On the Persistence of the China Shock

David Autor ¹ David Dorn ² Gordon Hanson ³

¹MIT and NBER

²University of Zurich and CEPR

³Harvard and NBER

December 2020

Evolution of US Manufacturing Employment

Note: Employment is from CES; labor force is from CPS; population is from NVSS.

What We've Learned from the China Trade Shock

- In regions subject to larger adverse trade shocks
 - Substantial (relative) declines in mfg employment
 - Little adjustment in non-mfg employment, population headcounts
 - Larger declines in relative earnings for low-wage workers
 - Greater takeup of government transfers
- Quantitative GE analysis
 - Positive but small ACR-type gains for US (<0.3%)
 - Aggregate job loss in US manufacturing
 - Number of regions that loose from China shock is small
- Social, political consequences
 - Greater social dislocation in more adversely affected regions
 - Stronger right-wing political shift in harder hit (white) areas

Selected Literature on the China Trade Shock

- Regional employment, earnings, migration, public finance
 - ADH '13, '15, '19; Chetverikov et al '16; Greenland et al '16, '19;
 Feler Senses '17; Monte et al '18; Bloom et al '20; Pierce Schott '20
- Industries, innovation, product prices
 - Bernard et al '06; ADHS '14; Bloom et al '15; AADHP '16; Pierce Schott '16; Amiti et al '17; Handley Limão '17; Asquith et al '19; ADHPS '19; Erickson et al '19; Feenstra et al '19; Jaravel Sager '20
- Quantitative GE analysis
 - Hsieh Ossa '16; Caliendo et al '19; Adão et al '20; Galle et al '20; Kim Vogel '20; Rodriguez-Clare et al '20
- Political economy
 - Fiegenbaum Hall '15; Colantone Stanig '18a,b; Grossman Helpman '18; Gennaioli Tabellini '19; ADHM '20; Chen et al '20; Rodrik '20
- Identification and inference
 - Adão et al '19; Borusyak et al '20; Goldsmith-Pinkham et al '20

Open Questions

- How permanent is job loss in harder hit regions?
 - Do mfg emp, emp-pop ratios, average incomes recover? Does nonmfg emp eventually expand? Do gov't transfers offset lost income?
 - Indicates horizons over which different adj. mechanisms operate
- How strong are (detectable) regional spillovers in shock impacts?
 - Do pop. headcounts ultimately decline in harder hit regions? Do shocks in other regions matter materially for local outcomes?
 - Indicates extent to which US CZs approximate SOEs
- How large is the regional variation in income changes?
 - Which moments should quant analysis target for counterfactuals?
 - Indicates how well quant models capture distributional impacts

Other Issues (hidden slide)

- Its technology, not trade, that causes mfg job loss
 - Conditional CZ correlation in trade, tech shocks is small (ADH '15)
- The decline in mfg employment would have happened anyway
 - Scale, speed, and localization of job loss determines its scarring effects (Jacobson et al '93; Davis von Watcher '11)
- There's nothing special about job loss due to trade
 - Trade creates exposure to shocks than can have large, rapid, highly localized impacts (shock concentration, intensity matter for welfare)
- RF empirical analysis isn't informative about aggregate outcomes
 - RF analysis is informative (if not determinative) if regions approximate SOEs and variance in outcomes across regions is large

Preview of Findings

Shock duration

- China trade shock plateaus around 2010, doesn't unwind
 - We observe impacts for nearly decade past shock culmination

Impact duration, adjustment mechanisms

- Declines in employment, personal income last to 2018, gov't transfer uptake is long-lasting but modest (mostly Soc Sec, Medicare)
 - Even over long horizons, exit from work is primary adj. mechanism

Spillovers, distributional impacts

- Population changes are null to 2018 (except for 25-39 age group), evidence of gravity-based spillovers between regions is weak, shock-induced regional variation in personal income is large
 - Reduced-form variation in \triangle income > quant analysis

