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Abstract

We study social learning via news sharing. Each period agents receive the same
quantity and quality of first-hand information and have the opportunity to share it with
friends. Some agents (possibly a few) share information selectively. Selective sharing
generates heterogeneous news diets across agents, who, however, are aware of it and
update beliefs via Bayes’ rule. We show that, contrary to standard learning results,
agents’ beliefs can diverge in this environment. This occurs if and only if agents hold
misperceptions (even minor) about friends’ access to first-hand information and if its
quality is low. We show that abundant information can exacerbate belief polarization.
That is, when the quantity of first-hand information grows indefinitely agents can
hold opposite degenerate beliefs. Intuitively, polarization worsens with misperception
and imbalance of news diets. Polarization can also worsen when information quality
rises or when the agents’ social networks expand, despite providing them with more
information. Information aggregation can mitigate, and even eliminate, polarization.
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1 Introduction

Social divisions have been linked to negative economic and political outcomes, including
inequality, political gridlock, poor legislation, weak property rights, low trust, investment,
and growth.! Recent decades have witnessed rising polarization in politics, media, and public
opinions, particularly in the United States.? As Alesina et al. (2020) notes, “Americans are
polarized not only in their views on policy issues and attitudes towards government and
society, but also about their perceptions of the same, factual reality.” Economists have,
thus, been investigating the determinants of belief polarization and we contribute to this
line of research.

Several authors have made a connection between rising polarization of the American pub-
lic and growing use of the Internet as a source of information (Periser, 2011; Sunstein, 2017;
Azzimonti and Fernandes, 2018; Tucker et al., 2019). Some have highlighted the effects of
systematic misinformation—fake news, bots, and bad actors—leading to discussions about
regulating social media to minimize these elements.? But, even if successful, will such reg-
ulation solve the problem of polarization? Can polarization simply result from how people
consume and share information in social networks, even without misinformation? Does the
information abundance brought by such networks lead to more or less polarization? This
paper provides a theoretical framework to answer these questions.

Building on recent evidence on how people use information on social networks, we an-
alyze how they individually learn from first-hand and shared news and whether this can
cause their beliefs to become polarized. We highlight that polarization depends on peo-
ple’s information diet, which is driven by the composition of friends in their network. But
this is not all: The quality of information and misperceptions about how it is shared also
play a key role. Our analysis suggests mechanisms whereby changes in people’s information
ecosystem brought by the Internet and the expansion of social networks may contribute to
polarization. In addition, low quality of external information is crucial in generating belief
polarization. Despite selective sharing relying on the same quality, it is capable to overcome
correct learning only when people misperceive it and that information quality falls below a
certain threshold. We also discuss implications for policies aimed at curbing polarization.

We base our theory on evidence highlighting specific ways in which information flows on
social networks. First, people tend to share information selectively.* For example, they share
only information that favors their preferred political candidate or views on the importance
of vaccinating children. Second, although most people have friends who share different kinds
of information, the resulting information diet is likely to feature some imbalance. This is a
distinctive aspect of so-called echo chambers or media bubbles, which appear in a wealth of

1See Zak and Knack (2001); Keefer and Knack (2002); Bartels (2008); Bishop (2009); McCarty et al.
(2009); Gilens (2012); Barber and McCarty (2015).

2See Pew Research Center (2014, 2020); Desmet and Wacziarg (2018).

3See, for example, “Should the Government Regulate Social Media?”, Wall Street Journal, June 25, 2019
and “Facebook Throws More Money at Wiping Out Hate Speech and Bad Actors”, Wall Street Journal,
May 15, 2018.

4See Shin and Thorson (2017); Weeks et al. (2017); Shin et al. (2018); Pogorelskiy and Shum (2019).



evidence (see Levy and Razin, 2019a, for a review).

It seems intuitive that unbalanced selective sharing of information can lead to polariza-
tion: If a person takes at face value what her friends say and they support one view, her
opinion can be swayed accordingly. On brief reflection, however, it is clear this reasoning
has some flaws. First, people often get first-hand information in addition to information
received from friends, so this dampens any effect of selective sharing. Second, only a few
of their friends may share information selectively, so exposure to selective sharing may be
limited. Finally, even in the absence of these two mitigating factors, if a person fully un-
derstands how her friends select what to share, she will adjust for it (or ignore the received
information altogether) and her beliefs will not be distorted.

What we assume about people’s understanding of the selectivity of shared news turns
out to be crucial. It is unrealistic to expect people to be completely naive about selective
sharing, but experimental evidence suggests they do not fully take it into account either
(Pogorelskiy and Shum, 2019). Consistent with this evidence, our theory allows for some
misperception of selective sharing.

We incorporate selective sharing, echo chambers, and misperception into a simple model
of learning from shared information. A binary state of the world, A or B, realizes in the
first period. In every subsequent period, each agent directly observes an unbiased signal
about the state with some probability ¢ and no signal with the remaining probability. The
signals have the same independent distribution across agents and periods. We refer to their
informativeness as the information quality. After observing her signal, each agent can share
it with her friends (i.e., neighbors in the network) or remain silent. This rules out fake news
in the form of fabricated signals. Selective sharing arises as follows: Some agents—called
normal—share every signal; other agents—called dogmatic—share only signals supporting
a specific state. To fix ideas, some people (possibly a tiny minority) may hold a dogmatic
view on whether to vaccinate children and share only information in its favor; others simply
share any information. We refer to the composition of normal and dogmatic friends of an
agent as her echo chamber. We model the agents’ misperception of selective sharing in a way
that renders them partially unresponsive to it (as found in Pogorelskiy and Shum (2019))
and is inspired by the psychology literature.® In a nutshell, each agent correctly interprets
all received signals, but assigns a mis-calibrated probability 4 # < to the arrival of signals.
This is akin to assuming that her friends read the newspaper less or more often then they
actually do. Thus, our agents have a common misspecified model of selective sharing, based
on which they update beliefs according to Bayes’ rule.

We analyze learning and belief polarization by studying how beliefs responds to one round
of signals (short-run learning) as well as infinite sequences of signals (long-run learning).
Consider any agent and suppose that, besides possibly many normal friends, she has more
dogmatic friends who favor state A than B. For the short run, we find that her expected
posterior belief differs from her prior—at least when the signal quality is sufficiently low. For
the long run, we identify a precise information quality threshold below which almost surely

5See Cross (1977); Svenson (1981); Odean (1998); Zuckerman and Jost (2001).



the agent’s asymptotic belief assigns probability one always to the same state, irrespective
of the truth. For higher quality, beliefs converge to the truth despite the echo-chamber
effect. Both results depart from standard Bayesian learning. The distortion in the agent’s
posterior is always driven by the majority of her friends favoring A. However, perhaps
counterintuitively, by over-estimating how often her friends are uninformed (§ < 7), the
agent reads too much into their signals, which distort her posterior towards A. By contrast,
by under-estimating how often they are uninformed (4 > <), the agent reads too much
into their silence, which distorts her posterior away from A. Moreover, instead of curbing
this distorting power of dogmatic friends, abundant information can boost it and exaggerate
incorrect learning. Note that the echo-chamber imbalance can be arbitrarily small, yet
offset many unbiased signals. This happens when information has low quality, because,
starting from this level, the misperception of shared signals and silence is more consequential.
Naturally, belief distortion is possible for higher quality signals when echo-chamber imbalance
increases or misperception increases.

It is easy to see how these forces can cause beliefs to polarize. If some agents have echo
chambers unbalanced towards different states and information quality is sufficiently low,
their beliefs can move apart on average in the short-run and almost surely in the long run.
One of our main contributions is to highlight this role of information quality, in conjunction
with echo chambers. It is obvious that if the signals perfectly revealed the state, it would
be impossible for echo chambers to distort beliefs. But in reality information is noisy. By
quantifying the minimal quality that ensures correct learning, we open the door to feasible
interventions aimed at curbing polarization. Our analysis goes to the heart of why new
technologies and formats of communication enabled by the Internet can increase polarization.
They raised the frequency of information arrival and possibly lowered its quality as a result—
for instance, tweets and social-media posts tend to be short. Moreover, overwhelmed by
the huge abundance of information, people may spread their limited attention across more
sources, thereby absorbing less accurate information from each of them. All of this can be a
driver of polarization, even without deliberate misinformation. Given this, one may expect
that raising information quality would undoubtedly help curb polarization in a network.
However, we find that raising the information quality may increase polarization. We identify
conditions on the network that are necessary and sufficient for this effect.

We find that the expansion of connections as networks grow can also be a driver of po-
larization. Larger networks provide better access to information but also greater scope for
echo chambers to distort beliefs. We provide sharp conditions on the growth rates of the
different types of friends under which network expansion curbs or exacerbates polarization.
In short, curbing polarization requires that normal friends grow sufficiently faster than dog-
matic friends. Thus, fixing information quality, it is possible that society is not polarized
when people have small echo chambers, but becomes polarized when they have similarly
divided, but larger, echo chambers.

Equipped with these results, we return to the motivating question of what policies may
reduce the effects of the Internet and social media on polarization. We highlighted several
drivers of polarization: selective news sharing in echo chambers, misperceptions, and low



information quality. The first seems hard to regulate without infringing personal freedom.
The second may be addressed by improving digital literacy so that people can better take
into account selective sharing. The last allows for perhaps easier and less intrusive inter-
ventions aimed at providing higher-quality information. Getting independent news sources
to do so seems an immediate option, but it may be hard to incentivize and implement in a
decentralized way. Given this, we show that an alternative route is to create institutional
intermediaries that aggregate news for people, namely, that provide information in larger
“digested” batches rather than many “raw” bits. Even if these less frequent news reports
lose some of the information in the summarized facts, they can mitigate polarization by
reducing the scope for echo chambers to cause people’s beliefs to go awry. This also provides
a rationale for authorities to commit to releasing information only rarely but of high quality.

Related Literature

The economics literature discusses at least three possible causes for belief polarization. One
strand of papers that is most closely related (e.g., Levy and Razin, 2019b; Hoffmann et al.,
2019; Enke et al., 2019) has studied polarization arising from behavioral biases. Our main
contribution to this literature is to highlight the importance of the network structure coupled
with selective sharing and misperception in generating polarization. Another strand studies
polarization arising as a result of heterogeneity in preferences (see Dixit and Weibull (2007)
and Pogorelskiy and Shum (2019)). Such heterogeneity of preferences would exacerbate
the polarization we find, but is not required for generating our results about polarization.
Finally, another reason for polarization that has been studied is biased or multidimensional
information sources (e.g. Mullainathan and Shleifer, 2005; Andreoni and Mylovanov, 2012;
Levendusky, 2013; Conroy-Krutz and Moehler, 2015; Reeves et al., 2016; Perego and Yuksel,
2018), where bias usually comes from media competition over viewers. In our model, the
external information sources are assumed to be unbiased when reporting information; biases
occur in how people share that information with each other. Thus, removing all media
biases may still not be enough to curb polarization. Andreoni and Mylovanov (2012) show
that one-dimensional opinions can diverge with two-dimensional information. We provide
conditions under which one-dimensional opinions diverge with one-dimensional information,
based on selective sharing and misperception.

