
directly measure trade costs or foreign prices. Further, we need not make theoretical assumptions about
currency invoicing or pass-through of foreign cost shocks into import prices. Instead, we lean on the model
result that the domestic sourcing share – agents’ responses to implicit price changes – tells us everything we
need to know about relative international prices to study domestic equilibrium outcomes.22

21Note that given domestic sourcing shares {λ̂CHt, λ̂
M
Ht}, we do not need to explicitly solve for imported consumption goods

(ĉFt) and inputs (m̂Ft), but these can be computed ex post using the equilibrium conditions if desired.
22To elaborate further, for historical simulations that take the path of past domestic sources shares as given by data, our

approach is identical to the following alternative approach. One could specify an explicit model of import prices (e.g., producer
currency pricing for imports, or dollar invoicing of imports). This would link the domestic currency price of imports to foreign
marginal costs (in foreign currency) and trade costs. Conditional on foreign marginal costs and the elasticity of substitution
between imports and domestic goods, one could then pick the value of trade costs to exactly match the observed share of
imports in expenditure over time. Simulating the model with this imputed trade cost series exactly replicates simulation of the
model taking the domestic source share as given, as in Table 2. Further, one would obtain identical outcomes for inflation and
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Before pushing on to implement this approach, we pause to note one potential shortcoming of it. Specifi-
cally, it is best suited to studying the inflationary impacts of “external shocks” on inflation, such as changes in
foreign prices (PFt) or trade costs (τCt, τMt), because these shocks influence inflation only through domestic
sourcing shares. It is less well suited to analyze the inflationary impact of “domestic shocks” – e.g., a change
in domestic productivity – that impact inflation directly (i.e., conditional on domestic sourcing shares) as
well as indirectly, through their impact on domestic sourcing shares. To simulate the effects of this kind of
shock, one would need to directly model domestic sourcing shares, which in turn requires assumptions about
import pricing.

Given our focus on understanding the effects of rising trade integration on inflation, the sufficient statistics
approach has benefits that outweigh this cost. First, it simplifies algebraic analysis of the model, which
we exploit below. Second, in our empirical context, changes in foreign prices (e.g., Chinese productivity
growth) and/or trade frictions (e.g., falling tariffs, increases in logistics efficiency, etc.) are likely the first
order determinants of declines in domestic sourcing over time. Further, to the extent that domestic shocks
have indirect effects via trade, these are included in our overall tally of the impact of changing trade on
inflation under the sufficient statistics approach. Thus, we proceed to implementation.

2.2 Simulated Impact of Trade on Inflation

We apply the model to simulate consumer inflation given the observed evolution of aggregate domestic
sourcing shares (λ̂CHt and λ̂MHt) from 1997-2018. Assuming that the economy is in steady state prior to
1997, and that each time period corresponds to one quarter, we calibrate the model using standard external
parameter values and the expenditure shares from the BEA data discussed in Section 1.23 The parameter
values are recorded in Table 3.24 We introduce globalization as an MIT-style shock: starting from a static
equilibrium, agents learn the sequence of shocks, and we solve for the dynamics that result from them under

other macro variables, regardless of the currency invoicing of imports. The currency invoicing of imports would only change the
imputed trade cost series needed to match observed domestic sourcing shares. For prospective analysis of the future impacts of
changes in current trade costs, currency invoicing matters in that it determines the mapping from policy changes to domestic
sourcing shares.

23In the data, we assign all final goods imports to consumption, consistent with the absence of a government or investment
sector in this baseline model. We construct a quarterly series for domestic sourcing shares from annualized data via interpolation.
From annual BEA data, we have annual values for λCHt and λ

M
Ht, where t ∈ {1997, 2018}. We define domestic sourcing shares

for the pre-1997 steady state as follows: λUH0 = max
{
λUH1997 + (λUH1997 − λ

U
H1998), λUH1998

}
, for U = {C,M}. This has the

following interpretation. If λUH declines from 1997 to 1998, we assume that the reduction from 1996 to 1997 is the same as
from 1997 to 1998. If instead, λUH does not decline from 1997 to 1998, we assume that the value λUH in 1996 is the same as in
1998. This particular formulation captures the notion that home shares tend to decline, but in some cases, they oscillate a bit
during the late 90s before they start declining. In the light of these patterns, we set the pre-1997 state as slightly more closed
than 1997 in the first scenario, and equal to the state we observe in 1998 in the second scenario. Our results do not hinge on
this particular set up, as we have experimented with various approaches. After defining the steady state levels, we compute
log deviations of the annual home shares from steady state (λ̂CHt, λ̂

M
Ht). We then conduct quarterly interpolation as follows:

λ̂UHt.Q1 = 0.4λ̂UHt−1 + 0.6λ̂UHt, λ̂
U
Xt.Q2 = 0.2λ̂UHt−1 + 0.8λ̂UHt, λ̂Xt.Q3 = 0.8λ̂UHt + 0.2λ̂UHt+1, λ̂Xt.Q4 = 0.6λ̂UHt + 0.4λ̂UHt+1,

where subscript t.Qx denotes the value for year t and quarter x. Henceforth in the paper, t indexes quarters in the model and
simulations.

24In this parameterization, we set the elasticity of substitution among domestic varieties (ε) equal to the elasticity of substi-
tution between home and foreign goods (η). Put differently, we set the macro-Armington elasticity between home and foreign
goods equal to the microeconomic elasticity between domestic varieties. This is consistent with estimates in Feenstra et al.
(2018), which fails to reject equality of these elasticities for most goods. This parameterization also facilitates comparison of
this baseline model to the model with variable markups to be presented later. Further, relaxing it does not qualitatively change
our results. As discussed above, the elasticity of substitution between home and foreign goods is set in the middle of the range
of available estimates in the macroeconomics and trade literatures. Regarding price rigidity, Sims and Wolff (2017) provides the
equivalence formula between the parameter governing price rigidity in Rotemberg versus Calvo-style models: φ =

κ(ε−1)
(1−κ)(1−βκ) ,

where 1 − κ is the share of firms that adjust their prices each period in a Calvo-style model. We set κ = .75, to match the
average duration of prices, which leads to the value for φ in the table, given other parameters.
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Table 3: Calibration

Parameter Value Reference/Target

ψ 2 Labor supply elasticity of 0.5

β .995 Annual risk-free real rate of 2%

ε 3 Elasticity of substitution between home varieties

η 3 Elasticity of substitution between home and foreign goods

ρ 2 Intertemporal elasticity of substitution of 0.5

α .434 To match 1996 input share

ν .96 To match 1996 home share in consumption

ξ .925 To match 1996 home share in intermediates

φ 23.6453 To yield first order equivalence to Calvo pricing,

with average price duration of 4 quarters [Sims and Wolff (2017)].

ω 1.5 Clarida, Gali and Gertler (1999)

Υ 0.008 To match the trade deficit to gross output ratio in 1996,

given by PF0(τC0CF0+τM0MF0)−PH0X0

PH0Y0
= 0.0073.

perfect foresight.25

Figure 4a plots the evolution of the domestic sourcing shocks λ̂CHtand λ̂
M
Ht . Domestic sourcing falls for

both final goods and inputs, with changes that are phased in over time. Moreover, medium term dynamics
feature prominently: the input sourcing share follows a u-shaped pattern, and there are sharp adjustments
in both sourcing shares around the Great Recession in 2008-2011.

Given these shocks, we plot simulated consumer price inflation (πCt) in Figure 4b. The solid line records
inflation when domestic sourcing for both final goods and inputs changes in the model, while the dashed
lines record simulated inflation for each shock separately (i.e., fed into the model one at a time). With both
shocks active, inflation doesn’t change much at the outset (1997-2000), but then rises by about 75 basis
points after the year 2000. It remains positive for the remainder of the 2000-2010 interval, and only falls
below zero for a sustained period after 2010. Adding up these changes over time, the price level rises by
about 17% between 1997 and 2010. It then falls thereafter, but the post-2010 deflation doesn’t make up for
the pre-2010 inflation – the price level stabilizes at a level about 8% higher than its 1997 level as a result of
the changes in domestic sourcing. Thus, changes in trade led to net inflation over this time period, averaging
40 basis points per year.

The path of inflation reflects the impact of changes in final goods and input sourcing. Both contribute to
high inflation in the early 2000’s, though the role of inputs is far larger. Further, the post-2010 deflation is
driven primarily by the dynamics of input sourcing. Referring to the shocks, domestic sourcing is declining
during the 2000-2010 period, coincident with positive inflation in the model. In contrast, as domestic
sourcing for inputs rises after 2010, inflation is negative. Thus, this simulation suggests that inflation
comoves negatively with domestic sourcing: periods of increased globalization are associated with inflation,

25As a terminal condition for the shocks, we assume that agents expect the level of domestic sourcing that prevails in 2018
to persist into perpetuity thereafter. Altering this assumption impacts the last few years of the simulation (changes are modest
in size), but has deminimus effects on outcomes in early periods.
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Figure 4: Shocks and Simulation of Inflation in the Baseline Model
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(b) Simulated Inflation
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while retrenchment leads to deflation.
These results are puzzling on the surface, and contradict the conventional wisdom about the impact of

trade integration on inflation. Having established this trade and inflation puzzle, we turn back to the model
to present theoretical analysis that illuminates the role of trade dynamics in driving inflation.

2.3 The Three Equation Model

To provide intuition regarding the impact of trade on inflation, we distill the equilibrium system in Table 2
into a three equation model, with a Phillips curve, IS curve, and monetary policy rule.

2.3.1 Phillips Curve

We start by deriving a Phillips curve for consumer prices, linking aggregate inflation to a suitably defined
output gap. As a first step, we derive the Phillips curve for domestic output prices.

In Appendix B, we show that real marginal costs depend on the gap between real wages in the actual and
flexible price equilibria: r̂mct = (1−α) [r̂wt − r̂wnt ], where superscript n defines the value of a variable under
flexible prices. The real wage gap can then be linked to the output, through goods and labor market clearing:
r̂wt − r̂wnt = χ [ŷt − ŷnt ], where ŷnt is the log deviation of gross output in a flexible price equilibrium from
its initial steady state value, and χ > 0 is function of fundamental parameters and steady state expenditure
shares.26

Inserting these results into the equation for domestic price inflation gives us the relationship between
domestic price inflation and the output gap, which we refer to as the domestic price Phillips curve:

πHt =

(
(ε− 1)(1− α)χ

φ

)
[ŷt − ŷnt ] + βEt (πHt+1) , (33)

with (ε−1)(1−α)χ
φ > 0, so domestic price inflation is increasing in the domestic output gap.

An important point to note here that changes in domestic sourcing have no direct impact on domestic
price inflation, conditional on the output gap. This result may seem counterintuitive, because increased

26While we write the output gap in terms of gross output here, we show the model can be rewritten in terms of the output
gap for real value added in Appendix B.
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offshoring lowers domestic production costs. To elaborate, note that domestic price inflation is given by
πHt =

(
ε−1
φ

)
r̂mct + βEt (πHt+1), with r̂mct = (1 − α)r̂wt + α

η−1 λ̂
M
Ht − ẑt. At first glance, it looks like

decline in domestic sourcing of inputs (λ̂MHt < 0) lowers real marginal costs, and thus lower real marginal
costs should lower domestic inflation. The reason this logic is misleading is that it conditions on the real
wage (r̂wt), which is an endogenous object. The domestic price Phillips curve accounts for changes in the
real wage through the output gap. Further, by focusing attention on the gap between the actual and flexible
price equilibria, this analytical approach nets out changes in domestic sourcing that influence both the actual
and flexible price equilibria symmetrically.

Combining Equation 33 with the consumer price index, the consumer price Phillips curve is:

πCt =

(
(ε− 1)(1− α)χ

φ

)
[ŷt − ŷnt ] + βEtπCt+1 +

1

(η − 1)

[
∆λ̂CHt − βEt∆λ̂CHt+1

]
, (34)

where ∆λ̂CHt ≡ λ̂CHt − λ̂CHt−1 = ∆ lnλCHt is the log change in domestic sourcing across adjacent periods.
In contrast to domestic price inflation, changes in domestic sourcing for final goods directly impact

consumer price inflation. Given expected future changes in domestic final goods sourcing (Et∆λ̂CHt+1) and
inflation (πCt+1), and the current output gap (ŷt − ŷnt ), a reduction in domestic sourcing today (∆λ̂CHt<0)
lowers consumer price inflation. This is intuitive, as a reduction in domestic sourcing is associated with
a terms of trade improvement – falling prices for imported relative to domestic consumption goods, which
directly lowers overall consumer price inflation. In contrast, an anticipated reduction in domestic sourcing
tomorrow (Et∆λ̂CHt+1 < 0) raises consumer price inflation today, all else equal. The reason is that, given
πCt+1, lower domestic sourcing at date t + 1 implies that future domestic price inflation πHt+1 must be
higher, and this higher future domestic price inflation raises domestic price inflation today, via Equation 33.
These results emphasize that the dynamics of domestic sourcing are important for understanding inflation,
and we will return to this point below.

2.3.2 IS Curve

The output gap reflects the structure of the Euler equation, as is standard. Referring again to Appendix B
for detailed derivation, the IS curve can be written as:

[ŷt − ŷnt ] = − 1

θρ

[
ˆ̃rt − ˆ̃rnt

]
+ Et

[
ŷt+1 − ŷnt+1

]
, (35)

where ˆ̃rt ≡ r̂t − EtπCt+1 is the real interest rate, ˆ̃rnt ≡ r̂nt − EtπnCt+1 = r̂nt − 1
(η−1)Et∆ lnλCHt+1 is the real

interest rate in the flexible price equilibrium (the natural real interest rate), and θ>0 depends on primitive
parameters and steady state expenditure shares. To complete the characterization of the IS curve, we solve
for the real interest rate in the flexible price equilibrium as a function of exogenous variables:

ˆ̃rnt = ΩC∗Et∆ĉ
∗
t+1 +ΩZEt∆ẑt+1 +ΩMEt∆λ̂

M
Ht+1 +ΩCEt∆λ̂

C
Ht+1, (36)

where ΩC∗ > 0, ΩZ > 0, ΩM < 0, and ΩC < 0 are functions of parameters and steady state values, defined
in Appendix B.

The natural real interest rate depends on expected future changes in domestic sourcing for both final
goods and inputs. It is higher when domestic sourcing is expected to decline in the future, equivalently when
the terms of trade are expected to improve. There are two distinct channels at work. First, domestic sourcing
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of final goods directly matters for the path of consumption. An expected terms of trade improvement for
consumer goods means that consumers have higher real income in the future, holding their nominal income
constant. This leads them to attempt to pull consumption forward, which drives up the flexible price
equilibrium interest rate (r̂nt ) today. Second, domestic sourcing of inputs matters for consumer income via
its impacts on the production side of the economy: an improvement in the terms of trade for sourcing inputs
has similar effects to an increase in productivity. By lowering future production costs, an expected decline
in domestic sourcing of inputs leads to higher future output and income. This increase in future income
further leads consumers to attempt to pull consumption forward in time, leading the natural rate to rise.
As we shall see below, both these mechanisms are crucial for interpreting the impact of domestic sourcing
dynamics on inflation.

