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Learning equilibria in multi-agent games is challenging because the players’ rewards may change depending
on the actions of other learning agents. While there has been progress in computing Nash equilibria in
complete-information games, little is known about learning equilibria in Bayesian games. Such games are a
research frontier with auctions as the best-known example. The key difference between complete-information
games and auction games is that we search an equilibrium bid function over a domain of infinitely many
valuations, a problem for which no general solution theory is available. We introduce a numerical technique
to compute Bayes-Nash equilibria, which is based on neural networks and self-play. The method implements
a gradient ascent scheme and approximates the expected utility via Monte Carlo sampling. Training neural
networks in this environment is challenging as the payoff functions of individual auctions are discontinuous
and nondifferentiable. We solve this problem by leveraging an evolutionary strategy optimization technique
that effectively smoothes the objective. This allows us to derive an estimate of the gradient of the smoothed
game, and the individual agents adapt their policy by taking a step along their policy gradient. We introduce
conditions for which we can certify an ε-Bayes-Nash equilibrium and provide extensive numerical experiments.
The experimental results show that the method converges quickly to the analytical Bayes-Nash equilibrium
in a wide range of auction games including auctions with asymmetric priors or risk aversion, or even in
combinatorial auctions with correlation or multiple pure Bayes-Nash equilibria.
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1. Introduction
The literature on machine learning largely focuses on single-agent learning. Multi-agent learning has

become more popular recently due to the advent of Generative Adversarial Networks and applications

in complex competitive game-playing (e.g. Brown and Sandholm (2019), Daskalakis et al. (2017),

Silver et al. (2018)). This literature typically focuses on zero-sum, complete-information games. While

complete-information games have seen some progress, equilibrium learning for incomplete-information

(aka. Bayesian) games is in its infancy. Auction theory is arguably the best-known and practically

most relevant application domain of Bayesian games, central to modern economic theory (Klemperer

2000) and with a multitude of applications in the field, ranging from industrial procurement to
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treasury auctions and spectrum sales (Klemperer 2004, Milgrom 2017, Bichler and Goeree 2017).
Unfortunately, Bayes-Nash equilibria in these games are not well understood.
The derivation of BNE strategies for the first-price and second-price sealed-bid auction led to a

comprehensive theoretical framework for the analysis of single-item auctions, a landmark result of
economic theory (Vickrey 1961, Krishna 2009). While single-item auctions are well understood and
closed-form BNE strategies are known for a variety of auction formats and market environments,
we only know equilibrium strategies for very few multi-item auction environments. For example, no
explicit characterization of BNE strategies is known in first-price sealed-bid auctions of multiple
homogeneous goods (multi-unit auctions), nor in first-price sealed-bid combinatorial auctions where
bidders can submit bids on packages of goods (Krishna 2009). But even in simple single-item first-price
sealed-bid auctions with specific assumptions on the prior type distributions or the risk attitudes of
agents, equilibrium strategies can be hard to derive. Typically, one ends up in a system of partial
differential equations and no closed-form solution is available. Numerical techniques to compute
Bayes-Nash equilibria would not only be valuable for theory, but they would also be very valuable for
the study of practical auction rules.

For finite, complete-information games, we know of the existence of a mixed Nash equilibrium and
that the computation is generally PPAD-hard (Daskalakis et al. 2009). For Bayesian games with
continuous action space, we neither know whether (possibly mixed) Bayes-Nash equilibria exist in
the general case, nor do we know how hard they are to find if they exist. Cai and Papadimitriou
(2014) showed that finding a BNE in simultaneous auctions for individual items is hard for PP, a
complexity class higher than the polynomial hierarchy and close to PSPACE, and we know little
about the complexity of finding BNE in other multi-item auctions (see Section 3).
The theory of learning in games examines what kind of equilibrium arises as a consequence of a