This project also fits into the growing literature on the effects of model misspecification
on social learning. Bohren (2016), Bohren and Hauser (2018), and Frick et al. (2019) analyze
how model misspecification impacts long-term learning in environments where agents learn
from private signals and the actions of other agents. In particular, Bohren and Hauser
(2018) study when agents with different, yet reasonable, models have no limit beliefs (i.e.
beliefs cycle) or have different limit beliefs (disagreement). The result about disagreement is
close in spirit to what we find, but the driving mechanism is fundamentally different: In our
model, all agents have the same misspecified model of the world and polarization results from
exposure to selectively shared information through the social network. We also emphasize
the important role played by the quality of information, which may suggest a simple way to



alleviate polarization by aggregating signals. Molavi et al. (2018) study long-run learning
on social networks when non-Bayesian agents exhibit imperfect recall. They show that such
agents may overweigh evidence encountered early on relative to later information, which can
lead to mislearning in the limit. Again, while this conclusion is related to ours, unlike these
authors, we assume that agents update beliefs via Bayes’ rule, albeit with a misspecified
model of the world.

A key element of our model is the idea of an echo chamber as a network of friends. There
is a large literature on both Bayesian (Acemoglu et al., 2010; Pogorelskiy and Shum, 2019;
Spiegler, 2019) and non-Bayesian learning in networks (Golub and Jackson, 2010; DeMarzo
et al., 2003; Azzimonti and Fernandes, 2018; Eyster and Rabin, 2010). One closely related
paper in this literature is Levy and Razin (2019a), which considers the effect of what they
call a “Bayesian Peer Influence” updating heuristic on the limit beliefs in the network. One
of the main results shows how beliefs in society can become polarized as a result of agents
using this updating rule. However, the meaning of polarization in that paper is different from
ours: Instead of groups in society becoming polarized, it is the entire society’s consensus that
shifts towards extreme beliefs, whereas we provide conditions under which beliefs of agents
in society diverge upon arrival of new information.

Recent empirical studies show that social media is an important source of news for people
and can lead to divergence of beliefs and attitudes (e.g. Allcott and Gentzkow, 2017; Bursztyn
et al., 2019; Mosquera et al., 2019; Levy, 2020). Still other empirical evidence by Boxell et al.
(2018) suggests that the Internet does not drive polarization. Our model can predict in which
environments we expect to see the Internet drive polarization. We, thus, contribute to this
literature by providing a theoretical framework to better understand how social media can
contribute to polarization and to guide future empirical investigations of this phenomenon.

The remainder of the paper is organized as follows. Section 2 presents our stylized model
of information sharing in a network. Section 3 presents the main results on learning in the
short and long run. Section 4 considers what happens when the network expands. Section
5 considers the polarization in the entire network. Section 6 demonstrates how aggregating
signals can mitigate polarization. We conclude with a discussion of the results in Section 7.

2 Model

We consider a stylized model of learning from information shared through social connections.
Time is discrete and denoted by t =0,...,T, where T < co. A state of the world w realizes
at t = 0 and can take value A or B. For example, w can represent whether the preservation
of the environment requires higher national spending than the current level, or whether
vaccinations can be harmful for children. There is a fixed group of agents who seek to
learn w, as it matters for their decisions.

Each agent receives both first-hand information from original sources and second-hand
information shared by other agents. For each t > 1, agent i’s first-hand information is a
private signal s;; € {a,b}, which she receives with probability v € (0,1]. With probability
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1 — 7 the agent receives no signal. Signals are partially informative:
]P(Sit = ﬂ|(U = A) = ]P(Sit = b‘w = B) — q,
I[)(Sit = b|aJ = A) = ]P(Sit = a|w = B) =1 q,
1

where 5 < g < 1. We refer to g as the information quality. The events of whether agent i
receives a signal and its realization are i.i.d. across agents and time.®

Agents share their first-hand information with their friends, who are other agents with
whom they have a social connection. We aim to capture key aspects of social information
sharing suggested by experimental evidence (for example, Pogorelskiy and Shum, 2019). The
first is selectivity. After receiving her own signal, an agent can share it with her friends or stay
silent. If no information is received, then the agent stays silent. Thus, she can selectively
suppress information, but cannot fabricate information, which rules out fake news. For
example, an agent can share a newspaper article, but cannot edit its content. For simplicity,
we also assume that she cannot choose with which friends to share her signal: She either
shares it with all friends or none. By ruling out fake news and targeted sharing, we highlight
the role of selective sharing in a baseline model to which these other aspects can be added.
The verifiable nature of information sharing and the possibility of being uninformed renders
our model similar to Dye (1985). Allowing for this possibility is one often-used way to give
selective sharing a chance to be effective: Otherwise, silence can be immediately interpreted
as negative news.”

We introduce three types of agents who are distinguished by their information-sharing
behavior. An agent is normal if she shares any signal she receives. By contrast, an agent is
A-dogmatic if she shares only signals s;; = a and B-dogmatic if she only shares signals s;; = b.
One interpretation is that such agents share only information that supports their conviction,
in which they dogmatically believe.® Formally, each period, conditional on receiving a signal,
the dogmatic types share it as follows:

{Share ifs;;=a

oA(sit) = b

stay silent if s;

o5 (sy) = stay silent ifs;;=a
Bt share if s;y = b.

Each agent’s type is exogenous and known to her friends. We take these types of news-sharing
behavior as given because they approximate what the empirical evidence finds (Pogorelskiy

61n reality, people receive pieces of news that are correlated. However, strong evidence suggests that people
often neglect correlation, especially in second-hand news (Enke and Zimmermann, 2017; Eyster et al., 2018;
Pogorelskiy and Shum, 2019). Under correlation neglect, we can allow for arbitrary correlation between the
agents’ signals within each period without qualitatively changing the results.

"For example, see Ben-Porath et al. (2018) and DeMarzo et al. (2019).

8We can think of dogmatic agents as having extreme beliefs that are very hard to change—perhaps because
they are stubborn, narrow minded, or blindly follow and promote some ideas. For the sake of modeling,
we can capture such agents as having degenerate prior beliefs in A or B, which do not change with new
information (unless conclusive, i.e., g = 1).



and Shum (2019)). Moreover, our focus is not understanding why people share only news
that support their convictions, but understanding its consequences for social learning.”

Another key empirical aspect of social news sharing is that it contributes to creating some
heterogeneity in information diets (Pew Research Center, 2014; Levy and Razin, 2019a).1Y
This depends on the composition of friends. Suppose agent i has d 4; > 0 A-dogmatic friends,
dg; > 0 B-dogmatic friends, and n; > 0 normal friends. We will refer to (d;, dp;, n;) as
i’s echo chamber, because this composition determines what information she listens to. An
echo chamber—and hence an information diet—exhibits an imbalance if d 4; # dp;.

Within each period t > 1, the timing is as follows: (1) signals realize; (2) each agent i
receives s;; with probability 7; (3) each agent i shares her signal (if any) with friends as
specified by her type; (4) agents update beliefs based on all received signals.

Beliefs. We are interested in studying the beliefs of normal agents. They all start with
a common prior belief 71 € (0,1) that w = A. Given a sequence of received signals s’ up
to t, let p;(s') be agent i’s Bayesian posterior that w = A. To examine learning in the
short run, we will consider yi(sl); to examine learning in the long run and so the effects
of abundant information, we will consider the (probability) limit of u;(s”) as T — oo.
Intuitively, polarization occurs when beliefs move systematically apart between agents—a
formal measure of group polarization appears in Section 5. It is well known that in the short
run p;(s') and ]/t]'(st) for i # j can move apart in completely standard Bayesian models
because of different realizations of the signals of agent i and j. Such differences would not
be considered as polarization. Therefore, for the short run we adopt a more demanding
criterion to define polarization, namely, a difference between E [p;(s')] and E [p;(s?)].
Such a difference can never occur in standard Bayesian models, where E [p;(s')] = 7 =

At first glance, one might think that selective sharing and unbalanced echo chambers
should suffice to give rise to polarization. However, this is not the case.

Remark 1. Fix any agent i and echo chamber (d 4;,dp;, n;). For every ¢ € (0,1], we have
E [yi(sl)} =m  and plim y;(s?) = Li—ays
T—o0

where Iy, 4} is the indicator function that equals 1 if w = A and 0 otherwise.

The intuition is simple. If agent i fully understands the effects of her echo chamber on her
information diet, selective sharing simply results in a specific information structure that is
perhaps less informative than under full sharing. Nonetheless, agent i gets some information
every period. Her belief must then satisfy standard properties of Bayesian updating.

9Future research may endogenize news-sharing behavior in settings similar to ours.
100f course, people also have heterogeneous news diets because they choose to listen to different first-hand
sources. We abstract from this aspect to focus on effects of news sharing.



Misperception. Given Remark 1, in order for polarization to be possible, we have to
modify the model laid out so far. We again refer to the empirical evidence for guidance.
Pogorelskiy and Shum (2019) suggest a third aspect of learning from shared news: Agents
often misperceive the selectivity of second-hand information. A minimal modification of
our model that gives rise to such misperceptions is to let the agents assign an incorrect
probability to the arrival of signals. This leads to possibly attributing silence to a lack of
news incorrectly. Formally, we assume that each agent thinks that the i.i.d. probability of
getting a signal is 4 € (0,1], where § # 7. The rest of the model is unchanged. The agents
continue to use Bayes’ rule, yet applied to this slightly misspecified model of the world that
replaces the objective o with the subjective 4.

We can interpret these misperceptions as follows. Selective sharing involves replacing
some received signals with silence. Unless agents know precisely the probability with which
signals arrive, there will be misperception. This misperception can take the form of over-
or under-estimating the probability their friends are actually uninformed. This may happen
because agents are mis-calibrated about the arrival probability of signals, including their own.
Another possibility is that agents are mis-calibrated only about the probability that their
friends are informed (i.e., they apply 7 for their own signal arrival). If v > 4, this may be a
manifestation of the so-called “illusory superiority” or “better-than-average” heuristic which
leads an agent to think that others may be less informed than she is, even though everybody
is equally informed (see, for example, Cross, 1977; Svenson, 1981; Odean, 1998; Zuckerman
and Jost, 2001). People often have unjustifiably favorable views of themselves relative to the
population average or even in person-to-person comparisons on various characteristics, which
may include how well informed they are or how good they are at getting and understanding
information. By contrast, some agent may have weak self-esteem and think that her friends
are more informed than she is, even though everybody is equally informed (i.e., v < §). It
turns out that whether agents apply 4 or < to their own signals does not affect our results.

Finally, a brief comment is in order on the heterogeneity between agents that we allow.
We assume that the prior 7r, the true and misperceived probability of receiving signals
(7 and ), and the signal distribution are the same across all agents. Only the composition
of echo chambers can differ between agents. This is because we want to start from a setting
where all agents are ex-ante identical and have the same model of the world. The only
possible driver of belief divergence is the difference in information diets due to echo chambers.
It is intuitive that allowing other parameters to differ between agents can introduce other
drivers of polarization. We will discuss some below.