Agenda

- **1** Duration of China Trade Shock
- 2 Empirical Specification
- 3 CZ Level Analysis
 Employment/Working-Age Population
 Log Population Head Counts
 Income and Transfers per capita
 Heterogeneity in CZ Adjustment
- 4 Implications for Welfare
- 6 Conclusions

China Trade Shock from Beginning to End

- Initiation: Deng's famous southern tour (Naughton, '07)
 - Lowering input tariffs (Yu '10; Brandt & Morrow '17)
 - Reducing uncertainty (Pierce & Schott '16; Handley & Limao '17)
 - Removing export restrictions (Bai et al. '17)
 - Easing limits on FDI (Feenstra & Hanson '05)
 - Phasing out SOEs (Khandelwal et al '13; Hsieh & Song '15)
 - Migration, reduced spatial misallocation (Brandt et al. '13; Fan '19)
 - Yuan suppression (Cheung et al. '07; Bergsten & Gagnon '17)
 - Residual productivity growth (Brandt et al. '17, '19; Liu & Ma '18)
- Culmination, Regression: The state strikes back (Lardy '19)
 - End of transition-driven growth (Song et al. '11)
 - Hu, Xi rollback of reforms (Naughton '17)

Timing of the China Trade Shock: 1991-2001-2010

(a) China Share of World Exports

(b) China Share of World Imports

Plateauing of the China Trade Shock: 2008-2012

Early Comparative Advantage Products

(a) China-US Log RCA (decreasing) (b) China share of World Exports (slow rise)

Middle Comparative Advantage Products

Late Comparative Advantage Products

(a) China-US Log RCA (increasing) (b) China share of World Exports (sharp rise)

Agenda

- 1 Duration of China Trade Shock
- 2 Empirical Specification
- 3 CZ Level Analysis
 Employment/Working-Age Population
 Log Population Head Counts
 Income and Transfers per capita
 Heterogeneity in CZ Adjustment
- 4 Implications for Welfare
- 6 Conclusions

CZ Level Analysis (varying time differences)

Commuting Zone i, initial period t=2000, $h=1,\ldots$, 18

$$\Delta Y_{it+h} = \alpha_t + \beta_{1h} \Delta I P_{i\tau}^{cu} + \mathbf{X}'_{it} \beta_2 + \varepsilon_{it+h},$$

- ΔY_{it+h} = change in outcome (employment, population, income)
- $\Delta IP_{i\tau}^{cu} = \text{change in import penetration over } \tau \text{ (2000-2012)}$
- $X_{it} = initial-period controls$
 - time trends for Census regions, period dummy
 - sum of CZ mfg industry employment shares
 - CZ routine-task intensity, offshorability, female emp. share, foreign-born pop. share, college-educated pop. share, non-white pop. share, ages 0-17, 18-39, 40-64 pop. shares

(I) Defining Import Competition Shocks

Δ import penetration from China for industry j and CZ i

$$\Delta IP_{j,\tau} = \frac{\Delta M_{j,\tau}^{cu}}{Y_{j,91} + M_{j,91} - E_{j,91}}, \quad \Delta IP_{i\tau}^{cu} = \sum_{j} s_{ijt} \Delta IP_{j\tau}^{cu}$$

- $\Delta M^{cu}_{j\tau}$ is \triangle in China imports over au in US industry j
- $Y_{j,91} + M_{j,91} E_{j,91}$ is industry absorption in '91 (pre-China shock)
- $s_{ijt} \equiv L_{ijt}/L_{it}$ is initial share of industry j in CZ i's employment

Change in import penetration (10 yr. equivalent)						
time pd.	mean	sd	p25	p75		
'91-' 00	0.953	0.609	0.570	1.225		
'00-'12	0.890	0.585	0.506	1.174		
Total	0.921	0.598	0.525	1.174		

(II) Instrumental Variables Approach

Instrumental variables approach

- IV for US imports from China using other DCs (Austria, Denmark, Finland, Germany, Japan, New Zealand, Spain, Switzerland)
- \bullet Assumption: Common component of Δ in rich country imports from China is China export supply shock

$$\Delta IP_{it}^{co} = \sum_{j} s_{ijt-10} \Delta IP_{j\tau}^{co}$$

where $\Delta IP_{it}^{co} = \Delta M_{j\tau}^{co}/(Y_{j,88} + M_{j,88} - E_{j,88})$ is based on change in imports from China in other high-income countries