process of learning and adaptation, in which agents are trying to maximize their own payoff while
learning about the actions of other agents (Fudenberg and Levine 2009). Research on equilibrium
learning has largely focused on complete-information normal-form games. So far, there is no com-
prehensive characterization of games that are “learnable,” but there are some important results. For
example, it is well-known that no-regret dynamics converge to a coarse correlated equilibrium in
arbitrary finite games (Jafari et al. 2001, Stoltz and Lugosi 2007, Hartline et al. 2015, Foster et al.
2016). Coarse correlated equilibria (CCE) encompass the set of correlated equilibria (CE) of a finite
game. The latter is a nonempty convex polytope which in turn contains the convex hull of the game’s
Nash equilibria such that we get NE⊂CE⊂CCE. The coordination in CE can be implicit via the
history of play (Foster and Vohra 1997, Stoltz and Lugosi 2007). In contrast to correlated equilibria,
coarse correlated equilibria may contain strictly dominated (pure) strategy profiles with positive
probability. This means that while coarse correlated equilibria are learnable via no-regret algorithms,
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they are a rather weak solution concept (Viossat and Zapechelnyuk 2013). Therefore, the question
is when learning dynamics converge to a Nash equilibrium. Only recently, Mertikopoulos and Zhou
(2019) showed conditions for which no-regret learning algorithms result in a necessarily unique Nash
equilibrium, if they converge.

Bayesian games, however, have received little attention in equilibrium learning until recently. Such
games can be modeled as infinite-dimensional variational inequalities, but solving such problems is
challenging and requires learning a bid function over infinitely many types. Currently, we are lacking
an established solution theory for such problems. Given how hard it is to find Bayes-Nash equilibria
even in simple simultaneous single-item auctions in the worst case (Cai and Papadimitriou 2014) it is
far from obvious that no-regret dynamics can find a BNE in continuous-type and -action Bayesian
games. It is not even clear, how no-regret dynamics would be implemented in such games. However,
with an appropriate implementation, the approach is surprisingly successful, as we will show.

1.1. Contributions

We introduce Neural Pseudogradient Ascent (NPGA) as a method to learn ex-ante equilibrium bid
functions which allow for continuous type- and continuous action-spaces. We use neural networks to
represent the players’ bid functions. Neural networks can approximate a wide variety of (equilibrium
bid) functions as is well-known from the universal approximation theorem (Hornik 1991). The networks
are trained to maximize utility of each of the agents for which we rely on self-play and gradient-based
optimization which does not require the expensive computation of best response strategies as it has
been suggested in prior work.
Unfortunately, using neural self-play in this environment is all but straightforward: While we

assume players’ expected utility (over the distribution of other players’ types) are differentiable in the
chosen action, a key challenge is that in auctions, their ex-post utilities given realizations of valuations
and other agents’ actions have nontrivial discontinuities. Only the latter, however, can be directly
observed in the data generated during self-play. As a result, standard ways of gradient computation
(i.e., backpropagation from the observed data) fail and necessarily would result in constant-zero
bids by all bidders. We address this problem by deriving pseudo-gradients via evolutionary strategy
optimization rather than exact gradients via standard learning methods.
We extend recent results on the convergence of projected gradient ascent to Nash equilibria in

complete-information games, which provides us with sufficient conditions when we can certify a
Bayes-Nash equilibrium. An extensive experimental evaluation on a variety of sealed-bid auction games
is provided where we compare against the analytical BNE strategy where it is known. The analysis
includes standard single-item first- and second-price sealed-bid auctions, combinatorial auctions
and different versions of first- and second-price multi-unit auctions. For single-item auctions, we



4

analyze symmetric and asymmetric environments with several different priors, as well as auctions with
risk-averse agents. In the combinatorial setting, we analyze various types of core-selecting auctions
with single-minded agents and possibly correlated priors, but also environments with multi-minded
bidders and multiple pure-strategy Bayes-Nash equilibria. In the latter environment with multiple pure
Bayes-Nash equilibria, we know that the sufficient conditions for gradient dynamics to converge to a
unique Bayes-Nash equilibrium do not hold. Yet, NPGA converges to the payoff-dominant equilibrium.
The accuracy of the method and the speed of convergence is very high in all of these environments
and we are able to approximate the analytical BNE strategy with high precision whenever it is known.
While our evaluation mostly focuses on such environments (to provide an unambiguous benchmark),
we also discuss an estimator for approximation quality for environments where this is not the case.
Actually, NPGA converges in all the environments that we analyze.

