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1 Introduction

The rational expectations framework maintains that agents have a complete understanding of

their economic environment: they know the structural equations that govern the relationship

between endogenous and exogenous variables, have full knowledge of the stochastic processes

that determine the evolution of shocks (if not the shocks’ actual realizations), and are capable of

forming and updating beliefs about as many variables as necessary. These assumptions are imposed

irrespective of how complex the actual environment is. In reality, however, limits to agents’ cognitive

and computational abilities mean that market participants are bound to rely on simplified models

that may not fully account for the complexity of their environment. Thus, to the extent that agents

employ such simplified (and potentially misspecified) models, their decisions—and more generally,

any endogenous variable that depends on those decisions—would depart from predictions obtained

under rational expectations.

In this paper, we study how limits to the complexity of statistical models used by market

participants shape asset prices. We consider a framework in which the stochastic process that

governs the evolution of economic variables may not have a simple representation, and yet, agents

are only capable of entertaining statistical models with a certain level of complexity. As a result, they

may end up with a low-dimensional approximation to the true data-generating process. We show

that this form of model misspecification generates systematic deviations from rational expectations

with sharp predictions for the extent and nature of return predictability at different horizons.1

We present our results in the context of a simple asset pricing environment, in which a sequence

of exogenous fundamentals (say, an asset’s dividends) are generated by an n-factor model. While

agents can observe the sequence of realized fundamentals, they neither observe nor know the

underlying factors that drive them. As a result, they rely on their past observations to estimate a

hidden-factor model that would allow them to make predictions about the future. As our main

behavioral assumption, we assume that agents can only entertain models with at most k factors,

where k may be distinct from the true number of factors, n. This assumption captures the idea that

there is a limit to the complexity of statistical models that agents are able to consider, with a larger k

corresponding to a more sophisticated agent who can entertain a richer class of models.

Subject to the constraint on the number of factors k, agents optimally choose the statistical

model that minimizes the disparity between forecasts obtained under their subjective expectations

and the true data-generating process. More specifically, we assume that they choose the k-factor

model that minimizes the Kullback–Leibler (KL) divergence between the two. This modeling choice

has two immediate, but important, implications. First, it implies that, when the agents’ set of models

is flexible enough to contain the true data-generating process (that is, when k ≥ n), they can forecast

future realizations of the fundamentals as if they knew the true process. In that case, our framework’s

1While we focus on limits on the complexity of agents’ statistical models, one can also consider other dimensions along
which decision makers are constrained, such as limited memory (Nagel and Xu, 2019; da Silveira, Sung, and Woodford,
2020), limited capacity for processing information (as in models of rational inattention), an incomplete understanding of
general equilibrium effects (e.g., due to level-k reasoning as in Farhi and Werning (2019) or limited “depth of knowledge”
as in Angeletos and Sastry (2020)), or restriction on the number of variables to pay attention to (Gabaix, 2014, 2017).
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predictions coincide with those of the rational expectations. However, when the constraint on model

complexity binds (i.e., when k < n), agents endogenously select the best k-factor approximation to

the true n-factor model.

With our behavioral framework in hand, we then establish that, irrespective of the constraint

on the number of factors in agents’ model, their subjective expectations are always internally

consistent, in the sense that they satisfy the law of iterated expectations. We also provide a series of

micro-foundations for KL divergence as the proper notion of model fit. In particular, we show that,

in our context, whether agents choose their k-factor model to minimize the mean-squared error of

their forecasts, use a maximum likelihood estimator, or engage in Bayesian learning, they end up

with a model that minimizes the KL divergence with the true data-generating process.

We then turn to the asset pricing implications of our framework by providing a series of results

relating the asset’s return predictability to the number of factors k in agents’ models. We measure

the extent of return predictability by relying on two families of linear regressions, which we refer

to as the Fama and momentum regressions. These regressions measure, respectively, the extent to

which current fundamentals and excess returns predict future returns at different horizons. Our

main theoretical results provide a characterization of the slope coefficients of the aforementioned

regressions in terms of the complexity of agents’ models and the autocorrelation function of the

process that drives the fundamentals. Since all parameters in the agents’ models, other than the

number of factors k, are endogenously determined, our results provide sharp predictions for the

extent of return predictability at different horizons, with no remaining degrees of freedom. We also

extend our framework to a heterogeneous-agent economy in which only a fraction of agents face a

constraint in the number of factors in their model, while the remaining fraction can entertain models

of any order. We show how, in the presence of such heterogeneity, higher-order expectations play a

central role in shaping the extent of return predictability at various horizons.

We then apply our framework to two asset pricing applications. As a first application, we study

the implications of our behavioral assumption for violations of the uncovered interest rate parity

(UIP) condition in foreign exchange. We show that the constraint on the number of factors in

agents’ model can generate return predictability patterns that are simultaneously consistent with

two well-known, but seemingly contradictory violations of UIP, namely, the forward discount and

the predictability reversal puzzles. The forward discount puzzle, which dates back to Fama (1984),

is the robust empirical finding that, in short time horizons ranging from a week to a quarter, high

interest rate currencies tend to have positive excess returns. The predictability reversal puzzle, more

recently documented by Bacchetta and van Wincoop (2010) and Engel (2016), refers to the fact that

high interest rate currencies tend to have negative excess returns over longer horizons, that is, the

violation of UIP reverses sign after some point. The seemingly contradictory implications of these

puzzles for the relationship between currency excess returns and interest rate differentials has led

some to argue for the inadequacy of existing models for explaining UIP violations (Engel, 2016).

To test our model’s implications for the violation of UIP at different horizons, we use a large

cross-section of currency returns and, following Engel (2016), run predictive regressions from a

trade-weighted average currency return on the corresponding interest rate differential. We then
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compare the resulting slope coefficients to those implied by our theoretical framework when

agents are constrained in the number of factors in their models. We find that when investors

are constrained to using single-factor models, the model-implied slope coefficients line up with

the ones from the data: at short horizon, deviations from rational expectations generate UIP

violations that imply positive excess returns for high interest rate currencies, whereas at longer

horizons the pattern reverses, with high interest rate currencies earning a negative excess return.

In other words, our framework generates return predictability patterns that are simultaneously

consistent with the forward discount and predictability reversal puzzles. Crucially, the pattern of our

model-implied Fama slope coefficients matches its empirical counterpart without using the data

on exchange rates or excess returns: the model-implied slope coefficients are constructed solely

from the autocorrelation of interest rate differentials.2 We also show that our findings remain mostly

unchanged even if only a relatively small fraction of agents are subject to our behavioral constraint.

As a further illustration, we study violations of UIP in the cross-section of developed and

emerging market currencies by running the Fama regressions on a currency-by-currency basis.

We find positive and statistically significant relationships between the empirically-estimated slope

coefficients and their model-implied counterparts at various horizons.

As a second application of our framework, we study short-run momentum and long-run reversal

in equity returns. Time-series momentum implies that past returns are predictors of future returns.

This pattern usually persists for a year and reverses over the longer term. To estimate model-

implied slope coefficients, we again rely on the autocorrelation function of fundamentals, in this

case, dividend-price ratios. Using the closed-form expressions for the one-factor model case, we

find that model-implied slope coefficients track the slope coefficients in the data, simultaneously

generating short-term momentum and long-run reversal.

Related Literature Our paper belongs to the literature that studies the asset pricing implications

of deviations from rational expectations. The most related strand of this literature considers

agents who have a misspecified view of the true data-generating process as a result of behavioral

biases. For instance, Barberis, Shleifer, and Vishny (1998) assume agents mistakenly believe the

innovations in earnings are drawn from a regime with excess reversals or excess streaks. Similarly,

Rabin and Vayanos (2010) show that gambler’s fallacy—the belief that random sequences should

exhibit systematic reversals, even in small samples—can generate momentum and reversal in equity

returns. More recently, Guo and Wachter (2019) focus on a model in which investors believe that

returns are predictable when in fact they are not. As in Rabin and Vayanos (2010) and Guo and

Wachter (2019), we consider a framework in which agents form expectations using misspecified

factor models. In contrast to these papers, where misspecification manifests itself as constraints

on the parameters of agents’ model, agents in our framework are constrained only in the number of

factors they can entertain.

Within this literature, our paper is also related to Hong, Stein, and Yu (2007), who focus on

2We contrast these findings to factor models of higher order and find that as agents become more sophisticated—and in
particular, as we increase the number of factors in agents’ model to k = 3—UIP violations mostly disappear at all horizons.
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an economy where agents rely on univariate models of the world, even when the true underlying

model is multivariate. The set of univariate models entertained by agents in Hong, Stein, and Yu

(2007) are exogenously given, with the transition probabilities between those models treated as

free parameters. In contrast, agents in our framework endogenously select the k-factor model that

best describes their observations. In other words, the only free parameter in our framework is the

maximum number of factors in agents’ models.

Our behavioral framework is also related to the natural expectations model of Fuster et al. (2010,

2012), in which decision makers are assumed to forecast a time series by modeling it as a low-order

autoregressive process with k lags. Our paper builds on and generalizes these works by allowing

agents to entertain any k-factor model without restrictions. Therefore, rather than making an

arbitrary assumption about the kind of statistics the agents can keep track of, we allow them to

optimally choose the k-factor model that best fits their past observations.3

Another strand of literature studies the asset pricing implications of deviations from Bayesian

updating. The extrapolative expectations models of Hirshleifer, Li, and Yu (2015), Barberis,

Greenwood, Jin, and Shleifer (2015), and Choi and Mertens (2019) and diagnostic expectations

models of Bordalo, Gennaioli, and Shleifer (2018), Bordalo, Gennaioli, La Porta, and Shleifer (2019),

and Bordalo, Gennaioli, Ma, and Shleifer (2020) are examples of such non-Bayesian models of

updating. Relatedly, Adam, Marcet, and Nicolini (2016) and Nagel and Xu (2019) consider a setting

in which agents update their subjective beliefs using a constant gain, which induces fading memory.