Identifying Restrictions (BHJ '20)

For instrument $\Delta IP_{i\tau}^{co}$ to be orthogonal to residual ε_{it+h} :

$$\mathbb{E}\left[\sum_{j} s_{j} \Delta I P_{j\tau}^{co} \overline{\varepsilon}_{j}\right] = 0, \text{ where } \overline{\varepsilon}_{j} \equiv \sum_{i} s_{ij80} \varepsilon_{it+h} / \sum_{i} s_{ij80}$$

Orthogonality achieved if $\mathbb{E}\left[\Delta I P^{co}_{i\tau} | \overline{\epsilon}_j, s_j\right] = \mu \ \forall \ j, \ \mathbb{E}[\sum_j s_j^2] \to 0$, and $Cov\left[\Delta I P^{co}_{j\tau}, \Delta I P^{co}_{k\tau} | \overline{\epsilon}_j, \overline{\epsilon}_k, s_j, s_k\right] = 0 \ \forall \ j, \ k \neq j \ (BHJ \ '20)$

Orthogonality obtains with exogenous shifts $(\Delta IP_{i\tau}^{co})$ or shares (s_j)

- BHJ '19 results for ADH '13 are consistent w/ exogeneity of shifts
- GPSS '19 approach more logical when small no. of industries matter

Standard Error Adjustments

- If primary unobserved shocks are at national industry level:
 - CZ-level regression has industry-level representation (BHJ '20); reweighted SEs for impact on mfg emp/wkg-age pop ($\beta=-0.596$)
 - ADH '13: std. error = 0.099
 - BHJ '20: std. error = 0.114
 - Challenges to inference in finite samples (AKM '19), where corrected confidence intervals may be asymmetric
 - ADH '13: 95% CI = [-0.794, -0.398]
 - AKM '19: 95% CI = [-1.010, -0.360]

(III) Sensitivity, Falsification

- Industry-level and pre-trend analysis, lagged controls (BHJ '19, '20)
- Gravity-based regional spillovers (AAE '20)
- Alternative controls for population dynamics (Greenland et al '19)
- Alternative definitions of shock period (Bloom et al '20)
- Alternative measures of employment (CBP, REIS, LAUS)

Pre-Trends (T_0 -'91 changes on '91-'00 trade shock)

Pre-Trends (T_0 -'91 changes on '91-'12 trade shock)

Pre-Trends for Pop. Growth with Varying Controls

(IV) Dynamics of the China Trade Shock

Commuting Zone i, initial period t ('00), $h = 1, \ldots$, 18

$$\Delta Y_{it+h} = \alpha_t + \beta_{1h} \Delta I P_{i\tau}^{cu} + \mathbf{X}'_{it} \beta_2 + \varepsilon_{it+h},$$

- Trade shocks and IVs are highly correlated across decades
 - $\Delta IP_{i\tau}^{cu}$ for '00-'12 and '91-'00 have correlation of 0.57
 - $\Delta IP_{i\tau}^{co}$ for '00-'12 and '91-'00 have correlation of 0.73
- Evaluate dynamics in CZ labor-market adjustment by regressing:
 - '00s outcomes on '90s shock
 - '00s outcomes on '00s and '90s shocks
 - '00s outcomes on '00s shock and '90s residualized shock
 - '00s outcomes on '90s shock and '00s residualized shock

Dynamics in CZ adjustment (?)

Varying trade shock lengths on \triangle mfg emp/working age pop

Dynamics in CZ adjustment (?)