The versatility of NPGA and the number of auction games where we can closely approximate the
BNE is remarkable and surprising given the established hardness results for equilibrium computation.
NPGA is generic and can easily be adapted to different types of auction games or other Bayesian
games. The method relies on no setting-specific domain knowledge beyond the ability to sample
outcomes of the (auction) game for given valuation- and strategy-profiles. Importantly, we do not
need to make any assumptions on the payoff function, the risk-attitude of bidders, the individual
prior value distributions, or independence between bidders’ valuations. NPGA exploits GPU hardware
acceleration to massively parallelize the computations, which allows us to achieve good approximations
within one or two hours even for the most complex combinatorial auction environments in our
experiments on a single GPU. Our experiments suggest that NPGA provides a powerful tool for
daunting equilibrium computation problems in incomplete-information games that are not yet well
understood theoretically.

1.2. Outline

The remainder of this paper is structured as follows: First, in Section 2, we define the problem,
introduce necessary notation and terminology, while Section 3 discusses related work. Then, in Section
4, we formally introduce NPGA and discuss a sufficient criterion to certify a strategy profile learned
by NPGA as a Bayes-Nash equilibrium. In Section 5 we introduce the experimental design, and in
Section 6 we present the empirical results of applying NPGA to sealed-bid auction games, before
concluding with a summary of our findings and outlook in Section 7.

2. Preliminaries
A complete-information game is a triple G= (I,A, u) where I = {1, . . . , n} describes the set of agents
participating in the game. Throughout this paper, we denote by the index −i a profile of types,
actions or strategies for all agents but agent i. A=A1× · · ·×An is the set of possible action profiles,
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with Ai being sets of actions available to agent i ∈ I. u is a vector of individual utility or payoff

functions ui :A→ R that assign the game outcome for each action profile. In a finite game, each

player i∈ I has a finite number of available actions, and the number of agents is finite. Games with

continuous action space, as discussed in this paper, are not finite.

A Bayesian game (with incomplete information) is described by a quintuple G= (I,A,V , F, u).

V = V1× · · ·×Vn is the set of type profiles, where Vi describe convex sets of type signals available to

agent i∈ I. F : V → [0,1] defines a prior probability distribution over type profiles that is assumed to

be common knowledge among all agents in the game. By a slight abuse of notation, for any random

variable X that depends on F , we will write FX for its cumulative distribution function and fX

for its probability density function throughout this paper. For example, Fvi
denotes the marginal

distribution of agent i’s type. At the beginning of the game, a type profile v∼ F is drawn and each

agent i is informed of their own type vi ∈ Vi only, thus the type constitutes private information based

on which each agent chooses an action bi ∈Ai. Each agent’s (ex-post) utility (or payoff) function is

then determined by ui :A×Vi→R, i.e. the agents’ utilities depend on all agents’ actions but only on

their own type. Players aim to maximize their individual utility ui.

In this paper we consider sealed-bid auctions on K= {1, . . . ,m}. In this setting, agents are commonly

referred to as bidders, types vi ∈ Vi are called private valuations and actions bi ∈Ai are called bids. In

single-item and multi-unit sealed-bid auctions, both possible valuations and feasible bids form convex

sets Vi,Ai ⊆Rm+ , in combinatorial auctions, these sets are generally convex subsets of 2K unless further

restricted. Without loss of generality, we further assume the prior distribution F to be atomless

on V. For sake of brevity, we limit the further formal description to single-item auctions (m= 1),

but the extension to multiple items is straightforward. In each auction, a valuation profile v ∈Rn+ is

drawn from F . Now, i submits a bid bi chosen according to some strategy or bid function βi : Vi→Ai
that maps valuations to actions. While randomization over actions via mixed strategies would be

possible, the literature on Bayesian auction games focuses on pure-strategy equilibria. We will likewise

restrict ourselves to pure-strategies here. We denote by Σi ≡ AVi
i the resulting strategy space of

bidder i induced by valuations Vi and by Σ≡
∏
iΣi the space of possible joint strategies. Note that

also for deterministic strategies, the spaces Σi are infinite-dimensional unless Vi are finite (in which

case the game remains infinite but is finite-dimensional). We will equip Σi with the inner product