In a departure from this literature, we maintain the assumption of Bayesian updating and instead

consider agents whose priors assign zero probability to complex models with a large number of

factors.

Our paper is also related to the recent work of Martin and Nagel (2020), who study an

environment in which the number of factors potentially relevant for prediction is of the same

order of magnitude as the number of assets with available cashflow data. They show that, as a

consequence of this high-dimensional prediction problem, Bayesian investors use regularization

to trade off the costs of downweighting certain pieces of information against the benefit of reduced

parameter estimation error. In contrast, we focus on an environment in which agents have access to

abundant data but instead are restricted in the number of factors they can use in their models.

More generally, our paper builds on the broader literature that studies the theoretical

implications of misspecification as an expression of bounded rationality, as such as the prior

works of Esponda and Pouzo (2016, 2019) as well as Molavi (2019), who studies the implications

of misspecified factor models for business-cycle fluctuations. We instead focus on how restricting

agents to factor models with a small number of endogenously-chosen factors shapes the extent and

nature of return predictability in asset pricing applications.

Methodologically, our paper is also related to the literature on model order reduction in control

theory, which is concerned with characterizing lower-order approximations to large-scale dynamical

systems. See Antoulas (2005) and Sandberg (2019) for textbook treatments of the subject. In contrast

3Note that the family of k-factor models includes all ARMA(p, q) processes such that max{p, q + 1} ≤ k and thus nests
the family of AR(k) processes as a special case.
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to this literature, which mostly focuses on optimal Hankel-norm approximations, agents in our

model use the KL divergence as their notion of model fit. This choice is motivated by the fact that, in

our context, choosing the k-factor model with the smallest KL divergence to the true data-generating

process is equivalent to the outcome of Bayesian learning when agents assign a zero prior belief to

models with more than k factors. Therefore, our framework allows for imposing constraints on the

complexity of models that agents can entertain, while at the same time preserving other properties

of rational expectations.

Finally, we also contribute to the literature that studies UIP violations and in particular, the

reversal in currency return predictability. Engel (2016) develops a model to reconcile the forward

discount and predictability reversal puzzles by introducing a non-pecuniary liquidity return on

assets. Valchev (2020) proposes a different mechanism based on endogenous fluctuations in

bond convenience yields, while Bacchetta and van Wincoop (2019) argue that delayed portfolio

adjustments can explain various anomalies in exchange rate dynamics. Different from these

papers, we show that behavioral constraints on the complexity of investors’ statistical models—

and the resulting departure from rational expectations—generate patterns that are simultaneously

consistent with the forward discount and predictability reversal puzzles.

Outline The rest of the paper is organized as follows. Section 2 presents the environment and

specifies our behavioral assumption. Section 3 contains our main theoretical results and explores

the implications of constraints on the complexity of agents’ models for asset prices. Section 4

presents our two empirical applications. All proofs and some additional mathematical details are

provided in the Appendix.

2 Framework

Consider a discrete-time economy consisting of a unit mass of identical agents. Agents form

subjective expectations about an exogenous sequence {xt}∞t=−∞ of variables, which we refer to as

the economy’s fundamentals. Depending on the context, the fundamentals may correspond to an

asset’s dividend stream over time, interest rates differentials between two countries, or any sequence

of variables that can be treated as exogenous in that specific application.

The sequence of fundamentals {xt}∞t=−∞ is generated by a stationary n-factor model given by

zt = A∗zt−1 + εt

xt = b∗′zt,
(1)

where zt ∈ Rn denotes the vector of factors that drive the dynamic of fundamentals, A∗ ∈ Rn×n

is a square matrix that governs the evolution of factors over time, and b∗ ∈ Rn is a vector of

constants that captures the fundamental’s loading on each of the n factors.4 The noise terms

εt ∈ Rn are independent over time and are distributed according to εt ∼ N (0,Σ∗ε ). The process

that generates the fundamentals can thus be summarized by the n underlying factors (z1, z2, . . . , zn)

4To ensure stationarity, we assume that A∗ is a stable matrix, i.e., all its eigenvalues are within the unit circle.
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as well as the collection of parameters θ∗ = (A∗, b∗,Σ∗ε ). Throughout, we assume that the underlying

factors remain unobservable to agents, who, at any given time t, can only observe the realization of

fundamentals {xτ}τ≤t up to that time. We also assume that there are no redundant factors in (1), in

the sense that the dynamics of the fundamentals cannot be represented by a factor model with fewer

factors than n.

Whereas the fundamental sequence {xt}∞t=−∞ is assumed to be exogenous, we are interested

in how the fundamentals and agents’ subjective expectations about them jointly determine an

endogenous sequence of variables {yt}∞t=−∞, which we refer to as prices. More specifically, we

assume that the price at time t satisfies the recursive equation

yt = xt + δEt[yt+1], (2)

where Et[·] denotes agents’ time t subjective expectation and δ ∈ [0, 1] is a constant. Equation (2),

which serves as the basis of our subsequent analysis, has a natural interpretation. For example, if

the sequence {xt}∞t=−∞ represents an asset’s dividend stream, then yt corresponds to the price of

the asset at time t, with equation (2) simply capturing the fact that the asset’s price is the sum of its

dividend at that time and its expected future price, discounted at some rate δ.

Given the sequence of fundamentals and prices {(xt, yt)}∞t=−∞, we define excess returns at time

t + 1 as the sum of the fundamental and the change in price between time t and t + 1, properly

discounted:

rxt+1 = δyt+1 − yt + xt. (3)

Using equation (2), we can also express excess returns as the difference between the realized and the

expected price: rxt+1 = δ(yt+1 − Et[yt+1]).

Together with the specification of how agents’ expectations are formed, equations (1)–(3) fully

describe our environment. As we will discuss in Section 4, the framework represented by these

equations is general enough to capture various asset pricing applications. We also note that, thus

far, we have not made any assumptions about how agents’ expectations are formed. In particular,

it may be the case that agents’ expectations Et[·] are distinct from the expectations arising from

the true data-generating process (1), which we denote by E∗t [·]. Nonetheless, as we will discuss in

further detail in subsequent sections, our framework ensures that agents’ expectations are internally

consistent, in the sense that they satisfy the law of iterated expectations.

As a final remark, we note that one can write the price and excess returns in terms of the

fundamentals and agents’ subjective expectations. In particular, as long as subjective expectations

satisfy law of iterated expectations, iterating on equation (2) implies that

yt =

∞∑
τ=0

δτEt[xt+τ ] (4)

rxt+1 =

∞∑
τ=1

δτ (Et+1[xt+τ ]− Et[xt+τ ]) . (5)

While the recursive representations in (2) and (3) are more compact, the above expressions illustrate

how prices and excess returns depend on agents’ expectations about the entire future path of
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fundamentals. For instance, going back to the example discussed earlier, the representation in (4)

simply illustrates that the asset’s price at time t is equal to the discounted sum of its expected future

dividends. Similarly, equation (5) captures the intuitive idea that the asset’s excess return at time

t+ 1 is equal to the change in agents’ forecasts (from t to t+ 1) about its dividend stream (Campbell,

1991).

2.1 Return-Predictability Regressions

To assess the implications of our (yet-to-be-specified) behavioral framework for asset prices, we start

with a measure to capture deviations from the rational expectations benchmark. One natural choice

for such a measure is the extent of (excess) return predictability. This is because the benchmark

rational expectations framework implies that future returns should be unpredictable.

We measure the extent of return predictability by relying on two families of linear regressions.

The first family of regressions, which we refer to as Fama regressions, measures the extent to which

current fundamentals predict future excess returns at different horizons. More specifically,

rxt+h = αFama
h + βFama

h xt + εt,h, (6)

where h ≥ 1. If returns are unpredictable—as would be the case under rational expectations—then

βFama
h = 0 for all horizons h. The family of slope coefficients (βFama

1 , βFama
2 , . . . ) thus provides not only

a measure for departures from the rational expectations benchmark, but also the extent to which

such departures vary with the prediction horizon.5

Our second family of regressions, which we refer to as momentum regressions, measures the

extent to which current returns predict future returns:

rxt+h = αmom
h + βmom

h rxt + εt,h. (7)

Once again, the unpredictability of future returns under rational expectations requires that βmom
h = 0

for all h ≥ 1. Hence, the term structure of coefficients (βmom
1 , βmom

2 , . . . ) provides us with a natural

measure for assessing the implications of our behavioral framework at different time horizons

compared to the rational expectations benchmark, with a positive (negative) βmom
h corresponding

to the extent of time-series momentum (reversal) in returns at horizon h.

We conclude by providing a simple result that relates the slope coefficients in regressions (6) and

(7) to agents’ subjective expectations about the fundamental as well as the properties of the true

data-generating process.

Proposition 1. If agents’ expectations satisfy the law of iterated expectations, the slope coefficients in

5We refer to equation (6) as the Fama regression because of its similarity to Fama’s (1984) regression specification for
testing deviations from the uncovered interest rate parity condition. In that context, the fundamental xt corresponds to
log interest rate differential between two countries, yt is the log of the foreign exchange rate, and rxt is the currency risk
premium at time t. See Section 4 for a more detailed discussion of the application of our framework to foreign exchange.
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regressions (6) and (7) are given by

βFama
h =

1

E∗[x2
t ]

∞∑
τ=0

δτ+1E∗[xt(Et+h[xt+h+τ ]− Et+h−1[xt+h+τ ])] (8)

βmom
h =

∑∞
τ,s=1 δ

τ+sE∗[(Et+1[xt+τ ]− Et[xt+τ ])(Et+h+1[xt+h+s]− Et+h[xt+h+s])]

E∗[
∑∞

τ=1 δ
τ (Et+1[xt+τ ]− Et[xt+τ ])]2

, (9)

respectively, where E∗[·] is the expectation with respect to the true data-generating process (1).

The above result has a few immediate, but important implications. First, it is straightforward to

verify that, under rational expectations, βFama
h = βmom

h = 0 for all h ≥ 1. Thus, as expected, in the

rational expectations benchmark, returns are unpredictable at any horizon, irrespective of whether

agents condition on the current value of the fundamental, xt, or the current excess returns, rxt.