3 Learning in the short and long run

To examine the effects of selective sharing and misperceptions in the short run, our first result
looks at the expected posterior belief of agent 7 that results from one round of updating (i.e.,



T = 1).11 Since the focus of this section is normal agent i, we drop all i subscripts. Recall
that y(sl) is the Bayesian posterior probability that a normal agent assigns to state A given
all the information she obtains after one period, which we denote by s! (i.e., her signal, her
friends’ signals, and their silence). We show that whenever there is an imbalance in i’s echo
chamber, i’s expected posterior conditional on any state will be distorted when the signal
quality g is sufficiently low. Besides obviously depending on the imbalance between A- and
B-dogmatic friends, the direction of the distortion depends on whether the agent under- or
over-estimates the probability that information is received.

Proposition 1. Fiz an agent such that ds > dp.

such that if ¢ < §1(da,dp,n), then for any

NI—

1. If 4 < 7, there exists G1(da,dp,n) >
w € {A, B}, we have E[u(s'|w)] > 7.

2. If 4 > vy, there exists §1(da,dp,n) >
w € {A, B}, we have E[u(s'|w)] < 7.

such that if ¢ < §1(da,dp,n), then for any

N[—

An immediate implication of this result is that a defining property of Bayesian updating
no longer holds in our setting. Since the expected posterior is distorted conditional on any
true state of the world, the unconditional expected posterior will also be distorted in the
same direction. This is in contrast to Bayesian updating with a correctly specified model of
the world, where the expected posterior would be equal to the prior as noted in Remark 1.

Note that the direction of the bias depends critically on whether agents under- or over-
estimate the probability with which friends receive signals. Specifically, Part 1 of Proposi-
tion 1 states that if § < 7 (agents under-estimate friends’ information), then the agent’s
expected belief is biased towards the conviction of the majority of her dogmatic friends.
Conversely, Part 2 states that if 4 > 7 (agents over-estimate friends’ information), then
the agent’s expected belief is biased towards the conviction of the minority of her dogmatic
friends. In both cases, agents beliefs are systematically biased because of misperception.

To give some intuition for the result, we begin by describing agent i’s posterior after one
period. Let her echo chamber be (d4,dp, n). Denote by a4 the number of a-signals that her
A-dogmatic friends received and by bg the number of b-signals that her B-dogmatic friends
received. From the agent’s perspective, a4 is distributed as a Binomial random variable with
probability §(1 — g) and sample size d4, whereas bp is distributed as a Binomial random
variable with probability 4 and sample size dg. Agent i also receives a private signal
and 7 independent signals from her normal friends. This is equivalent to receiving n + 1
independent private signals. Let ay and by denote the number of a-signals and b-signals that
are contained within them, respectively. The quantities ay and by are multinomial random
variables with probabilities 4(1 — q) and 4g respectively, and sample size N = n + 1. Note
that agent i’s information s! is summarized by (aa,bp,an,by). Given this, by Bayes’s rule

Note that in what follows we, as the external observer, will calculate E [p;(s!)] and plimy_,  p;(sT)
using the correct model of the world (i.e., vy not ).

10



agent i’s posterior belief is!?

where

aa+an — (bp+bn),

YA1-9)+0-9%)
Y7+ (1—=79)

S = (dp—da)—(bp—aa).

We can understand the parts of this expression as follows. First, QM captures the
agent’s interpretation of the received signals, which is always correct. Agent i receives
a, + ay a-signals from A-dogmatic and normal friends. She receives bg 4 by b-signals from
B-dogmatic and normal friends, which counteract the a-signals (and hence enter negatively
in the exponent M). Note that this part does not depend on 4. This is because, by the
assumption of verifiable information, the act of sharing a signal leaves no uncertainty on
whether the signal was actually received—hence, ¥ is irrelevant.

Q
M
I' =

7

To form her belief, the agent also has to interpret the silence of her dogmatic friends.
This is captured by I'S. Agent i observes silence from dg — bg B-dogmatic friends and from
dg —ays A-dogmatic friends, each of which she (incorrectly) attributes to an unfavorable
signal for the friend with probability 4 or to no signal with probability 1 — 4. Note that T is
a decreasing function of 4. Thus, a higher 4 raises T if S < 0 and lowers I'® if S > 0, thereby
distorting the posterior downward or upward depending on the realized S. It is therefore
not immediate that the average distortion goes in any specific direction. For instance, the
agent’s misperception could inflate or deflate updating, but still be correct on average.

If the agent has more A- than B-dogmatic friends (d4 > dp), she will tend to receive
more signals supporting state A than B. Yet, this does not imply that her posterior will be
distorted towards A. To see why, it is useful to consider extreme misperceptions. Suppose
v > 4 =~ 0, namely, the agent severely under-estimates the probability her friends are
informed. In this case, she interprets silence as almost certainly no news, rather than negative
news for her dogmatic friend’s preferred state. Thus, she essentially ignores silence and
updates based only on the shared signals, which tend to be more in favor of state A. By
contrast, suppose ¢ < 4 =~ 1, namely, the agent severely over-estimates the probability her
friends are informed. In this case, she interprets silence as almost certainly negative news
for her dogmatic friend, rather than no news. Thus, she reads too much into the silence
of the majority of her dogmatic friends and incorrectly updates her belief away from their
preferred state A. Put differently, the A-majority of the agent’s dogmatic friends always
drives her belief through selective sharing, but this can backfire and systematically push her
to believe that the state is B.

12This representation is derived in the proof of Proposition 1.
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Either way, the agent’s belief is systematically biased because of misperception. Clearly,
the quality of the signals cannot be perfect (i.e., g = 1) for i’s expected posterior to deviate
from her prior. Yet, the result shows that the imbalance between dogmatic friends—however
small—can always overcome the unbiased information coming from normal friends and i’s
own signal when the agents get signals of sufficiently low quality. In particular, the mis-
perceived selective sharing dominates even though dogmatic friends’ signals become almost
uninformative.

Proposition 1 has immediate consequences for belief polarization in societies. If i has
more A-dogmatic than B-dogmatic friends and 7 has more B-dogmatic than A-dogmatic
friends—where again the imbalances can be small—then in expectation their posteriors will
move apart, at least if the quality of signals is small. Thus, our result suggests that the
composition of one’s echo chamber can be a driver of belief polarization in spite of all agents
having the same access to first-hand information and the same model of the world. This
is consistent with the narrative that social media can give rise to “echo chambers” where
people are exposed to an unbalanced diet of opinions and as a result develop polarized
beliefs. However, our result qualifies this narrative in two ways: First, it does not require
the presence of fake news; second, it stresses that echo chambers also require misperception
in order to distort beliefs from the truth.

Our first result showed that one round of information arrival is enough to give rise to
polarization, at least in expectation. However, it leaves open the possibility that when infor-
mation becomes abundant (i.e., in the long run after many signals) polarization disappears.
In fact, the opposite can occur. As long as information quality is sufficiently low, abundant
information can exacerbate the effect of misperceived selective sharing and cause i’s beliefs
to be almost certainly incorrect. To show this, we consider the limit in probability of the
posterior belief y(sT) as T — oo, which we denote by plimy ., u(s?). If g is sufficiently
small, i’s posterior belief is pushed towards the degenerate belief on the state that is favored
by the majority or minority of her dogmatic friends, with probability 1 and irrespective of
the true state. Whether long-run beliefs are distorted towards the minority or the majority
of dogmatic friends once again depends on if 4 is greater or less than . Denote, I {w=A} a8
the indicator function that equals 1 if w = A and 0 otherwise.

Proposition 2. Fiz any dg > dp, and any v € (0,1). Irrespective of what the true state
18, we have:

1. If 4 < vy, there exists §o(d a,dp, n) > % such that if ¢ < Ga(da,dp,n), then the agent’s
asymptotic belief converges to state w = A with probability 1.

2. If § > vy, there exists Go(da,dp,n) > % such that if ¢ < Ga(da,dp,n), then the agent’s

asymptotic belief converges to state w = B with probability 1.

Consider the first part of Proposition 2. Intuitively, with many rounds of information
arrival agent i’s own signals provide a more accurate estimate of the state, which would
result in perfect learning in a standard setting. However, i combines her signals with the
signals from her friends, which provide more information, but this information is biased in
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ways she does not correctly take into account. Once again, the outcome of this race between
the two kinds of information is a priori not clear. Yet, with low quality signals, the distortion
introduced in each step of updating unveiled in Proposition 1 accumulates over time leading
the posterior astray with certainty.

To see this more precisely, consider updating at each period t. Dogmatic friends tend
to provide more s = a than s = b signals. Normal friends provide unbiased signals. Who
wins the race as T — 00?7 Recall the correct updating term QM and incorrect updating term
I'S. When g is close to 1/2 (low informativeness), the correct updating term QM is close
to 1 and thus the misperception boost (or curtailment) to informativeness I'* dominates.
By contrast, when g is close to 1 (maximal informativeness), the correct updating term oM
is close to zero and hence the misperception boost or curtailment to informativeness I'S is
diminished.

Proposition 3. Fiz any v € (0,1). Then, the bound §o(d a,dp, n) is increasing in |d 4 — dp|
and |y — 4|, and decreasing in n.

Proposition 3 provides intuitive, yet important, comparative statics on the lower bound
of informativeness that avoids incorrect learning and hence polarization. This lower bound
increases with the magnitude of the echo-chamber imbalance (i.e., the absolute difference
between the number of A-dogmatic and B-dogmatic friends) and with the degree of misper-
ception. It decreases with number of normal friends, as they provide the agents with more
non-selected information. Therefore, given g, it is possible that if an agent belongs to a
social group with a large but moderately unbalanced number of dogmatic friends, she learns
correctly as information becomes abundant. By contrast, if the agent belongs to a social
group with a small but severely unbalanced number of dogmatic friends, their effect may
prevail for the same g, causing her belief to polarize relative to other agents.

With regard to polarization, Propositions 1 and 2 can shed further light on the role of
echo chambers, contributing to and qualifying the ongoing debate about them. In sum,
the results highlight the importance of the composition of an echo chamber, rather than its
absolute size, and of misperceptions about how information is selectively shared in it. To the
extent that interacting online promotes the formation of more unbalanced social groups and
misperceptions about selective sharing, it may contribute to belief polarization even when
the quality of information is unchanged.

Propositions 1 and 2 show that imbalance in selective sharing is sufficient for polarization
to arise. But is it necessary? The answer is yes. Intuitively, if i has an equal number of A-
dogmatic and B-dogmatic friends, they offset each other when sharing information selectively,
even in the presence of misperception. Note that even a minor imbalance with misperceptions
will make polarization possible.

4 Network expansion

We wish to consider network expansion. For the purpose of this section we consider the
case of 4 < <, which implies that an agent’s belief is distorted towards the majority of
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dogmatic friends in her echo chamber. Consider agent i once again and suppose that due
to advances in technology (e.g. development of social media), the agent is now connected
with more agents of all types, while still receiving the same quantity of information on her
own. Specifically, assume that the number of normal, A-dogmatic and B-dogmatic friends
expands according to proportions (A4, Ap, An), respectively. Proposition 4 characterizes the
impact on the informativeness required to avoid polarization.