〈·, ·〉Σi
: Σi×Σi→R; (α,β) 7→Evi∼Fvi

[α(vi)Tβ(vi)] and the norm ‖β‖Σi
≡
√
〈β,β〉Σi

such that they

form Hilbert spaces. The specific choice of inner product is motivated by deliberations about agents’

expected utilities and will become clear below.

When bidders have chosen their bids bi, the auctioneer collects these bids, applies some auction

mechanism that determines (a) an allocation x∈ {0,1}n, with xi = 1 if and only if agent i wins the
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item, or 0 otherwise, and (b) payments p∈Rn that the agents have to pay to the auctioneer. Given
some risk-constants ρi > 0, we model bidders’ utilities by the risk-adjusted payoffs

ui = (xi · vi− pi)ρi . (1)

Here ρi = 1 corresponds to the risk-neutral case with quasi-linear utility, whereas ρi < 1 indicates risk
aversion. In the case of multi-unit auctions, each agent is allocated an integer amount between 0 and
m units of the item and has valuations for each possible number of allocated units; in combinatorial
auctions, valuations and allocations are defined on the set of bundles of items.
In non-cooperative game theory on complete-information games, Nash equilibria (NE) form the

central equilibrium solution concept. An action profile a∗ is a pure-strategy NE of the game (I,A, u)
if ui(a∗i , a∗−i) ≥ ui(ai, a∗−i) for all a = (ai, a−i) ∈ A and all i ∈ I. Informally, in a NE no agent has
an incentive to deviate unilaterally, given that all other agents also play the equilibrium strategy.
Bayesian-Nash equilibria (BNE) extend this notion to incomplete-information games by calculating
the expected utility u over the conditional distribution of opponent valuations v−i: For a valuation
vi ∈ Vi, action bi ∈Ai and fixed opponent strategies β−i ∈Σ−i, we denote the ex-interim utility of
bidder i by

ui(vi, bi, β−i)≡Ev−i|vi
[ui (vi, bi, β−i(v−i))] . (2)

We will also use the shorthand notation ui(vi, β) when bi = βi(vi). We further denote the ex-interim
utility loss of an action bi that is incurred by not playing the best response action instead, given vi
and β−i, as

`(vi; bi, β−i) = sup
b′

i
∈Ai

ui(vi, b′i, β−i)−ui(vi, bi, β−i). (3)

Note that ` can generally not be observed in online-settings (since best-response actions are unknown
and expensive to compute) but is nevertheless useful for theoretical considerations. An (ex-interim)
ε-Bayes-Nash Equilibrium (ε-BNE) is a strategy profile β∗ = (β∗1 , . . . , β∗n)∈Σ such that no agent can
improve her own ex-interim expected utility by more than ε ≥ 0 by deviating from the common
strategy profile. Thus, in an ε-BNE the following holds for all agents i∈ I, all her possible types vi
and her chosen bids b∗i = β∗i (vi):

`i
(
vi; b∗i , β∗−i

)
≤ ε. (4)

A 0-BNE is simply called BNE. Thus, in a BNE, every bidder’s strategy maximizes her expected
ex-interim utility given opponent strategies for every possible type realization v ∈ V . While BNE are
most commonly defined at the ex-interim stage of the game, one might also consider ex-ante Bayesian
equilibria as strategy profiles that concurrently maximize each player’s ex-ante expected utility ũ as
given by

ũi(βi, β∗−i)≡Ev
[
ui(vi, βi(vi), β∗−i(v−i))

]
= Evi∼Fvi

[ui(vi, bi, β−i)] . (5)
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Similarly defining the ex-ante utility loss of a given strategy βi ∈Σi by