2.3.3 Aggregate Demand/Supply Interpretation

Collecting the results above, we can define a three equation model that determines the output gap (ŷt− ŷnt ),
consumer price inflation (πCt), and the interest rate (r̂t). The equilibrium system is given by Equation 34,
Equation 35 with the solution for the real natural interest rate (Equation 36) and the definition of the real
interest rate (ˆ̃rt ≡ r̂t − EtπCt+1), and the monetary policy rule r̂t = ωπCt.

Combining the monetary policy rule with the IS curve, one can define a downward sloping “aggregate
demand” (AD) schedule in {πCt, ŷt − ŷnt }, with πCt on the y-axis and ŷt − ŷnt on the x-axis, where higher
inflation today is associated with lower values of the output gap, since the central bank raises interest rates
in response. The Phillips curve is then upward sloping, where a higher value of the output gap today raises
current inflation (all else equal). Echoing standard textbooks, this Phillips curve can be thought of as an
“aggregate supply” (AS) relation. We emphasize the intuition based on this AD/AS version of the model in
describing analytical results below.

2.3.4 Shocks and Inflation in the Three Equation Model

We apply the three equation model to explain the seemingly puzzling inflation results in Section 2.2. Our
explanation emphasizes three features of the changes in foreign sourcing – (i) they were long-lasting shocks
(with a permanent component), (ii) the shocks were phased in over time, and (iii) the medium term dynamics
for domestic input sourcing were u-shaped – there was a pronounced decline in domestic input sourcing
followed by a rebound. After using these facts to explain model inflation dynamics, we re-deploy the model
to parse the conventional wisdom about the impacts of globalization on inflation.

Interpreting Simulated Inflation Combining points (i) and (ii), the rise in inflation around the year
2000 in the model can be understood as the manifestation of an anticipated future decline in domestic
sourcing. Starting from steady state, consider a path for domestic sourcing such that it is unchanged today
(∆λ̂CHt = ∆λ̂MHt = 0), expected to decline in the next period (∆λ̂CHt+1 = ∆λ̂MHt+1 < 0), and then expected to
stabilize at a permanently lower level in the long run (∆λ̂CHt+j = ∆λ̂MHt+j = 0 for j > 1). Note that this is a
stylized three-period depiction of the shocks plotted in Figure 4a, abstracting from medium term dynamics.

This shock has two effects. First, the AD schedule shifts up, due to the rise in the real natural rate
implied by the anticipated decline in domestic sourcing. Second, the AS schedule also shifts up, due to the
expected decline in domestic sourcing of final goods. Both of these shocks drive inflation up, as in Figure
4b. This is the story of inflationary globalization in the model. Since the phase-in period extends for most
of the 1997-2010 period, inflation is persistently above zero as trade rises in the model.
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In additional to this phased permanent shock, inflation also responds to medium term dynamics for the
sourcing shares. As in point (iii), these dynamics are most pronounced for the input sourcing share, where
domestic input sourcing falls rapidly in the first half of the period and then reverts back to its long run level.
This rapid decline accentuates the rise in overall inflation in early years. Further, as the shock reverts, the
logic inverts: the phased rise in domestic input sourcing after 2010 actually drives inflation down (below
zero) in the model.

In addition to this u-shape in input sourcing, there are significant short term effects of changes in domestic
sourcing surrounding the Great Trade Collapse in 2008-2010. Anticipation of the collapse (though somewhat
implausible), accounts for the decline in inflation in the mid-2000s. More plausibly, anticipated recovery
from the trade collapse drives inflation up during Great Recession.

All together, these results are a testament to the importance of trade dynamics (as opposed to levels)
in explaining inflation outcomes. Staying with this theme, we pause to discuss the conventional wisdom
regarding the impact of rising trade on inflation, and how our argument differs from it.

Parsing Conventional Wisdom Some changes in domestic sourcing do have deflationary impacts. First,
immediate declines in domestic final goods sourcing – whether temporary or permanent – lower inflation
today. Our view is that the conventional wisdom that increasing trade lowers inflation is largely based on
thinking through the impacts of these types of shocks. Second, temporary declines in domestic input sourcing
lower inflation. However, immediate permanent declines in domestic input sourcing do not. We discuss these
scenarios in sequence now.

Consider first immediate declines in domestic sourcing for final goods, such that 4λ̂CHt < 0. If the decline
is permanent, then further suppose that ∆λ̂CHt+1 = 0. If it is temporary, assume that sourcing reverts to its
original level: ∆λ̂CHt+1 = −∆λ̂CHt > 0. In both these cases, the AS curve – equivalently, the Phillips curve –
shifts down on impact, directly lowering inflation. Moreover, the shift is more pronounced for a temporary
shock than a permanent shock.27

This shift in the Phillips curve captures the standard “relative import prices” intuition for the impacts
of trade: a decline in the relative price of imports – i.e., an improvement in Home’s terms of trade –
reduces consumer price inflation, holding the domestic output gap fixed. This intuition features prominently
in central bank policy discussions of the impact of globalization on inflation, where policymakers refer to
increases in effective aggregate supply and/or shifting Phillips Curves to explain falling inflation [e.g., Yellen
(2006); Bean (2007); Carney (2017)]. Nonetheless, it obviously misses the role of phase-in dynamics in
explaining inflation, which are important in both theory and historical experience.

Conventional models and analysis also omit any role for changes in input sourcing, which are quanti-
tatively important in US data. This omission matters, regardless of the nature of the shocks. First, sup-
pose there is an unanticipated immediate, permanent decline in domestic sourcing for consumption goods:
∆λ̂MHt < 0 and ∆λ̂MHt+1 = 0. In this case, there is no shift in either the AS curve or the AD curve. Thus, the
shock has no impact on inflation. This result strikes us as likely to surprise readers steeped in the literature.

Second, suppose that there is temporary decline in domestic sourcing for inputs: ∆λ̂MHt < 0 and ∆λ̂MHt+1 =

−∆λ̂MHt > 0. In this case, the shock has no direct impact on the Phillips Curve (AS curve). Instead,
it works through aggregate demand, where the AD curve shifts down, since expected mean reversion in

27Examining Equation 34, the shocks enter via the term 1
(η−1)

[
∆λ̂CHt − βEt∆λ̂

C
Ht+1

]
. For a temporary shock, both the

decline in domestic sourcing today (∆λ̂CHt < 0) and its subsequent rebound (∆λ̂CHt+1 > 0) reduce inflation today. A temporary
shock also leads the AD curve to shift down, since ∆λ̂CHt+1 > 0 lowers the real natural rate and reduces aggregate demand,
thus further lowering inflation in period t.
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the shock (∆λ̂MHt+1 > 0) lowers the real natural rate. While rising trade induces a decline in inflation in
this scenario – consistent with conventional wisdom – the mechanism is entirely implausible: inflation falls
because the transitory shock induces a recession (negative output gap) in period t. While much policy
discussion emphasizes the possible deflationary impact of globalization, we know of no prominent discussion
that emphasizes its recessionary impacts to explain the decline in inflation.

To conclude, this discussion re-emphasizes two of our main points. Trade dynamics drive inflation, and
this point is largely overlooked in prior work on globalization and inflation. Furthermore, how trade dynamics
matter depends on whether trade in final goods or inputs is changing.

3 Extensions to the Baseline Model: Financial Inflow Shocks and

Import Competition

We now consider two substantive extensions to the baseline model.28 The first extension is to introduce
financial inflow shocks that allow the model to match the path of the US trade deficit over time. The second
extension is to introduce variable markups and dollar currency pricing in the model, allowing for import
competition to influence prices. For clarity sake, we examine these modifications one at a time.

3.1 Financial Inflow Shocks and Trade Imbalances

In addition to trade integration, globalization was also associated with increased financial integration and a
US current account (trade) deficit. In the baseline model, we assumed that international financial markets
were complete, so current account imbalances were determined by consumption risk sharing. Further, we
omitted shocks – to exogenous foreign variables or financial integration itself – that target the actual path
of trade and current account deficits over time. As a result, the trade deficit in the baseline model differs
from data.

We plot the trade deficit in the baseline model (with shocks to domestic sourcing) and official US quarterly
data in Figure 5, both expressed as a share of gross output. While the baseline model generates a widening
of the US trade deficit through the mid-2000s, it under predicts the deficit during this “global savings glut”
period. Further, the model yields large swings in the deficit around the Great Recession, and fails to pick
up on the sustained improvement in the trade deficit during the 2010-2015 interval.

Given these discrepancies, one naturally wonders whether deviations from perfect risk sharing, or foreign
shocks that influence international financial flows, which are needed to match the actual evolution of US
trade imbalances, are important for our inflation results? Specifically, we emphasized that trade integration
drives up the real natural rate of interest in the three equation model, which stokes inflation. A common
view is that the global savings glut drove down real interest rates during this period, so one might think this
would lower inflation as a result. To investigate this mechanism, we develop an extension to baseline model
that allows us to study the role of the trade balance in driving inflation.

To incorporate financial inflow shocks in the model, we drop the complete markets assumption, and
replace it with a simple alternative framework that takes the path of the trade deficit as given. Using
notation from previous sections, the trade deficit in the model is TDt = PFtτCtCFt +PFtτMtMFt −PHtXt.
Now define TDYt ≡ TDt

PHtYt
to be the ratio of the trade deficit to nominal gross output. Taking the ratio of

28We additionally consider a third extension to the baseline model in Appendix C, where we introduce physical capital into
the model, in line with medium-scale New Keynesian models commonly used for monetary policy analysis. The punchline is
that the evolution of inflation in the baseline model is robust to introducing physical capital.
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Figure 5: Trade Deficit (% GDP)
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Note: The line labeled US Data is the ratio of the quarterly US trade balance (from the BEA) to gross output. We measure quarterly
gross output by dividing quarterly GDP data from the BEA by the ratio of value added to gross output (measured at an annual
frequency) in BEA input-output data.

the trade balance to gross output (TDYt) as given, we can then replace the risk-sharing condition in the
original model with this statement of the (exogenous) trade balance. With slight abuse of language, we refer
to TDYt as a “financial inflow shock” in discussion that follows.

This approach gives us an additional degree of freedom to match the evolution of the US trade deficit.
Further, the presence of this shock in the model may also have an independent impact on inflation. To
analyze these effects, we turn to the three equation model, augmented to include the financial inflow shock.

3.1.1 Financial Inflow Shocks in the Three Equation Model

In Appendix D, we provide a full treatment of the three equation model with financial inflow shocks. We
show first that these shocks do not enter the Phillips curve directly. We then re-derive the IS curve, where
financial inflow shocks play an important role. Superficially, the IS curve is still given by Equation 35.
However, under the hood, financial inflow shocks influence the real natural rate of interest, which is given
by:

ˆ̃rnt = −Υ̃MEt

(
∆λ̂MHt+1

)
− Υ̃CEt

(
∆λ̂CHt+1

)
+ Υ̃TDEt

(
∆t̂dyt+1

)
(37)

where Υ̃M > 0, Υ̃C > 0 if and only if ρ > 1, and Υ̃TD > 0 (see the appendix for exact formulas).29

In Equation 37, note that the dynamics of the trade deficit across periods determine the natural interest
rate, not the level of the trade deficit itself. If the trade deficit is expected to widen from t to t+1, such that
∆t̂dyt+1 > 0, then the natural rate of interest rises. The reason is that an expected increase in the trade
deficit is associated with higher future consumption relative to present consumption, and this demands a
higher interest rate via the Euler equation.

The dependence of the natural rate on changes in capital inflows, rather than their level, runs counter
to the intuition we discussed above about how one might think that the global savings glut and resulting
US trade deficit should lower the real interest rate. It is the case that a one-time positive shock to capital

29To simplify this expression, we suppress shocks to foreign consumption and productivity.
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Figure 6: Simulation of Inflation in the Model with Financial Inflow Shocks
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inflows lowers the natural interest rate. In this case, t̂dyt > 0 and Ett̂dyt+1 = 0, so that Et∆t̂dyt+1 < 0.
This temporary capital inflow shock would lead domestic agents to consume more in period t, which lowers
the natural rate of interest (via the the Euler equation) and ultimately inflation. However, this is not the
kind of shock that is relevant in the early 2000’s.

Referring back to Figure 5, the early 2000’s saw sustained increases in the trade deficit year over year.
Thus, their effects do not conform to this one-off shock intuition. The phased widening of the deficit led to
a sequence of years in which ∆t̂dyt+1 > 0. Thus, anticipation of widening deficits over this period exerted
upward pressure on the natural interest rate, rather than downward pressure. Again, this stokes inflation.
In contrast, closure of the deficit from the mid-2000s onward exerts downward pressure on the natural
rate of interest and thus inflation. We will see these dynamics borne out in the historical simulations that
incorporate this shock.

3.1.2 Inflation Dynamics with Financial Inflow Shocks

Following the same procedure for simulating the model as in previous sections, we plot the evolution of
inflation given the path of observed trade deficits (t̂dyt) in Figure 6a, with domestic sourcing shocks set
to zero. Consistent with the narrative above, the widening of the US trade deficit actually serves to push
up inflation in early years, and then the anticipated closure of it yields disinflation in the middle years.
Note also the magnitudes in this figure: the capital inflow shocks alone yield modest inflation/deflation, less
pronounced than the impact of the domestic sourcing shocks.

In Figure 6b, we plot simulated inflation with all three shocks active (the capital inflow shock plus the
two domestic sourcing shocks) in this model. For comparison, we also plot inflation from simulation of
the baseline model. Consistent with the muted impacts of the capital inflow shocks, the qualitative and
quantitative results we obtained in the baseline continue to hold in this extended model. Therefore, we
conclude that inflation dynamics do not seem to have been impacted much by current account dynamics
during this time frame, above and beyond the impact of changes in domestic sourcing. Further, since this
model drops the complete markets assumption, we also conclude that financial market structure does not
play a significant role in our results.
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3.2 Import Competition with Variable Markups

Thus far, we have considered models with CES preferences and production functions. While these models
feature variable markups due to price adjustment frictions, they do not allow optimal (flexible price) markups
to vary with import competition. This omits any potential role for import competition in lowering markups,
and thus influencing inflation. To incorporate pro-competitive effects of trade, we extend the model to
incorporate Kimball (1995) style final goods and input aggregators. As in Gopinath et al. (2020), we
combine Kimball aggregation with dominant (dollar) currency pricing of imports. One distinct contribution
of this section will be to demonstrate that our sufficient statistics approach to analyzing the model can be
applied in this more sophisticated setting.

