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Abstract

We study project development and selection by an organization whose mem-

bers prefer different projects. The organization faces a basic trade-off be-

tween fostering collaboration among its members and responding efficiently

to projects’ evolution. If the organization commits to choosing the project

that is most profitable ex post, it undermines the members’ motive to collab-

orate, causing ex-ante inefficiency. We solve for the organization’s optimal

selection rule. It entails an early phase of intense competition, followed by

a permanent regime of collaboration. In service to ex-ante optimality, arbi-

trarily severe ex-post inefficiencies must be tolerated.

Keywords: project selection, internal competition, team production, collab-

oration, mechanism design without transfers, optimal stopping
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1. Introduction

Many successful and innovative companies have been known to create internal

competition between teams, assigning multiple research teams to solve the same

technological problem or engaging distinct business units to develop competing

product prototypes. Allowing multiple teams to work in parallel is useful when

the firm’s best way forward is not a priori clear. At the same time, sowing internal
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competition rather than collaboration yields potentially wasteful duplication of

effort and inefficient use of resources. In their book, In Search of Excellence:

Lessons from America’s Best-Run Companies, Peters and Waterman Jr. (2003)

write, “Internal competition. . . permeates the excellent companies. It entails high

costs of duplication. . . overlapping divisions, multiple development projects, [and]

lost development dollars. . . Yet the benefits, though less measurable, are manifold

in terms of commitment, innovation, and a focus on the revenue line.” This tension

between competition and collaboration is our focus.

Consider the example of the IT infrastructure firm Telstar Communications

that had two distinct 50-person teams working on two competing middleware

technology platforms—AX and EX (see Birkinshaw, 2001). Each team worked on

its own platform, knowing the firm would ultimately adopt exactly one platform.

Tech giant IBM similarly fosters competition between teams for would-be prod-

uct ideas, encouraging different teams to try competing approaches to the same

problem (Peters and Waterman Jr., 2003). Internal competition of this kind gives

an organization flexibility at a time when what path the future will take, or which

approach is the most promising, may not be clear ex ante. But this benefit of

flexibility must be balanced with the costs of duplication, or the efficiency loss of

wasting productive effort on the “wrong” approach.

This trade-off between the adaptive benefits and direct efficiency loss of internal

competition is not unique to the firm setting. Consider the problem that party

elites in various forms of political primaries across the world face. A literature in

political science has studied the costs and benefits of candidate selection via intra-

party political competition. For instance, Adams and Merrill III (2008) cite an

important benefit: the “information-revealing advantage of holding a primary—

leading to a high-quality nominee.”1 At the same time, inducing competition via

primaries entails costs: Allowing more than one candidate means inefficient nega-

tive campaigning that can harm the performance of the ultimate nominee (Carey

and Polga-Hecimovich, 2008), and precious resources are spent on candidates who

are ultimately unsuccessful (Adams and Merrill III, 2008). How, then, should

1Adams and Merrill III (2008) write, “[In] many plausible scenarios the strategic advan-
tage arising from the primary electorate’s ability to select a high-quality nominee—i.e., one
whose campaigning skills prove attractive to voters (such as Bill Clinton and Ronald Reagan)—
outweighs the strategic disadvantage that the primary pulls the party’s nominee away from the
center of the general electorate.” Relatedly, Carey and Polga-Hecimovich (2006) report that pri-
maries are useful to parties in identifying candidates with higher valence, something that is hard
to know ex-ante. They write, “Primaries may simply be more effective than elite-driven search
processes in identifying candidates with broad popular appeal . . . Carlos Menem’s emergence
. . . in Argentina is an example.”
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party elites internally organize candidate selection?

With the above applications in mind, we study a finite-horizon game in contin-

uous time, in which a principal interacts with two agents until a fixed deadline T .

Each agent has a project that he would like a principal to choose. The principal

must evaluate the two projects as they are developed, and will pick one of them

when the deadline arrives. At every instant, an agent must decide how to allocate

a unit of effort between working on his own project and providing assistance (col-

laborating) on the other agent’s project. The projects’ evolution is governed by a

drift which is equal to the total effort expended on that project by the two agents,

and exogenous Brownian shocks. We assume that effort is costless. The vector

of projects’ current state of development is publicly observed by both agents and

the principal in real time, even though effort choices are not observed. The prin-

cipal’s payoff is equal to the state of the project she chooses at the deadline; she

does not benefit from the state of the other project. The agents have conflicting

interests, in that each wants his own project to be chosen. Assuming the principal

can commit to any history-dependent project choice, our goal is to characterize

her optimal selection rule.2

Intuitively, to maximize her payoff, the principal would like to make the best

possible project choice ex ante, foster collaboration among agents, and tailor the

project choice as uncertainty resolves about which project will yield a higher pay-

off.3 Beginning by considering two simple benchmarks is useful. First, we consider

the principal’s first-best policy, ignoring agency problems. Of course, the principal

would then optimally defer judgment until the deadline, and pick the project with

the higher final state. Moreover, at any instant, she would like both agents to

allocate all of their energy to the project that is currently ahead (i.e., has a higher

state at that time), to maximize the likelihood that said energy is productively

useful. The first-best policy captures the intuition that the principal wants to

foster collaboration, while constantly adjusting the project choice as uncertainty

resolves to ensure the agents collaborate on the “right” project. But it is not

incentive compatible for the agents. Indeed, consider another natural benchmark,

2Our interest is in organizations facing real distortions that cannot be directly contracted
away, leading us to a model without monetary transfers. This modeling choice reflects the classic
(Gibbons, 2020; March, 1962) view of “the executive . . . [as] a political broker who cannot solve
the problem of conflict by simple payments to the participants and agreement on a superordinate
goal.” Of course, understanding the nature of collaboration in the presence of transfers would
be an important complementary exercise.

3Exogenous project shocks imply that an agent’s effort is solely instrumental: Effort improves
project development. We abstract from another potentially important role for effort, namely, to
generate more information about a given project.
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in which the principal cannot commit in advance to a project selection rule. It is

easy to see that, in this case too, the principal will pick the project with the higher

ex-post state at the deadline. A unique equilibrium between the agents ensues,

with no collaboration: Each agent focuses all effort on his own project. To bene-

fit from efficient collaboration, therefore, the principal must use her commitment

power to limit herself in responding to projects’ shocks.

The natural question, then, is what form the optimal incentive-compatible se-

lection rule takes. To start with, our analysis yields three important economic

principles that guide the characterization of the optimal selection rule.

• Only condition on relative performance: First, we show the principal can

ignore aggregate shocks (i.e., those that the two projects both face) in its

decision-making. This principle was indeed reflected in the first-best solu-

tion, but we prove it remains optimal even in the face of agency. The in-

tuition is that aggregate shocks, in addition to being allocatively irrelevant

given the principal’s linear objective, are completely uninformative of agent

behavior. Given such a restriction, the only way the principal resolves her

eventual decision is through direct competition, revising the project choice

in direct response to the difference between the two projects’ development.

• First compete, then collaborate: Second, we show the principal optimally

considers two-phase policies that involve an initial phase of agents engaging

in pure competition until a stopping time, followed by both agents collab-

orating thereafter on the competition’s winner. The intuition is that the

principal’s expected project choice does not change during any temporary

phase of collaboration, and so she might as well backload said collaboration,

better targeting effort toward the eventual choice.4 So the principal’s prob-

lem entails an optimal stopping choice: When should agents switch from

competition to collaboration?

• Stop competing when a project has a large enough lead: Finally, we find

the optimal stopping rule takes an intuitive form: The principal has agents

permanently switch to collaboration on the leading project when it first

takes a large enough lead. Moreover, this minimal lead required to induce

the principal to choose a project decreases with time. Intuitively, for a

project to be chosen before the deadline, its lead over the other project must

4A similar force manifests in delayed investment when firms face uncertainty about an im-
pending government policy choice (see Stokey, 2016). In her setting, as in ours, the flow of
decision-relevant information is exogenous to current investment decisions.
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be large enough for the principal to be willing to give up the potential gains

from being able to adjust her project choice in the future. This option value

decreases as the deadline approaches.

We show the unique optimal selection rule has these features, and thus has a

very simple form: The principal commits to a time-dependent, decreasing lead

threshold {ẑt}t∈[0,T ], that decreases to zero as the deadline approaches, such that

a project is chosen at the first time t at which its state exceeds that of the other

by at least ẑt. Equilibrium behavior therefore also has a simple pattern: Each

agent allocates all effort to his own project during an initial contest, and then

both agents switch to fully collaborating on one project (the first to achieve the

threshold lead) until the deadline. Further, regardless of the time horizon, a phase

of collaboration always exists.