Proposition 4. Fiz an agent such that da > dg, then §o(Aad g, Apdp, Ann) < G2(da,dp, n)

of and only iof
Aadg — Agdp 1
—1) > (2474 7BYE 1) . -
(A 1)_< da —dp 1) (1+”)

Proposition 4 states that the range of information quality g leading to incorrect learning
shrinks if and only if normal friends grow sufficiently fast. Intuitively, there is a trade-off
between access to information and the scope for echo-chambers to bias beliefs. Note that
if scaling is proportional (i.e. Ag = Ap = Ay) then 1 < 1 —1—% and hence the range of
information quality leading to incorrect beliefs expands. Thus a proportional scaling of the
network leads to more opportunities for polarization.

This result suggests that when there are changes in the network environment that increase
connectivity of people (keeping proportions of different types of friends the same), but do
not increase the amount of information people get on their own, it can contribute to belief
polarization. For a fixed information quality g, it is possible that a person whose beliefs are
not biased in a smaller network becomes polarized when the network expands.

The previous proposition deals with how large Ay needs to be in order to decrease an
individual’s §,. This reduces the range of g in which the individual gets biased, but may
still not be enough if the true g is far lower. The next proposition explores how large Ay
needs to be in order to drop g below any given value of g, so as to un-bias a given agent.
Put another way: Given some 4, what Ay suffices to ensure correct learning?

Proposition 5. Fizdy > dp and § € (%,q’z(dA,dB,n,’y)>. Then qz(/\dA,)\dB,/\NT’l,’)/) <4
if
da—4(da+dp) 1

W T

Given echo chamber (d4,dp,n) and growth rates of friends (which may be determined by
data or algorithms), this result predicts if and when §p crosses §. This points to how
link-formation algorithms may possibly be designed to minimize polarization. i.e. the result
suggests the growth rate of normal friends required. Note that the right side of the inequality
is increasing in d4 and A, decreasing in dg and 4. Moreover, the right side of the inequality
is decreasing in n when it is positive (when § < 7).
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5 Network polarization

In this section, we move from the analysis of individual agents to the analysis of the network
as a whole. Our focus is the set of normal agents in the network (i.e., excluding dogmatic
ones). Interpreting dogmatic agents as those whose beliefs are degenerate implies that only
the beliefs of normal agents respond to arriving information. Let the set of all normal agents
be denoted by N.

Before proceeding, we define a measure of polarization for our network. Without loss
of generality, we will define it for beliefs in state A. Define polarization in period t as the
average sum of differences of beliefs across all agents in N:

pi(s )

2
|N| L

This expression captures the extent to which disagreement is present in the network. The
scaling factor of 2 is introduced in order to ensure IT € [0,1].

We focus on asymptotic polarization of beliefs (as T — o0), when all normal agents’
beliefs have already converged. Let Np and N denote the sets of normal agents whose
asymptotic beliefs put probability 1 on states B and A, respectively. We will also refer
to these sets as “eventually incorrect” and “eventually correct” populations, depending on
which state is true.'3 Define the limit polarization IT as

I1 = plimIT' = 2|NB|INal- 11 —0] = 4NB[|Na|

t—o0 |N|2 |N|2

The value of IT varies from 0 to 1, attaining its maximum when Np and A4 have the same
cardinality.

The first result in this section concerns the dynamics of N and N4 as g increases from
1/2 to 1. Assume the true state is B and fix some g € (1/2,1). Then, Ny consists of two
sets of agents: (1) all agents for whom §p; is below g (these agents learn correctly), and
(2) all agents for whom B-dogmatic friends dominate A-dogmatic friends and gp; is above
g (these agents place probability 0 on w = A in the long run irrespective of true state).
Meanwhile, N4 consists of all agents for whom A-dogmatic friends dominate B-dogmatic
friends and whose g,; is above g.

As ¢ increases, all agents that are already in N will remain there. Each agent for whom
J2; is below g will continue to be below g, and other agents for whom B-dogmatic friends
dominate A-dogmatic friends may remain in that category or pass into the first category and
still remain in Ng. However, agents in N4 may switch to the other set. When g becomes
larger than gp; for an agent in N4, he or she is no longer biased by A-dogmatic friends, and
thus will place probability 0 on w = A in the limit instead of 1, passing into Ag. This
argument is formalized in the following lemma.

I31f B is the true state, then Ap is the “eventually correct” population, whereas N4 is the “eventually
incorrect” population—vice versa if the true state is A.
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Lemma 1. As q increases, the set of “eventually correct” agents is weakly expanding and
the set of “eventually incorrect” agents is weakly contracting.

What implications does this have for network polarization? A common intuition would
suggest that as people receive better information, disagreements should decline. Lemma 1
places some limits on this intuition: if for low g the set of “eventually incorrect” agents is
sufficiently large, polarization in society will be low. However, as g increases, it will cause
a gradual shift into the set of “eventually correct” agents, and polarization in society will
actually increase initially. Once the set of “eventually correct” agents outnumbers the set
of “eventually incorrect” ones, polarization will start to decline as g increases. This implies
that polarization in a social network may temporarily increase as quality of information is
slowly improving.

The following proposition summarizes the intuition above and provides a necessary and
sufficient condition for such non-monotonicity of network polarization to take place. Let
N3g(g) and N4(g) denote the sets of agents whose beliefs converge to state B and A, re-
spectively, for a given value of q. Additionally, let Dp and D4 denote sets of agents who
have a B- and A-slanted echo chambers, respectively. The remaining agents do not have any
imbalance in their echo chamber.

Proposition 6. Fiz network with qy; # §pj for all i,j and w. 11 is decreasing in q over
(%,1) iff |D—w| < 3 (IN]+1). Otherwise, I1 is single peaked.

6 Mitigating polarization

We have shown that selective sharing and misperceptions are enough to generate polarization
of beliefs in a network of agents. How could a social planner combat this polarization,
if he or she could affect only the information the agents receive (taking selective sharing
and misperception as given)? That is, we want to see whether it is possible to eliminate
polarization by changing only the external information structure of the agents. One obvious
way to do this is to directly increase the quality of information g at the source. However,
this may not be feasible due to technological or economic reasons. For example, this may
involve forcing newspapers to spend more on reporters, data gathering, and fact checking.
However, it is possible to increase the quality of information that the agents receive without
changing the quality of the primitive signals s;;. This involves signal aggregation.

Signal aggregation consists in summarizing a set of signals into a single message. This
summary can, of course, be done in many ways, emphasizing some aspects of the original
signals and omitting others. It is important to note, however, that signal aggregation involves
some loss of information relative to the totality of the aggregated signals. Nonetheless, the
resulting message can have higher quality than each aggregated signal individually. It is
this distinction that renders signal aggregation useful for our goal of reducing polarization,
despite the loss of information. As such, signal aggregation involves a trade-off between
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slowing short-run learning and debiasing long-run learning, which is a novel aspect of our
learning environment.

Of course, there are many ways to aggregate signals. We consider the following simple
form to make our point. Let M be an odd number and divide time into blocks of M periods.
Define §§\/It as the aggregated signal that is released to agent i at the end of each time block
and reports whether more s = a or more s = b signals realized over the previous M periods:

: tM M

§§V1 - {OI § Zk:(t—l)Mﬂ Ysy=ay < 7
t . tM M

1, it Zk:(t—l)M+1 1{sik=a} > 7

A natural question is why a social planner would prefer to coarsen each agent’s informa-
tion structure in such a way. Clearly, §§\/It conveys less information than do the aggregated
M signals together. However, on the one hand, if all agents observe only §§\4t every other
M periods, they have fewer opportunities to selectively share information with their friends.
But this is irrelevant in the long run. On the other hand—and more importantly—§§\4t has
higher quality than each individual s;;. As a result, by substituting s;; information structure
with §§\/It for each agent, we are worsening information quality for each agent individually,
but we are also reducing the influence of selective sharing on agents’ beliefs. Hence, this
might restore the standard result of convergence to the truth in asymptotic learning. To see
this, suppose M = 3, consider the first block of three periods, and assume w = A. We have

) 3
P8, =0lw=A) =T (Zs,-t < 1‘w:A>

t=1
=3 +37°(1—¢q)
=q- (¢ +29(1—q) +q(1 7))

>q- (2 +29(1-q) +(1—-q)?)
=q="P(sy =alw=A).

Thus, §§ is more informative than each sj; of quality gq. In contrast to standard models
where the quality of information does not matter in the long run, we saw that in our model
a sufficiently high quality of information can allow all agents to learn correctly, thereby
removing polarization. The remaining question is then whether aggregating signals according
to §1Mt can achieve that quality level. The next proposition shows that this is always possible.
Denote IT as the resulting limit polarization when signal s;; is replaced with aggregate signal
SAé\/It every M periods.

Proposition 7. Fiz any network and q such that I1 > 0. There exists M such that, if each
agent i observes signals 84, then the resulting limit polarization 11 equals zero.
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7 Discussion

We explored conditions under which learning from shared news may lead to belief polariza-
tion. We develop a model reflecting two important facts about news sharing in networks:
unbalanced selective transmission of information and misperception. We include mispercep-
tion to account for the evidence that people are neither completely naive nor fully aware
of selective sharing. We found that with these features polarization occurs if (and only if)
information quality is sufficiently low. Thus, our results emphasize the importance of dis-
tinguishing between quality and quantity of information, a distinction that is irrelevant in
standard models.

With this understanding, we also investigated ways to mitigate polarization. On the one
hand, our analysis of the effects of network expansion suggests ways to influence network
dynamics so as to limit the scope for polarization to occur. On the other hand, we show
that aggregating the signals that agents receive may mitigate polarization. A benevolent
authority may use this insight to stop the effects of misperceived selective sharing and de-
bias beliefs. In practice, one way to achieve this is to create institutional intermediaries
or platforms that aggregate news, namely, that provide people with information in larger
digested batches rather than many raw bits. Even if these less frequent news reports lose
some of the information in the summarized news, they can mitigate polarization by reducing
the scope for echo chambers to cause people’s beliefs to go awry.

Our analysis goes to the heart of why new technologies and formats of communication
enabled by the Internet may increase polarization. Tweets and social-media posts tend to
be short and hence of low quality. Moreover, overwhelmed by the abundance of informa-
tion, people may spread their limited attention across more sources, thereby absorbing less
accurate information from each of them.

Another class of policies may be to intervene in network dynamics. Indeed, in our results
expanding networks can help curb polarization if they also shrink the imbalance in echo
chambers. We provide tools to precisely quantify how much the imbalance has to shrink
and how long it will take, given the evolution of networks. These conditions can be easily
tested using data about one’s composition of friends, their news-sharing habits, and their
growth rates. To the extent that social-network platforms influence this evolution with their
algorithms suggesting new friends, our results may guide how to design them so as to render
echo chambers more balanced.