3.2.1 Main New Assumptions and Results

There are three important changes in this version of the model relative to the baseline. First, we assume
now that aggregators for final and intermediate goods are given by:

ν

∫ 1

0

Υ

(
CHt(i)

νCt

)
di+ (1− ν)

∫ 1

0

Υ

(
CFt(i)

(1− ν)Ct

)
di = 1 (38)

ξ

∫ 1

0

Υ

(
MHt(i)

ξMt

)
di+ (1− ξ)

∫ 1

0

Υ

(
MFt(i)

(1− ξ)Mt

)
di = 1, (39)

where CFt(i) and MFt(i) are consumption of individual foreign varieties, the parameters ν and ξ govern
home bias, and the function Υ(·) satisfies Υ(1) = 1, Υ

′
(·) > 0, and Υ

′′
(·) < 0. As in Klenow and Willis

(2016) and Gopinath et al. (2020), we parameterize Υ(·) using a flexible functional form:

Υ(x) = 1 + (σ − 1) exp

(
1

ε

)
εσ/ε−1

(
Γ

(
σ

ε
,

1

ε

)
− Γ

(
σ

ε
,
xε/σ

ε

))
, (40)

where Γ(u, z) =
∫∞
z
su−1e−sds is the incomplete gamma function, with σ > 1 and ε > 0. Given these

aggregators, import demand for final goods and inputs now features variable elasticities, so optimal markups
for Home firms vary with aggregate market conditions – in particular, they are lower when import competition
is tough.

Second, we assume that import prices are set in dollars, subject to Rotemberg adjustment costs. The
solution to the pricing problems for foreign firms yields a dynamic pricing equation for imports, similar to
the price setting equations for domestic firms.

Third, we assume that Home and Foreign markets are segmented, so Home producers set prices indepen-
dently for domestic and export sales. This simplifies the dynamics of the the domestic price level, but plays
an otherwise minor role in the results.

We provide a full characterization of the model in Appendix E. Here we emphasize three key results for
understanding how we use this model and interpret the results.

The first result is that the sufficient statistics approach to model analysis continues to apply in this model.
To sketch the argument, the log linear approximation to the first order condition for demand for domestic
final goods in the symmetric firm equilibrium is:

ĉHt = −σ
(
CH0

νC0

)−ε/σ (
d̂Ct + p̂Ht − p̂Ct

)
+ ĉt (41)
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where d̂Ct is an endogenous term that indexes the level of demand under Kimball aggregation, and the
subscript 0 denotes steady state values. This result implies that the log-linear approximation of demand
has a constant elasticity, governed by parameters and steady state values. In the calibrated steady state,
CH0 = νC0. Further, we show in the appendix that d̂Ct = 0 in the solution to the log-linearized model.
Combining these two observations, we can then solve for the relative price of home goods, just like in the
baseline model: p̂Ht − p̂Ct = − 1

σ−1 λ̂
C
Ht. Analogously, p̂Ht − p̂Mt = − 1

σ−1 λ̂
M
Ht for imported inputs. Thus, we

can substitute for these relative prices throughout the model to write the equilibrium in terms of deviations
in domestic sourcing shares from the steady state. Taking values for λ̂CHt and λ̂MHt as given, these results
imply that we need not solve for the relative price of domestic final goods or inputs.30

The second result concerns the domestic price Phillips curve, which reflects optimal pricing for Home
firms. In the log-linear symmetric firm equilibrium, it is given by:

πHt = − 1

φ
ε̂Ht +

(
εH0 − 1

φ

)
r̂mct + βEt (πHt+1) , (42)

where r̂mct = m̂ct − p̂Ht. Here εH0 is the elasticity of demand faced by Home firms for sales to domestic
buyers in steady state, and ε̂Ht is the log deviation in this elasticity of demand at date t from its steady
state value. When the elasticity of demand is larger than its steady state value (ε̂Ht > 0), then Home firms
reduce their markups and thus domestic price inflation is lower (all else equal). For further insight, we
can characterize this demand elasticity as function of primitive domestic sourcing shares in the model (see
Appendix E for derivation):

ε̂Ht =
CH0

YH0
ε̂CHt +

MH0

YH0
ε̂MHt (43)

with ε̂CHt = −
(

ε

σ − 1

)
λ̂CHt (44)

and ε̂MHt = −
(

ε

σ − 1

)
λ̂MHt. (45)

Thus, the elasticities by end use ε̂CHt and ε̂MHt are decreasing functions of domestic sourcing, where the
parameter ε controls the elasticity of markups to relative prices. This is the import competition channel:
demand elasticities are lower (markups are higher) when domestic sourcing is high. For readers familiar
with markup shocks in the New Keynesian literature, import competition restrains markups, operating like
a markup shock in this Phillips curve.

While this second result is one channel through which variable markups influence inflation, there is a
distinct role for markups operating via the supply side of the model. The third key result from the model
is that the evolution of markups over time influences the natural interest rate, via their effects on flexible
price consumption dynamics. As in standard monopolistic competition models, markups depress equilibrium
output – they deter input use and distort labor supply down by lowering real wages. An expected decline
in domestic sourcing reduces expected future markups for Home firms. In turn, it raises expected output
in the future relative to current output, which generates an expected real exchange rate depreciation. Via
risk sharing, the expected depreciation raises the expected growth rate of consumption, and thus the natural
interest rate today. We will show via simulation below that this third channel, via which the path of markups

30This implies that we need not actually solve the import pricing problem to characterize equilibrium variables that determine
domestic inflation. To make this argument transparent, we first write down the full equilibrium that includes the solution for
the import pricing problem in Appendix E, and then we reduce the model down using the sufficient statistics argument.
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Figure 7: Simulation of Inflation in the Model with Variable Markups

(a) Simulated Consumer Price Inflation
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(b) Simulated Demand Elasticity for Home Goods
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(c) Decomposition of Domestic Price Inflation
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(d) Simulated Natural Rate of Interest (nominal)
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influences the level of aggregate demand – is important for understanding inflation dynamics.

3.2.2 Inflation Dynamics with Variable Markups

With these key results in hand, we proceed directly to simulation. We calibrate the model with variable
markups to match the same initial steady state as the baseline model. Further, we set the parameter σ = 3

in the Klenow-Willis Υ-function, which controls elasticity of substitution between home and foreign goods
in the steady state, to match the baseline model. Following Gopinath et al. (2020), we set ε = 1, which
governs the elasticity of the elasticity of substitution with respect to relative prices.

In Figure 7a, we plot inflation in this variable markups model, along with results from the baseline model.
The model with variable markups features a larger increase in inflation during the 2000-2010 period than
the baseline model, and then a stronger disinflation during the post-2010 period. Far from dampening the
impact of rising trade on inflation, variable markups actually make inflation more responsive to changes in
trade. Cumulative inflation from 1997 to 2018 is also higher in the model with variable markups, leaving the
price level two percentage points higher than in the baseline simulation (≈ 10% versus ≈ 8% total increase
in consumer prices).

To inspect the mechanism, we plot the (log-deviation from the steady state of the) elasticity of demand
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for Home firms (ε̂Ht) over time in Figure 7b, along with the underlying elasticities of demand for Home
final goods (ε̂CHt) and inputs (ε̂MHt) separately. Per the discussion above, note these track the inverted path
of changes in domestic sourcing over time, so that the elasticity of demand peaks (markups are lowest) in
the mid-2000s. These elasticities determine the size of the effective “markup shock” in the domestic price
Phillips curve (Equation 42).

To illustrate the influence of these changes in markups on inflation at each point in time, we solve the
domestic price Phillips curve forward. However, because markups change in perpetuity due to the permanent
nature of the shocks, we adjust the standard inflation accounting equation to account for this feature of our
exercise. Denoting the terminal steady state by T , the following relationship between markups and real
marginal costs holds: r̂mcT = −

(
1

εH0−1

)
ε̂HT , and domestic price inflation in the terminal steady state is

consequently zero. If the economy jumped immediately to this long run equilibrium, then inflation would
be given by π̃H = − 1

φ

∑∞
s=0 β

sε̂HT +
(
εH0−1
φ

)∑∞
s=0 β

sr̂mcT = 0. We look at deviations in actual date-t
inflation from this hypothetical benchmark:

πHt = − 1

φ

∞∑
s=0

βsEt [ε̂Ht+s − ε̂HT ]︸ ︷︷ ︸
Markup Term

+

(
εH0 − 1

φ

) ∞∑
s=0

βsEt [r̂mct+s − r̂mcT ]︸ ︷︷ ︸
RMC Term

. (46)

We plot the results of this decomposition in Figure 7c. The markup term evidently depresses inflation,
by almost 50 basis points when its impact is largest in the mid-2000s when domestic sourcing is high.
Nonetheless, this pro-competitive effect is more than offset by endogenous changes in real marginal costs,
which drives the increase in domestic price inflation overall. Further, pro-competitive effects play no role in
explaining the pivot from inflation to deflation after 2010.

To understand why real marginal costs more than offset the direct impacts of markup restraint on
inflation, we turn a discussion of the natural interest rate. As noted above, markup shocks not only shift
the Phillips Curve, they also influence the level of aggregate demand. Aggregate demand rises as markups
decline, through the impact of time-variation in markups on the natural interest rate. In Figure 7d, we
show that the (nominal) natural interest rate in this variable markups model is more pro-cyclical than in the
baseline model with constant markups. As we asserted, the natural rate rises in anticipation of declines in
domestic sourcing, and more forcefully in the variable markups model than in the baseline. Again, this is due
to the fact that reductions in markups expand output, via their impacts on labor supply and intermediate
input use.

To sum up, like the capital inflow shocks above, allowing for variable markups in the model does not
substantially impact our overall conclusions regarding the impact of trade dynamics on inflation. This is
surprising, in that pro-competitive effects of trade on domestic prices are commonly cited as an important
element in studies of price changes across sectors in response to trade [Auer and Fischer (2010); Jaravel and
Sager (2019); Bai and Stumpner (2019)]. We have shown that pro-competitive effects are not important in
a fully specified general equilibrium context. Inflation dynamics are largely unrelated to markup dynamics.
Moreover, reductions in markups actually raise inflation relative to the baseline model with constant markups,
as their impacts on aggregate demand via the natural interest rate more than offset their impact through
the Phillips curve.
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4 Multisector Model

We now turn to a multisector version of the baseline model. As we discussed in Section 1, domestic sourcing
shares have changed in heterogeneous ways across sectors, and we apply the multisector model to study the
implications of this heterogeneity for inflation. In doing so, we also come full circle to tie our results back to
the multisector accounting framework we introduced in Section 1.

4.1 Model Overview

The multisector model, with sectors indexed by s ∈ {1, . . . , S}, is an extension of the baseline model.31 We
describe rudiments of the model here, and present the full model in the Appendix F.

On the consumption side, we adopt a standard nested CES framework, where aggregate consumption is
given by:

Ct =

(∑
s

ζ(s)1/ϑCt(s)
(ϑ−1)/ϑ

)ϑ/(ϑ−1)

(47)

Ct(s) =
(
ν(s)1/η(s)CHt(s)

(η(s)−1)/ηC(s) + (1− ν(s))
1/η(s)

CFt(s)
(η(s)−1)/η(s)

)η(s)/(η(s)−1)

(48)

CHt(s) =

(∫ 1

0

CHt(s, i)
(ε−1)/εdi

)ε/(ε−1)

, (49)

where Ct(s) is aggregate consumption of the sector-s composite goods, which is a CES composite of domestic
(CHt(s)) and foreign (CFt(s)) final goods. In the system, ϑ ∈ [0,∞) is the elasticity of substitution across
sector composites, and η(s) ∈ [0,∞) is the sector-specific elasticity of substitution between home and foreign
composites. The CES weights satisfy

∑
s ζ(s) = 1 and ν(s) ∈ [0, 1].

On the production side, individual varieties (indexed by i) are produced by combining labor with inputs,
where inputs take on a nested CES structure:

Yt(s, i) = Zt(s) (Lt(s, i))
1−α(s)

(Mt(s, i))
α(s) (50)

Mt(s, i) =

∑
s′

(
α(s

′
, s)/α(s)

)1/κ

Mt(s
′
, s, i)(κ−1)/κ

κ/(κ−1)

(51)

Mt(s
′
, s, i) =

[
ξ(s
′
, s)

1

η(s
′
)MHt(s

′
, s, i)

η(s
′
)−1

η(s
′
) + (1− ξ(s

′
, s))

1

η(s
′
)MFt(s

′
, s, i)

η(s
′
)−1

η(s
′
)

] η(s
′
)

η(s
′
)−1

(52)

where MHt(s
′
, s, i) is the quantity of a composite home good from sector s

′
used by firm i in sector s,

Mt(s
′
, s, i) is the composite input from sector s

′
used by firm i in sector s, which aggregates MHt(s

′
, s, i)

and a composite foreign input MFt(s
′
, s, i), and Mt(s, i) is the overall composite input used by firm i in

sector s. The parameter κ ∈ [0,∞) is the elasticity of substitution across sectors in input use, and parameter
restrictions α(s) ∈ [0, 1),

∑
s′ α(s

′
, s) = α(s), and ξ(s

′
, s) ∈ [0, 1] hold.

As in the baseline model, we can again use domestic sourcing shares as sufficient statistics. Due to the
multisector structure, there are now S + S2 domestic sourcing shares

{
λCt(s), λMt(s

′
, s)
}

that are proxies

31For analytical clarity, we revert back to CES production functions and preferences, and we assume financial markets are
complete, as in the baseline model. The model could easily be extended to include the refinements in Section 3, without altering
the main results.
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Figure 8: Changes in Domestic Sourcing by Sector

(a) Domestic Sourcing for Final Goods: λ̂CHt(s)
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(b) Domestic Sourcing for Inputs: λ̂MHt(s
′, s)
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for relative prices
{
PHt(s)
PCt(s)

, PHt(s
′)

PMt(s
′ ,s)

}
, where PHt(s) is the price of a representative producer in sector s,

PCt(s) is the price of the composite final good for sector s, and PMt(s
′
, s) is the price of the composite input

purchased by sector s from sector s
′
.

4.2 Inflation Dynamics with Two Sectors

We apply the same procedure to simulate the multisector model, as in previous sections. Here we present re-
sults for a two sector version of the model, distinguishing manufacturing from a composite non-manufacturing
sector that includes agriculture, natural resources, and services. New parameters that govern sector expen-
diture shares, value-added to output ratios, and the input-output structure across sectors are set to match
US input-output data in the initial period (parameter values are recorded in Appendix F). Throughout the
simulations that follow, we impose Cobb-Douglas preferences across sectors in final consumption and input
use, equivalent to setting κ = 1 and ϑ = 1. In most simulations (with one exception discussed below), we
set η(s) = η = 3, similar to the baseline model.