Impact of '00-'12 trade shock on \triangle mfg emp/working age pop

Agenda

- 1 Duration of China Trade Shock
- 2 Empirical Specification
- **3** CZ Level Analysis

Employment/Working-Age Population Log Population Head Counts Income and Transfers per capita Heterogeneity in CZ Adjustment

- 4 Implications for Welfare
- 6 Conclusions

Labor Market Outcomes

'00-'16 change in:	mean	sd	p25	p75
mfg emp/pop	-3.86	2.03	-4.82	-2.49
nonmfg emp/pop	2.16	3.87	0.55	4.26
tot emp/pop	-1.70	4.24	-3.83	0.14
unemp/pop	0.61	0.58	0.18	0.99
ln pop 40-64	19.69	12.61	12.73	27.72
ln pop 18-39	5.83	11.89	-1.90	14.18
ln total pop	12.66	12.07	4.78	20.47
personal income/pop	\$9,013.44	\$3,928.26	\$6,411.87	\$11,608.44
labor comp/pop	\$2,146.01	\$2,150.53	\$755.00	\$3,396.24
gov't transfers/pop	\$3,551.82	\$675.95	\$3,097.03	\$3,915.57
TAA benefits/pop	-\$0.88	\$3.32	-\$1.45	\$0.52
UI benefits/pop	\$2.30	\$36.58	-\$19.45	\$30.14
SSA benefits/pop	\$911.21	\$282.62	\$691.70	\$1,106.53
Medicare benefits/pop	\$1,030.95	\$241.75	\$883.41	\$1,178.03

What "Should" Labor-Market Adjustment Look Like?

Adjustment to Bartik Employment Shock for Great Recession, '06-'09

Trade Shock Impacts on Mfg, Non-Mfg Employment (CBP)

'00-'16: Decline in mfg emp, no increase in non-mfg emp

(a) Mfg emp/Working age pop

(b) Non-mfg emp/Working age pop

Note: Single time difference for '00-'16 (trade shock '00-'12).

Impacts on Mfg, Non-Mfg Employment (REIS)

Decline in mfg emp, no increase in non-mfg emp

Note: Single time difference for '00-'18 (trade shock '00-'12). Non-mfg is private non-farm activity less manufacturing.

Impacts on Mfg, Non-Mfg Employment (CBP)

'91-'16: Decline in mfg emp, imprecise change in non-mfg emp

(a) Mfg emp/Working age pop

(b) Non-mfg emp/Working age pop

Note: Single time difference for '91-'16 (trade shock '91-'12).

Impacts on Unemployment, Total Employment (LAUS, REIS)

SR increase in unemployment, LR decrease in emp-pop ratio

(a) Unemployment/Working-age pop.

(b) Total Employment/Working-age pop.

Note: Stacked time differences for initial pds '91, '00; trade shock pds: '91-'00, '00-'12.

Impacts on Mfg, Non-Mfg Earnings

Mild positive selection of workers who stay employed in mfg

- (a) Mfg earnings per worker (REIS)
- (b) Non-mfg earnings per worker (REIS)

Note: Single time difference for '00-'16 (trade shock '00-'12). Non-mfg is private non-farm activity less manufacturing.

CZ Level Analysis with Gravity Spillovers (AAE '20)

Commuting Zone i, initial period t ('00), $h = 1, \ldots$, 18

$$\Delta Y_{it+h} = \alpha_t + \beta_{1h} \Delta I P^{cu}_{i\tau} + \beta_{2h} \sum_k z_{ikt} \Delta I P^{cu}_{k\tau} + \mathbf{X}'_{it} \beta_2 + \mathbf{e}_{it+h}.$$

- $\Delta Y_{it+h} = \text{change in outcome (employment, population, income)}$
- $\Delta IP_{i\tau}^{cu}=$ change in IP over au ('91-'00, '00-'12), $z_{ikt}\equiv \frac{L_{kt}D_{ik}^{-\delta}}{\sum_{h}L_{ht}D_{ih}^{-\delta}}$
- $X_{it} = initial-period controls$

Impacts of Gravity-based Spillovers on Mfg Emp (CBP)

Local shock impact unchanged, no gravity shock impact

(a) Impact of Local Trade Shock

(b) Impact of Gravity-Based Trade Shock

Impacts of Gravity-based Spillovers on Non-Mfg Emp (CBP)