Finally, our theory sheds new light on how malevolent actors who thrive on social polar-
ization can benefit from how news is shared in social networks. One obvious way is to use
fake news to directly lower the information quality or render echo chambers even more un-
balanced. A more subtle way is to release bits of news with high frequency so as to leverage
the power of misperceived selective sharing and to draw attention away from high-quality
information sources. These insights may be useful to guide policies aimed at dealing with
malevolent actors. Even though removing fake news is important for addressing polarization,
our analysis suggests that it is not sufficient.

Our analysis opens several directions for future research. So far, we have exogenously
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assumed selective sharing by having dogmatic agents who do not update their beliefs and so
do not change how they selectively transmit their signals. However, in reality people often
choose what information to share so as to promote their views or beliefs, which are not set in
stone. One can interpret the current model as describing situations where dogmatic agents
can change their beliefs, yet they do so much more slowly than normal agents. As a result,
how they selectively share information is very persistent, which should leave the insights of
our results unchanged.

Our results about the beliefs of a single agent can be used to further examine the dis-
tribution of beliefs in the network as a whole. We conjecture that there is a relationship
between how the composition of echo chambers is distributed in the network and how be-
liefs are distributed across agents. For instance, if half the population has a majority of
dogmatic-right friends, half a majority of dogmatic-left friends, and information quality is
sufficiently low, then the beliefs of each half should move apart as information arrives. This
is consistent with evidence showing that people on the left and on the right of the political
spectrum tend to have more like-minded friends than not, and with the view that this may
be a cause of the ongoing polarization (e.g., see Pew Research Center (2014)). Note that,
according to our analysis, such polarization does not require that people look at the world in
fundamentally incompatible ways, but only that they have different news diets—which may
be easier to address.

Finally, the role of the network structure in our analysis begs the question of what
would change if we allowed for endogenous network formation. On the one hand, people
may tend to form more links with like-minded friends, which may enlarge the imbalance in
their echo chambers. This would reinforce and magnify the effects of selective sharing and
misperceptions we highlight. On the other hand, people may be more likely to link with
normal friends than dogmatic friends, which would have opposite implications. Either way,
this is ultimately an empirical question: Once we measure the rates of link formation with
different types of friends, we can use our model to predict their consequences. Nonetheless,
understanding the incentives to form links so as to obtain information is also important to
answer these questions and guide further empirical investigations of polarization.
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Appendix

A Proof of Proposition 1

We consider agent i who has d4 A-dogmatic friends, dg B-dogmatic friends and # normal friends.
We drop all i-subscripts since we are focusing on a single agent.

We will prove that there exists 41 > % such that if g € (3,41), then E [p;|w] > mor E [p|w] < 7
for any w, depending on the signs of (d4 — dp) and (v — ). For that, we will first find the derivative
of IE [y;|w] with respect to g at ¢ = %, and then show how the sign of the derivative of E [p;|w]
w.r.t. g at g = 3 depends on (d4 —dg) and (7 — ). Using continuity of the expected posterior in

1

q and the fact that at ¢ = 5 we have E [y;|w] = 71, we will arrive at the desired conclusion.

We begin by deriving a normal agent’s posterior belief. Given a fixed realization s = (a4, bp, an, bn),
by Bayes’s rule an agent’s posterior belief in state A is given by:

1i(8) = rxt % 2)
where
X, = Auatbstantby (] _ 4)N-av-by
XAt (1 — )" N (9 + (1= 9) B (F(1 = q) + (1= 9)™ 7,
Xz = ,?aA+b3+aN+bN(1 _ ,?)N—aN—bN

X (1—q)atanghstn(§(1—q) + (1 —4)) 75 (4q + (1 — 4))%a .

To understand each term consider X 4. It is the conditional probability of observing s, given that
the true state is A. Specifically:

e 74T\ g the probability of getting a4 + ay signals s = a from A-dogmatic and normal
friends;

e (1—g)b+PN is the probability of getting bg + by signals s = b from B-dogmatic and normal
friends;

e (994 (1 —4))¥s=b5 is the probability of observing dp — bg B-dogmatic friends staying silent,
as it is either a genuine silence (with prob. 1 —4) or a suppressed signal s = a (with prob. §49);

e (9(1—¢q)+(1—4))% =% is the probability of observing d4 —as A-dogmatic friends staying
silent, as it is either a genuine silence (with prob. 1 — ) or a suppressed signal s = b (with
prob. 4(1 —¢)).

For Xp, the probabilities 4 and 1 — g are reversed because the true state is switched to B.

Rearranging Equation 2 gives:

s

pils) = 7'(+(177I)§—f; ~ mr(1-mQMTS”

To compute the state-conditional expected posterior after one round of updating, E[u;|w], it
is useful to use iterated expectation and condition on the set of friends that actually receive the
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signal. Let E [u;|w, x4, xp, xN] be the expected posterior belief in state A conditional on the fact
that the true state is w, that x4 A-dogmatic friends received a signal (and others didn’t), that xp
B-dogmatic friends received a signal, and that xj normal friends received a signal. For simplicity,
let xy also include the agent’s own signal. Then we can represent the state-conditional expected
posterior as follows:

dadg N daldzIN!
E[pilw] =3 3 ) o

o0 o xal(da — xa) xp! (dp — xp) N (N — xn)!

X ,)/xA—O—xB—&-xN(l _ ,Y)dA+dB+N—XA—xB—xNIE []/li|w, X4, XB, XN] .

The derivative of E[y;|w] w.r.t. g is given by

o e 4 45 N daldp!N!
w .
aq “I/lz| xAZ:OxBX:OxI\;O XA dA—xA)'xB (dB—xB)'xN (N—XN)!

3)

_,YxA+xB+xN(1 o ,y)dAerBJerfoxfoN EIE [Vi’w XA, XE xN]
aq 7 4 4 .

We find %IE [uilw, x4, xp, xn] and evaluate it at g = 1.

Lemma 2.
1=3 & xN! ™9
= [pi|w, x4, xp,xNn] = — | = —E [pilan,w = B,xa,xB, XN ‘
aq [:ul, ] al\;o IZN!(XN - aN)! 2 aq []/ll| ] q:%

Proof of Lemma 2. Let H(q; w) denote the probability of getting signal s = a conditional on receiv-
ing a signal. That means that H(q; A) = g and H(q; B) = 1 — g. Additionally, let ay < xy be the
number of informed normal friends that get signal s = 4. Then we can represent E [p;|w, x4, Xp, XN]
as follows:

E [pi|w, x4, xB, xN] Z ki(an —K)! H(q;w)™(1 — H(q;w))™ "E [pilan, w = B, x4, xp, Xn] -

aN=0 LZN k

The derivative of E [p;|w, x4, xp, xn] can thus be represented as

d ) )
ag & [Hileo xa, xp, xn] = Lol 0 i (v H (g 0) ™ (1 H(g; )™

—(xn —an)H(q; w)™ (1 — H(q;w))”’*””*l] Hy(q; w)E [pi(w = A)lan, w, x4, xp, XN] +
+ Lano ity H (0 @)™ (1= H(g;w))™ "N S [ila, w = B, x4, xp, xn].
Ifg= %, then H(q;w) = % In addition, if g = %, then the agent will not update her prior based

on any received signals. Thus, E [p;(w = A)|an, w, x4, x5, xn,9 = 3] = 7. The above expression
thus simplifies to:

0 7=3 _
aT;lE [pilw, xa, xB, XN] =’ Tan—o ity (2)™ ' 2an — xn)) Hy (L 0) E [pi(w = A)lan, w, x4, x5, xn,9 = 1] +

1°

+ N % (H™ a%]E [wilan, w = B, x4, xB, XN] ‘q*
-2

an=0 ay!(xy—an
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Note that the sum

XN

y _ b (;)ml (2an — xN)

=0 aN!(xN — EIN)!

is symmetric around ay = XTN: for each positive term, there is an identical term with a negative
sign. Thus, it must be equal to 0. We can then write

d =1 x| 1\ 9
7]E . , , , = —_— by 71E [ ’ ’ ’ .
ag © [Hilwr x4, xp,2n] aNZ:o il Cen —an)i \2) g lmilansxarxp ]|

It remains to evaluate (9/9q)E [p;|an, xa, Xp, XN] ‘ .- The following result provides a first
=3
intermediate step.

Lemma 3.

xp+xg—1
0 L 2 J (XA —|-XB>! 0
i [ilan, w, x4, x, Xn] = aDZ::O aD!<xA+xB_aD)!aq(f(aD,q,aN)+f(xA+xB—aD,q,aN)),

where

H(g; )*(1 — H(g;w)) 4+

f(k,q,ﬂN) = T+ (1 . 7-[)Qk*xs“’z’lN*xNrk_xB_(dA_dB) ’

Proof of Lemma 3. Let ap < x4 + xp be the total number of s = a signals that A- and B-dogmatic
friends have received. Using bg = xp — bg and by = xny — ay, we can write the agent’s posterior

belief as
T

Hi = T+ (1— 7()Q“D*xBﬂLZ“N*xNF”D—XA—(dA—XA)+(dB—xB)

Note that the dogmatic friends which haven’t received a signal (d4 — x4 A-dogmatic ones and
dp — xg B-dogmatic ones) are still included in the posterior belief of the agent, as she doesn’t know
whether they didn’t get a signal or they suppressed their signal.

The expected posterior belief conditional on an, x4, Xg, Xy and w can be written as

X4t s (xA+xB)!
. ap (1 _ . Xa+xp—ap
[anxAHB_aD)zH(q"") (1- H(g;w))

E [pilan, w, x4, xB, XxN] =
EIDIO

7T
' 7T _|_ (1 _ n)QuDxB+2aNxN1"uD—xB—(dA—d3)] '

Using binomial symmetry, we can rewrite the sum as follows:

\‘XAJFXBilJ
2
(xa + xp)!
E |u;lan,w, x4, xB, XN| = ap,q,aN) + f(x4a +xg —ap,qg,a ,
[nilan, w,xa, xp, XN] aDZ::0 tZD!(xA—i—xB—tZD)!(f(Dq N) + f(xa+xp—ap,q N))

where f(k,q,an) is as defined in the lemma. Taking the derivative with respect to g gives the
result. |
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The next lemma provides a second intermediate step to evaluate (9/99)E [y;|an, w = B, x4, xp, XN]
at g = %

Lemma 4. At g = %,

aaq(f(ap,q,aN) + f(xa+xp — aD,q,cm))

24
Z_W(xA—xB)—zj’? (dA—dB) .

_ G)“ml 2(1 — ) [2(2@ —xn) +

Proof of Lemma, 4. For simplifying subsequent algebra, define a function z(g,4) = In(T) [In(Q)] .
Taking the derivative of f(k,q,an) w.r.t. g we have:

0
%f(k: q,aN) = ((xa+ x5 — DH(w) (1 = H(g; @)y 575 (= Hy (g @) + KH(g; )" (1 = H(g;0))" 5 FHy (g w) )

7T
. — (1 _ 7_[) Qkfxg+2ﬂN7XN+(k*XB*(dA*dB))Z(q,’?)