Returning to our motivating applications, we see this two-phase optimal con-

tract is consistent with what we observe. Indeed, competing teams are eventually

brought together, once and for all, toward a common approach, once enough rela-

tive uncertainty has been resolved. At Telstar, top-level executives finally chose in

favor of EX, and the two teams subsequently collaborated on EX in order to build

a common platform for the future. At IBM, teams are allowed to work on dis-

parate approaches until, at some point, the firm conducts performance “shootouts”

among the competing groups to pick one (Peters and Waterman Jr., 2003). Like-

wise, consistent with our model’s prediction of a collapsing threshold, American

presidential primaries consistently produce a presumptive nominee before conclud-

ing. In the speech announcing she was suspending her campaign for the 2008 US

Democratic nomination, Hillary Rodham Clinton publicly urged her supporters

that it was time for her and them “to take [their] energy, [their] passion, [their]

strength, and do all [they] can to help elect Barack Obama.”5 Following an intense

competition, Clinton joined the Obama effort, telling her supporters, “[Work] as

hard for Barack Obama as you have for me.”

Let us briefly highlight our approach to deriving the optimal selection rule.

The principal needs to choose a project at the deadline as a function of the en-

tire history of projects’ evolution. The space of such history-contingent selec-

tion rules is unwieldy. Our continuous-time model enables us to somewhat sim-

plify the principal’s problem. In particular, every selection rule induces a natural

martingale—expected eventual project choice given the history up to the current

time. This martingale helps us in two ways. First, we can recast the principal’s

5https://www.nytimes.com/2008/06/07/us/politics/07text-clinton.html
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problem as an easier stochastic control problem, where (even though she makes

a static decision following a rich history) we can interpret the principal as dy-

namically deciding how to respond to contemporaneous shocks.6 Second, because

the agents’ interests are opposed, their incentives are now straightforward: They

compete if the expected project choice responds to the projects’ current relative

performance, and are willing to collaborate otherwise. The principal’s control

problem amounts to trading off tailoring the project choice based on project per-

formance with efficiently harnessing gains from collaboration on the eventually-

chosen project. However, given our finite-horizon setting (which would render

the standard Hamilton-Jacobi-Bellman equation a partial differential equation),

even the existence of an optimal selection rule is not immediate. Moreover, even

if existence were guaranteed, the non-stationary character of the principal’s op-

timization problem would stand in the way of deriving the intuitive qualitative

features that we discuss above. To circumvent this issue, we employ methods

based on (i) a focus on more permissive weak solutions of stochastic differential

equations and (ii) the known equivalence between Itô integrals and time-changed

Brownian motions, to construct the type of controls described above to establish

our main result.

A key consequence of our characterization of the optimal policy is that the

initial phase of competition is always temporary: Regardless of the horizon, the

phase of collaboration is reached with probability 1. In particular, the unique

optimal contract implies arbitrarily large ex-post inefficiencies can occur on path.

On the one hand, fostering collaboration increases the value of the principal’s

chosen project because both agents work on it. On the other hand, having a long

phase of collaboration makes large mistakes prevalent.

Finally, consistent with our motivating applications, we could consider a richer

contracting environment in which the principal has the option of irreversibly can-

celing a project at any time, after which both agents must work on the remaining

project. Our project selection rule and consequent agent behavior can be im-

plemented in equilibrium in such a setting, and remains optimal. This alternate

formulation highlights that the commitment our principal requires is quite weak:

Rather than committing to a history-contingent project selection rule, the princi-

pal need only commit to irreversible project choices.

6This same recursive approach is, in principle, available even in discrete time. However, our
continuous formulation makes the principal’s space of choices of how to respond to contempora-
neous shocks considerably simpler, just as it does in, say, Sannikov (2008).
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The remainder of the paper is organized as follows. First, we survey some of

the most related literature below. In section 2, we present the formal model. We

start with presenting two simple benchmarks in section 3: the first-best policy

(ignoring agent incentives) and the case with no commitment by the principal.

In section 4, we more concretely characterize agent incentive compatibility, con-

ceptually clarifying the trade-off our principal faces. Section 5 contains the main

results of the paper. In section 6, we discuss some consequences of our main result.

Proofs, other than that of our main theorem, are in the Appendix.

1.1. Related Literature

At a high level, our paper is indebted to the perspective of organizations as political

coalitions, as outlined by March (1962) and Cyert and March (1963). Said work

highlights that individuals within organizations have goals that are often distinct

from the goals of the organization, and the role of the executive is that of a political

broker who cannot solve such problems by simple payments.7 We focus on one such

conflict between individuals and the organization—that different members would

like the organization to support their own pet initiatives, which may undermine

collaboration.

More specifically, our principal’s problem can be interpreted as a multi-agent

experimentation problem. The literature on experimentation in teams is large,

some prominent examples being Bolton and Harris (1999), Keller et al. (2005),

and Bonatti and Hörner (2011). Given the compete-then-collaborate form of our

optimal contract, a notable point of reference in this literature is Halac et al.

(2017), who study optimal contest design to promote innovation. Although many

other modeling differences exist between these papers and our own, the most im-

portant is that agents in these other papers face an incentive to free ride on each

others’ costly experimentation.8 In our model, with each agent choosing only how

to allocate a fixed effort budget between two projects, and agents’ interests be-

ing directly opposed, free-riding is not a concern. The central trade-off in our

work is between retaining option value via competition and harnessing gains from

collaboration. Another key point of contrast to the experimentation literature is

that, in our model, the flow of information—the variance reduction concerning

each project’s final state—is exogenous to agents’ choices. Hence, while our prin-

7See Gibbons (2020) for a detailed survey.
8Free-riding in teams is an extensively studied topic outside the experimentation framework

as well. For instance, somewhat related to our work, Marino and Zabojnik (2004) show how
internal competition can be beneficial in addressing the free-rider problem.
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cipal faces an exploration-exploitation tradeoff as players do in that literature,

its source is distinct. In experimentation models, a decision maker trades off the

information generated from exploration against the myopic value of exploitation

that it crowds out. In the present model, information arrives exogenously, but

when the principal uses it to inform future choices, she distorts current effort.

The closest work to our own is that of Bonatti and Rantakari (2016). There,

each of two agents first chooses what type of project to develop and how hard

to work in developing it over time, after which they negotiate over the adoption

choice. In their framework, projects differ in the payoffs generated for both play-

ers, whose interests are partially aligned. The focus of that work, therefore, is

on studying the nature of projects agents choose to develop, and the resulting

negotiations that ensue. A key lesson is that the mechanism by which projects

are selected can feed into the development stage when agents wish to distort the

organization’s decision, a feature shared by the static work of Hirsch and Shotts

(2015) and the two-period political model of Callander and Harstad (2015).9 This

lesson sets the stage for our design problem.

Finally, our paper can potentially contribute methodologically to the growing

literature on dynamic mechanism design without transfers (e.g., Aghion and Jack-

son, 2016; Deb et al., 2018; Guo and Hörner, 2018). Within that literature, future

allocative decisions may optimally be distorted in response to current shocks, ei-

ther to provide present incentives (as in Meyer, 1992) or in response to learning

or other payoff-relevant shocks (as in Meyer, 1991). A recent contribution featur-

ing both such sources of dynamics is McClellan (2019), whose principal faces a

hypothesis-testing problem subject to interim participation constraints for a pri-

vately informed agent. Like our work, McClellan (2019) employs tools from the

literature on dynamic contracting in continuous time (e.g., DeMarzo and San-

nikov, 2006; Sannikov, 2008), and he also must study his principal’s sequential

problem directly to circumvent analyzing a partial differential equation. We are

hopeful that the specific techniques employed in our paper—appealing directly to

martingale methods rather than Hamilton-Jacobi-Bellman equations to reduce the

principal’s control problem, and passing between weak and strong solutions—will

enable the use of continuous-time contracting methods more broadly in dynamic

mechanism design without transfers.

9See also Farrell and Simcoe (2012), who study related distortions in standards adoption
across firms that produce complementary products.
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2. Model

A principal interacts with two agents i ∈ I = {−1, 1} in continuous time over a

finite horizon of length T . Each agent i is the “owner” of one project with evolving

state X i. The principal must pick one of the two projects at the deadline T . At

every instant, each agent must allocate a unit of effort between working on his

own project and providing assistance on the other agent’s project. Let ait ∈ [0, 1]

denote the fraction of effort that agent i allocates to his own project at time t. He

allocates the remaining (1 − ait) of his effort to helping agent −i on his project.

We interpret (1−ait) as the extent to which agent i collaborates. Effort is costless

and contributes to projects’ development continuously over time. Formally, the

productive state of each project X i
t as of time t evolves via:

dX i
t =

[
β + µ(ait + (1− a−it ))

]
dt+ σ dBi

t,

where B1 and B−1 are independent standard Brownian motions on a filtered prob-

ability space 〈Ω,F , {Ft}t≥0,P〉 satisfying the usual conditions, agent i chooses a

progressively measurable [0, 1]-valued stochastic process ai on 〈Ω, {Ft}t≥0,P〉, and

project i has exogenous initial state X i
0. The vector of project states is publicly

observed by both agents and the principal, and effort-allocation choices are not

observed. It is convenient to define the following:

∆X := X1 −X−1, ∆B := B1 −B−1, ΣB := B1 +B−1, and ∆a := a1 − a−1.