Second, when agents’ subjective expectations do not coincide with the expectation under the true

data-generating process, the coefficients in the return-predictability regressions may in general be

different from zero, even when agents’ expectations are internally consistent. Finally, equations (8)

and (9) illustrate that the wedge between agents’ subjective expectations and rational expectations

may have differential impacts on the slope coefficients at different horizons h. How departures from

rational expectations shape the term structures of βFama
h and βmom

h will be the focus of our subsequent

theoretical and empirical analyses.

2.2 Behavioral Assumption

So far, we have remained agnostic with respect to how agents’ subjective expectations are formed.

We now specify the behavioral model that governs agents’ expectation formation process.

Recall that the fundamentals {xt}∞t=−∞ are generated by the n-factor model in (1). While at any

given time t, agents observe the sequence of realized fundamentals up to that time, we assume that

(i) they neither observe nor know the underlying factors (z1, . . . , zn) that drive the fundamentals

and (ii) they do not know the collection of parameters θ∗ = (A∗, b∗,Σ∗ε ) that govern the true data-

generating process.

In addition, we assume that agents can only entertain models with at most k factors, where k

may be distinct from the true number of factors, n. This assumption, which serves as our main

behavioral assumption, captures the intuitive idea that there is a limit to the complexity of statistical

models that agents are able to consider. The number of factors, k, indexes the degree of agents’

sophistication, with a larger k corresponding to agents who can entertain a richer class of models.

Formally, we assume that agents can only entertain models of the form

ωt = Aωt−1 + εt

xt = b′ωt,
(10)

where ωt ∈ Rk denotes the vector of k underlying factors, A ∈ Rk×k and b ∈ Rk capture the process

that govern factors’ evolution and the fundamental’s loading on each of the factors, respectively, and

the noise terms εt ∼ N(0,Σε) are independent and identically distributed over time. We summarize
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such a k-factor model with the collection of parameters θ = (A,B,Σε) and use Θk to denote the set

of all k-factors models in the form of (10). Note that, with some abuse of notation, we can write

Θk ⊆ Θk+1, thus capturing the fact that agents with a higher k can contemplate a larger class of

models.

A few remarks are in order. First, note that we impose no restrictions, other than the number

of factors, on the agents’ model: the k factors (ω1, . . . , ωk) in the agents’ model may overlap with a

subset of the n factors (z1, . . . , zn) that drive the fundamental, may be linear combinations of the

underlying n factors, or can be constructed in an entirely different way altogether. Second, as we

discuss in further detail below, the agents’ choice of which k-factor model to use is endogenous:

they pick the model from set Θk that best fits their past observations. Third, when k < n, the set

of models entertained by the agents does not contain the true n-factor data-generating process in

(1), i.e., θ∗ 6∈ Θk. In such a case, our behavioral assumption implies that irrespective of their choice,

agents will end up with a misspecified model of the world. This observation also clarifies the bite of

our behavioral assumption: whereas more sophisticated agents with k ≥ n can recover the model

that generates the fundamentals (at least in principle), those with k < n can at best construct lower

dimensional approximations to the true data-generating process.

As already mentioned, we assume that agents choose their model by picking the k-factor model

that best fits their observations. Following Esponda and Pouzo (2016, 2019) and Molavi (2019), we

use the Kullback–Leibler divergence as our notion of fit:

Definition 1. The Kullback–Leibler (KL) divergence of model θ ∈ Θk from the true process is given

by

KL(θ∗‖θ) = E∗[− log fθ(xt+1|xt, . . . )]− E∗[− log f∗(xt+1|xt, . . . )], (11)

where f∗ is the density of the fundamental under the true data-generating process, fθ is agents’

subjective density under model θ, and E∗[·] is the expectation with respect to the true process.6

The KL divergence measures the disparity between agents’ subjective expectations, as captured

by density fθ, and the true process f∗. It is always non-negative and obtains its minimum value of

zero if and only if the two densities coincide almost everywhere. To see the interpretation of KL(θ∗‖θ)
as a goodness-of-fit measure, note that E∗[− log fθ(xt+1|xt, . . . )] and E∗[− log f∗(xt+1|xt, . . . )] are

entropy-like terms that capture the extent of uncertainty regarding one-step-ahead predictions

conditional on the history of past observations under, respectively, model θ and the true model, θ∗.

Therefore, the right-hand side of (11) measures the additional uncertainty—and hence, the resulting

degradation in prediction quality—when agents use model θ as opposed to the true model.

Definition 2. A k-factor constrained-rational expectations equilibrium (CREE) consists of a process

for prices and a model θCREE
k ∈ Θk for agents such that

(i) prices satisfy equation (2),

6Note that, by equation (2), yt is measurable with respect to the information set generated by {xτ}τ≤t. Therefore,
irrespective of whether past prices are observed by agents or not, it is sufficient to consider expectations conditioned on
the past realizations of the fundamental.
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(ii) agents’ subjective expectations are generated by the k-factor model θCREE
k ,

(iii) θCREE
k ∈ argminθ∈Θk

KL(θ∗‖θ).

Under constrained-rational expectations, agents’ subjective expectations are consistent with the

k-factor model (10) that minimizes the KL divergence to the true process (1). Importantly, even

though agents are restricted to models with at most k factors, they face no constraints in choosing

what these factors are, how they evolve, or how the fundamental loads on each of the factors.

Note that, whenever k ≥ n, the k-factor constrained-rational expectations reduce to rational

expectations. This is, of course, not surprising: when agents can contemplate models that are

more complex than the true model, their subjective expectations will coincide with the underlying

objective expectations once they choose the model that best fits the data. More specifically, since

θ∗ ∈ Θk, they can achieve the lower bound of KL = 0. In contrast, when k < n, the constraint

imposed on the number of factors binds, in the sense that KL(θ∗||θ) > 0 for all θ ∈ Θk. As a result,

agents end up with a misspecified model of the world and subjective expectations that may diverge

from rational expectations.

With our notion of goodness-of-fit in hand, our next result establishes that a constrained-rational

expectations equilibrium always exists and generates subjective expectations that are internally

consistent.

Theorem 1. A constrained-rational expectations equilibrium exists for all k. Furthermore, agents’

expectations in any CREE satisfy the law of iterated expectations.

Besides its intuitive appeal as a measure of additional uncertainty arising from potential model

misspecification, using the KL divergence in (11) as the notion of fit can also be rationalized in a

number of other ways. Our next result provides a series of micro-foundations for our equilibrium

notion by illustrating that whether agents choose their model to minimize the mean-squared

error of their one-step-ahead predictions (statement (a)), use a maximum likelihood estimator

(statement(b)), or engage in Bayesian learning (statement (c)), they end up with a model in the set

of constrained-rational expectations equilibria.

Theorem 2. Let ΘCREE
k ⊆ Θk denote the set of all models that are part of a k-factor constrained-rational

expectations equilibrium. Then,

(a) ΘCREE
k = argminθ∈Θk

E∗[(xt+1 − Eθt [xt+1])2],

(b) arg maxθ∈Θk
fθ(xt|xt−1, . . . x0)→ ΘCREE

k as t→∞with P∗-probability one,

(c) if µ0 ∈ ∆Θk is a prior with full support and µt ∈ ∆Θk is the corresponding Bayesian posterior at

time t, then limt→∞ µt(U) = 1 with P∗-probability one for any open set U ⊃ ΘCREE
k .

We conclude this discussion by noting that even when the constraint on the complexity of models

entertained by the agents binds (i.e., when k < n), the fact that they choose the k-factor model that

fits the data best means that they may still recover important features of the data-generating process,

even if not the dynamics of the underlying factors or the factors themselves. The following example

illustrates this point.
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Example 1. Suppose the underlying data-generating process is governed by n independent-evolving

factors (z1, . . . , zn). More specifically, suppose zit+1 = a∗i zit + εit+1 and xt =
∑n

i=1 b
∗
i zit, where a∗i ∈

(−1, 1) is the persistence of the i-th factor, b∗i is the fundamental’s loading on that factor, and the

shocks (ε1t, . . . , εnt) are independent from one another and have unit variance.7 In the language of

equation (1), the underlying model is represented by the set of parameters θ∗ = (A∗, b∗,Σ∗), where

Σ∗ is the identity matrix and the matrix that governs the dynamics of the data-generating process is

given by

A∗ =


a∗1 0 · · · 0
0 a∗2 · · · 0
...

. . .
...

0 0 · · · a∗n

 .
Now, suppose agents can only entertain single-factor models, that is, k = 1. Thus, as long as

n ≥ 2, the agents can never recover the dynamics that govern the fundamental. Instead, they

form their subjective expectations about future fundamentals from the single-factor model that

best fits their observations in the sense of Definition 1. As we show in the appendix, the model

θCREE
1 corresponding to the single-factor constrained-rational expectations equilibrium is given by

ωt+1 = aCREEωt + εt and xt = ωt, where ωt ∈ R is the factor that drives the process, εt ∼ N(0, 1), and

aCREE =

(
n∑
i=1

b∗i
2a∗i

1− a∗i
2

)/( n∑
i=1

b∗i
2

1− a∗i
2

)
. (12)

Note that the single-factor model constructed by the agents depends on the dynamics of all n

underlying factors that drive the fundamental. However, the corresponding persistence parameter

aCREE puts a lower weight on factors with smaller loadings: a lower |b∗i | translates into a smaller weight

on the persistence a∗i of the i-th factor. So, for example, if all but one of the b∗i are very small in

magnitude—so that the model behaves similar to a single-factor model—the agents’ model closely

approximates that specific factor’s dynamics.

Another observation that emerges from (12) is that if one of the factors follows a near unit-root

process, in the sense that |a∗i | ≈ 1, then agents’ estimated single-factor model also behaves like a

near unit-root process, with |aCREE| ≈ 1. This is the case even if the fundamental’s loading b∗i on that

factor is small.