Local shock impact unchanged, imprecise gravity shock impact

(a) Impact of Local Trade Shock

(b) Impact of Gravity-Based Trade Shock

Impacts of Gravity-based Spillovers on Mfg Emp (REIS)

Local shock impact unchanged, no gravity shock impact

(a) Impact of Local Trade Shock

(b) Impact of Gravity-Based Trade Shock

Impacts of Gravity-based Spillovers on Non-Mfg Emp (REIS)

Local shock impact unchanged, imprecise gravity shock impact

(a) Impact of Local Trade Shock

(b) Impact of Gravity-Based Trade Shock

- Duration of China Trade Shock
- 2 Empirical Specification
- 3 CZ Level Analysis
 Employment/Working-Age Population
 Log Population Head Counts
 Income and Transfers per capita
 - Heterogeneity in CZ Adjustment
- 4 Implications for Welfare
- 6 Conclusions

Impacts on Population by Age (lagged pop. growth controls)

Precise impacts only for 25-39 yr olds (36% wkg age pop in '00)

- (a) In population 40-64
- (b) In population 25-39

(c) In population 18-24

Note: Stacked time differences for initial pds '91, '00; trade shock pds: '91-'00, '00-'12; controls include CZ pop. growth '70-'90 (Greenland et al '19).

- 1 Duration of China Trade Shock
- 2 Empirical Specification
- **3** CZ Level Analysis

Employment/Working-Age Population Log Population Head Counts Income and Transfers per capita Heterogeneity in CZ Adjustment

- 4 Implications for Welfare
- 6 Conclusions

Impact on Personal Income (USD '15) per capita

Declines in personal income out to 2018

(b) Government transfers

Note: Stacked time differences for initial pds '91, '00; trade shock pds: '91-'00, '00-'12; personal income includes wages, salaries, bonuses, employer benefits, business income, financial returns (rent, interest, dividends, realized capital gains), and gov't transfers.

Impact on Components of Personal Income per capita

Impact on Log Government Assistance per capita

- 1 Duration of China Trade Shock
- 2 Empirical Specification
- CZ Level Analysis

Employment/Working-Age Population Log Population Head Counts Income and Transfers per capita Heterogeneity in CZ Adjustment

- 4 Implications for Welfare
- 6 Conclusions

Heterogeneity by Initial CZ Emp-Pop Ratio

Heterogeneity by Initial CZ College Share

Heterogeneity by Initial Occupational Specialization

Heterogeneity by Initial Industrial Specialization

- 1 Duration of China Trade Shock
- 2 Empirical Specification
- 3 CZ Level Analysis
 Employment/Working-Age Population
 Log Population Head Counts
 Income and Transfers per capita
 Heterogeneity in CZ Adjustment
- 4 Implications for Welfare
- 6 Conclusions

Counterfactual Analysis of China Shock, 2000–2007

- Caliendo et al '19: costly labor mobility
 - Estimate mobility elasticity v from $\mathbf{E}\left[\ln \mu_t^{j,k}/\mu_t^{j,j}|\ln w_{t+1}^k/w_{t+1}^j\right]$
 - $\% \triangle \bar{W}$ (std. dev.) = 0.20 (0.09) in long run (12 years)
- Galle et al '20: specific factors
 - Estimate labor specificity κ from E [ln \hat{y}_i | ln $\hat{\pi}_{iNM}$]
 - $\%\triangle \bar{W}$ (std. dev.) = 0.22 (0.25), similar w/ home prod., unemploy.
- Adão et al '20: agglomeration effects
 - Estimate agglom, employ elasticities ψ , ϕ from E $\left[\ln \hat{w}_j, \ln \hat{L}_j | \hat{\eta}_j^P, \hat{\eta}_j^C \right]$
 - $\% \triangle \bar{W}$ (std. dev.) = 0.16 (1.75)
- Related work:
 - Rodriguez-Clare et al '20: Downward nominal wage rigidities
 - Kim & Vogel '20: Non-pecuniary losses from unemployment

CZ Level Changes in Welfare (GRCY '20)