The principal chooses a {−1, 1}-valued random variable y on 〈Ω,F ,P〉 for a payoff

of E[Xy
T ]; that is, the principal’s profit is equal to the productive state of the chosen

project. Taking a positive, affine transformation of the principal’s objective, and

counting time in different units, we may without loss normalize X1
0 + X−1

0 =0,

β = −µ, σ = 1, and µ = 1.10 Therefore, after normalization, project X i follows

dX i
t = i∆at dt+ dBi

t,

and the principal’s payoff is
1
2
E[y∆XT ].

10When we state our main theorem, we clarify exactly how these parameters alter the form of
the optimal selection rule.
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Each agent wants her project to be chosen; that is, agent i gets payoff E[iy]. Given

any (y, a1, a−1), we can define qit := E[iy|Ft] as agent i’s continuation value at any

t ≤ T . In what follows, we write agent incentives from the point of view of agent 1.

So, we drop the superscript i and define qt := q1
t = E[y|Ft]. We denote the current

leader at any time t ≤ T by `t := argmaxi∈I X
i
t .

3. Benchmarks

In this section, we consider two benchmark settings. First, we characterize a first-

best solution, maximizing the principal’s ex-ante expected profit in the absence of

agent incentive constraints. Next, we describe the equilibrium of the three-player

game in which the principal cannot commit to a decision rule and must make a

static project choice when the deadline arrives.

3.1. First-best solution: Ignoring agent incentives

Toward defining the principal’s first-best problem formally, let A denote the set of

[0, 1]2-valued progressively measurable processes on {Ft}t and let Y denote the set

of {−1, 1}-valued random variables on F . We want to solve the following planner

problem:

sup
a∈A, y∈Y

EXy
T = 1

2
E[y∆XT ]

s.t. dX i
t = (ait − a−it ) dt+ dBi

t, X1
0 = x1

0, X−1
0 = x−1

0 .

The proposition below shows that the first-best solution is for the principal to

choose the project with the higher output at the deadline and, at every instant

before the deadline, have both agents collaborate on the current leader. One part

is obvious: The principal will clearly choose the better project ex post. In the

interim, we show it is optimal to have the agents collaborate on the current best

guess of which project will be ultimately chosen, so that the effort is productive.

Formally, we observe that it is optimal to set ∆at = 1 when ∆Xt > 0 and ∆at =

−1 when ∆Xt < 0.

Proposition 1: The following policy attains the principal’s first-best profit:
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• Each agent works on the current leader, that is,

(a1
t , a
−1
t ) =

(1, 0) : X1
t ≥ X−1

t

(0, 1) : X1
t < X−1

t .

• The principal chooses project yFB = `T , the leader as of time T .

The intuition for this result is straightforward. Because the principal will opti-

mally choose the ex-post best project, her objective can be rewritten as 1
2
E|∆XT |,

an increasing transformation of (∆X)2. But then the given control increases the

drift of (∆X)2 more than any other control does, at any given level of (∆X)2.

Hence, a classic comparison theorem from the theory of stochastic differential equa-

tions says this control yields a (stochastically) maximal distribution of (∆XT )2.

3.2. No principal commitment

It is immediate that if the principal could not commit, she would (just as in the

above first-best solution) choose the leading project when the deadline arrives.

In other words, the principal’s behavior will be ex-post optimal: y = `T . This

observation in turn implies no collaboration will occur, with each agent finding

it dominant to devote all his effort to his own project to maximize the chance

that it is the eventual winner. Indeed, consider any effort decision of agent −i,
and any hypothetical effort choice ai for agent i. Raising ai to 1 (i.e., never being

collaborative) weakly increases agent i’s payoff in every state, strictly so with

positive probability if he was not already almost surely making the latter choice

at almost every time.

Proposition 2: If the principal cannot commit, then:

• Each agent works on his own project, that is, (a1
t , a
−1
t ) = (1, 1);

• The principal chooses project yFB = `T , the leader as of time T .

Absent commitment power, then, the principal is perfectly responsive, and the

result is no collaboration.

4. Agent Incentives and the Principal’s Problem

Toward better understanding the principal’s problem, we now express agent in-

centive compatibility more concretely. An agent’s strategy is incentive compatible
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if it maximizes the agent’s expected utility (continuation value), given the prin-

cipal’s selection rule. Recall that agent 1’s continuation value at time t is qt and

agent −1’s is −qt, where qt := E[y|Ft] describes interim expected project choice.

By the martingale representation theorem (Karatzas and Shreve, 1998, Theorem

3.4.15), a progressively measurable R2-valued process on {Ct = (c∆
t , c

Σ
t )}t on fil-

tration {Ft}t≥0 exists whose time-t quadratic variation has finite expectation for

every t ≥ 0, and such that

qt = q0 +

∫ t

0

[
c∆
t (d∆Xt − 2∆̃at dt) + cΣ

t dΣXt

]
, (1)

where ∆̃at is the equilibrium-anticipated ∆at, and the law of motion d∆Xt is

influenced by the actually-chosen ∆at. Intuitively, we can think of c∆
t and cΣ

t as

project sensitivities that describe how the interim expected project choice responds

to aggregate and relative shocks of the two projects. It is immediate from the

expression above that for agent incentive compatibility, we must have

∆at = 0 whenever c∆
t 6= 0. (2)

Indeed, given c∆
t > 0 [resp. c∆

t < 0], both agents would have a strict incentive to

choose ait = 1 [resp. ait = 0].

Further, we can rewrite the principal’s profit as follows:

Π = 1
2
E[y∆XT ]

= 1
2
E[qT∆XT ]

= 1
2
q0∆X0 + E

∫ T

0

(qt∆at) dt+ 1
2
E[qT∆BT ]

= 1
2
q0∆X0 + E

∫ T

0

(
qt∆at + c∆

t

)
dt

≤ 1
2
q0∆X0 + E

∫ T

0

(
1c∆t =0|qt|+ c∆

t

)
dt,

where the last equality comes from the standard formula for quadratic covaria-

tion of stochastic integrals, and the inequality comes from the agent incentive-

compatibility constraint (2). We can therefore write a relaxed version of the

12



principal’s problem as follows:11

sup
{Ct=(c∆t ,c

Σ
t )}t

1
2
q0∆X0 + E

∫ T

0

(
1c∆t =0|qt|+ c∆

t

)
dt, (O)

where qt is given by (1), or equivalently, dqt = c∆
t d∆Bt + cΣ

t dΣBt. (3)

Note cΣ does not affect either the principal’s objective function or agent incentives,

nor does it serve as a signal of either agent’s behavior. This observation might

lead the reader to guess cΣ will be irrelevant to the principal’s decision. The next

section shows this intuition is indeed correct.

5. The Optimal Selection Rule

In this section, we present our main result: a description of the unique optimal

selection rule.

Theorem 1: A bounded, continuous, nondecreasing function z̄ : R+ → R+ with

z0 = 0 and zt > 0 for every t > 0 exists, such that (whatever is the duration T

until the deadline) the following is optimal:

• Each agent works on his own project before τ ∗ := inf{t ∈ [0, T ] : |∆Xt| ≥
z̄T−t};12

• The principal chooses project y∗ = `τ∗, the leader as of time τ ∗;13

• Both agents work on project y∗ from time τ ∗ onward.

Moreover, this optimum is unique: Any other optimal incentive-compatible selec-

tion rule almost surely has the same chosen project and the same agent choices at

almost every time.

The remainder of the section is dedicated to proving the theorem.

One reasonable approach to solving a stochastic control problem like the one

in (O) is to heuristically derive the HJB equation, establish the existence of a

smooth solution to it, and appeal to a verification theorem that such a solution

is in fact the principal’s optimal value function. However, this direct approach

11Because we eventually show this optimal value is attainable with an incentive-compatible
contract, the given augmentation of the principal’s objective will turn out to be payoff irrelevant.

12In the version of the model described before we normalized several parameters, we take τ∗

to be the first time t ∈ [0, T ] at which |∆Xt| ≥ z̃T−t, where z̃t̃ := σ2

µ z̄µ2

σ2 t̃
.

13In the zero-probability event that τ∗ = T and X1
T = X−1T , the principal may choose arbi-

trarily.
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has two limitations. First, given the finite horizon, the HJB would be a PDE,

and so establishing the existence of a smooth solution to it is not straightforward.

Moreover, we are interested in understanding qualitative properties of the optimal

selection rule, and these properties would be hard to show without an explicit

characterization of such a solution to the PDE, even if its existence were guaran-

teed. So, we adopt a different route. Because the argument is somewhat involved

and not typical of the optimal contracting literature, we describe the main steps

of the proof in section 5.1 below: That subsection does not contain any formal

arguments, but rather focuses on explaining our approach. The formal results are

presented thereafter.