(k*d3+2ﬂN*xN)Qk7x3+2”N7xN’1+(k’xB’(dA*dB))Z(‘irWA‘) %

+H(q;w)k(1 — H(g; w))*a k. (1 — 77) - 7

(74 (1) Q< ¥B +2aN —xNTk-¥p~(d4~d-B) )2

+ (19+(1-9))

(k—xp—(da—d— B))Qk—xs+2aN—xw+(k—xB—1—(dA—dB>)z(w)w
(7-[ + (1 — 71—)Qk*XB+2aN*JCNFk*xB7(dA7dB))2 ]

Setting g = 1/2 gives

1 xa+xp—1 XA+Xxp
:tif(k/q,ﬂN) (4=2) G) + (zk_xA_xB)Hq(q;w)%Lg_ﬁ)Jr G) + 4l — 1)
.(k_xB"i‘ZﬂN_xN)“‘(k_xB_(dA_dB))%
(m+ (1 —m))?
= (%)XAHB%' ((Zk_xA —xp)Hy(q; )+ 27 (1 — ﬂ)((k—xB +2any —xN) + (k—xp— (da —ds))%):

Therefore, at g = % we have

3 (Flap,q,an) + f(xa+xp—ap,qan)) = ()" (0427(1 = 7) ((va — 8 +2(2an —xx)) + (x4 — x5 — (da — dp))575 ) )

% 2—%
+xp-1 5
= (H™"" 2n(1-n) (2(2aN —xN) + 525 (x4 — xp) — 2{—77 (da 7d3)>.

We now further simplify aa—qIE [pilw, x4, xp, xN] evaluated at g = 1/2:

Lemma 5.

(da —ds)).

>

0
£]E [Hilw, xa,xp,xN] = 24 ((xa —xp) —



Proof of Lemma 5. From Lemma 3 and 4 we have

=2 VAHB IJ (xa+xp)! 1\Xa+xp—1
E [pilan, w, xa, x5, 25] "= Yap AT (3) 27t(1 — 7)-

ap!(xa+xp—ap)!

9
9q

. (2(211N — xN) + (XA — XB) + (xA — XB — 2(dA - dB))Q’_?@)

LT (x4 x5) — 4(da — dp)).

=47(1 - m)(2ay — xn) + s

The simplification above is allowed by the fact that the terms in the sum do not depend on ap,
and the sum

VAJ?B?IJ | xa+xp—1
Lot (5)
an—0 LZD!<XA—|-XB—LZD)! 2

is simply a binomial expansion of (l %)x*‘HB =1.

Returning to a— E [pi|w, x4, xB, xN]:

10X x
= T o sy (3)™ [47(1 = m) ey — xn) + T (x4 — x8) — 3(da — di))|
T (a4~ x0) = 3 — )
Here the simplification is allowed by they symmetry of Zaw o W(ZM\; — xy) around ay =
o n

2

Finally, we return to the derivative of the state-conditional expected posterior E[y;|w]. Using
Lemma 5, Equation(3) simplifies to:

1 da dg N daldg!N!

SEfule] = Y Y Y

XpA= OXB OXN OxA dA_xA)'xB (dB_xB)'XNl(N—XN)!'

47(1 —
LAt EEAN (] o YdatdptN—xA—xp—xn <M ((xa—xB) —§(da — dB))> .
Rearranging gives
B =3 An(l—m)| & da ds— < dp!
—IE lw) = = —-—~+ a0 AxAx_ 7P AXB
g [%‘ ] 2—% XAZZZOXA!(dA—xA)',Y ( IY) 4 XBZ::() xB!(dB_xB)!’Y

(1— ) bxp — §(da — dB)]

= W [E[xa] —E[xg] —§(da —ds)]
— 47-[2(1__ ) (dA - dB)(’)’ '?)



If either d4 > dp and v > 4 or d4 < dp and 7y < 4 hold, then the derivative is positive. That
is, for any true state w, d4 > dp and 4 < 7 together imply that the state-conditional expected
posterior is biased towards state A (for low q). And if d4 < dp and § > < hold, then the beliefs
are still biased towards A (against the majority of dogmatic friends).

Note that due to symmetry, similar conclusions hold for the posterior belief in state B. That
is, if dg > d4 and § < 7, then the beliefs are biased towards state B (for low g). And if dg < dgu
and § > 1, the beliefs are still biased towards B (against the majority of dogmatic friends).

This completes the proof.

B Proof of Proposition 2

Suppose ¥ < . Recall that i has d4 A-dogmatic friends, dg B-dogmatic friends and n normal
friends.

Denote the number of signals s = a received by:

e agent i as a;

A-dogmatic friends of agent j as a;“, je{1,2,...,da}

B-dogmatic friends of agent j as a]B, je{1,2,...,dg}

normal friends of agent i as a]N, je{1,2,...,n}
Denote the number of signals s = b received by the same agents symmetrically:
e agent i as b;
e A-dogmatic friends of agent j as b]A, je{1,2,...,da}
e B-dogmatic friends of agent j as b]B, jed{L,2,...,ds}
e normal friends of agent i as bJN, je{1,2,...,n}

Then the number of empty signals s = @ received by the same agents is given by:

agent i — it is (T —a; — b;)

dogmatic-left friends of agent i — it is (T — u]-A — b]A), je{1,2,...,da}

dogmatic-right friends of agent i — it is (T — af - b]B), je{1,2,...,ds}

normal friends of agent i — it is (T — a]N - b]N), je{1,2,...,n}

Additionally, i’s A-dogmatic friend j stayed silent b]A times, whereas her B-dogmatic friend k stayed

silent a}g times. Thus, i’s posterior belief will be given by:

Hi (walsi) =



where

n dA dB
M = (ai—bi)+2(a]N—b]N)+Za]A—ZbB,
= ==

dg da
S = Y(T—-bP)=) (T—al)
j=1 =1

This belief converges to one with probability 1 as T — oo if and only if

M 2 2 S
(1—q> (7(1—q)+(1—v)>
q Y+ (1 -=79)
converges to zero with probability 1 as T — oo. This is equivalent to requiring that the natural
log of this expression converges to —oo with probability 1 as T — oo, where the natural log equals

In ({%ﬁ) K(x,T;q,%), where

n da dp
K(xT;q,9) = (ai—b)+ Y (a) —bN)+Y a =y bF
j=1 j=1 j=1

dg ds
+ (Z(T —b7) =Y (T~ ﬂ}“)) z(9,7),

j=1 =1

after we define
x = (a;, by, (a2, b1y, (aft, b4, (aF, BP0 )

jrui = =V AT Ty =1
and .
R ?(1—q)+(1—?)>[ <1—q)]‘
z(g,9) = In ~ ~ In{ — .
@.7) < g+ (1—%) q

Given In (%) < 0, we require that K(x, T;q,) converges to +00 with probability 1 as T — oo.

Now note that K( T )
. N . X, 1,49,
lim K(x,T;q,%) = lim T | —————~ | .
fim K0T ) = fim 7 (£ 72-20)

Let Q(w) be the conditional probability of signal s = a when the true state is w. It equals ¢ if
w=Aand (1—gq) if w=B.
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By the Law of Large Numbers, we have that

plim LD (3.0(0) - (1 - Q))) + ¥(1Qw) — 7(1 - Q@)

T—o0 j=1

da
+)1Q(w) = ) (1 - Q(w)) +
J=1

j=1

d dy
+ (Z%(l —7(1-Q(w))) — ;(1 - ’YQ(W)) z(q,9)
j= j=
= —y(n+1)+2y(n+1)Q(w) — vdp + v(da +dp)Q(w) +
+(dp —da)z(q,7) — vdpz(q, %) + v(da + dp)Q(w)z(q, %)
= —y(I+n+(1+2z(q,%))ds) — (da —dp)z(q,9) +

+7(201+ 1) + (da+dp)(1+2(0,9))) Q).
Given this, plim;_,  K(x, T;q,¥) = +oc if and only if
—(1+n+(1+2z(q,7))ds) — Z(Z;’?)(d,q —dp) + (2(1 +n)+ (da +dp)(1 —i—z(q,'?)))Q(w) >0,

which is equivalent to

1+n+(1+2(q,9)ds + 220 (dg —dg)

Qlew) > 2(14+n)+ (da+dp)(1+2(9,%)) = 02(q)-

Note that
() = 4 (2=7)2(0,7) =) (44 = ds)
) = 2 T 2 @+ ) + (da+dp) (1 +2(9,9)))

At q = §, we have

((2—’7)% —’Y> (da —dp)
2y (214 ) + (da +dp) (1+,%;))

_1. (7 —7) (da —dg)
2 y(2-9)22-9)(1+n)+2(da+dp))

1
;gr;qz(q)—ivL

Consider the situation where the true state is w = B. Then Q(w) = 1 — g, so the inequality
between Q(w) and §2(g) becomes
1 (r = (2—-17)z(q,7)) (da — ds)

q<5+ 29 (2(1+n) + (da+dp)(1+2(q,9)))

At g = %, the inequality becomes

(v —%) (da —dp)
Y2 —-9)(22—-9)(1+n)+2(da+dp))

<z +

N[ +—
N[ +—
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If d4 > dp and 4 < 7, then the inequality holds. This implies that there exists o such that if
qe (%,qz), the agent’s beliefs converge to state A when the true state is B.

We will show further in the appendix that §»(q) is convex in g. This is what Lemmas 6 and 7
and the section around them deal with.

Given that §2(g) is convex in g and that lim, 1 42(q) < 1, it follows that g, is the unique upper
bar for g for which the beliefs converge to state A.

On the other hand, if d4 > dp but 4 > 7, then the inequality doesn’t hold. Together with
convexity and lim, g2(g) < 1, this implies that the agent’s beliefs converge to state B when the
true state is B for any q > %

Now consider the case where the true state is w = A. Then Q(w) = g, so the inequality
between Q(w) and §,(g) becomes

((2=7)2(9,9) =) (da — ds)
2y (2(1+n) + (da+dp)(1+2(q.9)))

>
772
At g = %, it becomes

1.1, (Y —7) (da —ds)
272 2-9)2Q2-9)1+n)+2(da+dgp))

If d4 > dp and § < 7, then this inequality holds. Together with convexity and lim,_,; 42(q) < 1,
this implies that the agent’s beliefs converge to state A for any g > %

On the other hand, if d4 > dp but 4 > 7, then the inequality doesn’t hold. Together with
convexity and lim,_,; §2(q) < 1, this implies that there exists a unique upper bound 45 such that
if g € (%,q/z), the agent’s beliefs converge to state B when the true state is A.

If ¥ = 4, then Q(w) = §2(q) holds at g = }. Together with convexity and limg_,1 72(q) < 1,
this implies that the agent’s beliefs converge to the true state regardless of which state is true.

Proof that §; is unique.

We would like to prove that g,(q) is convex in g for all g > 3. This, along with 2(3) > 3 and

g2(1) < 1, will imply that §»(q) = g has a unique solution. For the purposes of this argument, we
will still assume d4 > dp and a corresponding functional form of §,(q).