Taken together, these observations illustrates that, even though agents are restricted to models

that may be significantly less complex than the true data-generating process and have no way of

identifying the true underlying factors, they nonetheless recover a lower dimensional representation

of the data-generating process that may approximate salient features of the true model.

3 Asset Pricing Implications

In this section, we study the implications of constrained-rational expectations for return

predictability. In particular, we characterize the slope coefficients of return-predictability

7To ensure that there are no redundant factors in the model, we assume that a∗i 6= a∗j for all i 6= j and b∗i 6= 0 for all i.
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regressions (6) and (7) when agents can only entertain models consisting of at most k factors, where,

in general, k 6= n.

Recall from Definition 2 that all parameters corresponding to agents’ models, other than the

number of factors k, are endogenously determined by minimizing the KL divergence from the true

data-generating process. Consequently, once we specify the number of factors in the agents’ model,

there are no more degrees of freedom on how they form their expectations. This, in turn, implies that

the coefficients of return-predictability regressions can be expressed only in terms of the number of

factors k in the agents’ model and the statistical properties of the true data-generating process. We

have the following result:

Theorem 3. Suppose agents are constrained to k-factor models. Then, the slope coefficients of the

Fama and momentum regressions (6) and (7) are, respectively, given by

βFama
h = δu′(I − δM)−1u

(
ξ∗h −

∞∑
τ=1

φτξ
∗
h−τ

)
(13)

βmom
h =

ξ∗h −
∞∑
s=1

φs(ξ
∗
h−s + ξ∗h+s) +

∞∑
s,τ=1

φsφτξ
∗
h+s−τ

1− 2

∞∑
s=1

φsξ
∗
s +

∞∑
s,τ=1

φsφτξ
∗
s−τ

, (14)

where ξ∗τ = E∗[xtxt+τ ]/E∗[x2
t ] is the autocorrelation of the fundamental, φs = u′[M(I − uu′)]s−1Mu,

and M and u are, respectively, a k × k weakly stable matrix and a k-dimensional unit vector that

minimize

H(M,u) = 1− 2

∞∑
s=1

φsξ
∗
s +

∞∑
s=1

∞∑
τ=1

φsφτξ
∗
τ−s. (15)

This theorem, which is the main characterization result of the paper, relates the extent of return

predictability under constrained-rational expectations to the number of factors in the agents’ model

and the statistical properties of the underlying data-generating process. Importantly, it illustrates

that the coefficients of the Fama and momentum regressions happen to only depend on the

underlying process through the autocorrelation function of the fundamental, ξ∗τ = E∗[xtxt+τ ]/E∗[x2
t ].

This is a consequence of the fact that, under constrained-rational expectations, agents optimally

scale the volatility of the factors in their model with the volatility of the fundamental.

The characterization result in Theorem 3 serves two distinct purposes in our analysis. First, it

allows us to directly apply our framework to various asset pricing applications. In particular, in

any context in which endogenous and exogenous variables are related to one another via equation

(2), we can use the autocorrelation function of the exogenous variables and the expressions in

(13) and (14) to compute the implied coefficients of the Fama and momentum regressions under

constrained-rational expectations. This is the approach we take in the next section. Second,

Theorem 3 also enables us to perform comparative statics analyses with respect to the primitives

and to compare return predictability at different horizons, as we do in the remainder of this section.
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3.1 Comparative Statics

We start with a simple result that considers the case where agents’ models are sufficiently rich to

fully capture the statistical properties of the data-generating process.

Theorem 4. Suppose δ > 0 and let k and n denote the number of factors in, respectively, the agents’

model and the true data-generating process. Then,

(a) If k ≥ n, then βFama
h = βmom

h = 0 for all horizons h.

(b) If k < n, then there exists h and h̃ such that βFama
h 6= 0 and βmom

h̃
6= 0.

Statement (a) of Theorem 4 establishes that if the number of factors agents can entertain is

at least equal to the number of true factors driving the fundamental, then there is no return

predictability at any horizon. This result is a consequence of two key assumptions embedded in

the definition of a CREE. First, agents choose their k factors optimally, by minimizing the divergence

between their forecasts and their observations. Second, in a CREE, agents behave as if they have used

an infinitely long sequence of observations to discipline the parameters of their models. As a result,

agents do not suffer from finite-sample problems such as overfitting: they recover the underlying

data-generating process even if they use models that have too many parameters relative to the true

model (i.e., when k > n). Statement (b) of the theorem then shows that the converse implication

is also true: if there is no return predictability, the set of models entertained by the agents has to

be rich enough to contain the true underlying model. Consequently, under constrained-rational

expectations, return predictability and model misspecification are one and the same.

Our next result concerns the extent of return predictability in long horizons.

Theorem 5. Under constrained-rational expectations, excess returns are not predictable in the long

run:

lim
h→∞

βFama
h = lim

h→∞
βmom
h = 0.

This result is a direct consequence of the assumptions that (i) the true data-generating process

is stationary and (ii) agents only entertain stationary factor models. These stationarity assumptions

imply that the effect of time-t variables (including the fundamental xt and excess returns rxt) on

returns at time t+ h die out eventually as h increases.

3.2 Single-Factor Models

While there does not exist a closed-form representation of agents’ expectations for a general k, our

next result provides such a characterization for the case in which agents are restricted to using single-

factor models. Despite being only a special case, this closed-form characterization is a transparent

and easy-to-use result that is informative about how the extent of return predictability varies with

the horizon h as a function of the autocorrelation function of the true data-generating process.
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Proposition 2. If agents are constrained to single-factor models, then the slope coefficients of the Fama

and momentum regressions are given by

βFama
h =

δ

1− δξ∗1
(ξ∗h − ξ∗h−1ξ

∗
1) (16)

βmom
h =

(1 + ξ∗1
2)ξ∗h − ξ∗1(ξ∗h−1 + ξ∗h+1)

1− ξ∗1
2 , (17)

respectively, where ξ∗h is the autocorrelation of the fundamental with lag h.

Using the above closed-form representation, we can obtain the following result:

Proposition 3. Suppose agents are constrained to single-factor models. Furthermore, suppose ξ∗1 > 0.

Then, there exist h and h′ such that βmom
h βmom

h′ < 0.

Therefore, as long as the underlying process that drives the fundamental exhibits some

persistence in the very short run—and irrespective of any of its other characteristics—

subjective expectations induced by agents’ misspecified model generate momentum and reversal

simultaneously.

3.3 Heterogenous-Agent Economy

Our results thus far relied on the assumption that the economy consists of a unit mass of identical

agents, all of whom are restricted to using models with the same maximum number of factors, k. In

this subsection, we extend our previous results by assuming that only a fraction 1 − λ of the agents

are subject to our behavioral constraint, while the remaining λ fraction can entertain models with

any number of factors. For simplicity, we refer to the two groups of agents as behavioral and rational

agents, respectively.8 We assume that parameter λ is common knowledge in the economy.

The heterogeneity in agents’ ability to entertain statistical models of different complexities

results in heterogenous subjective expectations, with λ and 1 − λ fractions of agents having

rational and constrained-rational expectations, respectively. As a result, the relationship between

endogenous prices and exogenous fundamentals is given by the following generalization of equation

(2):

yt = xt + δĒt[yt+1],

where Ē[·] = λE∗[·]+(1−λ)E[·] denotes the cross-sectional average of agents’ expectations. Iterating

on the above, we can also obtain the following counterpart to equation (5) for excess returns in terms

of agents’ expectations:

rxt+1 =

∞∑
τ=1

δτ
(
Ēt+1Ēt+2 · · · Ēt+τ [xt+τ ]− ĒtĒt+1 · · · Ēt+τ [xt+τ ]

)
. (18)

8Despite the terminology, note that, in view of Theorem 2 all agents in this economy are Bayesian, with the only
difference between the two groups being that behavioral agents assign zero prior probability to models consisting of
more than k factors. Furthermore, note that when k ≥ n, agents in both groups end up with the same exact subjective
expectations. As a result, the subjective expectations of the two groups differ only when k < n.
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The key observation is that, even though subjective expectations of each group of agents satisfy the

law of iterated expectations, the cross-sectional average expectation Ē[·] may not. Therefore, unlike

the representative-agent framework of Section 2, excess returns in the heterogenous-agent economy

also depend on higher-order expectations whenever k < n.

Before presenting our result, we note that the failure of law of iterated expectations with

respect to Ē[·] in our framework resembles a similar phenomenon in differential-information

economies, such as Allen, Morris, and Shin (2006), Barillas and Nimark (2017), Angeletos and

Lian (2018) and Angeletos and Huo (2019), where agents have access to private signals about

fundamentals. In contrast to these papers, however, all information in our framework is public

and it is the heterogeneity in the maximum number of factors in agents’ models that results in

heterogenous expectations and the potential violation of law of iterated expectations. Another

important consequence of this assumption is how agents’ higher-order expectations are formed:

while rational agents can recover the model used by behavioral agents, the latter behave as if they live

in a representative-agent economy only consisting of agents with k-factor models. This is because

behavioral agents are convinced—mistakenly so when k < n—that a k-factor model is sufficient to

capture the process that drives the fundamental.

Our next result characterizes the slope coefficient of the Fama regression (6) in the heterogenous-

agent economy in terms of the corresponding family of coefficients in the representative-agent

economy consisting of only behavioral agents (i.e., λ = 0). Let βFama
h (λ) denote the slope coefficient

of the Fama regression in an economy with λ and 1 − λ fraction of rational and behavioral agents,

respectively. We have the following result:

Proposition 4. The slope coefficient of the Fama regression in the heterogenous-agent economy is

given by

βFama
h (λ) = (1− λ)

∞∑
s=0

(δλ)sβFama
h+s (0), (19)

where βFama
h (0) is the slope coefficient of the representative-agent economy and is given by (13).

4 Applications

In this section, we apply our framework to two asset pricing applications: the violation of uncovered

interest rate parity in foreign exchange and time-series momentum and reversal in equity returns.