5.1. Approach to characterizing the optimal selection rule

Our first technical step is to consider relaxations of the principal’s problem that

allow for weak solutions.14 Recall that, in the control problem (O), the principal

has to choose interim expected project choice q and project sensitivities C. Allow-

ing weak solutions means that, now, we allow the principal to additionally choose

the underlying Brownian motions that drive projects’ random evolution (while

still respecting the law of governing this evolution as stated in the model section).

In a typical discrete-time model, such a relaxation would be irrelevant, but in the

present setting, it turns out to be a useful tool for the analyst. Given this broader

definition of a control, we then proceed to show restricting attention to controls

that have some economically intuitive features is without loss of optimality.

• In Lemma 1, we show that two properties are without loss of optimality:

First, the principal ignores aggregate shocks. Given our earlier observation

that cΣ does not affect the principal’s objective function or agent incentives,

and that aggregate shocks are not an informative signal of agents’ choices,

it is intuitive that the principal should set cΣ = 0. Second, the principal

sets c∆ > 0 and has the agents compete until either the principal settles

her choice of project or the deadline arrives. Notice from (3) that qt is

unchanged during a phase of collaboration, and so conjecturing that the

principal cannot be worse off if she backloads collaboration to a time when

14Although permitting weak solutions is the most nonstandard sense in which we relax the
principal’s problem, it is not the only one. Additionally, we consider only certain necessary
conditions for agent incentives, and use an objective function that is generally only an upper
bound on the principal’s objective. As is typical, when combining these arguments yields an
incentive-compatible contract at which the augmented objective coincides with the true objective,
it then follows that such a contract is optimal.
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it may be better targeted is reasonable.

• In Lemma 2, we show we can reduce the principal’s (relaxed) problem to an

optimal stopping problem in which the principal chooses a time when she

stops competition and switches the agents to collaboration on the current

leader as of that moment, until the deadline. In particular, it is optimal

for the principal to have the agents stop competing at some time, make a

constrained-efficient choice with the partial information she has, and switch

to collaboration on the chosen project from then on.

• Finally, in Lemma 3, we show the stopping rule is a decreasing threshold:15

The principal switches to collaboration on a project as soon as its lead over

the other project is sufficiently large, with this lead standard becoming less

demanding as the deadline approaches.

In the final step, we show that even though the above qualitative features are

derived for relaxations of the principal’s problem, these relaxations are payoff-

irrelevant, in the sense that the projects’ Brownian shock process provides the same

payoff for this incentive-compatible policy as the principal could have attained

under the weak solution.

5.2. Mathematical preliminaries

We start by defining a permissive notion of a control that will be convenient.

Definition 1: A control is a tuple C = 〈Ω,F , {Ft}t≥0,P, B, C, q〉 such that

(i) 〈Ω,F , {Ft}t≥0,P〉 is a filtered probability space satisfying the usual condi-

tions;

(ii) B = (∆B,ΣB) = {Bt}t≥0 is a R2-valued stochastic process on {Ft}t≥0 such

that 1√
2
B is a standard Brownian motion;

(iii) C = (c∆, cΣ) = {Ct}t≥0 is a progressively measurable R2-valued process on

{Ft}t≥0 whose time-t quadratic variation has finite expectation for every t ≥
0;

(iv) q = {qt}t≥0 is a [−1, 1]-valued martingale on {Ft}t≥0;

(v) qt = q0 +
∫ t

0
C · dB almost surely while |qt| < 1.

Defining the notion of a Brownian base is also convenient. A Brownian base

is any tuple 〈Ω,F , {Ft}t≥0,P, B〉 satisfying properties (i) and (ii) above.

15Studying costly sequential sampling problems that a single decision-maker faces, Fudenberg
et al. (2018) show decreasing threshold rules can arise naturally even without a deadline.
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Notice that if a principal must optimally choose a control defined as above, she

also chooses the underlying stochastic process and probability space. Of course, in

our principal’s problem in (O), she has no such choice: She must take a particular

Brownian base 〈Ω,F , {Ft}t≥0,P, B〉 as given. But it is convenient to consider this

relaxation of the principal’s problem.

Given a control C = 〈Ω,F , {Ft}t≥0,P, B, C, q〉, we define

τC := T ∧ inf{t ∈ [0, T ) : |qt| = 1},

J(C) := 1
2
q0∆X0 + E

[∫ τC

0

(
1c∆t =0|qt|+ c∆

t

)
dt+ T − τC

]
.

Intuitively, given a control, τC is the stopping time associated with that control

when qt hits a boundary, or when the principal has no choice left to make, and

J(C) is the payoff that the principal would get if the control were followed until

τC and then agents collaborated on the choice at τC.

Notice expression (O) implies J(C) is an upper bound on the payoff of the

principal. In what follows, we consider the optimal control problem with J(C) as

the objective.

5.3. Compete and then collaborate

5.3.1. Ignore aggregate shocks; compete until decision

We first establish that for the principal to respond to the relative performance of

projects, and not to aggregate shocks, is without loss of optimality. Absent an

agency problem, such a choice is, of course, allocatively efficient; we show this

property remains optimal even respecting agent incentives. Furthermore, having

the agents compete until either the principal makes a project choice or time runs

out is without loss of optimality.

Lemma 1: For any control C, a control Ĉ exists that satisfies ĉ∆ > 0 and ĉΣ = 0,

and such that J(Ĉ) ≥ J(C). Moreover, J(Ĉ) > J(C) unless, almost surely, c∆ >

cΣ = 0 for almost every t ∈ [0, T ) with |qt| < 1.

The interested reader can refer to the appendix for the proof, but we summarize

the logic here. The proof proceeds in two steps.

We first establish a quantitative claim: For the principal to resolve uncertainty

somewhat quickly is without loss of optimality. Specifically, if she is deciding

slowly enough about which project to choose so that its flow benefits are surely
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smaller than those from collaboration on a chosen project, the principal may as

well speed up this resolution of uncertainty and defer any saved time toward

endgame collaboration. Formally, this claim amounts to showing that restricting

attention to controls such that ||Ĉ|| ≥ 1 is without loss of optimality. The proof

is constructive, modifying a control without this property to a superior one with

this property.

Specifically, the fractal property of Brownian motion allows us to construct a su-

perior control, by replacing the underlying Brownian motion with a law-equivalent

time change of the same, and our sensitivity coefficient C with one that is scaled

up whenever the original one had ||C|| < 1, in such a way that the expected

project choice q follows the same trajectory. Intuitively, this argument is akin to

“speeding up the clock” without changing the trajectory of the expected project

choice, thus simply speeding up the original decision-making process and creating

some residual time at the end. The benefit of rescaling time in this way is that

this “extra” residual time can be utilized for efficient collaboration on a chosen

project for a flow benefit of 1. Of course, the cost of this speeding up is that the

duration for collecting flow payoffs is reduced. Note that holding fixed an expected

project choice q0, the principal’s payoff in (O) is a sum of the total net value of

competition (
∫ T

0
c∆
t dt) and the total accrued value of collaboration (

∫ T
0
1c∆t =0|qt|).

Thus, the foregone flow payoff is either c∆
t (if from competition) or 1c∆t =0|qt| (if

from collaboration), both of which are bounded above by 1. So the cost of lost

flow payoff as a result of speeding up is always less than the benefit of the extra

collaboration time.

In the next step, we show that restricting attention to controls that ignore

aggregate shocks and respond to relative shocks (i.e., set ĉΣ = 0 in such a way

that ||Ĉ|| = ||C||, which leaves ĉ∆ ≥ 1 > 0) is without loss of optimality. The proof

is considerably less involved than that of the previous step. By responding solely

to contemporaneous relative shocks while maintaining the degree to which she

resolves uncertainty based on current shocks, the principal can better capitalize

on the gains of competition today while keeping the law of qt fixed—and so without

affecting her ability to respond optimally in the future. Such a change will still

entail a potential cost of foregone current collaboration, but if the principal is

resolving uncertainty sufficiently quickly (which she does without loss by the first

step), these costs are smaller than the gains to more effective competition.
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5.3.2. Switch from competition to collaboration

Next, we show we can bound the payoff attainable in the present optimal control

problem by an optimal stopping problem. The principal’s problem reduces to one

in which she picks a stopping time at which she switches from pure competition

to permanent collaboration on the chosen project until the deadline.

Lemma 2: For any control C such that c∆ ≥ 1 and cΣ = 0, the stopping time τ :=

τC has J(C) ≤ T+E
[

1
2
|∆X0 + ∆Bτ | − τ

]
. Moreover, J(C) < T+E

[
1
2
|∆X0 + ∆Bτ | − τ

]
unless, almost surely, qτ is equal to the sign of ∆X0 + ∆Bτ if ∆X0 + ∆Bτ 6= 0.

The lemma follows from a direct computation of J(C), given properties of C.
The details are in the appendix.

5.4. Stop competing when the lead is large

The final building block is to show the optimal stopping rule takes an intuitive

form, permanently switching to collaboration on the leading project when it first

takes a large enough lead (where “large enough” is a less demanding standard the

closer the principal is to its deadline).