First, we need to prove the following lemma:

Lemma 6. z(q,7y) is weakly decreasing for any q € (%;1).
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Proof of Lemma 6. Consider the derivative of z(g,4) w.r.t. g. After simplifying, we obtain:

(1-q)+(1—
0z _ ﬂln <7 wi)afww
dq  9q In (%)

y9+(1-7) | =r(rg+A=1)-r(1-9)+(1-7)) 1-q\ _ YA-9+a-1\ . g9 (_1
_ (1=g)+(1-7) (v9+(1-7))? ln( ) ln< ) ( qz)

=y 1 r1-+A=1)\ . _1
Y2q(1-9)+(1-7) m( q )+ln< (1-7) ) q(1—q)

@) (1 1-q9\ . z(g7)
_ 7O In (157) +1n (57) - 585

_ (q(lli% +72) z(q,7) = (2— 7)7.
In (1%’) (Pq(1—q)+ (1—1))

Note that lim,_,, z (q,7) = ﬁ >0 = z(1,7). As z(g,7) is continuously differentiable for

qe (%, 1), it is enough to prove that there are no local maxima on that interval in order to show
that ‘3—; < 0 holds on that interval. At an intermediate local maximum, g—z = 0 must hold. Consider:

0z 1—1
a7 (q(l—q) +72> A= @-mr=0

72 —7)
z(q,7) = S 14
* =9
12-7)

G

N

v(2—17)
(2—7)?

_ 7
2—vy

Hence, z(g,7) < ﬁ must hold at any intermediate local maximum in (3,1). This immediately

rules our the possibility that z(g,y) is increasing at g = %, since otherwise it would need to achieve

a local maximum with value above %

Consider again the implication of %Z =0:




Note that the right-hand side is strictly decreasing in g for q € (% ;1). If z(g,y) was to decrease at
first (as g rises from %) and then increase before going down to 0, the value of z(g,y) at the corre-
sponding local maximum would be necessarily above the right-hand side. This is a contradiction,
and thus z(g,7) cannot be strictly increasing for any g € (% ;1).

One final case to rule out is that z(g, ) is decreasing at first, passing through a local minimum,
and then is increasing all the way until g = 1. That, however, would mean that the value at the
local minimum is less than z(1,+), which is equal to 0. Since z(g,7) > 0 for any q € (3;1) and
v € (0;1), this case is also impossible.

These considerations prove that z(g,) is weakly decreasing for any g € (% ; 1). |

Given Lemma 6, consider:

_()_1+n+u+zww»@+f%”wA—@>
=00+ 0) + (da+dp)(1+2(0, 7))

_ A+Bz(q,7)

- C+Dz(q,9)

where p p
A=14+n+ds B=dp+ 2 _"B

, C=24+2n+ds+dg, D=ds+dp.

Therefore, we can represent

) =B+ A-ES _ B, AD-BC
2\9) =1 C+D-z(g,y) D D(C+Dz(q,9))
Note that
dy —dp
AD—BC:(1+n+dB)(dA+dB)— dB—|— (2—|—27’l—|—dA—|—dB)
da+d 2(1+n
(1t n)(da—dy) = AT gy 20

_ (1+n_dA—|-dB_2(1—|—7’l)

Y Y >(dA_dB)'

This is strictly positive if d4 < dp and strictly negative if d4 > dp.

d2(g) is convex (concave) in g if and only if D(ADfBC

B(CH+D2(gA)) 15 convex (concave) in g. As Lemma 7

shows below,
1

W= D, 9)
It then follows that §2(g) is convex in ¢ if and only if AD — BC > 0. Otherwise, §2(q) is (weakly)

S

concave in g. Additionally, note that g’ (%) = 0 because of z, (%,7) = 0. Hence, regardless of

whether §(g) is concave or convex in g for all g € (%,1), it will follow that the upper bar 7 is
unique.

is convex in 4.

Lemma 7. g(q) is convez in q.
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Proof of Lemma 7. Note:

ey 2D? ' N2 D
SO sty B T et

_ 2D*(%4(q,9))” — D(C+ Dz(q,7))249(q, )
(C+ Dz(q,9))’

If we are able to prove that zg.(q,4) < 0 for all g € (1,1), then we will have proven that g”(q) > 0,
implying that 72(q) is convex for all g € (3,1).

5 qu([], v)

Recall from Lemma 6:

Let K(q) = : - Hhen:
e Kia) W (L Py

(-9 + (e +47) 7(a ) n (551) (P9t =)+ (1= )

qu(q/?) = K(q)

(5 +#) 000 -2 9) (s (a1 =0+ 1) 1 (50) 70 -20)

(SR 4 (L +47) 2900, 9) In (52) (19— ) + (1= 9) +
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Consider C;(q):

Ci(g) = a ;221)(—22)_2 D <q(11_—§q) +”y2> 24(q,%)
_1-9eg-1) | Pea-g+a-9) (g +P)Hen-1e-9)
¢*(1—9q)? 9(1—9q) In (1) (12901 -9) + (1-9))
(1=9)(29 = Din (12) + (901 = ) + (1= 9)) 2(9,9) = 72~ 1)1 —q)
i P(1 -9 ()
(1=9)2g = Din (%) + 32 = )q(1 - g) - (#2901 = ) + (1= 9)) 2(0,9)
E P(1 -9 ()
Therefore,

q
(1-g-DIn (%) +52-1)q(1 - q) - (91 —q) + (1 =) 2(3,9)
9> (1—q)?
Similarly, consider:
Fq(1-9)+(1-9))2(0.9)-| (79(1=q)+(1=9) ) +In( =1 ) 97(29-1)9(1-9)
Ca(q9)Ca(q) = ( Ll P77 AL |
42— 4) (7290-0)+(1-4))a(1—q)+In(12)12(29-1)q2 (1)

7*(1—q)?

Therefore, we can write:

z ’A 2 _ 2 _
uld 71):(70,51 L = (2(%9(1 =)+ (1-9) +In (52) 27 - 1)(1 - 9))-

(PP -+ (1-9) 2(q,9)
+(Pa—q)+ (1= 9) [1-Ng- )i (1) —292 - )91 - q)]
+In (15) 2= 1)(29 - )31 - )2
=2(Pq(1 =)+ (1-9)*2(0,9) +In (%) P2~ )20 — 1)e?(1 - )?
—(#a1 =)+ A=) In (%) 29-1) [0 - 9)z(9,9) + 1 —=2(,9))]
~2(2(9,9)%9(1 - q) + (1~ z(4,9))) 2(9,9)(2 — z(4,9))9(1 = q)

q—
)2

Let
D1(q) = 2 (2(g,9)%(1 = ) + (1 = 2(0,))) 2(9,9) — In (1) (29 = (1 = 2(4,9)) — 22(9,9)(2 ~ 2(3,9))9(1 — )
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Da2(q) = z(9,9)*(2 = 2(9,9)7*(1 — q)* — (z(q,9)*9(1 —q) + (1 — 2(q,9))) z(9,9)*(1 — 9)z(q, %)

Then we have

L 2 _ 4)\2
@20 IIECZD — (g, 12901 — )+ (1 - 2(0,9) Drlg)+1n (1) (20— D2l

Di(q) < 2(2(9,9)%9(1—q) + (1 - 2(3,9))) ;%L)—l (%) (29 = D1 —2(3,9)) - 22(2,9)(2 ~ 2(4,)a(1 — q)

n
= s 220 9% = ) +22(0,9) (1 = 2(3,9) —In (75 ) 24 = D1 = 2(0, 1) @2~ 2(8,9) = 22(, 1) 2 — 2(9,7)%(1 — )

where E(q) = 22(q,4)(1 —49(1 — q)) — In (1&) (2q —1)(2 — 2(q,4)). Differentiating this expres-
sion with respect to g, observe:

Ea) = 25(09) 40 =1) ~ e (20— D@ =2(0,8) 20 (1) @=2(0,)
= q-1) (42005) - 22T i (L) 2 2(0.7)

A N q A
< (20 =1) (209, 9) - 42~ 20,1) - 21n (L) (2200, 7)

1
< 0 for any g € <2,1>

Therefore, E(q) < E (%) for any q € (3,1). Note that

E (;) — 22(0, %) <1 —4-}1) (1) (2.;— 1) (2—2(q,4)) = 0.

Therefore, we can conclude

1—2(q,%) 1
< =4 ~1).
Dl(q)_Z—z(q,’?)E(Q)<0for any g € 2,1

Returning to D»(g), note:

Da(q) = z(q,9)*(1 = q) [2(q,9) (2 — 2(9,9))9*(1 — q) — (z(4,9)%9(1 — q) + (1 — (4, %))) z(9, )]
<z2(q,9)(1—q) [2(0,9)2—2(q,9)9(1 — 9) — (2(0,9)9(1 —q) + (1 — 2(9,9))) 2(q,7)]

The expression in the brackets is the negative of the numerator in z;(q,z(q,¥)). Given that

z4(9,2(q,%)) is negative and that it includes ln( Z ), it follows that the numerator has to be
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positive. This implies that the expression above is negative, and therefore, D(g) must be negative
as well.

Combining D;(q) < 0 and D>(q) < 0 (for any g € (3,1) and recalling

o 201 _ 4\2
qu(q’z(q’;();f Sk ). =(Z(m)zq(l—qH(1—z(q,ﬁ)>)D1<q>+ln<1qq) (29 —1)D2(q),

we can conclude that zg4(g,2(q,9)) < 0 for any g € (3,1).14

Returning to the function §»(g), recall that we showed it is convex in ¢ if z(g,9) is concave.
Given that z4.(q,z(q,%)) <0, it follows that §o(q) is convex.

Proof of Proposition 3

Here we will prove that §; is increasing in d4 and 7y and decreasing in dg, n and 4.

Consider the case where the true state is w = B and § < 7, with d4 > dp (for any bias to take
place). The value of § is determined by the equation

14+ (1+2(0,9)ds + 222 (da — dp)
1T T2 ) + (da + dp) (1 +2(4,9))

We can rewrite it as B 1 _ (v —(2—=7)z(g9,9)) (da —dp)
) 29 (2(1+n) + (da +dp)(1+2(q,9)))

The right-hand side is strictly decreasing in dp, n and 4 (while the left-hand side is unaffected),
which implies that the fixed point of this equation, {§p, is also decreasing in these variables. The
right-hand sie is also increasing in 7y, so g, must be increasing in .

Finally, consider d4. Return to the equation
1+ n+ (1+2(q,9))ds + 222 (4 — dp)
1= T2 )+ (da+dp)(1+2(q,7))
Denote the right-hand side by k and take the derivative w.r.t. du:

1 (da—dy) ) (142(,9))

o R r2n+(datdp) (1+2(9.)))— (14n+(142(0.9) s
9d 4 (24+2n-+(da+dp)(142(q, ’AY)))
(W’Y)d —l—(l—l—n)( @i _q _ 2(q,% ) (1+2z(q, ))
(2+2n+(dA+dB)(1+z(q, )))?

_(@=7)209) =1 +22(q9) ds+ (1 4+m) (A=1)2.5) =7) _
B Y2+2n+ (da+dp)(1+2(q,7)))> ’

since (2 —7)z(q,9) < v < v(1+2%(q,9)) and (1 —)z(q,4) < 7. Given that h is decreasing in
da, it follows that 1 — g is decreasing in d4, which in turn implies that §» is increasing in d4.