Changes in domestic sourcing are plotted in Figure 8. In Figure 8a, changes in final goods sourcing
(λ̂CHt(s)) are completely different across sectors – domestic sourcing falls by almost 20 percent in manu-
facturing, while it is nearly unchanged in non-manufacturing. In Figure 8b, we plot changes in domestic
sourcing for inputs (λ̂MHt(s

′, s)). Again, there is a pronounced decline in domestic sourcing of manufacturing
inputs by both the manufacturing and non-manufacturing sectors, of about 12 percent each. There are
very heterogeneous developments for sourcing of non-manufacturing inputs across sectors, however. There
is minimal change in domestic sourcing of non-manufacturing inputs by the non-manufacturing sector it-
self. In contrast, there is initially a large decline in domestic sourcing of non-manufacturing inputs by the
manufacturing sector, which then reverses after 2010. We explore the role of this particular shock in several
different ways below.

Feeding these changes in domestic sourcing through the model, we plot the resulting consumer price
inflation series in Figure 10a. Similar to the baseline model, inflation is positive throughout most of the
two decades of rising trade, with the largest positive inflation rates realized in the 2000-2010 period. Thus,
dis-aggregating the model to allow for multiple sectors does not qualitatively change the main conclusions
we drew from analysis of the one sector model. Further, quantitative magnitudes are quite similar as well.
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In Figure 10b, we examine simulated inflation for final goods and input shocks fed into the model separately.
Similar to the baseline model, input sourcing shocks dominate the medium term dynamics for inflation.
Changes in domestic sourcing for final goods drive inflation up in the first few years of the simulation in
particular, and they never drive inflation much below zero.

In Figure 10c, we disaggregate the shocks by sector, rather than by end use, and plot simulated data
for manufacturing and non-manufacturing shocks separately. One point that stands out here is that the
dynamics of sourcing in the non-manufacturing sector are important in explaining the dip in inflation in the
post-2010 period, while both shocks drive inflation up in the pre-2010 period.

Another way to emphasize this result is to examine an alternative simulation with unequal elasticities
across sectors. We consider a scenario in which the elasticity between home and foreign goods is higher
for non-manufacturing than manufacturing, with an elasticity of 2 in manufacturing and an elasticity of 6
in non-manufacturing. This is a plausible case, since non-manufacturing includes agriculture and natural
resources. In Figure 10d, we plot the results from this heterogeneous elasticity simulation, along with the
equal elasticity simulation (repeated from Figure 10a). We note that inflation is substantially higher in the
2010-2020 period in this simulation. The reason is that larger elasticity for the non-manufacturing sectors
shrinks the importance of the u-shaped evolution of domestic sourcing of non-manufacturing inputs by the
manufacturing sector, because it reduces the implied change in the relative price of home versus foreign non-
manufactured inputs. In general, however, allowing heterogeneous elasticities does not change the overall
behavior of the inflation.

4.3 Accounting for Price Changes in the Multisector Model

In Section 1, we presented introductory results regarding relative prices and price level accounting that
suggested rising trade plays a large role in explaining price changes over time. In contrast, throughout the
model simulations, we have emphasized the exact opposite result: inflation rises due to increasing trade. As
a final exercise, we bring these results together, by demonstrating that the basic accounting results hold in
this multisector model.

Using the equilibrium equations presented in Appendix F, we can write sector-level inflation in domestic
goods prices as:

πHt = [I−A′]
−1

[I− α]πV t +

(
1

η − 1

)
[I−A′]

−1
[
A′ ◦∆λ̂′Ht

]
ι︸ ︷︷ ︸

Offshoring Shock

, (53)

where πHt is a S × 1 vector with elements πHt(s), πV t is a vector of sector-specific inflation rates for the
price of real value added (i.e., sectoral GDP deflators), A is the steady state input-output matrix, α is a
diagonal matrix of steady state shares of inputs in gross output, and λ̂Ht is a matrix with elements λ̂(s′, s)

where s′ indexes row and s indexes column.32

Accumulating these sector-level inflation rates and the offshoring shock over time, we plot the evolution of
the simulated relative price of manufacturing goods (PHt(m)/PHt(n)) over time, along with the cumulative
impact of the Offshoring Shock term, in Figure 10a. This figure is analogous to Figure 3b.33 As in the
accounting exercise, we see that the relatively large size of the offshoring shock for manufacturing industries

32We present the formula here imposing η(s) = η. This facilitates comparison to Equation 12, and it matches our main
parameterization of this model.

33To be clear, the data series plotted in Figure 3b are not strictly comparable to the simulated data and aggregated shocks in
the model. In Figure 3b, we aggregated by taking simple means of highly disaggregated manufacturing and non-manufacturing
sectors, while here we are plotting simulation output from the two-sector model.
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Figure 9: Simulated Inflation in the Multisector Model

(a) Simulated Inflation in the Multisector Model
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Figure 10: Accounting for Price Changes in the Multisector Model

(a) Relative Price and Offshoring Shock for Manufacturing
vs. Non-Manufacturing
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Note: In Panel (a), the relative price of manufacturing output is equal to
∑t
s=1997DπHt and the relative offshoring shock

is
∑t
s=1997D

[
I−A′

]−1
[
A′ ◦∆λ̂′Hs

]
ι, where D is a 1 × 2 matrix with elements 1 and −1 that takes differences across

sectors. In Panel (b), the final goods import shock term is
∑t
s=1997

(
1

η−1

)
γ∆λ̂CHs and the offshoring shock term is∑t

s=1997

(
1

η−1

)
γ
[
I−A′

]−1
[
A′ ◦∆λ̂′Hs

]
ι.

drives down the relative price of manufacturing in the model, by about twelve percent in the long run. This
is a causal statement in the model, where all else is held constant, unlike in the accounting exercise. Note
too that the relative price diverges from relative offshoring – both at any given time and in the long run,
due to the internal dynamics of πV t in the model in response to shocks.

Turning to price level accounting, we can write aggregate inflation in the model as:

πt = γ [I−A′]
−1

[I− α]πV t +

(
1

η − 1

)
γ [I−A′]

−1
[
A′ ◦∆λ̂′Ht

]
ι︸ ︷︷ ︸

Offshoring

+

(
1

η − 1

)
γ∆λ̂CHt︸ ︷︷ ︸

Final Goods Imports

, (54)

where γ is a row vector of sector-level consumption shares. This parallels Equation 17 in Section 1.34 In
Figure 10b, we plot the impact of changes in offshoring and final goods sourcing on the consumer price
level, adding up quarter-on-quarter changes in the model. Like in the accounting exercise, the cumulative
impact of offshoring and increased foreign sourcing of final goods appears to be important in restraining the
aggregate price level, accounting for reductions in the price level of 5-6%, or 25-30 basis points per year.

Having developed the model counterfactuals in full, we are now in a position to emphasize again that
these accounting results tell us almost nothing about the actual role of trade in restraining inflation. As we
have shown, rising trade pushes inflation up. The accounting exercises mislead precisely because a rise in
offshoring and final goods imports triggers increases in the price of domestic real value added that more than
offset the improvement in the terms of trade. This speaks to the importance of well-defined counterfactuals
in tying trade to inflation. Prior work that has demonstrated that trade restrains price growth across sectors,
while useful for many purposes, is not a good guide to how trade impacts inflation per se.

34We are careful here to call the final term “Final Goods Imports” rather than “C Imports,” because final consumption in the
model includes consumption, investment, and government spending. This data treatment matches the baseline model.
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5 Conclusion

The impact of trade integration on relative prices across sectors is a venerable topic in international eco-
nomics. So too, much as been written about the impacts of globalization on the dynamics of inflation. In
this paper, we have brought these two strands of thought together. There is a plausible case that changes in
trade have influenced relative inflation across industries. And, in an accounting sense, rising trade restrains
consumer price growth relative to growth in the price of domestic value added content (GDP deflators).
Nonetheless, we’ve developed a suite of models to argue that rising trade actually generates inflation.

One important element of our argument is that much of the increase in trade (at least in the US) has been
due to rising imports of intermediate inputs. While standard explanations of the impact of trade on inflation
emphasize shifts in the Phillips curve, we have demonstrated that rising input trade has no such effect. The
second element is that the increase in trade has been spread over time. Anticipated increases in trade –
consistent with widespread understanding that globalization was an ongoing process of integration, and that
trade agreements were leading to liberalization over time – lead to increases in aggregate demand, which
generate inflation. Further, we have also shown that neither changes in capital inflows, nor pro-competitive
effects of trade on markups overturn these basic forces, and they may in fact strengthen them. Overall, we
are left with the conclusion that trade integration is inflationary.

To conclude, we highlight three topics regarding the nexus between trade and inflation that merit further
work. First, while we have conducted our analysis in a small open economy framework, it would be worthwhile
to revisit the questions we ask in large open economy models. While we believe our conclusions are robust to
this extension, multi-country models that incorporate trade in inputs and final goods would provide fertile
ground to study how changes in trade influence inflation synchronization across countries.

Second, our framework adopts a sufficient statistics approach to analyze historical developments in trade.
To study prospective shocks – whether to trade policy or other exogenous variables – one needs to solve for
the impact of those policies on domestic sourcing shares themselves. This requires taking a stand on the
particulars of the shocks (e.g., whether shocks are temporary or permanent, whether they influence trade in
inputs or final goods), as well as on features of the model that influence dynamic responses to those shocks
(e.g., the currency invoicing of trade). This is a fertile area for future work as well.

Lastly, we have intentionally adopted a very simple approach to characterizing monetary policy, focusing
on consumer price inflation targeting. While essentially consistent with how we believe central banks have
behaved over this period, one could elaborate on this piece of the model. In unpublished work, we have
found our results to be robust to reasonable variants on the policy rule (e.g., including the output gap in the
policy rule, incorporating interest rate inertia, etc.). We have not attempted to characterize optimal policy
in response to trade shocks, though this would be worthwhile. Farther afield, one might consider making the
central bank’s desired level of inflation endogenous, as in classic contributions by Romer (1993) and Rogoff
(2003), which emphasize that increased trade integration may have reduced the incentives of central banks
to inflate the economy. This deserves more consideration outside the US context we have considered, where
central bank commitment to low inflation is likely less firm.
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A Import Prices in Theory vs. Data

In Section 1, we suggested that one could (in principle) quantify the role of offshoring in driving costs by
looking directly at import price data. We pause here to discuss shortcomings in conventional data sources
that preclude this approach, and thus motivate the sufficient-statistic approach that we adopt. While this
discussion focuses on US data sources, similar issues arise in virtually all standard national accounts sources.

In Equations 5-7, what we need to quantify the role of inputs in driving costs is the true quality-adjusted
cost of imported inputs relative to domestic output. A helpful way to think about this is to re-write the
import price as PFt(s)=BFt(s)P dataFt (s). Think of the last term P dataFt (s) as the observed import price index
(IPI), as measured by the US Bureau of Labor Statistics (BLS) international price program, so then BFt(s)
represents sources of bias that lead measured price indexes to deviate from the (production-cost relevant)
measure of import prices required by the model.35 There are two key sources for this bias.36

The first is that existing import price deflators do not capture the full impact of offshoring on the cost
of inputs. In a multi-country environment, producers have the ability to substitute among foreign input
suppliers (e.g., from Japanese to Chinese suppliers). These cost-saving substitutions are not captured in
the multilateral import price indexes produced by the BLS, which implies that measured import prices are
likely to biased upward relative to reality, akin to outlet substitution bias in consumer price measurement
[Reinsdorf and Yuskavage (2018)]. More broadly, producers also benefit from substituting cheaper foreign
for domestic inputs. Because this substitution is not accounted for in measurement of either import prices or
domestic purchaser prices by the BLS, it is difficult to estimate the change in the unit cost of the firm’s input
bundle from existing data. This can be interpreted as a second source of bias in the relative price of imports
in our model, which leads the ratio of measured import prices to domestic output prices to understate the
decline in costs associated with offshoring.37

A second source of bias is that non-price factors may drive substitution between domestic and foreign
inputs. A leading concern is that unmeasured improvements in foreign product quality or variety have driven
firms to source inputs from abroad. In our application, quality bias is a particularly important concern – the
BLS is not able to account for quality improvements in imports using the same methods applied to domestic
producer prices. For example, while the BLS applies hedonic adjustments in producer price data, it does
not do so for import prices.

A final, somewhat different, challenge in using price data is that firms/industries are linked to one another.
Even if import prices were measured perfectly, producers may experience cost reductions either because they
directly substitute foreign for domestic ones, or because they buy inputs from upstream suppliers who
themselves engage in offshoring. Thus, one also needs input use data to track the propagation of offshoring-
induced reductions in costs through the network structure of the economy. This industry-level input use
data, collected by the BEA, is not directly comparable with BLS-measured prices in terms of coverage and
measurement conventions. Thus, it is challenging to combine import and domestic price data with input-
output data, or to aggregate the results to examine the ultimate effect of imported input prices on consumer

35Throughout the discussion that follows, we assume that data sources record the quality-adjusted price of domestic output
accurately. This assumption is a reasonable way to proceed for two reasons. First, in practice, the BLS performs more extensive
quality adjustment in the Producer Price Index (PPI) price program than it does under its Import Price Index program.
For example, hedonic price adjustment occurs for producer prices, but not for import prices. Second, rapid changes in the
international economy and trading environment point to problems of price measurement as likely being most severe for imports
[Houseman and Mandel (2015); Moulton (2018)].

36In addition to specific papers cited below, see also Houseman and Mandel (2015) and Moulton (2018).
37Put differently, using PPI and IPI data to construct changes in input costs would overstate cost growth of the composite

input. Since this bias would lead to the understatement of the quantity of inputs used in production, it also would tend to
overstate productivity growth [Houseman et al. (2011)].
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or investment goods price levels.
Our approach to circumventing these problems combines data on changes in imported input expenditure

shares with a structural model to impute changes in unit costs attributable to offshoring. While enhanced
efforts to improve price collection and measurement are needed, the distinct advantage of our approach is
that we are able to use “off the self” data from the national accounts to address the macroeconomic impact
of offshoring.
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B The Three Equation Model

In this appendix, we convert the baseline model in Table 2 into the three equation model. We first derive
the Phillips curve, and then we derive the IS Curve. One additional contribution is that we also discuss the
relationship between the gross output gap (used in the text) and the output gap for real value added (i.e.,
actual versus potential GDP).

B.1 Phillips Curve

Domestic price inflation depends on real marginal costs (r̂mct): πHt =
(
ε−1
φ

)
r̂mct+βEt (πHt+1) .We seek to

replace real marginal costs with the output gap to obtain a domestic price Phillips curve. We do this first for
the output gap defined in terms of gross output, and then discuss replacement with the value-added output
gap. Conversion of the domestic price Phillips curve into the consumer price Phillips curve is immediate,
recognizing that πCt = πHt + 1

(η−1)

(
λ̂CHt − λ̂CHt−1

)
. As in the main text, equilibrium objects in the flexible

price model have an n in the superscript.