Lemma 3: A function z̄ : R+ → R+ exists, such that for any Brownian base

B and any (T, z) ∈ R+ × R, τ ∗T,z,B := inf{t ∈ [0, T ] : |z + ∆Bt| ≥ z̄T−t} is a

(B, T )-stopping time,16 and every Brownian base B̂ and (B̂, T )-stopping time τ̂

have

E
[

1
2
|z + ∆Bτ∗T,z,B

| − τ ∗T,z,B
]
≥ E

[
1
2
|z + ∆̂B τ̂ | − τ̂

]
,

with equality if and only if τ̂ is almost surely equal to τ ∗
T,z,B̂. Moreover, z̄ is

bounded, continuous, and nondecreasing, with z̄0 = 0 and z̄T > 0 for every T > 0.

The proof of the lemma is in the appendix, but we provide a sketch of the

argument here. What we have is an optimal stopping problem, where a decision-

maker observes a driftless Brownian at a constant flow cost, and can stop at any

time before a deadline, where stopping yields a payoff equal to its absolute value.

The finite deadline makes the problem non-stationary, and so we do not attempt

to derive a closed-form solution for the optimal stopping rule, but instead derive

qualitative features of it. Classic results from the optimal-stopping literature

imply that in our problem, the uniquely optimal policy is to stop as soon as the

optimal and stopping values coincide. So, we analyze the (continuous) optimal

16A (B, T )-stopping time is a stopping time on the filtration underlying B that respects dead-
line T . See Definition 2 in the Appendix.
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value function, taking as arguments the time remaining and the current state of

the Brownian motion, and show the set of values of the Brownian motion at which

the optimal value function strictly exceeds the absolute value (stopping value) is a

bounded, symmetric, nonempty interval that shrinks as the deadline approaches.

Boundedness obtains by considering a relaxed problem with no deadline and using

existing results for problems with an infinite horizon. The set shrinks as the

deadline approaches, because the decision-maker’s objective is unchanged but is

subject to a tighter constraint. A limit argument shows it contains zero when

near enough to the deadline, and hence (given monotonicity) contains zero at

every time. It is symmetric about zero because the objective and law of motion

are. Finally, it is an interval around zero because the value function is convex,

whereas the terminal value is affine on either side of zero.

5.5. Characterizing the optimal selection rule

The qualitative insights in the preceding subsections were derived for weak solu-

tions to the principal’s problem. However, they also apply to the optimal selection

rule for the principal in our original problem. Accordingly, the unique optimal se-

lection rule takes the simple form described in our main theorem.

Proof of Theorem 1. Taking z̄ to be the function delivered by Lemma 3, let Π∗

be the principal value generated by the behavior named in the theorem. We

first observe that the described agent behavior is incentive-compatible given this

selection rule: Agents are indifferent in their decisions from τ ∗ until the deadline,

and they increase their probability of being the time-τ ∗ leader by working on their

own projects.

Consider now an arbitrary selection rule by the principal, together with incentive-

compatible agent behavior, and let Π be the principal’s value from adopting it. As

we have shown in section 4, it generates some control C such that the J(C) ≥ Π.

Now, let us apply each of our three building blocks. Lemma 1 delivers some

control Ĉ such that ĉ∆ > ĉΣ = 0, and such that J(Ĉ) ≥ Π, the latter inequality

being strict unless, almost surely, c∆ > cΣ = 0 for almost every t ∈ [0, T ) with

|qt| < 1 (in which case, we can take Ĉ = C without loss). Lemma 2 then tells

us the stopping time τ̂ := τĈ has T + E
[

1
2
|∆X0 + ∆̂B τ̂ | − τ̂

]
≥ Π, strictly so

unless qτ̂ is almost surely equal to the sign of ∆X0 + ∆̂B τ̂ if ∆X0 + ∆̂B τ̂ 6= 0.

Finally, Lemma 3 tells us τ ∗ (as defined in the statement of the theorem) has

T + E
[

1
2
|∆X0 + ∆Bτ∗| − τ ∗

]
≥ Π, strictly so unless τ̂ is almost surely equal to
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τ ∗
T,z,Ĉ.

The above arguments directly deliver the theorem. First, they show the prin-

cipal’s optimal value is Π∗ = T + E
[

1
2
|∆X0 + ∆Bτ∗| − τ ∗

]
, making the described

behavior principal-optimal. Second, they establish that Π < Π∗ (making the given

selection rule and agent behavior suboptimal) unless, almost surely, the selected

project is the same and agent choices are the same at almost every time.

6. Discussion

6.1. Duration of collaboration, and ex-post inefficiency

An implication of our characterization of the optimal contract is that the length

of the competition phase is probabilistically bounded, in two senses. First, for

any deadline T , a phase of collaboration always exists because the threshold col-

lapses as the deadline approaches. Second, if we increased the time horizon T ,

although the duration of the competition phase would increase (in the sense of

first-order stochastic dominance), the duration of competition would remain uni-

formly bounded.17 Put differently, not only is the collaboration phase reached

with probability 1 for any T , but also, when the project is of a very long-term

nature, most of its development is spent collaborating.

Fostering collaboration increases the value of the principal’s chosen project, but

the inefficiency caused by picking the “wrong” project on-path can be arbitrarily

large; that is, given any L > 0, the probability that Xy
T + L < X−yT is strictly

positive. Because the switching threshold decreases as the deadline approaches,

the probability of such mistakes is lower for projects that have experienced longer

collaboration.

6.2. Cancellation of projects before the deadline

In our setting, the principal chooses an optimal stopping time at which she makes

a permanent project choice and then has both agents collaborate on the chosen

project. An alternative interpretation is one in which the principal chooses when

to irreversibly cancel one of the projects, after which both agents must work on the

17That is, some finite-mean random variable τ∞ exists, such that the duration of the compe-
tition phase is first-order-stochastically dominated by τ∞. Indeed, one could take τ∞ to be the
optimal stopping time from an analogous stopping problem with no deadline, which is known to
exhibit a constant lead threshold.
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remaining project. To allow the principal to irreversibly cancel one of the projects

is perhaps more consistent with our two motivating applications of product de-

velopment within organizations and candidate selection via political primaries.

Observe that this richer contracting environment is equivalent to the one we have

studied. To see the equivalence, first note the principal could not be worse off in

the richer environment, because she could always abstain from cancelling projects

before the deadline. Conversely, the principal can always simulate project cancel-

lation through a selection rule by (just as in our Theorem 1) deciding on a project

in advance, and having the agents collaborate on the chosen project (which is

incentive compatible even though working on the other project is an available

choice). Thus, the two are equivalent.

Although equivalent for optimal-contracting purposes, the model with irre-

versible termination enables a simple implementation of our optimal selection

rule (and consequent agent behavior) in Theorem 1: The principal could sim-

ply terminate the project that is lagging behind by the current lead threshold,

with each agent working on his own project unless it is canceled. Our optimum

would remain optimal in this alternate setting, and would indeed also be sequen-

tially rational. Put differently, in an alternate model which allows the principal

to irreversibly cancel a project, commitment would not benefit her, because our

optimal selection rule could be implemented in equilibrium.

6.3. Agent indifference in the collaboration phase

In the optimal contract, during the collaboration phase, agents are indifferent

between competing and collaborating. This sort of indifference is common in many

mechanism-design problems, but many such environments have the feature that

constructing a similar contract with strict incentives is possible. In our setting,

no such contract is available. With no transfers, no observability, and directly

opposed interests between the agents, the principal has very few instruments at

her disposal. Indeed, the best that the principal can do in any strict equilibrium

is simply the no-commitment solution (the principal chooses the leading project

at the deadline and agents always compete). The contribution of this paper is to

show that, somewhat surprisingly, fostering some collaboration in equilibrium is

still possible and optimal despite the paucity of instruments.
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7. Appendix: Omitted Proofs

In this appendix, we provide proofs that we omitted from the main text of the

paper.

7.1. Proof of Proposition 1

First, because the ex-post efficient rule y = `T maximizes the principal’s objective

statewise, we may recast her problem as

sup
a∈A

1
2
E|∆XT |

s.t. dX i
t = (ait − a−it ) dt+ dBi

t, X1
0 , X−1

0 .

Now, before showing the described agent behavior is optimal, observe that our

posited optimal control is indeed well defined: Following Example 1.2 of Yamada

(1973), the stochastic differential equation

d∆Xt = 2 sign(∆Xt) dt+ d∆Bt

admits a unique strong solution. Optimality then follows readily from a compari-

son theorem. Indeed, following identically the proof of Theorem 2.1 in Ikeda and

Watanabe (1977), any alternative control has a (weakly) first-order-stochastically

dominated distribution of |∆XT |.18

18That result shows a control ∆at = − sign(∆Xt) minimizes |∆XT |—in fact, minimizes each of
{|∆Xt|}t∈[0,T ]—in an FOSD sense. However, reproducing the proof nearly verbatim establishes
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7.2. Proof of Lemma 1

In order to prove Lemma 1, we first prove two claims. The first claim says that

it is without loss of optimality for the principal to resolve uncertainty somewhat

quickly. Our argument is a “replication” argument that couples realized paths of

play from the new control to those from the old control, traversed at a different

“speed.” Such an argument is only available in continuous time, due to the self-

similarity properties of Brownian motion.