More specifically, we use the characterization result in Theorem 3 to test our model’s predictions for

the slope coefficients of return predictability regressions (6) and (7) in these contexts.

4.1 Reversal of Uncovered Interest Rate Parity

One of the central tenets of international finance is the uncovered interest rate parity (UIP)

condition, which maintains that high interest rate currencies should depreciate vis-à-vis those

with low interest rates. Yet—in what has become known as the “forward discount puzzle”—a vast
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Figure 1. Uncovered Interest Rate Parity Regression: Fama Coefficient

Notes: This figure plots estimated slope coefficients together with 90 percent confidence intervals of the Fama regression:
rxt+h = αFama

h +βFama
h (i∗t−it)+εt,h, where h = 0, . . . , 180 denotes the horizon in months, rxt+h is the currency risk premium

on a trade weighted average of seven currencies vis-à-vis the U.S. dollar, and i∗t − it is the log interest rate differential
between the trade-weighted average interest rate and the U.S. interest rate. Data is monthly and runs from January 1985
to October 2018. Confidence intervals are calculated using Newey and West (1987) standard errors.

empirical literature documents that, over short time horizons (ranging from a week to a quarter),

high interest rate currencies tend to appreciate. In other words, short-term deposits of high-interest

rate currencies tend to earn a predictively positive excess return.

More recently, however, Bacchetta and van Wincoop (2010) and Engel (2016) document a distinct

but related puzzle, known as the “predictability reversal puzzle.” They find that UIP violations

reverse sign over longer horizons, with high interest rate currencies earning negative excess returns

at horizons from four to seven years. The seemingly contradictory implications of the forward

discount and predictability reversal puzzles for the relationship between currency excess returns and

interest rate differentials has led some to argue for the inadequacy of existing models for explaining

UIP violations. More specifically, Engel (2016) argues that, risk-based explanations of the forward

discount puzzle—which attribute the violations of UIP to the relative riskiness of holding short-term

deposits in the high-interest rate country—cannot account for the predictability reversal puzzle.

In this subsection, we apply our theoretical framework to study the implications of model

misspecification for the pattern of UIP violations at different horizons and investigate the extent to

which constrained-rational expectations can jointly explain the forward discount and predictability

reversal puzzles.

We map this context to our framework in Section 2 by letting the fundamental denote the log

interest rate differential between the U.S. and a foreign country, i.e., xt = i∗t − it, where it and i∗t

are nominal interest rates on deposits held in U.S. dollars and the foreign currency, respectively.

We also let yt denote the log of the foreign exchange rate, expressed as the U.S. dollar price of
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the foreign currency. With the discount rate set to δ = 1, recursive equation (2) then captures

the interest rate parity condition, according to which an increase in the U.S. to foreign short-term

interest rate differential is associated with an exchange rate appreciation, whereas a higher expected

future exchange rate implies a depreciation. Note that, as in Section 2, the expectation in (2) denotes

agents’ subjective expectations, which may differ from those arising from the true data-generating

process. Finally, equation (3) simply expresses the currency risk premium from period t to period

t+ 1:

rxt+1 = yt+1 − yt + (i∗t − it).

We start by reproducing the empirical findings on UIP violations at different horizons. Following

Engel (2016), we build a trade-weighted average exchange rate and interest rate differential relative

to the U.S. for the following countries: Australia, Canada, Euro (Germany before its introduction),

New Zealand, Japan, and the United Kingdom. The weights are constructed as the value of each

country’s exports and imports as a fraction of the average value of trade over the six countries.

Monthly exchange rate data is from Datastream and interest rate differentials are calculated using

covered interest rate parity from forward rates, i∗t − it = ft − yt, also available from Datastream. We

then run the following regression:

rxt+h = αFama
h + βFama

h (i∗t − it) + εt+h, h = 0, . . . , 180,

where h is the horizon measured in months. This regression is, of course, identical to the Fama

regression (6) in Section 2.

Figure 1 plots the estimated slope coefficients at various horizons. For h = 1, we find the

slope coefficient to be positive, thus recovering the classic forward discount puzzle: at short time

horizons, higher interest rate differentials (relative to the U.S.) lead to higher risk premia. This

pattern remains the same up to a horizon of three years, but then reverses its sign, illustrating the

predictability reversal puzzle: for horizons between four to seven years, higher interest rates predict

a lower currency risk premium. Finally, as the figure indicates, the estimated coefficient of the Fama

regression becomes indistinguishable from zero at even longer horizons.

Turning to our framework’s predictions, we first calculate the autocorrelation function {ξ∗τ}τ≥1

of the interest rate differential for the trade-weighted basket of currencies against the U.S. dollar.

Taking this autocorrelation as our primitive, we then calculate the term structure of the model-

implied coefficients of the Fama regression using expression (13) in Theorem 3 for different number

of factors k in agents’ model.

As our first exercise, we consider the case in which agents can only entertain single-factor

models, i.e., k = 1. Recall that in this special case, we can use the closed-form expression (16) in

Proposition 2 to calculate the model-implied slope coefficients of the Fama regression. Figure 2 plots

the term structure of the model-implied coefficient for k = 1 together with the coefficients obtained

from the data from Figure 1. As the figure indicates, the pattern of model-implied coefficients tracks

the pattern observed from the data fairly closely. Most importantly, we see a reversal in the slope

coefficient: model-implied coefficients are positive for horizons up to 30 months and reverse to
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Figure 2. One-Factor Model-Implied Fama Coefficient

Notes: This figure plots estimated Fama slope coefficients from Figure 1 (left axis) together with model-implied (right axis)
betas from a one-factor model given in Proposition 2 for horizons 0 to 180 months.

a negative sign thereafter. The pattern in Figure 2 thus suggests that single-factor constrained-

rational expectations generate return predictability patterns that are simultaneously consistent with

the forward discount and predictability reversal puzzles.

It is important to emphasize that while the estimated coefficients in Figure 1 are obtained from

regressing returns on interest rate differentials, the model-implied coefficients in Figure 2 do not

use the data on exchange rates or excess returns. Rather, they are simply obtained by plugging the

autocorrelation of interest rate differential into equation (16).

Next, we investigate how increasing the number of factors k entertained by the agents impacts

the term structure of model-implied slope coefficients. To this end, we once again use the empirical

autocorrelation function of the interest rate differential as an input to calculate βFama
h for k = 2, 3.

However, when k > 1, there is no closed-form expression for the model-implied slope coefficients.

As a result, we use equation (13) and the characterization result in Theorem 3 to solve for βFama
h

numerically. Importantly, as a by-product, we also obtain the model-implied autocorrelation

function (ACF), i.e., the autocorrelation function as perceived from the (potentially misspecified)

k-factor model used by the agents.9

The results are reported in Figure 3. The upper panel depicts the model-implied ACF for k =

1, 2, 3, together with the empirical ACF of the trade-weighted average interest rate differential for

horizons 0 to 180 months. As the figure indicates, the model-implied ACFs differ quite substantially

9See Appendix B.1 for the details of how the model-implied autocorrelation function can be calculated in terms of the
solution of optimization problem (15).
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Figure 3. Autocorrelation Function and k-Factor-Model-Implied Fama Coefficients

Notes: The upper panel plots the autocorrelation function of the trade-weighted interest rate differential (data) together
with one-, two-, and three-factor-model-implied ACFs. The lower two panels plot the two-factor (lower left panel) and
three-factor (lower right panel) model-implied Fama betas for horizons 0 to 180 months.

across various levels of agents’ sophistication. For example, while the three-factor model almost

perfectly matches the empirical ACF, the ACF implied by the single-factor model looks significantly

different. Crucially, this is reflected in the model-implied slope coefficients as illustrated in the lower

right panel of Figure 3: the three-factor model, which generates a model-implied ACF that tracks

the empirical ACF very closely, also results in model-implied slope coefficients that are significantly

smaller at all horizons. This, of course, is to be expected in view of our results in Section 3. As

agents are able to entertain richer and more complex statistical models, they end up with models

that better fit the empirical ACF, which in turn results in less significant deviations from the rational

expectations benchmark and hence less return predictability.

To further validate our model’s predictions, we calculate the model-implied slope coefficients of

the Fama regression for a larger cross-section of countries and plot them against the corresponding

slope coefficients estimated from the data.10 Figure 4 depicts the results for k = 1 at different

horizons. Recall from Theorem 3 and Proposition 2 that model-implied slope coefficients depend

on the shape of the ACF of the fundamental (in this case, the interest rate differential between the

corresponding country and the U.S.). Therefore, as ACFs differ in the cross-section of currencies,

so should the model-implied betas. Nonetheless, as Figure 4 illustrates, model-implied and

empirically-estimated slope coefficients have a positive and statistically-significant relationship.

10We use currency pairs for the following countries (all against the U.S. dollar): Australia, Canada, Hong Kong, Denmark,
France, Germany, Italy, Japan, the Netherlands, New Zealand, Norway, Singapore, Sweden, Switzerland, the United
Kingdom, Czech Republic, Kuwait, Mexico, the Philippines, Spain, and Turkey.
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(c) h = 80
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(d) h = 120

Figure 4. Fama Coefficient Cross-Section

Notes: This figure plots the empirically-estimated Fama regression coefficients against the corresponding model-implied
coefficients for 21 currencies against the U.S. dollar at h = 2, 40, 80, and 120 month horizons. The red line in each
panel indicates the corresponding least-square fit. The currencies are Australia, Canada, Hong Kong, Denmark, France,
Germany, Italy, Japan, the Netherlands, New Zealand, Norway, Singapore, Sweden, Switzerland, the United Kingdom,
Czech Republic, Kuwait, Mexico, the Philippines, Spain, and Turkey.

This positive relationship holds both at short horizons (such as two months) when most Fama

coefficients are positive, as well as for the longer horizons (such as 80 months) when coefficients

tend to be mostly negative. We therefore conclude that in a world where agents are constrained by

their ability to entertain high-dimensional models, constrained-rational expectations can generate

patterns of UIP violations that are jointly consistent with the forward discount and predictability

reversal puzzles.