14T his is due to the fact that K(q) > 0.
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Now consider the case where the true state is w = A and § > 7, with d4 > dp (for any bias to
take place). The value of g, is determined by the equation

L1t nt (1+2(q,9))dp + 222 (dy — dp)
1= T2t n) + (da +dp) (1 +2(4,9))

We can rewrite it as

1 ((2=7)z(q,9) —7) (da —ds)

2 29201+ n)+ ([da+dp)(1+2(g,9))
As previously, the right-hand side is strictly decreasing in n and dg and increasing in d 4. It is now
increasing in 4 and decreasing in 7y. The arguments to show these are exactly symmetrical to what
was done in the case w = B and § < 7.

C Proof of Proposition 4

To prove the result, we need to consider the implicit equation that defines g,. If the true state is
A, it is:

& z(4,9)
_ - ( ) o _ 1 + n + (1 + Z(q/ ’Y)>dB + 5 (dA - dB) _ 1 + ((2*7)2(11/?)*’)/)01,4*!13)
1=\ = 4 20+ 1) + (da +dp)(1+2(9,9)) 2 ¥ e da v 120 7))

In state A, bias in beliefs occurs when 4 > ¢ and d4 > dp, or § < v and d4 < dp. In either case,
we have ((2—)z(q,9) —v)(da —dg) > 0, which will be important in a moment.

Consider the right-hand side of the equation above when d 4, dg and n increase by a factor of
A>T

1 ez -mdaads) 1 (2-)2(g9)=7)(Ads—Ads)
2 ' 29(2(1+An)+(Ada+Adp)(1+2(q.%))) 2 ' 2y(2(AH+An)+(Ada+Adp)(14+2(q,7)))
Ll (o) -ma—ds)
2 272(1+n)+(da+dp)(1+2(q,7)))
= 72(9)-

The inequality above is true because ((2 — v)z(q,9) —v)(da —dg) > 0.

Hence, the right-hand side of the equation g = §»(g) increases when d,, dg and n all increase
by a factor of A > 1, which means that we need a higher g4 on the left-hand side to satisfy the
equation. Therefore, if §»(da,dp, n,7) solves g = §2(q), then

qz(AdA,AdB,AH) > [72(dA,dB,1’l).
A similar result can be shown in the case of state B, given that it is largely symmetric.

Now consider arbitrary A4 > 1, Ap > 1 and Ay > 1 and look at the expression for §,. Once
again, assume true state is A:

- _1, (@=7)2a4) — 1) (Aada— Aads)
o(Aada Aot 20 = 3+ a1+ )+ s+ )1+ 200,37
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The inequality §o(da,dp,n) < Ga(Aada, Agdp, Axn) will hold if and only if the following holds:

((2=7)2(q,7) = 1) (Aada — Apds) N ((2=7)2(q,7) =) (da — dp)
2y 21+ Ann) + (Aada + Apdp)(1+2(9,9)))  — 27 (2(1+n) + (da +dp)(1+2(4,7)))
(2=12(4.9) —7) (Aada —Apdp) (2= 71)2(4,7) = 7) (da — ds)
2(1+Ann) + (Aada +Agdp)(1+2(9,9))  — 2(1+n)+ (da+dp)(1+2(q,7))

First, consider the case where 4 > 7 (with d4 > dg). Then (2 —)z(gq,49) —7v > 0 in the
neighborhood of g = 7, and we can divide by it.
)\AdA — Apdp da —dp
2(1 + /\Ni’l) + ()LAdA + /\BdB)(l + Z(C], ”)\’)) 2(1 + l’l) + (dA + dB)(l +Z(6],’?))
)

v

()\AdA_)\BdB) (2+2n+(dA+dB)(l+z(q,'y )) > (dA—dB)X
(2 + 2ANn + (/\AdA + )\BdB)(l + Z(q, ’)’)))
()\AdA — )\BdB) (2 —|—21’l> > (dA — dB) (2 +2ANn)
(AAdA_)\BdB) (1—|—1’l> > (dA—dB) (1—1—)\1\[1’1)
((/\A—l)dA—<AB—1)dB)—|-Tl()LAdA—ABdB) > (dA—dB)/\NTZ
(()\A — 1)dA — ()\B — 1)(13) +n ()\AdA — )\BdB>
> AN
(dA —dB)I’l
((/\A—1)dA—(/\B—1)?5/):1;1(3()?;4—1)dA—(/\B—1)dB) > Ay —1
((/\A — 1)dA — ()\B — 1)d3) (1 + 1’1)
> Any-—1
(dA —dB)n - N
(Aa —1)ds — (Ag — 1)dg ( 1>
14— > Ay — 1.
(dA —dB) n - N

Now consider the case where § < 7 (with dg > da). Then (2 —)z(q,9) — v < 0, so the
inequality sign changes when we divide by the expression. Following similar steps, we will get:

)\AdA_/\BdB < dA_dB
2(1+)\N1’l)+()LAdA+/\BdB)(1+Z(q,”)>>) - 2(1+n)+(dA+dB)(1 +Z(q,’?))
)\BdB_AAdA dB_dA

2(14+ Ann) + (Aada + Apdp)(1+2(q,7)) = 2(1+n)+ (da+dp)(1+2(9,7))

(As—Ddg—(Aa—Dda (, 1\ _ .
=i <1+n> > Ay-—1.

If the true state is B, the same proof delivers a symmetric result. We omit it here.

D Proof of Proposition 5

Assume that the true state is A and we have 4 < 7 and dp > da. Recall that g = §o(da,dp, n) is

defined b
’ 1 (@=Hed) =) [da—dp
1= 2 2 1) + ([da+ds) (1 +2(9,7)))

40



Fix d4,dp,n,A and §. We need to find Ay such that

(v = (2—=7)z(9,7)) (Adp — Ada)
27 (2(1 4 Ann) + (Ada + Adg) (1 +2(q,9)))

1,
1=3

Note that the right-hand side is decreasing in z(g,¥). So a sufficient condition would be to impose
the inequality for the lowest value of z(g,4), which is 0. This gives us the following inequality:

1 _
I?Z 1_’_ 2/\(513 dA)
2 2+2)\Nn+)\(d14 +dB)

- 2+2)\N1’l—|—/\(d14+d3)
(267 — 1)(2 +2)\NTl —|—/\(dA +dB)) > A(dB — dA)
(267 — 1)(2 + )\(dA + dB)) + 2(2(? — 1)/\]\]1’1 > /\(dB — dA)
2(1— ﬁ)AdB — 2(2@ -1)— 24)d 4
2(267—1)1’1
(1—g)Adpg —gAda — (2 — 1)
>
= - 1Dn
(- d)ds—gds, 1
> _ =
An = (24— 1)n n
21
m

AN >

dp — ﬁ(dA + dB)
>
AN 2 5

Now consider the case where true state is B and we have § < o and d4 > dp. Fix da,dp,n, A
and 4. We need to find Ay such that

(v —(2—=7)z(9,%)) (Ada — Adp)
29 (2(1+ Ann) + (Ada + Adp) (1 +2(9,9)))

Following the same steps as above (just switching d4 and dp), we will get the following sufficient
condition:

1
N
§>5+

dA—L?(dA-i-dB) 1
> - —.
AN 2 (24 —1)n A

E Proof of Proposition 6

First, we will quickly prove Lemma, 1.

Proof of Lemma 1. Consider agent i who is “eventually correct” at a given g = 4. There are two
possibilities: either gp; > § or gp; < § (we omit the knife-edge case). If §; > 4§, then the agent must
have dogmatic imbalance towards the correct state. Increasing g beyond g; will lead to the agent
learning correctly and having beliefs converge to the same state as before. Hence, the agent will
not leave the set of “eventually correct” agents as g increases. If §p; < 4, then the agent is already
learning correctly, and increasing g further will not alter her asymptotic beliefs. Thus, she will
remain “eventually correct” as g goes up. All of this implies that the set of “eventually correct”
agents is not contracting as g increases.
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Now consider agent j who is “eventually incorrect” at a given g = 4. This can only occur if
the agent is learning incorrectly, meaning she has a dogmatic imbalance towards the wrong state
that is sufficiently large, i.e. §o; > 4. Increasing g beyond gp; will make the agent begin to learn
correctly, which means she will leave the “eventually incorrect” set of agents and will now be in
the “eventually correct” set. This finishes the proof of the lemma.

Fix some g = § and considers sets N4 (g) and Ng(q). For definiteness, let w = A be the true
state. Let Gyin(4) = minjear{goi | §2i > 4} be the lowest §p; among agents who are “eventually
incorrect” at ¢ = 4. As q increases and reaches 7, (4), that agent will flip from being “eventually
incorrect” to being “eventually correct”. Since w = A is the true state, this implies

INA(@min(@)] = INa(@)]+1 and [Np(qmin(§))] = INB(§)] - 1.

Consider the network polarization IT1(q) at ¢ = § and g = Jin(4):

4

I1(4) = —— - INa(§)|INB(§
(@) = 777 Wal@IlN(@)]
4
11(Gmin(4)) = W (IVa(@]+1) (V3(9) - 1)

Note that T1(4) > I1(Guin(4)) if and only if

INA@IINB(@)] > (INa(@)] +1) (NB(G) — 1),

which is equivalent to

INB(9)] < [Na(@)] +1.

Hence, the network polarization weakly decreases with g if and only if the set of “eventually
incorrect” agents initially (at ¢ = §) is smaller than the set of “eventually correct” agents plus one.
Since Np(q) is weakly contracting in ¢, a necessary and sufficient condition for I1(g) to be always
weakly decreasing in ¢ is that [Np(3)| = |Dg| is weakly smaller than |[N| — |Dg| + 1, which is
equivalent to |Dg| < 3 (JNV]|+1).

Therefore, the network polarization Il(g) is weakly decreasing in g over g € (%, 1) if and only
if [D_o| < 3 (JN]+1).

F Proof of Proposition 7

The proof of this proposition is short, and requires us to prove that by aggregating enough signals,
we can push quality of information above any given threshold. In other words, if 8, denotes an
M-aggregated signal, we need to prove

lim P(gi;, = alw = A) = lim P(§), = blw = B) = 1.
M—o00 M—o0

Suppose that we aggregate M (odd number) signals together, and offer agents the following
information structure:

. M
a _Jo if Y s <Y
Mt — .

Lif YMisy >4
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For simplicity, assume that the true state is w = A, and consider the quality of signal SAZII\/M
‘ M M
P(Siy=alw=L)=P (Y si<>|lwo=L
= Y <y
L

1 M 1
= (MZSZt<2’w= )
1

1 M
1 M 1
:1—1P<Mt215it—(1—fﬂ22—(1—q)'w:L>

:1—IP<aM—(1—q)2;—(1—q)'w:L>

as M—o0

— 1-0=1,

where the last line is due to the weak Law of Large Numbers on a Binomial random variable
apr with parameters M and (1 — g). Hence, the limit of signal’s quality as M — oo is equal to 1,
meaning that there must exist a finite number of signals such that the quality surpasses the bound
g1. For such aggregated signal, information quality is too high for Proposition 2 to apply, which
implies that there is no divergence of beliefs in the network.
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