Claim 1: For any control C, a control Ĉ exists whose Euclidean norm satisfies

||Ĉ|| ≥ 1 and such that J(Ĉ) ≥ J(C). Moreover, J(Ĉ) > J(C) unless, almost

surely, ||Ct|| ≥ 1 for almost every t ∈ [0, T ) with |qt| < 1.

Proof. Let τ := τC, and assume without loss that c∆
t = 1 and cΣ

t = 0 whenever

t ≥ τ . Moreover, assume without loss (changing C on a measure zero set) that C

is zero on any time interval where it is a.e. zero.

We now proceed to define our candidate Ĉ. Define

γt := 1 ∧ ||Ct|| (where || · || is the Euclidean norm on R2)

ζt :=

∫ t

0

γ2
s ds (nondecreasing and 1-Lipschitz, with slope 1 after τ)

λu := inf{t ≥ 0 : ζt > u}

F̂u := Fλu =

{
E ∈ F∞ : E ∩ {λ(u) ≤ t} ∈ Ft ∀t ≥ 0

}
B̂u :=

∫ λu

0

γt dBt

Ĉu :=

 1
γλu

Cλu : Cλu 6= (0, 0)

(1, 0) : Cλu = (0, 0)

q̂u := qλu

Ĉ := 〈Ω,F , {F̂u}u≥0,P, B̂, Ĉ, q̂〉.

First, we observe that λu is a {Ft}t≥0-stopping time for each u ≥ 0, and that

the tuple 〈Ω,F , {F̂u}u≥0,P, B̂〉 is a Brownian base. These facts follow directly

from applying the Dambis-Dubins-Schwarz theorem (Karatzas and Shreve, 1998,

Theorem 3.4.6) to M = 1√
2
B̂, with the observation that (applying the formula for

that control ∆at = sign(∆Xt) maximizes |∆XT |.
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quadratic variation of an Itô process)

〈M〉t =

∫ λt

0

γ2
s ds = ζt.

To see that Ĉ is a control, all that remains is to check that q̂u = q̂0 +
∫ u

0
Ĉ · dB̂,

or equivalently that
∫ u

0
Ĉ · dB̂ =

∫ λu
0
C · dB. Let us defer this property until the

end of the proof, and first show the desired value ranking holds if this stochastic

differential equation holds.

Taking for granted that Ĉ is a control, we now proceed to show that J(Ĉ) ≥
J(C). To this end, first observe that∫ ζτ

0

(
1ĉ∆u =0|q̂u|+ ĉ∆

u

)
du =

∫ τ

0

(
1ĉ∆ζt

=0|q̂ζt |+ ĉ∆
ζt

)
dζt

=

∫ τ

0

(
1ĉ∆ζt

=0|q̂ζt |+ ĉ∆
ζt

)
γ2
t dt

=

∫ τ

0

(
1c∆t =0|qt|γt + c∆

t

)
γt dt,

so that

τ − ζτ +

∫ ζτ

0

(
1ĉ∆u =0|q̂u|+ ĉ∆

u

)
du−

∫ τ

0

(
1c∆t =0|qt|+ c∆

t

)
dt

=

∫ τ

0

[
1− γ2

t +
(
1c∆t =0|qt|γt + c∆

t

)
γt −

(
1c∆t =0|qt|+ c∆

t

)]
dt

=

∫ τ

0

[
(1− γ2

t )− (1− γ2
t )1c∆t =0|qt| − (1− γt)c∆

t

]
dt

=

∫ τ

0

(1− γt)
[
(1 + γt)(1− 1c∆t =0|qt|)− c∆

t

]
dt.

Finally, that ĉ∆
t = 1 for every t ≥ ζτ implies

J(Ĉ)− J(C) = E
[∫ ζτ

0

(
1ĉ∆u =0|q̂u|+ ĉ∆

u

)
du+ T − ζt

]
− E

[∫ τ

0

(
1c∆t =0|qt|+ c∆

t

)
dt+ T − τ

]
= E

[
τ − ζt +

∫ ζτ

0

(
1ĉ∆u =0|q̂u|+ ĉ∆

u

)
du−

∫ τ

0

(
1c∆t =0|qt|+ c∆

t

)
dt

]
= E

∫ τ

0

(1− γt)
[
(1 + γt)(1− 1c∆t =0|qt|)− c∆

t

]
dt.

The value ranking will then follow if we establish that (1−γt)
[
(1 + γt)(1− 1c∆t =0|qt|)− c∆

t

]
is nonnegative for any t ∈ [0, τ ], and is strictly positive if ||Ct|| < 1 and |qt| < 1.
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We observe this inequality in three exhaustive cases:

1. If γt = 1, then ||Ct|| ≥ 1 and the term is zero.

2. If c∆
t = 0 and γt 6= 1, then the term is (1 − γt)(1 + γt)(1 − |qt|), which is

strictly positive if |qt| < 1, and is zero if |qt| = 1.

3. If c∆
t 6= 0 and γt 6= 1, then c∆

t ≤ ||Ct|| = γt, so that the term is

(1− γt)
[
(1 + γt)− c∆

t

]
≥ (1− γt)1 > 0.

We return now to our one unresolved detail: showing that
∫ u

0
Ĉ · dB̂ =

∫ λu
0
C ·

dB, which will (because ||Ĉ|| ≥ 1 by construction) establish the lemma. Letting

Mλ be the local martingale on {F̂u}u≥0 given by Mλ
u :=

∫ λu
0
C · dB, it will be

useful to consider the R3-valued local martingale ~M on {F̂u}u≥0 given by

~Mu :=

∆̂Bu

Σ̂Bu

Mλ
u

 =

∫
λu

0

γ d∆B

γ dΣB

C · dB

 .

By direct computation, and using the fact that 1√
2
(∆̂B, Σ̂B) is a standard Brow-

nian motion, the quadratic covariation (matrix) process of ~M up to time u ≥ 0 is

given by

〈 ~M〉u = 2

 u 0
∫ λu

0
γc∆

0 u
∫ λu

0
γcΣ∫ λu

0
γc∆

∫ λu
0
γcΣ

∫ λu
0
||C||2

 .

Toward further simplifying the above expression, consider any process ξ ∈ {γc∆, γcΣ, ||C||2}.
Then, interpreting the expression ξ

γ2 arbitrarily wherever ξ = γ = 0, observe that

∫ λu

0

ξ =

∫ λu

0

ξ
γ2 dζ =

∫ λu

0

ξλζ
γ2
λζ

dζ =

∫ ζλu

0

ξλ
γ2
λ

=

∫ u

0

ξλ
γ2
λ
.

Substituting in the definition of Ĉ, it follows that

〈 ~M〉u = 2

∫
u

0

 1 0 ĉ∆

0 1 ĉΣ

ĉ∆ ĉΣ ||Ĉ||2

 .

Now, defining the local martingales M̂, ˆ̃M on {F̂u}u≥0 via M̂u :=
∫ u

0
ĉ∆ d∆̂B and

ˆ̃Mu :=
∫ u

0
ĉΣ dΣ̂B, our goal is to show the process M̂ + ˆ̃M −Mλ is almost surely
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zero. But because the process is a local martingale, it suffices to show its quadratic

variation is zero. And indeed,

1
2

〈
M̂ + ˆ̃M −Mλ

〉
u

= 1
2

〈
M̂
〉
u

+ 1
2

〈
ˆ̃M
〉
u

+ 1
2

〈
Mλ
〉
u

+
〈
M̂, ˆ̃M

〉
u
−
〈
M̂, Mλ

〉
u
−
〈

ˆ̃M, Mλ
〉
u

=

∫ u

0

[
(ĉ∆)2 + (ĉΣ)2 + ||Ĉ||2

]
+ 0−

∫ u

0

[
ĉ∆ d〈∆̂B, Mλ〉+ ĉΣ d〈Σ̂B, Mλ〉

]
= 2

∫ u

0

||Ĉ||2 − 2

∫ u

0

[
ĉ∆(ĉ∆) + ĉΣ(ĉΣ))

]
= 0, as required.

Given the previous claim, the following claim shows that for the principal to

respond only to the relative performance of projects, not to aggregate shocks,

and moreover to respond positively to a project’s relative performance until the

decision is fully made or the deadline arrives, is without loss of optimality. The

formal argument for the claim follows a similar (though less involved) “replication”

argument to that of the previous claim. Here, rather than changing the “clock”

of the underlying Brownian motion, we change the “angle” by altering which

principal component of a given shock is attributable to each project.