As a final exercise, we test whether the above findings are robust to the introduction of

heterogeneity in the number of factors in agents’ models. To this end, we use the characterization

in Proposition 4 to calculate the model-implied slope coefficients of the Fama regression in a

heterogeneous-agent economy, in which a fraction 1 − λ of agents are constrained to using a
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Figure 5. 1-Factor-Model-Implied Fama Coefficients Homogeneous and Heterogeneous Economy

Notes: This figure plots the single-factor model-implied slope coefficients of the Fama regression for horizons 0 to 180
months in a representative- and heterogeneous-agent economies (right axis) together with the corresponding coefficients
estimated from the data (left axis). The fraction of behavioral agents in the heterogenous-agent economy is 10%, i.e.,
λ = 0.9.

single-factor model, while the remaining λ fraction can entertain models with any number of

factors. Figure 5 plots estimated coefficients in an economy populated by 90% rational and 10%

behavioral agents, i.e., for λ = 0.9. As the figure illustrates, the model-implied slope coefficients in

the heterogeneous-agent economy look very similar to those in the representative-agent economy

consisting of only behavioral agents (λ = 0). This indicates that even small fractions of behavioral

agents can lead to notable deviations from the rational expectations benchmark, generating patterns

that are consistent with the slope coefficients in the data.

4.2 Time-Series Momentum and Reversal in Equity Returns

One of the starkest challenges to the “random walk hypothesis” of asset prices is the existence of

time-series momentum and reversal, whereby past returns predict future returns. For example,

Moskowitz, Ooi, and Pedersen (2012) document that returns of a diverse set of futures and forward

contracts exhibit persistence for one to 12 months, an effect that partially reverses over longer

horizons.

As a second illustration of our framework, we focus on time-series momentum and reversal in

equity returns. As in the previous subsection, we start by reproducing the empirical findings that

show the existence of return predictability. We then apply our theoretical results from Section 3 and

compare the degree of return predictability in the data to that implied by our framework.

We collect data on MSCI price and total return indices for Australia, Belgium, Canada, France,

Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, the United Kingdom, and the United

States available from Datastream. Since volatility varies across the different country indices, we scale
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Table 1. Autocorrelations for Equity Excess Returns

Horizon (in months)

1–12 13–24 25–36 37–48

Australia −0.0098 −0.0238 0.0072 −0.0001

Belgium 0.0325 −0.0014 −0.0029 −0.0153

Canada 0.0073 −0.0346 −0.0040 0.0026

France 0.0104 −0.0217 −0.0016 −0.0095

Germany 0.0036 −0.0154 −0.0056 0.0028

Italy 0.0241 −0.0149 −0.0089 −0.0197

Japan 0.0539 −0.0132 −0.0081 −0.0211

The Netherlands −0.0019 −0.0104 0.0018 0.0014

Sweden 0.0148 −0.0338 −0.0008 0.0009

Switzerland 0.0114 −0.0100 −0.0022 −0.0080

United Kingdom 0.0047 −0.0063 −0.0153 −0.0154

United States 0.0107 −0.0096 0.0076 −0.0085

Notes: This table reports average autocorrelations of MSCI country excess returns for the 12 months indicated time period.

excess returns by their lagged volatility as in Moskowitz, Ooi, and Pedersen (2012).11 From the raw

return series, we also calculate dividend-price ratios.12

As a first exercise, we follow Cutler, Poterba, and Summers (1991) and calculate average

autocorrelations of returns across the different equity indices, with the results reported in Table

1. The first column illustrates the well-known pattern of positive serial correlation over horizons

shorter than one year (with the exception of the Netherlands and Australia), indicating short-term

time-series momentum. The average autocorrelations, however, turn negative over the horizon of

12–24 months, as is evident from the second column of Table 1, pointing towards reversals in excess

returns at longer horizons.

We also test for the extent of return predictability by running a pooled panel regression, as in

Moskowitz, Ooi, and Pedersen (2012), of the form

rxst+h = αmom
h + βmom

h rxst + εst,h, (20)

where rxst is the excess return of equity index s at time t. Figure 6 plots the slope coefficients of the

pooled regression for h = 1, 2, . . . , 40 months. The results echo the findings in Table 1: the estimated

slope coefficients are positive up to ten months (thus indicating short-term momentum) and turn

negative and significant at longer horizons (indicating long-term reversal).

Turning to our framework’s predictions, we start by noting that, in this context, the fundamental

xt corresponds to the dividend-price ratio of an equity, while rxt is the corresponding equity excess

11The conditional return volatilities are calculated using a GARCH(1,1) model. Our results remain unchanged without
this normalization.

12Because dividends feature a strong seasonal component, we follow Ang and Bekaert (2006) and construct dividend
time-series by summing up monthly dividends over the past year.
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Figure 6. Momentum and Reversal: βmom

Notes: This figure plots the slope coefficients of the pooled regression rxst+h = αmom
h + βmom

h rxst +ε
s
t,h for h = 1, . . . , 40

months and rxst is the excess return of index s from the data (bars) and the model-implied regression coefficient.

return. Furthermore, equation (20) is the empirical counterpart of the momentum regression (7) in

Section 2. Therefore, under the assumption that investors can only entertain single-factor models

(i.e., k = 1), we can use the closed-form expression in Proposition 2 to calculate the model-implied

slope coefficients of the momentum regression at different horizons. To this end, we calculate the

autocorrelation function {ξ∗τ}τ≥1 of the dividend-price ratio for each of the equity indices in our

sample and use (17) to obtain the model-implied slope coefficients of the momentum regression for

each index at various horizons. Figure 6 plots the model-implied pooled slope coefficient and figure

7 plots the results against the corresponding slope coefficients estimated from the data country by

country.The results clearly indicate that model-implied and empirically-estimated slope coefficients

have a positive and statistically-significant relationship at short and long horizons. This relationship

holds irrespective of whether the point estimates of the slope coefficients are positive or negative.13

We conclude by emphasizing that while the empirically-estimated slope coefficients are obtained

from regressing excess returns on lagged returns, model-implied coefficients are calculated solely

from the autocorrelation of dividend-price ratio (as prescribed by Proposition 2) and without using

returns data.
13From Proposition 3, we already know that, as long as the dividend-price ratio exhibits short-run persistence, model-

implied slope coefficients of the momentum regression should take opposite sings at different horizons. However, Figure 7
shows that our framework not only generates momentum and reversal, but also the resulting return predictability patterns
match what is observed in the data.
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Figure 7. Momentum Coefficient Cross-Section

Notes: This figure plots the empirically-estimated momentum regression coefficients against the corresponding model-
implied coefficients for twelve equity indices at horizons h = 1, 10, 20 and 40 months. The red line in each panel indicates
the corresponding least-square fit. The country indices are Australia, Belgium, Canada, France, Germany, Italy, Japan, the
Netherlands, Sweden, Switzerland, United Kingdom, and United States.

5 Conclusion

In this paper, we provide a framework to study the implications of model misspecification on asset

prices. We develop a theoretical framework in which a sequence of exogenous fundamentals (in

our applications, the interest rate differential or an asset’s dividends) are generated by an n-factor

model. While agents can observe the sequence of realized fundamentals, they neither observe nor

know the underlying factors that drive them. As a result, they need to rely on their past observations

to estimate a factor model that would allow them to make predictions about the future. As our main

behavioral assumption, we posit that agents can only entertain models with at most k factors, where

k may be distinct from the true number of factors. This assumption captures the idea that there
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is a limit to the complexity of statistical models that agents are able to consider. In this sense, the

number of factors, k, indexes the degree of agents’ sophistication, with a larger k corresponding to

agents who can entertain a richer class of models. Importantly, whenever k < n, the agents will end

up with a misspecified model of the world, irrespective of which model they end up using.

We then apply our framework to two applications in asset pricing: (i) the violations of the

uncovered interest rate parity in foreign exchange and (ii) time-series momentum and reversal

in equity returns. In both cases, we find that deviations from rational expectations generated by

misspecified factor models can generate return predictability patterns consistent with the data.
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A Proofs

Proof of Proposition 1

We first establish equation (8). From (6), it is immediate that the slope coefficient of the Fama

regression at horizon h is given by βFama
h = E∗[xt rxt+h]/E∗[x2

t ], where E∗[·] denotes the expectation

with respect to the true data-generating process. Furthermore, recall that excess returns satisfy (5).

As a result, it is immediate that βFama
h satisfies (8).

Next, to establish (9), observe that equation (5) implies that

E∗[rxtrxt+h] =

∞∑
τ=1

∞∑
s=1

δτ+s (Et+1[xt+τ ]− Et[xt+τ ]) (Et+h+1[xt+h+s]− Et+h[xt+h+s]) .

Noting that the slope coefficient of the momentum regression is given by βmom
h =

E∗[rxt rxt+h]/E∗[rx2
t ] then establishes (9).

Proof of Theorem 1

To establish the existence of a constrained-rational expectations equilibrium, it is sufficient to show

that argminθ∈Θk
KL(θ∗‖θ) is non-empty for all k and all θ∗. As a first observation, note that instead

of optimizing over Θk, we can optimize over Θ1 ∪ Θ2 ∪ · · · ∪ Θk, where Θr is the set models whose

minimal realization consists of r factors. Therefore, in what follows, and without loss of generality,

we assume that model θ = (A, b,Σε) is a minimal realization consisting of r ≤ k factors.