˜̀(βi, β−i)≡ sup
β′

i
∈Σi

ũi(β′i, β−i)− ũi(βi, β−i), (6)

an ex-ante κ-BNE β∗ ∈Σ can be characterized by the equations ˜̀(β∗i , β∗−i)≤ κ for all bidders i∈ I.
In fact, given the Bayesian game G= (I,A,V , F, u), one can consider G̃= (I,Σ, ũ), which is an

infinite-dimensional, complete-information game where the strategies β of G form the actions of G̃.
We will call G̃ the ex-ante game associated with G. The set of ex-ante BNE of G is then equivalent to
the set of NE in G̃. Clearly, every exact ex-interim BNE also constitutes an exact ex-ante equilibrium.
The reverse holds almost surely, i.e. any ex-ante equilibrium fulfills equation 4, except possibly on a set
V ⊂V with F (V ) = 0. To see this, one may consider the equation 0 = ˜̀(β∗) = Evi

[
`(vi;β∗i (vi), β∗−i)

]
and the fact that `(β, vi)≥ 0 by definition. Importantly, this almost-everywhere equivalence of ex-ante
and ex-interim BNE holds for ε= 0 but not for strictly positive ε. Given an ex-ante κ-BNE, equation
4 with ε= κ must only hold in expectation but may be violated for arbitrary many vi. To delineate
this difference between ex-ante and ex-interim approximate equilibria, we will write κ and ε to denote
their respective approximation bounds.
Finally, differentiability of u, u and ũ will be of importance. As we will see, the ex-post utilities

u are crucially not differentiable in auctions. Nevertheless, differentiability will often hold for the
expected ex-ante and ex-interim utilities. Let us introduce some desirable regularity conditions for
theoretical analysis:

Definition 1 (Smooth Bayesian game). We call a Bayesian game smooth if the ex-interim
utilities ui(vi, bi, β−i) are continuously differentiable with respect to bi ∈Ai for each i ∈ I and a.e.
v∼ F , all partial derivatives are uniformly bounded by a finite constant Z <+∞:∥∥∥∥ ∂ūi∂bik

(vi, bi, β−i)
∥∥∥∥≤Z ∀i∈ I, bi ∈Ai ⊆Rm, k ∈K, vi ∈ Vi, β−i ∈Σ−i, (7)

and the ex-post utilities are square-integrable: There exists S > 0, s.t. for all i∈ I and β ∈Σ we have

Ev
[
ui (vi, βi(vi), β−i(v−i))2

]
≤ S. (8)

In smooth Bayesian games, we will write ∇ui(vi, bi, β−i)≡ (∂ui(vi, bi, β−i)/∂bik)k and call it the
ex-interim payoff gradient. Furthermore, when G is smooth, the ex-ante gradient ∇βi

ũi(βi, β−i)∈Σi,
which formally constitutes the Gâteaux derivative in the Hilbert spaces Σi, are also guaranteed to
exist.

For a concrete example of an auction game, consider the (single-item) First-Price Sealed-Bid (FPSB)
auction: The highest-bidding agent j (s.t. ∀i 6= j : bj > bi) wins, is allocated the item and pays her own
bid as price pj = bj , thus her risk-neural ex-post utility will be uj = vj − bj . All other agents i neither



8

get the item, nor do they have to pay anything: ∀i 6= j : ui = 0. In the independent private values model,
where all Fvi

are independent and identical, it is common to also assume symmetric bid functions
βi ≡ β. The expected utility can then be described as ui(bi) =G(β−1(bi))(vi− bi), where β−1 is the
inverse bid function and G(v) = Fvi

(v)n−1 is the common prior of the valuations of all other agents.
Assuming this symmetry, setting to zero the payoff gradient ∇bi

ui = g(vi)
β′(vi)

(vi− bi)−G(vi) results in
an ordinary differential equation d

dv
(G(v)β∗(v)) = v · g(v) which, in turn, yields a closed-form solution

β∗(v) to equation (4) (Krishna 2009). More general auction games with asymmetric priors Fvi
6= Fvj

or multiple items often lead to systems of partial differential equations for which it might neither
be known if a solution exists, nor how to solve them analytically. It is known that monotonicity
of the payoff gradient is a sufficient property for Bayesian games to exhibit a unique Bayes-Nash
equilibrium (Ui 2016). Unfortunately, it is also difficult to characterize such structural properties for
most auctions.