Step One: link r̂mct to the real wage gap. Real marginal costs are: r̂mct = (1−α)r̂wt+ α
η−1 λ̂

M
Ht− ẑt.

In the flexible price equilibrium, markups are constant, so real marginal costs are equal to zero: r̂mcnt =

(1− α)r̂w
n
t + α

η−1 λ̂
M
Ht − ẑt = 0. Thus, r̂mct − r̂mcnt = r̂mct, so we can write:

r̂mct = (1− α) [r̂wt − r̂wnt ] . (55)

Note that the gap between real marginal costs in the actual and flexible price equilibrium only depends
on the real wage gap. The direct effects of domestic sourcing of inputs (λ̂MHt) and productivity (ẑt) are
differenced away, as they influence real marginal costs the same way in both equilibria.

Step Two: solve for real wage gap. Combining the first order condition for labor supply with labor
demand and the definition of real marginal costs, real wages are given by:

r̂wt =

(
αψ

(1 + αψ)(η − 1)

)
λ̂MHt +

(
1

(1 + αψ)(η − 1)

)
λ̂CHt +

(
ρ

1 + αψ

)
ĉt +

(
ψ

1 + αψ

)
(ŷt − ẑt) . (56)

Evaluating the expression for real wages in the two equilibria, the real wage gap is then:

r̂wt − r̂wnt =

(
ρ

1 + αψ

)
[ĉt − ĉnt ] +

(
ψ

1 + αψ

)
[ŷt − ŷnt ] (57)

=

(
1

1 + αψ

)
[q̂t − q̂nt ] +

(
ψ

1 + αψ

)
[ŷt − ŷnt ] , (58)

where the second line uses the risk sharing condition to eliminate the consumption gap.38 This says the
gap in real wages depends on differences in the real exchange rate and output across equilibria. Note again
that that the direct effect of changes in domestic sourcing and productivity drop away, since they move real
wages in identical ways in the two equilibria.

38Note that changes in foreign consumption ĉ∗t do not appear, because they are differenced away when looking at the
consumption gap.
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Step Three: solve for the real exchange rate gap. The next step is to swap out the real exchange
rate gap, using the goods market clearing condition to link the real exchange rate gap to the output gap and
real marginal costs. Collecting pieces, the goods market clearing condition is:

ŷt = sC

[
η

η − 1
λ̂CHt + ĉ∗t +

1

ρ
q̂t

]
+ sM

[
η

η − 1
λ̂MHt + r̂mct + ŷt −

1

η − 1
λ̂MHt

]
+ sX

[
η

η − 1
λ̂CHt + ηq̂t + ĉ∗t

]
. (59)

We rearrange to isolate output on the left-hand side:

ŷt =
η

η − 1
λ̂CHt + ĉ∗t +

(
sC/ρ+ sXη

1− sM

)
q̂t +

(
sM

1− sM

)
λ̂MHt +

(
sM

1− sM

)
r̂mct, (60)

where sC ≡ C0

Y0
, sM ≡ M0

Y0
, sX ≡ X0

Y0
, so sC + sM + sX = 1.

Evaluating output at the flexible price equilibrium, and taking differences, the gross output gap is:

ŷt − ŷnt =

(
sC/ρ+ sXη

1− sM

)
[q̂t − q̂nt ] +

(
sM

1− sM

)
r̂mct. (61)

Solving for the real exchange rate gap gives us:

q̂t − q̂nt =

(
1− sM

sC/ρ+ sXη

)
[ŷt − ŷnt ]−

(
sM

sC/ρ+ sXη

)
r̂mct. (62)

Step Four: Link real wages and output gap. Plugging the expression for the real exchange rate gap
into the real wage gap equation yields:

r̂wt − r̂wnt =

(
1

1 + αψ

)(
1− sM

sC/ρ+ sXη

)
[ŷt − ŷnt ]−

(
1

1 + αψ

)(
sM

sC/ρ+ sXη

)
r̂mct +

(
ψ

1 + αψ

)
[ŷt − ŷnt ]

=

[(
1

1 + αψ

)(
1− sM

sC/ρ+ sXη

)
+

(
ψ

1 + αψ

)]
[ŷt − ŷnt ]−

(
1− α

1 + αψ

)(
sM

sC/ρ+ sXη

)
[r̂wt − r̂wnt ] ,

(63)

where the second line eliminates real marginal costs using Equation 55. Then, we solve for the real wage
gap:

r̂wt − r̂wnt = χ [ŷt − ŷnt ] , (64)

where χ ≡
[
1 +

(
1−α

1+αψ

)(
sM

sC/ρ+sXη

)]−1 [(
1

1+αψ

)(
1−sM

sC/ρ+sXη

)
+
(

ψ
1+αψ

)]
. It is straightforward to verify

that χ > 0 under the parameter restrictions imposed in the main text.

Step Five: Link real marginal costs and output gap. Plugging back into Equation 55, real marginal
costs are linked to the gross output gap:

r̂mct = (1− α)χ [ŷt − ŷnt ] . (65)

A positive output gap yields an increase in real marginal costs, since α ∈ (0, 1) and χ > 0.
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Step Six: Write down the domestic price Phillips Curve. Substituting for real marginal costs in
the domestic price inflation equation gives us the domestic price Phillips curve:

πHt =

(
(ε− 1)(1− α)χ

φ

)
[ŷt − ŷnt ] + βEt (πHt+1) . (66)

Since ε > 1 and φ > 0, a positive gross output gap pushes up domestic price inflation, conditional on expected
future inflation.

Step Seven (Optional): replace gross output gap with value-added output gap. Equation 65
links real marginal costs to the gross output gap, which results in a domestic price Phillips curve that depends
on the gross output gap. Often, the output gap is defined in terms of real value added (GDP), rather than
gross output. So we pause here to demonstrate how to write the Phillips curve in terms of real value added.

In our model, real GDP can be constructed via double deflation, as in the national accounts:

r̂vat =

(
PH0Y0

GDP0

)
ŷt −

(
PM0M0

GDP0

)
m̂t, (67)

where r̂vat is the log deviation in real value added from steady state and GDP0 = PH0Y0−PM0M0 is value
added in the steady state. Using this result, the value-added output gap is:

r̂vat − r̂vant =

(
1

sV A

)
[ŷt − ŷnt ]−

(
1

sV A
− 1

)
[m̂t − m̂n

t ] , (68)

where sV A ≡ GDP0

PH0Y0
. Input use in the flexible price equilibrium is given by m̂n

t = ŷnt − 1
η−1 λ̂

M
Ht, thus:

m̂t − m̂n
t = r̂mct + [ŷt − ŷnt ] . (69)

Plugging back gives us:

r̂vat − r̂vant =

(
1

sV A

)
[ŷt − ŷnt ]−

(
1

sV A
− 1

)
[r̂mct + [ŷt − ŷnt ]]

= [ŷt − ŷnt ]−
(

1− sV A
sV A

)
r̂mct. (70)

Rewriting yields ŷt − ŷnt = [r̂vat − r̂vant ] +
(

1−sVA
sVA

)
r̂mct, and we insert this into real marginal costs to get:

r̂mct =

[
1− (1− α)χ

(
1− sV A
sV A

)]−1

(1− α)χ [r̂vat − r̂vant ] (71)

The domestic price Phillips Curve is then given by:

πHt =

(
(ε− 1)(1− α)χ

φ

)[
1− (1− α)χ

(
1− sV A
sV A

)]−1

[r̂vat − r̂vant ] + βEt (πHt+1) . (72)

B.2 IS Curve

As usual, derivation of the IS curve starts with the Euler Equation. We first convert the Euler Equation into
an IS curve that relates the gross output gap to a real interest rate gap. For completeness, we also rewrite
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the IS curve in terms of real value added. To fully characterize the IS curve, we then solve for the natural
real interest rate.

Step One: write Euler Equation with consumption and interest rate gaps. Start with the Euler
equation: ĉt = Etĉt+1− 1

ρ (r̂t − EtπCt+1), and take differences between the actual and flexible price equilibria:

ĉt − ĉnt = Et
[
ĉt+1 − ĉnt+1

]
− 1

ρ

[
ˆ̃rt − ˆ̃rnt

]
, (73)

where ˆ̃rt ≡ r̂t − EtπCt+1 and ˆ̃rnt ≡ r̂nt − EtπnCt+1 = r̂nt − 1
(η−1)Et∆ lnλCHt+1.

Step Two: Link consumption and output gaps. We use the goods market clearing condition to link
the consumption and output gaps. The market clearing condition can be written as:

[1− sM ] ŷt = sC

[
η

η − 1
λ̂CHt + ĉt

]
+ sM

[
λ̂MHt + r̂mct

]
+ sX

[
η

η − 1
λ̂CHt + ηq̂t + ĉ∗t

]
. (74)

Then we take differences between actual and flexible price equilibria:

[1− sM ] [ŷt − ŷnt ] = sC [ĉt − ĉnt ] + sM r̂mct + sXη [q̂t − q̂nt ] , (75)

where again the direct effects of changes in domestic sourcing and foreign consumption drop away. We
proceed to eliminate real marginal costs using Equation 65 and rearrange:

ĉt − ĉnt =

[
(1− sM )− sM (1− α)χ

sC

]
[ŷt − ŷnt ]− sXη

sC
[q̂t − q̂nt ] . (76)

And then we can combine Equation 62 and 65 to eliminate the real exchange rate gap:

ĉt − ĉnt =

[
(1− sM )− sM (1− α)χ

sC

]
[ŷt − ŷnt ]− sXη

sC

(
1− sM

sC/ρ+ sXη
−
(
sM (1− α)χ

sC/ρ+ sXη

))
[ŷt − ŷnt ]

= θ [ŷt − ŷnt ] , (77)

where θ ≡ (1−sM )−sM (1−α)χ
sC

− sXη
sC

(
1−sM

sC/ρ+sXη
− sM (1−α)χ

sC/ρ+sXη

)
> 0.

Step Three: Define IS Curve We replace the consumption gap with the output gap in the Euler
Equation and rearrange to get the IS curve for gross output:

ŷt − ŷnt = Et
[
ŷt+1 − ŷnt+1

]
− 1

θρ

(
ˆ̃rt − ˆ̃rnt

)
. (78)

Step Four (Optional): Replace gross output gap with value-added output gap. Reusing results
in Equations 70-71 above, we can link the gross output gap and the value-added output gap:

ŷt − ŷnt = Φ [r̂vat − r̂vant ] , (79)
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where Φ ≡
[
1 +

[
sVA

1−sVA − (1− α)χ
]−1

(1− α)χ

]
> 0. Then substituting into the IS curve, we get:

r̂vat − r̂vant = Et
[
r̂vat+1 − r̂vant+1

]
− 1

Φθρ

(
ˆ̃rt − ˆ̃rnt

)
. (80)

Thus, as in the Phillips curve, the translation from gross output to real value added gaps only influences the
slope of the IS curve.

B.3 The Natural Real Interest Rate

The natural real interest rate is pinned down in the flexible price equilibrium by the Euler Equation:

ˆ̃rnt = ρEt
[
ĉnt+1 − ĉnt

]
. (81)

We proceed here to solve for the natural real rate by pinning down consumption growth in the flexible price
equilibrium.

Step One: Link consumption to real exchange rate. Under the complete markets assumption,
ĉnt = ĉ∗t + 1

ρ q̂
n
t , so we can write:

ˆ̃rnt = ρEt
[
ĉ∗t+1 − ĉ∗t

]
+ Et

(
q̂nt+1 − q̂nt

)
(82)

Step Two: Link real exchange rate to output dynamics. The market clearing condition in the
flexible price equilibrium is:

ŷnt =
η

η − 1
λ̂CHt + ĉ∗t +

(
sC/ρ+ sXη

1− sM

)
q̂nt +

(
sM

1− sM

)
λ̂MHt. (83)

Take differences of this equation and rearrange to get:

∆q̂nt =

(
1− sM

sC/ρ+ sXη

)[
∆ŷnt −

η

η − 1
∆λ̂CHt −

(
sM

1− sM

)
∆λ̂MHt −∆ĉ∗t

]
(84)

Note that the phase in of the shocks directly raises ∆q̂nt , and if they lead to a boom in output growth
(yielding ∆ŷnt+1 > 0) then push it up further.

Step Three: Pin down output growth. From the supply side of the flexible price equilibrium, we know
that ŷnt = ẑt + (1− α)l̂nt + αm̂n

t and m̂n
t = ŷnt − 1

η−1 λ̂
M
Ht, so output can be expressed as:

ŷnt =
1

1− α
ẑt + l̂nt −

α

(η − 1)(1− α)
λ̂MHt. (85)

Then we can pin down l̂nt using labor supply and the real wage (obtained from r̂mc
n
t = 0):

l̂nt = − ρ
ψ
ĉ∗t −

1

ψ
q̂nt −

α

ψ(1− α)(η − 1)
λ̂MHt −

1

ψ(η − 1)
λ̂CHt +

(
1

ψ(1− α)

)
ẑt (86)
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Combining these two equations and taking differences gives us:

∆ŷnt =

(
1 +

1

ψ

)(
1

1− α

)
∆ẑt −

α

(η − 1)(1− α)

[
1 +

1

ψ

]
∆λ̂MHt −

ρ

ψ
∆ĉ∗t −

1

ψ
∆q̂nt −

1

ψ(η − 1)
∆λ̂CHt. (87)

Step Four: Combine steps to solve for natural real interest rate. We can combine results from
steps two, three, and four to write the natural real interest rate as a function of exogenous shocks:

ˆ̃rnt = ΩC∗Et∆ĉ
∗
t+1 +ΩZEt∆ẑt+1 +ΩMEt∆λ̂

M
Ht+1 +ΩCEt∆λ̂

C
Ht+1, (88)

whereΩC∗ = ψ(ρ−1)
1+ψ > 0, ΩZ = 1

1−α > 0, ΩM = −
[

α
(η−1)(1−α) + ψsM

(1+ψ)(1−sM )

]
< 0, andΩC = − 1+ψη

(1+ψ)(η−1) <

0.
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C Model with Physical Capital

In this section, we provide an extension of the baseline model that introduces physical capital in production.
We first describe the model, and then compute simulated inflation in the model. This serves to demonstrate
the robustness of the key findings to the inclusion of physical capital in the model.

C.1 Model Equations

Wemake four modifications to the baseline model. First, we modify the production function to include capital
as a primary factor. Second, we introduce a law of motion for the capital and specify the production function
and market structure for investment. Specifically, investment is produced competitively from domestic
output, subject to costs of adjusting the capital stock as in Hayashi (1982). Third, we derive an optimal
investment condition by which marginal costs of creating a unit of capital is equal to the shadow price of
capital. Fourth, we impose an arbitrage condition that equates the expected rate of return to capital to the
real interest rate in the economy.