Recall that, under model θ, agents believe that the fundamental is described by the process in

(10), where ωt ∈ Rr is the vector of r hidden factors. As a result, conditional on {xt−τ}∞τ=0, agents

believe that ωt+1 is normally distributed with mean ω̂t = Et[ωt+1] and variance Σ̂ω, where Σ̂ω is the

unique positive definite matrix that satisfies the algebraic Riccati equation

Σ̂ω = A

(
Σ̂ω −

1

b′Σ̂ωb
Σ̂ωbb

′Σ̂ω

)
A′ + Σε, (A.1)

ω̂t is defined recursively as ω̂t = (A− gb′)ω̂t−1 + gxt, and g ∈ Rr is the Kalman gain given by

g = AΣ̂ωb(b
′Σ̂ωb)

−1. (A.2)

Conditional on {xt−τ}∞τ=0, agents believe that the fundamental xt+1 is normally distributed with

mean Et[xt+1] = b′ω̂t and variance σ̂2
x = b′Σ̂ωb. Furthermore, their s-step-ahead forecasts of the

future realization of the fundamental is given by

Et[xt+s] = b′As−1
∞∑
τ=0

(A− gb′)τgxt−τ (A.3)

for all s ≥ 1, where g is the Kalman gain in (A.2). The above expression implies that the KL divergence

(11) of agents’ model θ from the true data-generating process θ∗ is given by

KL(θ∗‖θ) = −1

2
log(σ̂−2

x ) +
1

2
log(2π) +

1

2
σ̂−2
x Ξ∗0 −

∞∑
s=1

σ̂−2
x Ξ∗sb

′(A− gb′)s−1g

+
1

2

∞∑
s=1

∞∑
τ=1

σ̂−2
x b′(A− gb′)s−1gΞ∗τ−sb

′(A− gb′)τ−1g + E∗[log f∗(xt+1|xt, . . . )],
(A.4)
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where Ξ∗s = E∗[xtxt+s] denotes the auto-covariance of the fundamental at lag s under the true

process.

To minimize the KL divergence between agents’ model and the true data-generating process over

Θr, we normalize the model parameters via a change of variables. In particular, since Σ̂ω is positive

definite, let

M = Σ̂−1/2
ω AΣ̂1/2

ω and u =
Σ̂

1/2
ω b√
b′Σ̂ωb

. (A.5)

Note that u is a r-dimensional vector of unit length andM is a r× r stable matrix. Given this change

of variables, the agents’ s-step ahead forecasts in (A.3) can be written as

Et[xt+s] = u′M s−1
∞∑
τ=0

[M(I − uu′)]τMuxt−τ (A.6)

for all s ≥ 1. Similarly, substituting for A, b, and g in terms of M and u in (A.4) implies that the KL

divergence between agents’ model and the true data-generating process is given by

KL(θ∗‖θ) = E∗[log f∗(xt+1|xt, . . . )]−
1

2
log
(
σ̂−2
x

)
+

1

2
log (2π)

+
1

2
σ̂−2
x Ξ∗0 −

∞∑
s=1

σ̂−2
x Ξ∗su

′[M(I − uu′)]s−1Mu

+
1

2

∞∑
s=1

∞∑
τ=1

σ̂−2
x u′[M(I − uu′)]s−1MuΞ∗τ−su

′[M(I − uu′)]τ−1Mu.

(A.7)

Given the one-to-one correspondence between (A, b,Σε) and (M,u, σ̂−2
x ), minimizing the above over

(M,u, σ̂−2
x ) is equivalent to minimizing (A.4) over (A, b,Σε). We thus first minimize (A.7) with respect

to σ̂−2
x . Taking the corresponding first-order conditions and plugging back the result into (A.7)

implies that minimizing the KL divergence between agents’ model and the true underlying model

is equivalent to minimizing

H(M,u) = 1− 2

∞∑
s=1

φsξ
∗
s +

∞∑
s=1

∞∑
τ=1

ξ∗τ−sφsφτ , (A.8)

with respect toM and u, where ξ∗s = Ξ∗s/Ξ
∗
0 denotes the true autocorrelation of the fundamental at lag

s and φs = u′[M(I − uu′)]s−1Mu. Therefore, to establish that argminθ∈∪r≤kΘr
KL(θ∗‖θ) is non-empty

for all k and all θ∗, it is sufficient to show that the minimum of H(M,u) in (15) is always attained

for some stable matrix M and unit vector u. But this is a simple consequence of the extreme value

theorem and the fact that H(M,u) is a continuous function of (M,u).

We next prove that constrained-rational expectations satisfy the law of iterated expectations.

Recall that agents’ forecasts of future realizations of fundamentals are given by (A.6). Therefore,

for any s ≥ 1,

Et−1[Et[xt+s]] = u′M s−1
∞∑
τ=0

[M(I − uu′)]τMuEt−1[xt−τ ]

= u′M s−1
∞∑
τ=1

[M(I − uu′)]τMuxt−τ + u′M suEt−1[xt].
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Using (A.6) one more time to express Et−1[xt] in terms of past realizations of the fundamental leads

to

Et−1[Et[xt+s]] = u′M s−1
∞∑
τ=0

[M(I − uu′)]τ+1Muxt−1−τ + u′M suu′
∞∑
τ=0

[M(I − uu′)]τMuxt−1−τ

= u′M s
∞∑
τ=0

[M(I − uu′)]τMuxt−1−τ

Note that the right-hand side of the above equation is simply equal to Et−1[xt+s], thus establishing

that Et−1[Et[xt+s]] = Et−1[xt+s] for all s ≥ 1. Now, a simple inductive argument implies

Et−r[Et[xt+s]] = Et−r[xt+s] for all r, s ≥ 1, thus establishing that constrained-rational expectations

satisfy the law of iterated expectations.

Proof of Theorem 2

Proof of part (a) Recall from the proof of Theorem 1 that minimizing the KL(θ∗||θ) for θ ∈ Θk is

equivalent to minimizing (A.8) with respect to M and u, where M is a square k-dimensional stable

matrix and u is a k-dimensional vector of unit length.

Furthermore, we established that agents’ forecasts of future realizations of fundamentals are

given by (A.6) for all s ≥ 1. Therefore, Et[xt+1] =
∑∞

τ=1 φτxt+1−τ , resulting in mean-squared forecast

errors given by

E∗[(xt+1 − Et[xt+1])2] = E∗
(xt+1 −

∞∑
τ=1

φτxt+1−τ

)2
 .

Consequently,

E∗[(xt+1 − Et[xt+1])2] = E∗[x2
t+1]− 2

∞∑
τ=1

φτE∗[xt+1xt+1−τ ] +

∞∑
s=1

∞∑
τ=1

φsφτE∗[xt+1−sxt+1−τ ]

= E∗[x2
t+1]H(M,u),

whereH(M,u) is given by (A.8). Since E∗[x2
t+1] only depends on the true data-generating process and

is independent of agents’ model θ, the above equation implies that minimizing the KL divergence is

equivalent to minimizing the mean-squared forecast errors.

Proof of Theorem 3

In the proof of Theorem 1, we already established that minimizing the KL divergence between

agents’ model and the true underlying model is equivalent to minimizing

H(M,u) = 1− 2

∞∑
s=1

φsξ
∗
s +

∞∑
s=1

∞∑
τ=1

ξ∗τ−sφsφτ ,

with respect to M and u, where ξ∗s = Ξ∗s/Ξ
∗
0 denotes the true autocorrelation of the fundamental at

lag s and φs = u′ [M (I − uu′)]s−1Mu. Therefore, minimizing the KL divergence between a k-factor

model θ ∈ Θk and the true underlying model θ∗ is equivalent to minimizing (15) over M , and u.
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To establish (13) and (14), recall that excess returns satisfy the recursive equation (5). As a result,

rxt+h = δxt+h + δu′(I − δM)−1
∞∑
τ=0

[M(I − uu′)]τMu(δxt+h−τ − xt+h−1−τ ),

where we are using the fact that agents’ forecasts of future realizations of fundamentals are given by

(A.6). Rearranging terms, we obtain

rxt+h = δu′(I − δM)−1u

(
xt+h −

∞∑
τ=1

φτxt+h−τ

)
. (A.9)

The above equation, coupled with the fact that βFama
h = E∗[xt rxt+h]/E∗[x2

t ], implies that the slope

coefficient of the Fama regression (6) satisfies (13). Similarly, noting that βmom
h = E∗[rxt rxt+h]/E∗[rx2

t ]

and using (A.9) establishes that the slope coefficient of the momentum regression is given by (14).

Proof of Theorem 4

Proof of part (a) When k ≥ n, the true model is within the set of models considered by the agents,

i.e., θ∗ ∈ Θn ⊆ Θk. As a result, θCREE
k = θ∗, which in turn implies that agents’ subjective expectations

coincide with rational expectations. Consequently, equation (5) implies that

E∗t [rxt+h] =

∞∑
τ=1

δτ
(
E∗tE∗t+1[xt+τ ]− E∗t [xt+τ ]

)
.

Hence, by the law of iterated expectations, E∗t [rxt+h] = 0, which guarantees that βFama
h = βmom

h = 0

for all h ≥ 1.

Proof of part (b) We first show that if βFama
h = 0 for all h, then k ≥ n. Suppose to the contrary that

k < n and define φs and φ∗s as in Theorem 3 for the k- and n-factor models, respectively. By part (a)

of the theorem, the slope coefficients of the return predictability regression arising from the optimal

n-factor model are equal to zero at all horizons, while by assumption, we have βFama
h = 0 for all h

under the k-factor model. Therefore, by equation (13),

ξ∗h =

∞∑
τ=1

φτξ
∗
h−τ (A.10)

ξ∗h =

∞∑
τ=1

φ∗τξ
∗
h−τ (A.11)

Multiplying both sides of the first equation by φ∗h and the second by φh and summing over all h, we

get

∞∑
h=1

φ∗hξ
∗
h =

∞∑
h=1

φhξ
∗
h. (A.12)
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Next, note equations (A.10) and (A.11) also imply that the objective function (15) evaluated at the

optimal solution within the set of all k and n-factor models is, respectively, equal to

H = 1−
∞∑
s=1

φsξ
∗
s

H∗ = 1−
∞∑
s=1

φ∗sξ
∗
s .

Comparing the above two equations with (A.12) implies that H = H∗. Consequently, the k-factor

model results in the same KL divergence to the data generating process as the n-factor model, whose

KL divergence to the data-generating process is equal to zero by assumption. This means that data-

generating process has a representation with k < n factors, which contradicts the assumption that n

is the number of factors in the minimal representation of the data-generating process.