Change in welfare for region i of US is product of standard ACR component and new Roy-Fréchet component (where $\hat{x} \equiv x_1/x_0$)

$$\hat{W}_i = \frac{\hat{Y}_i}{\hat{L}_i} \prod_j \hat{P}_j^{-\beta_j} = \prod_j \hat{\lambda}_j^{-\beta_j/\theta} \prod_j \hat{\pi}_{ij}^{-\beta_j/\kappa}$$

- \hat{W}_i = change in real income in region i
- \hat{P}_j = change in product price for industry j
- $\beta_j = \text{Cobb-Douglas}$ expenditure share for industry j
- $\hat{\lambda}_j =$ change in US expenditure share on its own j goods
- $\hat{\pi}_{ij} = \text{change in employment share of industry } j \text{ in region } i$

Relative Changes in CZ Welfare

Trade-shock induced change in welfare for CZ i (conditional on controls) relative to the population-weighted US mean:

$$\begin{split} \ln \hat{W}_i - \sum_h s_h \ln \hat{W}_h &= \ln \hat{y}_i - \sum_h s_h \ln \hat{y}_h \\ &= \tilde{\beta}_{y\tau} \Delta \widetilde{IP}^{cu}_{i\tau} - \sum_h s_h \tilde{\beta}_{y\tau} \Delta \widetilde{IP}^{cu}_{h\tau} \end{split}$$

- s_i = initial share of CZ i in US population
- $\hat{y}_i = \text{trade-shock}$ induced change in income per capita in CZ i
- $\tilde{eta}_{y au}=$ estimated impact coefficient for $\ln y$ over time interval au
- $\Delta \widetilde{IP}^{cu}_{i\tau} =$ exogenous component of trade shock for CZ i (observed trade shock $\times \hat{\beta} \times$ adj. R^2 in 1^{st} stage regression)

Trade-shock-induced Variance in \triangle Income per capita

Unweighted distribution of CZ changes (deviation from pop.-weighted mean)

Note: Wted (unwted) std. dev. of shock impact: (a) 1.35 (2.15), (b) 1.30 (0.95); N = 722, 36 bins.

Most Trade Impacted Commuting Zones, 2000-2018

			2000-2018
		Manuf.	Predicted ∆
	Population	emp. share	income per
Commuting Zone	2000 (000s)	2000 (%)	capita (%)
Sioux City, IA	187.6	27.0	-8.44
Union County, MS	54.4	50.1	-7.32
Meridian, MS	156.9	26.5	-6.82
Hutchinson, MN	73.0	41.5	-5.73
North Hickory, NC	377.5	43.0	-5.70
Tupelo, MS	198.1	43.7	-5.34
Martinsville, VA	19.4	47.4	-4.94
Carroll County, VA	27.5	45.1	-4.71
Lynchburg, VA	112.4	26.9	-4.62
West Hickory, NC	165.1	49.9	-4.55
Henderson County, TN	44.9	45.9	-4.35
Crossville, TN	104.5	35.6	-4.15
Raleigh-Cary, NC	1,420.0	17.0	-4.11
Cleveland, TN	203.7	39.9	-3.75
McMinnville, TN	84.5	48.9	-3.72
Faribault-Northfield, MN	110.1	32.9	-3.67
St. Marys, PA	41.0	54.7	-3.64
Danville, KY	86.7	38.3	-3.44
Quincy, IL	152.3	23.8	-3.37
Greene County, GA	35.5	41.1	-3.16

- 1 Duration of China Trade Shock
- 2 Empirical Specification
- 3 CZ Level Analysis
 Employment/Working-Age Population
 Log Population Head Counts
 Income and Transfers per capita
 Heterogeneity in CZ Adjustment
- 4 Implications for Welfare
- 6 Conclusions

Discussion

Local impacts of exposure to import competition are long lasting

Declines in mfg, total employment persist for 16-18 years

Primary means of labor-market adjustment is exit from work

• Social insurance (pensions, disability) may contribute to this

Regional variation in changes in income per capita is large

Gov't transfers do little to offset income losses

To-be-examined adjustment mechanisms

• Changes in housing prices (owners vs. renters), non-mfg exports