Claim 2: For any control C, a control Ĉ exists that satisfies ĉ∆ ≥ 1 and ĉΣ = 0,

and such that J(Ĉ) ≥ J(C). Moreover, J(Ĉ) > J(C) unless, almost surely, c∆ ≥ 1

and cΣ = 0 for almost every t ∈ [0, T ) with |qt| < 1.

Proof. Following Claim 1, we may assume without loss that ||Ĉ|| ≥ 1. Let us

define our candidate Ĉ. Define

ĉ∆
t := ||Ct|| (the Euclidean norm)

ĉΣ
t := 0

∆̂Bt :=

∫ t

0

(
c∆

||C|| d∆B + cΣ

||C|| dΣB
)

=

∫ t

0

1

ĉ∆
dq

Σ̂Bt :=

∫ t

0

(
cΣ

||C|| d∆B + −c∆
||C|| dΣB

)
Ĉ := 〈Ω,F , {Ft}t≥0,P, B̂, Ĉ, q〉.

From Itô isometry, it is straightforward to see that 1
2
Es
[
(Bt − Bs)(Bt − Bs)

′] =

(s−t)I2 where I2 ∈ R2×2 is the identity matrix. That 1√
2
B is a standard Brownian

then follows from Lévy’s characterization of the same. It follows readily that Ĉ is
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a control. Moreover, that τĈ = τC implies

J(Ĉ)− J(C) = E
∫ τC

0

[(
1ĉ∆t =0|qt|+ ĉ∆

t

)
−
(
1c∆t =0|qt|+ c∆

t

)]
dt

= E
∫ τC

0

[
||Ct|| −

(
1c∆t =0|qt|+ c∆

t

)]
dt.

To see the value ranking, observe that the integrand has

||Ct|| −
(
1c∆t =0|qt|+ c∆

t

)
≥ min{||Ct|| − c∆

t , ||Ct|| − |qt|},

which is always nonnegative, and is strictly positive if cΣ 6= 0 and |qt| < 1.

Finally, observe that Lemma 1 follows immediately from Claim 2.

7.3. Proof of Lemma 2

The diffusion process (q,∆B) has zero drift and volatility process (c∆, 1). Applying

Dynkin’s formula to the function (q,∆B) 7→ qτ∆Bτ therefore yields 1
2
E[qτ∆Bτ ] =

E
∫ τ

0
c∆
t dt. Moroever, Doob’s optional stopping theorem tells us E[qτ ] = q0.

Therefore,

J(C) = 1
2
q0∆X0 + E

[∫ τ

0

(
1c∆t =0|qt|+ c∆

t

)
dt+ T − τ

]
= 0 + T − Eτ + 1

2
q0∆X0 + E

∫ τ

0

c∆
t dt

= T − Eτ + 1
2
E[qτ ]∆X0 + 1

2
E[qτ∆Bτ ]

= T − Eτ + 1
2
E
[
qτ (∆X0 + ∆Bτ )

]
≤ T − Eτ + 1

2
E|∆X0 + ∆Bτ |,

where the inequality is strict unless qτ (∆X0 + ∆Bτ ) = |∆X0+∆Bτ | almost surely.

7.4. Proof of Lemma 3

The arguments supporting Lemma 3 concern features of a particular optimal stop-

ping problem.

Definition 2: Given a Brownian base B = 〈Ω,F , {Ft}t≥0,P, B〉 and a horizon

T ∈ [0,∞], a (B, T )-stopping time is a [0, T ]-valued {Ft}t≥0-stopping time.
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Say a (B, T )-stopping time is optimal (given (B, T )) if it maximizes E
[

1
2
|z + ∆Bτ | − τ

]
over all (B, T )-stopping times τ .

We start with proving two technical claims. The first result is that a reflected

Brownian motion grows slowly enough in expectation to enable the use of various

machinery from the optimal stopping literature.

Claim 3: Any Brownian base B, any z ∈ R, and any κ > 0 have

E sup
t∈R+

(|z + ∆Bt| − κt) <∞.

Proof. Observe that

E sup
t∈R+

(|z + ∆Bt| − κt) = Emax

{
sup
t∈R+

(z + ∆Bt − κt), sup
t∈R+

(−z −∆Bt − κt)
}

≤ E sup
t∈R+

(z + ∆Bt − κt) + E sup
t∈R+

(−z −∆Bt − κt),

but the latter expectations are finite. Indeed, result IV.32 from Borodin and

Salminen (2012) implies a Brownian motion with strictly negative drift has a

global maximum that is exponentially distributed, and hence of finite mean.

The following claim adapts standard reasoning about the structure of optimal

stopping problems to our specific one. It says the associated optimal value function

is well behaved, that an optimal stopping rule exists and can be read from the

optimal value function, and that the above depend only on the law governing the

state rather than the specific source of randomness driving said state.

Claim 4: A continuous function v : R+ × R → R exists, such that for any

Brownian base B and any (T, z) ∈ R+ × R, the (B, T )-stopping time

τT,z,v,B := T ∧ inf{t ∈ [0, T ] : v(T − t, z + ∆Bt) = 1
2
|z + ∆Bt|}

is optimal and generates

E
[

1
2
|z + ∆BτT,z,v,B | − τT,z,v,B

]
= v(T, z).

Moreover, every optimal (B, T )-stopping time is almost surely ≥ τT,z,v,B.

Proof. First, fix any Brownian base B, and let vB : R+×R→ R be the associated

optimal value function. That is, for any (T, z) ∈ R+ × R, let vB(T, z) be the

supremum of E
[

1
2
|z + ∆Bτ | − τ

]
over all (B, T )-stopping times τ . This function
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is real-valued (i.e., never takes value ∞) by Claim 3.

Let us observe that vB is continuous. To see this, consider any (T, z), (T̃ , z̃) ∈
R+ × R. For any (B, T )-stopping time τ , it is immediate that τ ∧ T̃ is a (B, T̃ )-

stopping time. Therefore,

E
[

1
2
|z + ∆Bτ | − τ

]
− vB(T̃ , z̃)

≤ E
[

1
2
|z + ∆Bτ | − τ

]
− E

[
1
2
|z̃ + ∆Bτ∧T̃ | − τ ∧ T̃

]
= 1

2
E [|z + ∆Bτ | − |z̃ + ∆Bτ∧T̃ |]− E

[
τ − τ ∧ T̃

]
≤ 1

2
E [|z + ∆Bτ | − |z̃ + ∆Bτ∧T̃ |]

≤ 1
2
E |(z + ∆Bτ )− (z̃ + ∆Bτ∧T̃ )|

≤ 1
2
|z − z̃|+ 1

2
E |∆Bτ −∆Bτ∧T̃ |

≤ 1
2
|z − z̃|+ 1

2
E
∣∣∣∆B(τ∧T̃ )+|T−T̃ | −∆Bτ∧T̃

∣∣∣
≤ 1

2
|z − z̃|+ 1√

π

√
|T − T̃ |.

Taking the supremum over all such τ then implies

vB(T, z)− vB(T̃ , z̃) ≤ 1
2
|z − z̃|+ 1√

π

√
|T − T̃ |.

Because this inequality holds for all such pairs, the function vB is continuous.

Given Claim 3 and continuity of vB, Corollary 2.9 from Peskir and Shiryaev

(2006) implies τT,z,vB,B is optimal, thereby generating E
[

1
2
|z + ∆BτT,z,vB,B

| − τT,z,vB,B
]

=

vB(T, z). Moreover, Theorem 2.4 from Peskir and Shiryaev (2006) implies that any

other optimal (B, T )-stopping time is almost surely ≥ τT,z,vB,B.

But now, given any (T, z) ∈ R+×R, consider any other Brownian base B̂. That

τT,z,vB,B̂ is a (B̂, T )-stopping time implies

vB̂(T, z) ≥ E
[

1
2
|z + ∆̂BτT,z,vB,B̂

| − τT,z,vB,B̂
]

= E
[

1
2
|z + ∆BτT,z,vB,B

| − τT,z,vB,B
]

= vB(T, z),

where the first equality holds because B and B̂ have identical laws.

Because both B and B̂ were arbitrary, it follows that vB is the same for every

Brownian base B.

With the above two claims in place, we now proceed to prove the lemma.
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Proof of Lemma 3. Let v : R+ × R → R be as delivered by Lemma 4, and de-

fine the set G := {(T, z) ∈ R+ × R : v(T, z) > 1
2
|z|}, which is relatively open in

R+×R because v is continuous. For each T ∈ R+, let GT := {z ∈ R : (T, z) ∈ G},
which is open because G is. Let us make some easy starting observations about

this family of sets. First, clearly, G0 = ∅. Next, the set GT is weakly increasing

(with respect to set containment) in T ∈ R+. Indeed, v is nondecreasing in its

first argument because, for any Brownian base B and pair of times t, T ∈ R+

with t ≤ T , every (B, t)-stopping time is a (B, T )-stopping time too. Finally,

each GT is symmetric about zero. Indeed, v is even in its second argument be-

cause, for any (T, z) ∈ R+ × R and Brownian base B = 〈Ω,F , {Ft}t≥0,P, B〉, any

(B, T )-stopping time τ is also a (〈Ω,F , {Ft}t≥0,P,−B〉, T )-stopping time, and

E
[

1
2
|(−z) + (−∆B)τ | − τ

]
= E

[
1
2
|z + ∆Bτ | − τ

]
.