Formally, the aggregate production function is now:

Yt = Zt(L
%
tK

1−%
t )1−αMα

t . (89)

The law of motion for capital is:

Kt = Kt−1(1− δ) + It [1− ϕ(It/Kt−1)] , (90)

where the function ϕ(·) captures the cost of adjustment the capital stock, and it satisfies the following
properties: ϕ(δ) = 0, ϕ′(δ) = 0, and ϕ′′(·) > 0. We assume that investment is produced using home goods,
so the market clearing condition for home goods now becomes:

YHt = CHt +MHt + It(1 + ϕ(It/Kt−1)) +Xt +
φ

2

(
PHt
PH,t−1

− 1

)2

Yt (91)

Since the price of one unit of investment is PHt, optimal investment implies that the shadow price of a capital
good, PKt, is equal to the marginal cost of creating it:

PKt(1− ϕ(It/Kt−1)− ϕ′(It/Kt−1)It/Kt−1) = PHt (92)

Finally, arbitrage implies that the rate of return of capital satisfies:

Et

[
β

(
Ct+1

Ct

)−ρ
PCt
PC,t+1

(1 + it)

]
= Et

[
β

(
Ct+1

Ct

)−ρ
PCtPH,t+1

PC,t+1PH,t

(1− %)(1− α)MCt+1Yt+1

PHt+1Kt+1
+ PKt+1

PHt+1
(1− δ)

PKt
PHt

]
(93)

The log-linearized model with capital is presented in Table 4. The notation generally follows the baseline
model. We add four new variables related to the cost of capital and capital acumulation, where hats denote
log deviations from steady state: ît is physical capital investment, k̂t is the capital stock , r̂pkt is the
relative price of capital (relative to home output), and r̂dt is the real rental rate of capital. The equilibrium
system has 17 endogenous variables, including prices {r̂wt, r̂dt, r̂t, r̂pkt, r̂mct, q̂t, π̂Ht, π̂Ct} and quantities
{ŷt, m̂t, l̂t, m̂Ht, k̂t, ît, ĉHt, ĉt, x̂t} and 4 exogenous variables {λ̂CHt, λ̂MHt, ĉ∗t , ẑt}.
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Table 4: Log-Linearization of the Model with Capital

Consumption-Leisure l̂t = − ρ
ψ ĉt + 1

ψ r̂wt −
1

ψ(η−1) λ̂
C
Ht

Consumption Allocation ĉHt = η
η−1 λ̂

C
Ht + ĉt

Euler Equation ĉt = Etĉt+1 − 1
ρ (r̂t − EtπCt+1)

Input Choices

l̂t = r̂mct + ŷt − r̂wt

m̂t = r̂mct + ŷt − 1
η−1 λ̂

M
Ht

m̂Ht = η
η−1 λ̂

M
Ht + m̂t

k̂t = −(̄ir̂dt + δr̂pkt)/(̄i+ δ) + r̂mct + ŷt

Production Function ŷt = ẑt + (1− α)
(

(1− %)k̂t + %l̂t

)
+ αm̂t

Law of Motion for Capital k̂t = (1− δ)k̂t−1 + δît−1

Optimal Investment r̂pkt = ac ∗
(
ît − k̂t−1

)
Domestic Price Inflation πHt =

(
ε− 1

φ

)
r̂mct + βEt (πHt+1)

Consumer Price Index πCt = πHt + 1
(η−1)

(
λ̂CHt − λ̂CHt−1

)

Market Clearing
ŷt =

(
CH0

Y0

)
ĉHt +

(
MH0

Y0

)
m̂Ht + I

Y ît +
(
X0

Y0

)
x̂t

x̂t = η
η−1 λ̂

C
Ht + ηq̂t + ĉ∗t

ĉt = ĉ∗t + 1
ρ q̂t

Arbitrage rt + r̂pkt − Et [πHt+1] = Et

[
ī+δ
1+ī

(
r̂mct+1 + ŷt+1 − k̂t+1

)
+ 1−δ

1+ī
r̂pkt+1

]
Monetary Policy Rule r̂t = ωπCt

C.2 Inflation Dynamics with Capital Accumulation

To simulate the model with capital, we need to calibrate two new parameters. We set the capital share
in value added, (1 − %) to 0.4. Note that our baseline model is the limit of the model with capital when
(1−%) tends to 0. We set the adjustment cost parameter, ac,39 to 0.5, which implies a standard deviation for
the price of capital that is half the standard deviation of investment. This is close to the relative standard
deviation in U.S. data; At business cycle frequencies, it is around 1/3, but it increases to around 1/2 when
medium-term frequencies are included in the analysis [Comin and Gertler (2006)].

Figure 11a presents the simulated inflation series after feeding in the observed home sourcing shares in
the model with capital. For comparison purposes we also plot the simulated inflation series in the baseline
model. Figure 11b separates the inflation series resulting from changes in home sourcing shares for final
consumption goods and for intermediate goods.

The main takeaway is that the dynamics of inflation in the model with capital are very similar to
the baseline. Inflation increases in response to the decline in home sourcing during the first half of the
simulation period, and then declines in the latter half as home sourcing of inputs reverts, much like the

39ac is equal to ϕ′′(I0/K0) ∗ (I0/K0)2,where I0/K0 denotes the investment to output ratio in steady state.
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Figure 11: Simulation of Inflation in the Model with Physical Capital
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(b) Simulated Inflation for Individual Shocks
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baseline model. The main difference vis-à-vis the baseline concerns dynamics around the Great Recession,
where input sourcing shocks push inflation up more in the model with capital than the baseline model. This
is a somewhat tangential feature of the data, on which we place relatively little weight.
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D Three Equation Model with Capital Inflow Shocks

As described in the text, the model with capital inflow shocks makes one change to the baseline model
(summarized in Tables 1-2). We drop the complete markets assumption, and we thus replace the risk
sharing condition with with a trade deficit equation given by:

TDYt (PHtYt) = PFtτCtCFt + PFtτMtMFt − PHtXt, (94)

where TDYt = TDt
PHtYt

is the trade deficit as a share of gross output, which is treated as an additional
exogenous variable (i.e., shock). This expression can be log-linearized as follows:

TD0

(
t̂dyt + ŷt

)
= IMC

0

((
1− ηλCH0

(η − 1)(1− λCH0)

)
λ̂CHt + ĉt

)
+ IMM

0

((
1− λMH0

(η − 1)(1− λMH0)

)
λ̂MHt + m̂t

)
− EX0x̂t,

(95)

where we used λ̂CFt = −
(

λCH0

1−λCH0

)
λ̂CHt, λ̂

M
Ft = −

(
λMH0

1−λMH0

)
λ̂MHt, λ̂

C
Ht = (1 − η) (p̂Ht − p̂Ct), and λ̂MHt = (1 −

η) (p̂Ht − p̂Mt) to rewrite the expression. Further, TD0 ≡ TDY0 (PH0Y0) is the trade deficit, IMC
0 ≡

PF0τC0CF0 is the value of imports for final consumption , IMM
0 ≡ PF0τM0MF0 is the value of imported

inputs, and EX0 ≡ PH0X0 is the value of exports, all evaluated at the date zero steady state.
We now proceed to use this trade deficit condition in place of the risk sharing condition to re-derive the

Phillips and IS curves, as well as solve for the real natural rate of interest. These derivations support the
discussion in main text.

D.1 Phillips Curve

Referring back to Appendix B, Step One and Step Two of the derivation are identical. Starting with Step
Three, we need to solve for the real exchange rate gap. The goods market clearing condition is:

ŷt = sC

[
η

η − 1
λ̂CHt + ĉt

]
+ sM

[
η

η − 1
λ̂MHt + r̂mct + ŷt −

1

η − 1
λ̂MHt

]
+ sX

[
η

η − 1
λ̂CHt + ηq̂t + ĉ∗t

]
. (96)

Evaluating this expression in the flexible price equilibrium and taking differences gives us:

ŷt − ŷnt =

(
sC

1− sM

)
(ĉt − ĉnt ) +

(
sM

1− sM

)
r̂mct +

(
sXη

1− sM

)
(q̂t − q̂nt ) . (97)

In Appendix B, we eliminated consumption using the risk sharing condition. Here we will use the trade
deficit equation instead. Using Equation 95, we can substitute out for m̂t and x̂t, and then rearrange to get:

TD0t̂dyt +
(
TD0 − IMM

0

)
ŷt =

[
IMC

0

(
1− ηλCH0

(η − 1)(1− λCH0)

)
− EX0

(
η

η − 1

)]
λ̂CHt + IMC

0 ĉt

+ IMM
0

(
1− λMH0

(η − 1)(1− λMH0)
− 1

η − 1

)
λ̂MHt + IMM

0 r̂mct − EX0ηq̂t − EX0ĉ
∗
t . (98)

Evaluate this expression at the flexible price equilibrium, where r̂mcnt = 0, and take differences to obtain:

(
TD0 − IMM

0

)
(ŷt − ŷnt ) = IMC

0 (ĉt − ĉnt ) + IMM
0 r̂mct − EX0η (q̂t − q̂nt ) . (99)
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Note there is no direct effect of the trade deficit here, because it is assumed to be the same in the actual and
flexible price equilibria. The steady state trade deficit matters for determination of the coefficients in this
equation, but the main difference from the baseline model is that the real exchange rate gap is no longer
linked to consumption via risk sharing.

Equations 97 and 99 allow us to solve for the real exchange rate gap in terms of the gross output gap
and real marginal costs:

(q̂t − q̂nt ) =

IMM
0 + IMC

0

(
1−sM
sC

)
− TD0

IMC
0

(
sXη
sC

)
+ EX0η

 (ŷt − ŷnt ) +

 IMM
0 − IMC

0

(
sM
sC

)
IMC

0

(
sXη
sC

)
+ EX0η

 r̂mct (100)

Proceeding to Step Four, we need to link real wages and the output gap. Starting from Equation 57, we use
the Equation 97 to replace the consumption gap:

r̂wt − r̂wnt =

(
ρ

1 + αψ

)
[ĉt − ĉnt ] +

(
ψ

1 + αψ

)
[ŷt − ŷnt ]

=

(
ρ(1− sM )

(1 + αψ)sC
+

ψ

1 + αψ

)
(ŷt − ŷnt )−

(
ρ

1 + αψ

sM
sC

)
r̂mct −

ρη

1 + αψ

sX
sC

(q̂t − q̂nt ) , (101)

where ĉt − ĉnt = 1−sM
sC

(ŷt − ŷnt ) − sM
sC
r̂mct − η sXsC (q̂t − q̂nt ). We then use Equation 55 to replace r̂mct, and

rearrange to obtain:

(r̂wt − r̂wnt ) =

(
ρ(1− sM ) + ψsC

(1 + αψ) sC + ρ(1− α)sM

)
(ŷt − ŷnt )− ρηsX

(1 + αψ) sC + ρ(1− α)sM
(q̂t − q̂nt ) (102)

Then we combine Equations 100, 102, and 55 to write the real wage gap as a function of the output gap:

r̂wt − r̂wnt = χ̄χ̇ (ŷt − ŷnt ) (103)

with χ̄ ≡

1 +
ρηsX(1− α)

(1 + αψ) sC + ρ(1− α)sM

 IMM
0 − IMC

0

(
sM
sC

)
IMC

0

(
sXη
sC

)
+ EX0η

−1

and χ̇ ≡ 1

(1 + αψ) sC + ρ(1− α)sM

ρ(1− sM ) + ψsC − ρηsX

IMM
0 + IMC

0

(
1−sM
sC

)
− TD0

IMC
0

(
sXη
sC

)
+ EX0η

 .
In Step Five, we write real marginal costs as a function of the output gap:

r̂mct = (1− α)χ̄χ̇ [ŷt − ŷnt ] . (104)

And finally, this gives us the domestic price Phillips curve:

πHt =

(
(ε− 1)(1− α)χ̄χ̇

φ

)
[ŷt − ŷnt ] + βEt (πHt+1) (105)

The end result of this analysis is that the domestic price Phillips curve is nearly identical to the baseline
model with complete markets, but for a change in the slope of the curve. The consumer price Phillips curve
then inherits this modest difference. Importantly, neither the domestic sourcing shocks, nor the capital inflow

51



shocks shift the domestic price Phillips curve. As a result, only the domestic sourcing shocks for final goods
will appear in the consumer price Phillips Curve, as in Equation 34.

D.2 IS Curve

Referring back to Appendix B, Step One of the derivation of the IS curve is identical. In Step Two, we link
consumption and output gaps. Starting from Equation 97, we plug in for the real exchange rate gap using
Equation 100, and then evaluate real marginal costs using Equation 104. Rearranging the result yields:

ĉt − ĉnt = θ̄ (ŷt − ŷnt ) , (106)

with θ̄ ≡
(

1−sM
sC

)[
1−

[(
sM

1−sM

)
+
(
sXη

1−sM

)( IMM
0 −IM

C
0

(
sM
sC

)
IMC

0

(
sXη
sC

)
+EX0η

)]
(1− α)χ̄−

(
sXη

1−sM

)( IMM
0 +IMC

0

(
1−sM
sC

)
−TD0

IMC
0

(
sXη
sC

)
+EX0η

)]
.

Via Step Three, the dynamic IS Curve follows:

ŷt − ŷnt = Et
[
ŷt+1 − ŷnt+1

]
− 1

θ̄ρ

(
ˆ̃rt − ˆ̃rnt

)
. (107)

As in the Phillips Curve, the immediate effect of relaxing the complete markets assumption is to change the
slope parameter. The deeper impact of this change in the model is hidden from view, embedded in ˆ̃rnt .

To derive the real natural rate, we refer back to Equation 81. To solve for consumption growth in the
flexible price equilibrium, we first use the output market clearing and trade deficit equation to eliminate the
real exchange rate and link output and consumption. From output market clearing, the real exchange rate
is given by:

q̂nt =

(
1− sM
sXη

)
ŷnt −

(
1− sM
sX(η − 1)

)
λ̂CHt −

(
sC
sXη

)
ĉnt −

1

η
ĉ∗t −

(
sM
sXη

)
λ̂MHt. (108)

Then substitute this into the trade balance condition and rearrange to get:

ŷnt = Υy
C λ̂

C
Ht + ĉnt + Υy

M λ̂
M
Ht + Υy

tdy t̂dyt, (109)

where the coefficients are given by:

Υy
C =

[
IMC

0 + EX0

(
sC
sX

)]−1 [
−IMC

0

(
ηλCH0 − 1

(η − 1)(1− λCH0)

)
+ EX0

(
η

η − 1

)(
sC
sX

)]
Υy
M =

[
IMC

0 + EX0

(
sC
sX

)]−1

EX0

(
sM
sX

)
> 0

Υy
tdy = −

[
IMC

0 + EX0

(
sC
sX

)]−1

TD0 < 0 if TD0 > 0.