As the final step of the proof, we show that if the slope coefficient of the momentum regression

(7) is zero at all horizons, then k ≥ n. It is sufficient to show that βmom
h = 0 for all h implies that

βFama
h = 0 for all h, as we can then use the result for the slope coefficients of the Fama regression

proved earlier to conclude that k ≥ n. To this end, note that if βmom
h = 0 for all h, then equation (14)

in Theorem 3 implies that

ξ∗h −
∞∑
s=1

φs(ξ
∗
h−s + ξ∗h+s) +

∞∑
s,τ=1

φsφτξ
∗
h+s−τ = 0

for all h ≥ 1. Multiplying both sides of the above equation by δu′(I − δM)−1u and using (13) leads to

βFama
h −

∞∑
s=1

φsβ
Fama
h+s = 0. (A.13)

Define the sequence (γ1, γ2, . . . ) recursively as γh = φh +
∑h−1

τ=1 φh−τγτ . By (A.13),

∞∑
h=1

γhβ
Fama
h+r −

∞∑
h=1

∞∑
s=1

γhφsβ
Fama
h+r+s = 0

for all r ≥ 1. Using the recursive definition of γh, we obtain

∞∑
h=1

φhβ
Fama
h+r +

∞∑
h=1

h−1∑
τ=1

φh−τγτβ
Fama
h+r −

∞∑
h=1

∞∑
s=1

γhφsβ
Fama
h+r+s = 0.

It is straightforward to verify that the second and the third terms on the left-hand side above add

up to zero, whereas equation (A.13) implies that the first term is equal to βFama
r . This therefore

establishes that βFama
r = 0 for all r ≥ 1, which completes the proof.

Proof of Theorem 5

As a first observation, note that since the underlying process that generates the fundamental is

stationary, its autocorrelation function ξ∗s = E∗[xtxt+s]/E∗[x2
t ] decays at an exponential rate as

s → ∞. Next, we show that φs = u′[M(I − uu′)]s−1Mu also decays at an exponential rate, where
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M and u are given by (A.5). To this end, first note that,M(I −uu′) = Σ̂
−1/2
ω (A− gb′)Σ̂1/2

ω . Therefore, it

is sufficient to show that all eigenvalues of A − gb′ are inside the unit circle. Rewriting the algebraic

Riccati equation in (A.1), we obtain

(A− gb′)Σ̂ω(A− gb′)′ − Σ̂ω + Σε = 0,

which is a discrete Lyapunov equation in A − gb′. Since (A, b,Σε) is the minimal representation of

the state-space model, Kalman’s decomposition theorem implies that (i) Σ̂ω is positive definite and

(ii) the pair (Σ
1/2
ε , A) is controllable. Therefore, by Lyapunov’s theorem, all eigenvalues of A− gb′ are

inside the unit circle, thus guaranteeing that φs decays at an exponential rate as s→∞.

With the above in hand, we next show that limh→∞ β
Fama
h = 0. Recall from Theorem 3 that the

slope coefficient of Fama regression satisfies (13). Therefore, by triangle inequality,

|βFama
h | ≤ δ|u′(I − δM)−1u|

(
|ξ∗h|+

h∑
τ=1

|φτ ||ξ∗h−τ |+
∞∑
τ=1

|φτ+h||ξ∗τ |

)
.

Since ξ∗s and φs converges to zero at exponential rates, there are constants c1, c2 > 0 and ρ1, ρ2 < 1

such that |ξ∗s | ≤ c1ρ
s
1 and |φs| ≤ c2ρ

s
2 for all s. Consequently,

|βFama
h | ≤ δ|u′(I − δM)−1u|

(
c1ρ

h
1 + c1c2ρ

h
1

h∑
τ=1

(ρ2/ρ1)τ + c1c2ρ
h
2

∞∑
τ=1

(ρ1ρ2)τ

)
,

and as a result, |βFama
h | ≤ c3hρ

h
3 for all h for some constant c3 > 0 and ρ3 = max{ρ1, ρ2}. This

inequality then guarantees that limh→∞ β
Fama
h = 0.

To establish that the slope coefficients of the momentum regression also converge to zero in long

horizons, note that the characterization result in equations (13) and (14) implies that

βmom
h =

βFama
h −

∑∞
s=1 φsβ

Fama
h+s

βFama
0 −

∑∞
s=1 φsβ

Fama
s

,

with the convention that βFama
0 = 1−

∑∞
s=1 φsξ

∗
s . Therefore, |βFama

h | ≤ c3hρ
h
3 implies that

|βmom
h | ≤ ρh3

βFama
0 −

∑∞
s=1 φsβ

Fama
s

(
c3h+ c1c3

∞∑
s=1

(h+ s)(ρ1ρ3)s

)
.

As a result, limh→∞ β
mom
h = 0.

Proof of Proposition 2

Recall from Theorem 3 that the slope coefficients of the Fama and momentum regressions are given

by (13) and (14), where the sequence (φ1, φ2, . . . ) is obtained by minimizing (15) over the k× k stable

matrix M and the unit vector u ∈ Rk. Therefore, when k = 1, it must be the case that M is a scalar,

denoted by m, satisfying |m| < 1 and u ∈ {−1, 1}. This immediately implies that φ1 = m and φs = 0

for all s ≥ 2. As a result, the expressions for the Fama and momentum regressions reduce to

βFama
h =

δ

1− δm
(
ξ∗h −mξ∗h−1

)
(A.14)

βmom
h =

ξ∗h −m(ξ∗h−1 + ξ∗h+1) +m2ξ∗h
1− 2mξ∗1 +m2 , (A.15)
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respectively, while the objective function in (15) is given by

H(M,u) = 1− 2mξ∗1 +m2.

Optimizing the above over m ∈ (−1, 1) implies that m = ξ∗1 . Plugging in the results into (A.14) and

(A.15) then completes the proof.

Proof of Proposition 3

Recall from Proposition 2 that when agents are restricted to single-factor models, the slope

coefficient of the momentum regression at horizon h is given by (17). As a result,
∞∑
h=1

(ξ∗1)hβmom
h =

1

1− ξ∗1
2

∞∑
h=1

(
ξ∗1
h(ξ∗h − ξ∗1ξ∗h−1)− ξ∗1

h+1(ξ∗h+1 − ξ∗1ξ∗h)
)
.

Since |ξ∗1 | < 1, we have
∞∑
h=1

ξ∗1
hβmom

h =
ξ∗1(ξ∗1 − ξ∗1ξ∗0)

1− ξ∗1
2 .

The fact that ξ∗0 = 1 then guarantees that the right-hand side of the above equation is equal to zero.

Proof of Proposition 4

Recall from Subsection 3.3 that excess returns in the heterogenous-agent economy are given by (18).

On the other hand, since rational agents can fully construct the model used by behavioral agents,

the regress of expectations in (18) satisfies

ĒtĒt+1 . . . Ēt+τ [xt+τ ] = λτ+1E∗t [xt+τ ] + (1− λ)

τ∑
s=0

λsE∗tEt+s[xt+τ ]

for all τ ≥ 0, where E[·] and E∗[·] are the subjective expectations of the behavioral and rational agents,

respectively. Consequently, the excess returns in the heterogenous-agent economy are given by

rxt(λ) = (1− λ)

∞∑
s=0

(δλ)s
∞∑
τ=1

δτ
(
E∗tEt+s[xt+τ+s−1]− E∗t−1Et+s−1[xt+τ+s−1]

)
+

∞∑
τ=1

(δλ)τ
(
E∗t [xt+τ−1]− E∗t−1[xt+τ−1]

)
,

where λ denotes the fraction of rational agents in the economy. Taking expectations from both sides

of the above equation and using the expression in (5) for excess returns in the representative-agent

economy therefore implies that

E∗t−1[rxt(λ)] = (1− λ)

∞∑
s=0

(δλ)sE∗t−1[rxt+s(0)]

That is, expected excess returns in the heterogenous-agent economy is the discounted sum of all

future excess returns of a representative-agent economy only consisting of agents who can entertain

k-factor models. Multiplying both sides of the above equation by xt−h and taking expectations E∗[·]
then establishes the result.
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B Technical Appendix

B.1 Model-Implied Autocorrelation Function

In this appendix, we derive the expression for the model-implied autocorrelation function when

agents are restricted to models consisting of at most k factors. Let θ = (A, b,Σε) denote the collection

of parameters that represent agents’ model in (10). To compute the perceived autocorrelation

function as a function of the parameters of agents’ models, first note that, for s ≥ 0,

Ξs = E[xtxt−s] = b′E[ωtω
′
t−s]b = b′AsE[ωtω

′
t]b.

Using the change of variables from the proof of Theorem 3 implies that

Ξs = σ̂2
xu
′M sΣ̂−1/2

ω E[ωtω
′
t]Σ̂
−1/2
ω u.

Therefore, to represent Ξs in terms ofM and u, we need to find Ξ̃ = Σ̂
−1/2
ω E[ωtω

′
t]Σ̂
−1/2
ω . Equation (10)

implies that E[ωtω
′
t] = AE[ωtω

′
t]A
′+ Σε. Multiplying both sides of this equation from left and right by

Σ̂
−1/2
ω implies that Ξ̃ = M Ξ̃M ′ + Σ̂

−1/2
ω ΣεΣ̂

−1/2
ω . On the other hand, the algebraic Riccati equation in

(A.1) can be written in terms of M and u as M(I − uu′)M ′ + Σ̂
−1/2
ω ΣεΣ̂

−1/2
ω = I. Combining the last

two equations implies that Ξ̃ is the solution to the discrete Lyapunov equation:

Ξ̃ = M Ξ̃M ′ + I −M(I − uu′)M ′. (B.1)

Therefore, the model-implied autocorrelation function is given, for s ≥ 1, by

ξs = Ξs/Ξ0 =
u′M sΞ̃u

u′Ξ̃u
, (B.2)

whereM and uminimize the expression (15) and Ξ̃ is the solution to the discrete Lyapunov equation

(B.1).
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