Now, we observe that every T ∈ (0,∞) has GT 3 0. Indeed, because T is

always a (B, T )-stopping time for any Brownian base B, we have

v(T, 0)− |0| ≥ 1
2
E(∆BT )− T =

√
T
π
− T,

which is strictly positive for T < 1
π
. Therefore, 0 ∈ GT for every T ∈ (0, 1

π
), which

implies (given monotonicity of T 7→ GT ) that 0 ∈ GT for every T ∈ (0,∞).

Next, let us see that
⋃
T∈R+

GT is a bounded set. To see this, we consider

the relaxation of our optimal stopping problem without a deadline and apply a

previously obtained solution to that time-stationary problem. Specifically, fix a

Brownian base B = 〈Ω,F , {Ft}t≥0,P, B〉, and let v∗ : R → R take any z ∈ R to

the supremum of E
[

1
2
|z + ∆Bτ | − τ

]
over all finite-mean (B,∞)-stopping times

τ . Clearly, v∗ ≥ v(T, ·) for every T ∈ R+, and so G ⊆ R+×G∗, where G∗ := {z ∈
R : v∗(z) > 1

2
|z|}. But Theorem 16.1 from Peskir and Shiryaev (2006) explicitly

computes the continuation region for this problem (G∗ in our notation) as the set

(− 1√
2
, 1√

2
).

Finally, let us observe that GT is convex for every T ∈ (0,∞). Because GT 3 0

and R \ GT ⊇ (−∞,−1
2
] ∪ [1

2
,∞), the property would follow if we knew both

R+ \ GT and R− \ GT were convex. But, because 1
2
| · | is affine on R+ and on

R−, the property would, in fact, follow if we knew v were (weakly) convex in its

second argument. Let us now establish that fact. For any Brownian base B, time
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T ∈ R+, weight θ ∈ [0, 1], and states z0, z1 ∈ R, each (B, T )-stopping time τ has

E
[

1
2
|(1− θ)z0 + θz1 + ∆Bτ | − τ

]
≤ E

[
1
2
(1− θ) |z0 + ∆Bτ |+ θ |z1 + ∆Bτ | − τ

]
= (1− θ)E

[
1
2
|z0 + ∆Bτ | − τ

]
+ θE

[
1
2
|z1 + ∆Bτ | − τ

]
≤ (1− θ)v(T, z0) + θv(T, z1).

Taking the supremum over all such τ then implies v (T, (1− θ)z0 + θz1) ≤ (1 −
θ)v(T, z0) + θv(T, z1), as desired.

We are now ready to define z̄ : R+ → R+. First, let z̄0 := 0. Then, for each T ∈
(0,∞), we have established that GT is a convex open neighborhood of zero that is

symmetric about zero. That is, GT = (−z̄T , z̄T ), where z̄T := supGT > 0. Then

the open set G = {(T, z) ∈ R+ × R : z < |z̄T |}. Moreover, our above arguments

establish that z̄T > 0 for T > 0 (because 0 ∈ GT ); that z̄ is nondecreasing

(because T 7→ GT is weakly increasing with respect to set containment); and that

z̄ is bounded (because GT ⊆ G∗ = (−1
2
, 1

2
) for every T ∈ R+). The only remaining

property of z̄ to show is continuity.

Assume for a contradiction that z̄ is discontinuous at some T ∈ R+. Because z̄

is nondecreasing, both limt↘T z̄t and, if T > 0, limt↗T z̄t exist; interpret the latter

limit as z̄0 = 0 in the case that T = 0. Then, let z := 1
2

limt↘T z̄t + 1
2

limt↗T z̄t

and ε := 1
4

limt↗T z̄t− 1
4

limt↘T z̄t. So 0 < ε < z, and z̄t is below z− ε [resp. above

z + ε] for any t ∈ R+ with t < T [resp. t > T ]. Fixing a Brownian base B, let

τ := inf{t ≥ 0 : |∆Bt| ≥ ε}. Now, let v be as delivered by Lemma 4, and let

v̄ := max v([T, T + 1]× {z − ε, z + ε}) ∈ R. Then, any s ∈ (0, 1] has

2
[
v(T + s, z)− 1

2
|z|
]

= 2E [v(T + s− s ∧ τ, z + ∆Bs∧τ )− s ∧ τ ]− z

= E {1τ≥s [z + ∆Bs − 2s]}+ 2E {1τ<s [v(T + s− τ, z + ∆Bτ )− τ ]} − z

≤ E {1τ≥s [z + ∆Bs − 2s]}+ P{τ < s}(2v̄)− z

= P{τ < s}(2s+ 2v̄ − z)− 2s+ E [∆Bs − 1τ<s∆Bs]

= P{τ < s}(2s+ 2v̄ − z)− 2s+ 0− E {1τ<sE[∆Bs|Fτ ]}

= P{τ < s}(2s+ 2v̄ − z)− 2s− E[1τ<s∆Bτ ]

≤ P{τ < s}[2s+ 2v̄ − ε]− 2s

Observe now that τ < s if and only if the absolute value of Wiener process

W := 1√
2
∆B exceeds ε√

2
at some time in [0, s]. But the probability of this event is
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no more than twice the probability that |Ws| > ε√
2
,19 which is 2Φ

(
−ε√
2s

)
because

ϕ is even and Ws ∼ N (0,
√
s

2
). Therefore,

v(T + s, z)− 1
2
|z| ≤ 1

2
P{τ < s}[2s+ 2v̄ − ε]− s

≤ 2Φ
(
−ε√
2s

)
[2s+ 2v̄ − ε]− s.

But L’Hôpital’s rule tells us

lim
s→0

Φ

(
−ε√
2s

)
s

= lim
L→∞

Φ

(
−ε√

2
L

)
L−2 = ε

2
√

2
lim
L→∞

ϕ
(
−ε√

2
L
)
L3 = ε

4
√
π

lim
L→∞

e−
ε2

4
L2

L3 = 0.

Therefore, v(T + s, z) < 1
2
|z| for sufficiently small s > 0, in contradiction to the

definition of v.

Finally, we turn to establishing the uniqueness property of the optimal stopping

time. Fix any Brownian base B, any (T, z) ∈ R+ × R, and any (B, T )-stopping

time τ with E
[

1
2
|z + ∆Bτ | − τ

]
. Letting τ ∗ := τ ∗T,z,B, Lemma 4 establishes that

τ ≥ τ ∗ almost surely. Assume now, for a contradiction, that τ is not almost surely

equal to τ ∗. Let us observe that some (B, T )-stopping time τ̃ ≤ τ exists such that,

with positive probability, τ > τ̃ and |z + ∆Bτ̃ | > z̄T−τ̃ .
20 But then, defining the

alternative (B, T )-stopping times

τ ′ :=

τ : |z + ∆Bτ̃ | ≤ |z̄T−τ̃ |

τ̃ : |z + ∆Bτ̃ | > |z̄T−τ̃ |

19Indeed, letting τ̃ be the first time |W | takes value ε√
2
, the probability that |Ws| > ε√

2
is

at least the probability that τ̃ < s and Wτ̃ lies between 0 and Ws—which is equal to half the
probability of τ̃ < s.

20For instance, one can use τ̃ := τ ∧ ( 1
n + τ∗) for sufficiently large n ∈ N.

34



and τ̄ := τ ∧ inf{t ∈ [τ ′, T ] : |z + ∆Bt| ≤ |z̄T−t|}, optimality of τ implies

0 ≥ E
[

1
2
|z + ∆Bτ ′| − τ ′

]
− E

[
1
2
|z + ∆Bτ | − τ

]
≥ E

[
1
2
|z + ∆Bτ ′| − τ ′

]
− E

{
E
[
v(T − τ̄ , z + ∆Bτ̄ )− τ̄

∣∣∣∣Fτ̄]}
= E(τ̄ − τ ′) + 1

2
E
{
E
[
|z + ∆Bτ ′| − |z + ∆Bτ̄ |

∣∣∣∣Fτ̄]}
= E(τ̄ − τ ′) + 1

2
E
{
1z+∆Bτ̃>z̄T−τ̃E

[
∆Bτ̃ −∆Bτ̄

∣∣∣∣Fτ̄]+ 1z+∆Bτ̃<−z̄T−τ̃E
[
∆Bτ̄ −∆Bτ̃

∣∣∣∣Fτ̄]}
= E(τ̄ − τ ′) + 0

= E
[
1|z+∆Bτ̃ |>|z̄T−τ̃ |1τ>τ̃ (τ̄ − τ̃)

]
> 0,

a contradiction. This establishes the unique optimality of τ ∗ (up to almost sure

equality), and hence the lemma.
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