Now we use the production function, labor supply, and real marginal cost equations to link output and
consumption. The real marginal cost equation (recognizing that r̂mct = 0 in the flexible price equilibrium)
and the labor supply condition yield:

l̂nt = − ρ
ψ
ĉnt −

α

ψ(η − 1)(1− α)
λ̂MHt −

1

ψ(η − 1)
λ̂CHt +

1

ψ(1− α)
ẑt. (110)

52



Then we plug this in to the production function to get:

ŷnt = − ρ
ψ
ĉnt +

(
1 +

1

ψ

)(
1

1− α

)
ẑt −

α

(η − 1)(1− α)

(
1 +

1

ψ

)
λ̂MHt −

1

ψ(η − 1)
λ̂CHt. (111)

We then combine Equations 109 and 111 to solve for consumption:

ĉnt = Υc
z ẑt + Υc

M λ̂
M
Ht + Υc

C λ̂
C
Ht + Υc

tdy t̂dyt, (112)

where the coefficients are given by:

Υc
z =

(
1 + ψ

ψ + ρ

)(
1

1− α

)
> 0

Υc
M = − ψ

ψ + ρ

[
α

(η − 1)(1− α)

(
1 + ψ

ψ

)
+ Υy

M

]
< 0

Υc
C = − ψ

ψ + ρ

[
1

ψ(η − 1)
+ Υy

C

]
Υc
ε = − ψ

ψ + ρ
Υy
ε > 0.

The final step is then to insert this solution for consumption into the Euler Equation, and solve for the
natural real interest rate:

ˆ̃rnt = Υ̃zEt∆ ln zt+1 + Υ̃MEt∆ lnλMHt+1 + Υ̃CEt∆ lnλCHt+1 + Υ̃tdyEt∆ ln tdyt+1, (113)

with Υ̃z = ρΥc
z > 0, Υ̃M = ρΥc

M < 0, Υ̃C = ρΥc
C , and Υ̃c

tdy = ρΥc
tdy > 0. And Υ̃C < 0 if IMC

0
(ρ+1)(ηλCH0−1)

(η−1)(1−λCH0)
>

X0

(η−1)
sC
sX

(ρη+ 1). The new result here is that an expected increase in the trade deficit (Et∆ ln tdyt+1) raises
the natural rate of interest.
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E Model with Variable Markups

Drawing on Section 3.2, we briefly describe new equilibrium conditions for the model with Kimball demand
and dollar currency pricing. Consumers choose consumption of individual home and foreign varieties to min-
imize expenditure with the consumption aggregator given by Equation 38. In a symmetric firm equilibrium,
this yields the following equilibrium conditions:

CHt = νΨ

(
DCtPHt
PCt

)
Ct (114)

CFt = (1− ν)Ψ

(
DCtτCtPFt

PCt

)
Ct (115)

νΥ

(
CHt
νCt

)
+ (1− ν)Υ

(
CFt

(1− ν)Ct

)
= 1 (116)

PCtCt = PHtCHt + τCtPFtCFt, (117)

where Ψ(x) ≡ Υ
′−1(x). These replace first order conditions for the consumption allocation and the consumer

price index in the baseline model.
On the production side, Home producers choose home and foreign input use to minimize costs given

the input aggregator in Equation 39, and they set prices for sales to domestic buyers and export buyers
separately. The new equilibrium conditions are:

MHt = ξΨ

(
DMtPHt
PMt

)
Mt (118)

MFt = (1− ξ)Ψ
(
DMtτMtPFt

PMt

)
Mt (119)

ξΥ

(
MHt

ξMt

)
+ (1− ξ)Υ

(
MFt

(1− ξ)Mt

)
= 1 (120)

PMtMt = PHtMHt + τMtPFtMFt. (121)

We assume that exporters face a constant elasticity demand curve in the foreign market, such that Xt =(
PXt
EtP∗t

)−εX
C∗t , similar to the baseline model. The (symmetric) firm’s optimal prices then satisfy the follow-

ing dynamic equation in the domestic market:

0 = 1− εHt
(

1− MCt
PHt

)
− φ

(
PHt
PHt−1

− 1

)(
PHt
PHt−1

)
+ βEt

[(
Ct+1

Ct

)−ρ
PCt
PC,t+1

φ

(
PHt+1

PHt
− 1

)
PH,t+1YHt+1

PHtYHt

PHt+1

PHt

]
, (122)

where εHt = −
[
ΞΨ

(
DCtPHt
PCt

)
CHt
YHt

+ ΞΨ

(
DMtPHt
PMt

)
MHt

YHt

]
is the elasticity of demand at Home, with ΞΨ (x) ≡

Ψ
′
(x)

Ψ(x) x and YHt = CHt + MHt. With the Klenow-Willis Υ-function, the elasticity of demand for Home

goods by Home buyers is: εHt = CHt
YHt

εCHt + MHt

YHt
εMHt, with εCHt = σ

(
1 + ε ln σ−1

σ − ε ln DCtPHt
PCt

)−1

and

εMHt = σ
(

1 + ε ln σ−1
σ − ε ln DMtPHt

PMt

)−1

.
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The firm’s optimal prices in the export market are given by:

0 = 1− εX
(

1− MCt
PXt

)
− φ

(
PXt
PXt−1

− 1

)(
PXt
PXt−1

)
+ βEt

[(
Ct+1

Ct

)−ρ
PCt
PC,t+1

φ

(
PXt+1

PXt
− 1

)
PXt+1Xt+1

PXtXt

PXt+1

PXt

]
, (123)

where εX is the constant elasticity of export demand.
On the import side, we assume foreign producers set import prices in dollars (exclusive of trade costs),

subject to adjustment costs. Their optimal pricing rule is analogous to the Home firms:

0 = 1− εFt
(

1− EtMC∗t
PFt

)
− φ

(
PFt
PFt−1

− 1

)(
PFt
PFt−1

)
+ βEt

[(
C∗t+1

C∗t

)−ρ
EtP

∗
Ct

Et+1P ∗Ct+1

φ

(
PFt+1

PFt
− 1

)
PF,t+1YFt+1

PFtYFt

(
PFt+1

PFt

)]
, (124)

where εFt = −
[
ΞΨ

(
DCtτCtPFt

PCt

)
CFt
YFt

+ ΞΨ

(
DMtτMtPFt

PMt

)
MFt

YFt

]
is the elasticity of import demand and YFt =

τCtCFt + τMtMFt.
Collecting and log-linearizing the model equilibrium conditions yields the system in Table 5. To reduce

and simplify this system, we make the following observations.
First, we calibrate the model so that preference parameters ν and ζ match the domestic shares of final

and input expenditure. With an appropriate choice of units, we have PH0/PC0 = τC0PF0/PC0 = 1 and
PH0/PM0 = τM0PF0/PM0 = 1, so CH0 = νC0, CF0 = (1− ν)C0, MH0 = ζM0, and MF0 = (1− ζ)M0.

Second, with this result in hand, it is possible to show that d̂Ct = 0 and d̂Mt = 0 in any equilibrium.
Working first with consumption, the final goods aggregator implies that aggregate consumption satisfies
ĉt = CH0

C0
ĉHt + CF0

C0
ĉFt. Given the nominal spending identity PCtCt = PHtCHt + τCtPFtCFt, then the price

index can be expressed as p̂Ct = CH0

C0
p̂Ht+ CF0

C0
(τ̂Ct + p̂Ft), where PH0

PC0
= 1 and τC0PF0

PC0
= 1 . Then, plugging

the first order conditions into the consumption aggregator and simplifying yields:

0 =
CH0

C0

[(
d̂Ct + p̂Ht − p̂Ct

)]
+
CF0

C0

[(
d̂Ct + τ̂Ct + p̂Ft − p̂Ct

)]
= d̂Ct,

where the second equality uses the prior result for p̂Ct. An identical procedure applied to inputs then returns
d̂Mt = 0 as well.

Third, we can draw on the arguments in the text and these first two results to write relative prices as
functions of changes in domestic sourcing shares:

p̂Ht − p̂Ct = − 1

σ − 1
λ̂CHt (125)

τ̂Ct + p̂Ft − p̂Ct = − 1

σ − 1
λ̂CFt = − 1

σ − 1

λF0

λH0
λ̂CHt (126)

p̂Ht − p̂Mt = − 1

σ − 1
λ̂MHt (127)

τ̂Mt + p̂Ft − p̂Mt = − 1

σ − 1
λ̂MFt = − 1

σ − 1

λF0

λH0
λ̂MHt, (128)

where we have used λCHt + λCFt = 1 and λMHt + λMFt = 1.
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Fourth, given this rewriting, we can solve a subset of the equilibrium system to determine inflation. In
particular, we can drop equations that pertain to demand for foreign final goods and inputs, and we can drop
the dynamic pricing equation for imports and associated definitions of the elasticity of demand for imports.

Together, these four sets of results imply we can collapse down the equilibrium into the system presented
in Table 6. In the table, r̂pXt ≡ p̂Xt − p̂Ht, and other variables match definitions in the baseline model.

A few additional words are helpful to interpret how we write the elasticity faced by domestic firms (ε̂Ht) in
this table, and this discussion helps one interpret Equations 43-45 in the main text as well. In the steady state,
εCH0 = εMH0 = σ. A sketch proof of this statement is as follows. Using the Klenow-Willis functional form, the

first order condition for consumption is CH0

νC0
=
(

1 + ε ln
(
σ−1
σ

)
− ε ln

(
DC0PH0

PC0

))σ/ε
, where we have evaluated

it in the steady state. Since PH0

PC0
= 1 and CH0

νC0
= 1 in the steady state, then DC0 = σ−1

σ . A parallel argument

for inputs implies that DM0 = σ−1
σ too. Then εCH0 = σ

(
1 + ε ln σ−1

σ − ε ln DC0PH0

PC0

)−1

= σ and εMH0 =

σ
(

1 + ε ln σ−1
σ − ε ln DM0PH0

PM0

)−1

= σ. Given this result, CH0

YH0

εCH0

εH0
(ĉHt − ŷHt) + MH0

YH0

εMH0

εH0
(m̂Ht − ŷHt) = 0,

since CH0

YH0
ĉHt + MH0

YH0
m̂Ht = ŷHt. So, ε̂Ht = CH0

YH0
ε̂CHt + MH0

YH0
ε̂MHt, as in Equation 43. Further, the same

results lead ε̂CHt and ε̂
M
Htto simplify as well, where only the parameter ε governs how relative prices influence

deviations in elasticities from steady state.
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Table 5: Log-Linearized Variable Markups Model Equilibrium

Consumption-Leisure − ρ
ψ ĉt + 1

ψ [ŵt − p̂Ht] + 1
ψ (p̂Ht − p̂Ct) = l̂t

Consumption Allocation

ĉHt = −σ
(
CH0
νC0

)−ε/σ (
d̂Ct + p̂Ht − p̂Ct

)
+ ĉt

ĉFt = −σ
(

CF0
(1−ν)C0

)−ε/σ (
d̂Ct + τ̂Ct + p̂Ft − p̂Ct

)
+ ĉt

0 = exp

(
− 1
ε

(
CH0
νC0

)ε/σ) CH0
C0

[ĉHt − ĉt] + exp

(
− 1
ε

(
CF0

(1−ν)C0

)ε/σ) CF0
C0

[ĉFt − ĉt]

Euler Equation ĉt = Et (ĉt+1 − (rt − πCt+1)/ρ)

Input Choices

[ŵt − p̂Ht] + l̂t = [m̂ct − p̂Ht] + ŷt

[p̂Mt − p̂Ht] + m̂t = [m̂ct − p̂Ht] + ŷt

m̂Ht = −σ
(
MH0
ζM0

)−ε/σ (
d̂Mt + p̂Ht − p̂Mt

)
+ m̂t

m̂Ft = −σ
(

MF0
(1−ζ)M0

)−ε/σ (
d̂Mt + τ̂Mt + p̂Ht − p̂Mt

)
+ m̂t

0 = exp

(
− 1
ε

(
MH0
ζM0

)ε/σ) MH0
M0

[m̂Ht − m̂t] + exp

(
− 1
ε

(
MF0

(1−ζ)M0

)ε/σ) MF0
M0

[m̂Ft − m̂t]

Marginal Cost m̂ct − p̂Ht = −ẑt + (1− α) (ŵt − p̂Ht) + α (p̂Mt − p̂Ht)

Domestic Price Setting πHt =
−ε̂Ht
φ +

(εH0−1)

φ (m̂ct − p̂Ht) + βEt (πHt+1)

Import Price Setting πFt =
−ε̂F t
φ +

(εF0−1)

φ [q̂t − (p̂Ft − p̂Ct) + (m̂c∗t − p̂
∗
Ct)] + βEt (πFt+1)

Export Price Setting πXt =
(εX−1)

φ [(m̂ct − p̂Ht)− (p̂Xt − p̂Ht)] + βEt (πXt+1)

Auxiliary Inflation Definitions

πHt = [(p̂Ht − p̂Ct)− (p̂Ht−1 − p̂Ct−1)] + πCt

πXt = [(p̂Xt − p̂Ht)− (p̂Xt−1 − p̂Ht−1)] + πHt

πFt = [(p̂Ft − p̂Ct)− (p̂Ft−1 − p̂Ct−1)] + πCt

Elasticities

ε̂Ht =

[
CH0
YH0

εCH0
εH0

ε̂CHt +
MH0
YH0

εMH0
εH0

ε̂MHt

]
+
CH0
YH0

εCH0
εH0

(ĉHt − ŷHt) +
MH0
YH0

εMH0
εH0

(m̂Ht − ŷHt)

with ε̂CHt = − ε
σ ε
C
H0

(
d̂Ct + p̂Ht − p̂Ct

)
and ε̂MHt = − ε

σ ε
M
H0

(
d̂Mt + p̂Ht − p̂Mt

)
ε̂Ft =

[
CF0
YF0

εCF0
εF0

ε̂CFt +
MF0
YF0

εMF0
εF0

ε̂MFt

]
+
CF0
YF0

εCF0
εF0

(ĉFt − ŷFt) +
MF0
YF0

εMF0
εF0

(m̂Ft − ŷFt)

with ε̂CFt = − ε
σ ε
C
H0

(
d̂Ct + τ̂Ct + p̂Ft − p̂Ct

)
and ε̂MFt = − ε

σ ε
M
H0

(
d̂Mt + τ̂Mt + p̂Ft − p̂Mt

)
Price Indexes

ĉt =
(
PH0CH0
PC0C0

)
(p̂Ht − p̂Ct) +

(
τC0PF0CF0
PC0C0

)
(τ̂Ct + p̂Ft − p̂Ct) +

(
PH0CH0
PC0C0

)
ĉHt +

(
τC0PF0C0
PC0C0

)
ĉFt

m̂t =
(
PH0MH0
PM0M0

)
(p̂Ht − p̂Mt) +

(
τM0PF0MF0
PM0M0

)
(τ̂Mt + p̂Ft − p̂Mt) +

(
PH0MH0
PM0M0

)
m̂Ht +

(
τM0PF0MF0
PM0M0

)
m̂Ft

Market Clearing
ŷt =

YH0
Y0

ŷHt +
X0
Y0
x̂t

ŷHt =
CH0
YH0

ĉHt +
MH0
YH0

m̂Ht

ŷFt =
CF0
YF0

ĉHt +
MF0
YF0

m̂Ft

Exports x̂t = −εX ((p̂Xt − p̂Ht) + (p̂Ht − p̂Ct)− q̂t) + ĉ∗t

Complete Asset Markets ĉt = ĉ∗t + 1
ρ q̂t

Monetary Policy Rule r̂t = ωπCt
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Table 6: Simplified VM Model with Domestic Sourcing Shocks

Consumption-Leisure − ρ
ψ ĉt + 1

ψ r̂wt −
1

ψ(σ−1) λ̂
C
Ht = l̂t

Consumption Allocation ĉHt = σ
σ−1 λ̂

C
Ht + ĉt

Euler Equation ĉt = Etĉt+1 − 1
ρ (r̂t − EtπCt+1)

Input Choices
l̂t = r̂mct + ŷt − r̂wt

m̂t = r̂mct + ŷt − 1
σ−1 λ̂

M
Ht

m̂Ht = σ
σ−1 λ̂

M
Ht + m̂t

Marginal Cost r̂mct = (1− α)r̂wt + α
σ−1 λ̂

M
Ht − ẑt

Domestic Price Inflation πHt = − 1
φ ε̂Ht + (εH0−1)

φ r̂mct + βEt (πHt+1)

Export Price Inflation πXt =
(
εX−1
φ

)
(r̂mct − r̂pXt) + βEt (πXt+1)

with πXt =
[
r̂pXt − r̂pXt−1

]
+ πHt

Consumer Price Inflation πCt = πHt + 1
σ−1

(
λ̂CHt − λ̂CHt−1

)
Elasticities

ε̂Ht = CH0

YH0
ε̂CHt + MH0

YH0
ε̂MHt

with ε̂CHt = −
(

ε
σ−1

)
λ̂CHt

and ε̂MHt = −
(

ε
σ−1

)
λ̂MHt

Market Clearing

ŷt = YH0

Y0
ŷHt + X0

Y0
x̂t

ŷHt = CH0

YH0
ĉHt + MH0

YH0
m̂Ht

x̂t = −εX r̂pXt + εX
σ−1 λ̂

C
Ht + εX q̂t + ĉ∗t

ĉt = ĉ∗t + 1
ρ q̂t

Monetary Policy Rule r̂t = ωπCt
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F Multisector Model

The structure of the multisector model follows the one sector model closely, so we emphasize modifications
in our discussion here.

Consumers Consumer preferences are given by Equation 18, with aggregate consumption defined as in
Equations 47-48. The consumers intertemporal budget constraint is adjusted for the multisector structure:∑

s

PHt(s)CHt(s) +
∑
s

PFt(s)τCt(s)CFt(s) + Et [Qt,t+1Dt+1] ≤ Dt +WtLt, (129)

where the prices of the composite goods are {PHt(s), PFt(s)}. The parameter τCt(s) is an iceberg trade cost,
paid on imports.

Given {PHt(s), PFt(s), Qt,t+1,Wt} and initial asset holdings, the consumer’s problem is to choose
{Ct, CHt(s), CFt(s), Lt, Dt+1} to maximize 18 given 47-48 and subject to 129 and the standard transversality
condition.

Producers Similar to the baseline model, there is a unit continuum of varieties in each sector, which
are produced under monopolistic competition. To simplify the notation, we assume that these varieties are
aggregated into composite goods, which are then consumed at home and exported.40

Varieties are aggregated by competitive intermediary firms into sector-level composites with the technol-
ogy:

Yt(s) =

(∫ 1

0

Yt(s, i)
(ε(s)−1)/εt(s)dj

)ε(s)/(ε(s)−1)

, (130)

where Yt(s, i) is the quantity of variety i used to produce the composite Home good and ε(s) is the elas-
ticity for sector s. Given prices {PHt(s, i)} for individual varieties, cost minimization by the intermedi-

aries yields these first order conditions and price indexes: Yt(s, i) =
(
Pt(s,i)
PHt(s)

)−ε(s)
Yt(s) and PHt(s) =[∫ 1

0
PHt(s, i)

1−ε(s)di
]1/(1−ε(s))

.
The production function for individual varieties is given by Equations 50-52. Producers of differentiated

output set the prices of their goods taking as given the demand and select the input mix to satisfy the
implied demand. The firm chooses a sequence for PHt(s, i) to maximize:

E

∞∑
t=0

βt
C−ρt
C−ρ0

1

PCt

[
PHt(s, i)Yt(s, i)−MCt(s, i)Yt(s, i)−

φ

2

(
PHt(s, i)

PH,t−1(s, i)
− 1

)2

PHt(s)Yt(s)

]
, (131)

whereMCt(s, i) is the constant marginal costs of the firm (defined below). Further, firm i in sector s chooses
{Lt(s, i),Mt(s, i),MHt(s, i),MFt(s, i)} to minimize the cost of producing a given amount of output Yt(s, i).
Like consumers, the firm must pay iceberg trade costs to import inputs, given by τMt(s), where s denotes
the source sector of the goods.

40In contrast, in the baseline model we define preferences and technologies over varieties directly. Here we move aggregation
of varieties into a separate production sector to lighten the notation.
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Closing the Model Output market clearing for composite goods is:

Yt(s) = C
Ht

(s) +
∑
s′

∫ 1

0

MHt(s, s
′
, j)dj +Xt(s) +

∫ 1

0

φ

2

(
PHt(s, i)

PH,t−1(s, i)
− 1

)2

Yt(s)di (132)

where Xt(s) is sector-level exports. We again assume that demand for exports has a CES structure: Xt(s) =(
PHt(s)
StP∗t (s)

)−η(s)

C∗t (s) with P ∗t (s)C∗t (s) = γ(s)P ∗t C
∗
t where the export demand elasticity is the same as that

between Home and Foreign goods for domestic agents.41

The labor market clearing condition is:
∑
s

∫ 1

0
Lt(s, i) = Lt. The international risk sharing condition

applies, as in the baseline model. And we close the model via the same Taylor rule for domestic interest
rates.

Equilibrium For reference, we collect equilibrium conditions in Table 7, without imposing a price nor-
malization.

As in the baseline model, we work with the model equilibrium written in terms of domestic sourcing
shares. ΛCt(s) ≡ PHt(s)CHt(s)

PCt(s)Ct(s)
and ΛMt(s

′
, s) = PHt(s

′)MHt(s
′
,s)

PMt(s
′ ,s)Mt(s

′ ,s)
. Using first order conditions, we can related

equilibrium prices to these shares as follows:

PHt(s)

PCt(s)
=

(
ΛCHt(s)

ν(s)

)1/(1−η(s))

(133)

PHt(s
′)

PMt(s
′ , s)

=

(
ΛMHt(s

′
, s)

ξ(s′ , s)

)1/(1−η(s
′
))

. (134)

Thus, we can swap out for PHt(s)
PCt(s)

and PHt(s
′
)

PMt(s
′ ,s)

throughout the equilibrium system.
We collect log-linearized equilibrium conditions in Table 8. In the table, we define relative prices as

follows: r̂wt ≡ ŵt − p̂Ct, r̂pCt(s) ≡ p̂Ct(s) − p̂Ct, r̂mct(s) ≡ m̂ct(s) − p̂Ht(s), r̂pmt(s) ≡ p̂Mt(s) − p̂Ct,
and r̂pt(s

′, s) ≡ p̂t(s
′, s) − p̂Mt(s). Given parameters, exogenous variables (foreign variables and domes-

tic productivity), and domestic sourcing shares λ̂CHt(s) and λ̂MHt(s
′, s), an equilibrium is a path for prices

{r̂wt, r̂pCt(s), r̂mct(s), r̂pmt(s), r̂pt(s
′, s), r̂t, q̂t, πHt(s), πt} and quantities{

ĉt, l̂t, ĉt(s), ĉHt(s), l̂t(s), ŷt(s), m̂t(s), m̂t(s
′, s), m̂Ht(s

′, s), x̂t(s)
}

that solve the dynamic system in Table 8.
To simulate the model, we set parameters already defined in Table 3 to the same values, and we set

η(s) = ε(s) = 3, except where noted in the text. We set parameters that govern the multisector input-
41As in the baseline model, P ∗t and C∗t are aggregate foreign prices and consumption. The model now accomodates sector-level

shocks, via foreign sector-level prices P ∗t (s).
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output structure to match data for 1996, which are given as follows:[
ζ(1)

ζ(2)

]
=

[
0.1854

0.8146

]
[
α(1)

α(2)

]
=

[
0.7896

0.4402

]
[
α(1, 1) α(1, 2)

α(2, 1) α(2, 2)

]
=

[
0.4868 0.0911

0.3028 0.3491

]
[
ν(1)

ν(2)

]
=

[
0.7755

0.9954

]
[
ξ(1, 1) ξ(1, 2)

ξ(2, 1) ξ(2, 2)

]
=

[
0.7221 0.7624

0.8876 0.9815

]
.
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Table 7: Equilibrium Conditions for the Multisector Model

Consumption-Leisure C−ρt
Wt

PCt
= µLψt

Consumption Allocation
Ct(s) = ζ(s)

(
PCt(s)
PCt

)−ϑ
Ct

CHt(s) = ν(s)
(
PHt(s)
PCt(s)

)−η(s)

Ct(s)

CFt(s) = (1− ν(s))
(
τCt(s)PFt(s)

PCt(s)

)−η(s)

Ct(s)

Euler Equation 1 = Et

[
β
(
Ct+1

Ct

)−ρ
PCt
PC,t+1

(1 + it+1)

]

Input Choices

WtLt(s) = (1− α(s))MCt(s)Yt(s)

PMt(s)Mt(s) = α(s)MCt(s)Yt(s)

Mt(s
′, s) = α(s′,s)

α(s)

(
Pt(s

′,s)
PMt(s)

)−κ
Mt(s)

MHt(s
′, s) = ξ(s′, s)

(
PHt(s

′)
Pt(s′,s)

)−η(s′)

Mt(s
′, s)

MFt(s
′, s) = (1− ξ(s′, s))

(
τMt(s

′)PFt(s
′)

Pt(s′,s)

)−ηM (s′)

Mt(s
′, s)

Marginal Cost MCt(s) = A
W

1−α(s)
t PMt(s)

α(s)

Zt(s)
with A(s) ≡ α(s)−α(s)(1− α(s))−(1−α(s))

Input Prices PMt(s) =
(∑

s′

(
α(s′,s)
α(s)

)
Pt(s

′, s)1−κ
)1/(1−κ)

Pt(s
′, s) =

[
ξ(s′, s)PHt(s

′)1−η(s′) + (1− ξ(s′, s)) (τMt(s
′)PFt(s

′))
1−η(s′)

]1/(1−η(s′))

Domestic Pricing

(1− ε(s)) + ε(s)
MCt(s)

PHt(s)
− φ

(
PHt(s)

PH,t−1(s)
− 1

)
PHt(s)

PH,t−1(s)

+Et

[
β
C−ρt+1

C−ρt

PCt
PC,t+1

φ

(
PH,t+1(s)

PH,t(s)
− 1

)
PH,t+1(s)Yt+1(s)

PHt(s)Yt(s)

PH,t+1(s)

PHt(s)

]
= 0

Consumer Prices
PCt =

(∑
s ζ(s)PCt(s)

1−ϑ)1/(1−ϑ)

PCt(s) =
(
ν(s)PHt(s)

1−η(s) + (1− ν(s)) (τCt(s)PFt(s))
)1/(1−η(s))

Market Clearing

Yt(s) = CHt(s) +
∑
s′MHt(s, s

′) +Xt(s) + φ
2

(
PHt(s)

PH,t−1(s) − 1
)2

Yt(s)

Xt(s) =
(
PHt(s)
PCtQt

)−η(s)
γ(s)P∗t C

∗
t

P∗t (s)(
Ct
C∗t

)−ρ
Qt = Ξ∑

s Lt(s) = Lt

Monetary Policy Rule 1 + it = (1 + i0)
(

PCt
PC,t−1

)ω
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Table 8: Log-Linearized Equilibrium Conditions for the Multisector Model

Consumption-Leisure − ρ
ψ ĉt + 1

ψ r̂wt = l̂t

Consumption Allocation ĉt(s) = −ϑr̂pCt(s) + ĉt

ĉHt(s) = − η(s)
η(s)−1 λ̂

C
Ht(s) + ĉt(s)

Euler Equation ĉt = Et (ĉt+1 − (rt − πCt+1)/ρ)

Input Choices

r̂wt + l̂t(s) = r̂mct(s)− 1
η(s)−1 λ̂

C
Ht(s) + r̂pCt(s) + ŷt(s)

r̂pmt(s) + m̂t(s) = r̂mct(s)− 1
η(s)−1 λ̂

C
Ht(s) + r̂pCt(s) + ŷt(s)

m̂t(s
′, s) = −κr̂pt(s′, s) + m̂t(s)

m̂Ht(s
′, s) = − η(s′)

η(s′)−1 λ̂
M
Ht(s

′, s) + m̂t(s
′, s)

Real Marginal Cost r̂mct(s)−
1

η(s)− 1
λ̂CHt(s) + r̂pCt(s) = (1− α(s)) r̂wt + α(s)r̂pmt(s)− ẑt(s)

Input Prices 0 =
∑
s′

(
PM0(s′,s)M0(s′,s)
PM0(s)M0(s)

)
r̂pt(s

′, s)

r̂pt(s
′, s) =

(
1

η(s′)−1

)
λ̂MHt(s

′, s)− 1
η(s)−1 λ̂

C
Ht(s)− r̂pCt(s)

Domestic Pricing πHt(s) = (ε(s)−1)
φ r̂mct(s) + βEt [πHt+1(s)]

Consumer Prices
0 =

∑
s

(
PC0(s)C0(s)
PC0C0

)
r̂pCt(s)

πHt(s) = − 1
η(s)−1

(
λ̂CHt(s)− λ̂CHt−1(s)

)
+ r̂pCt(s)− r̂pCt−1(s) + πt

Market Clearing

ŷt(s) = CH0(s)
Y0(s) ĉHt(s) +

∑
s′
MH0(s,s

′
)

Y0(s) m̂Ht(s, s
′
) + X0(s)

Y0(s) x̂t(s)

x̂t(s) = η(s)
η(s)−1 λ̂

C
Ht(s)− η(s)r̂pCt(s) + η(s)q̂t − (p̂∗t (s)− p̂∗Ct) + ĉ∗t

ĉt = ĉ∗t + 1
ρ q̂t∑

s
L0(s)
L0

l̂t(s) = l̂t

Monetary Policy Rule r̂t = ωπCt
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