3. Related Literature
In what follows, we survey existing hardness results, approaches to equilibrium learning, and initial
research on computing approximate Bayes-Nash equilibria.

3.1. Hardness of Equilibrium Computation

The computation of Nash equilibria has received significant attention after the initial contribution by
John Nash on the existence of such equilibria in complete-information normal-form games (Nash et al.
1950). However, it was shown that the problem is PPAD-complete already for 2-agent normal-form
games (Daskalakis et al. 2009) and it is hard to approximate (Rubinstein 2016). The computation
of Nash equilibria for 3 or more agents is even FIXP-complete, i.e. complete for the class of search
problems that can be cast as fixed point computation problems (Etessami and Yannakakis 2007).
Determining whether a pure-strategy BNE exists in a finite Bayesian game is NP-complete and

these hardness results also hold if there are only two agents and the game is symmetric (Conitzer and
Sandholm 2008). Finding a mixed Bayesian equilibrium in a Bayesian game is, of course, PPAD-hard,
but might be even harder, but little is known in general. As indicated in the introduction, Cai and
Papadimitriou (2014) show that finding a BNE in simultaneous single-item Vickrey auctions for
which the bidders have combinatorial valuations is hard for the class PP (the decision version of ]P),
which is much harder than NP. Even certifying a BNE is PP-hard, which casts doubt on the question
whether BNE can at all be predictive in the field. Besides, the authors show that it is even NP-hard
to find a strongly Bayesian approximate coarse correlated equilibrium in the simultaneous Bayesian
auction game. Note that environments with continuous action space are not finite games, and the
existence result by Nash does not carry over. We are not aware of a proof that a possibly mixed
Bayesian equilibrium always exists in such games. Athey (2001) showed conditions for pure BNE to
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exist, Carbonell-Nicolau and McLean (2018) provided conditions that guarantee the existence of a
BNE, while Ui (2016) characterized strong payoff-monotonicity as sufficient condition for uniqueness
of BNE in ex-post differentiable continuous-action Bayesian games.

3.2. Equilibrium Learning
Our research is best situated in the literature on equilibrium learning. Learning in complete-information
normal form games has a long history and has been extensively studied in game theory and, more
recently, multi-agent reinforcement learning. One class of methods is formed by best response dynamics.
The earliest such method, published by Cournot in 1838 has agents play a pure strategy best response
against other agents’ strategy used in the previous iteration. In Fictitious Play (FP) (Brown 1951), a
best response is instead played against the strategy profile induced by opponents’ empirical frequencies
of play in all previous iterations. When the empirical frequencies of FP converge, the limit constitutes
a Nash equilibrium, but the actual play only converges in special cases of normal form games such as
potential games (Monderer and Shapley 1996).
Gradient dynamics constitute another class of equilibrium learning algorithms. Generalized Infinites-

imal Gradient Ascent (GIGA) (Zinkevich 2003) or GIGA-WoLF (Bowling 2005) are examples of
gradient dynamics in normal form games, where in each iteration, for each agent we move a step
along the direction of the utility gradient, and then project the resulting point back to the set of
feasible mixed strategies. If, aggregating over the stages of the process, the agent’s regret grows
sublinearly, then there is “no regret” asymptotically. GIGA’s total regret is O(

√
T ), where T is the

number of steps in a repeated strategic game. Hazan et al. (2007) give an algorithm with a total
regret of O(log(T )). More recently, motivated by the emergence of Generative Adversarial Networks,
there has been a focus on (complete-information) games with continuous action spaces and smooth
utility functions (Letcher et al. 2019, Balduzzi et al. 2018, Schäfer and Anandkumar 2019). A result
found for many of the studied settings and algorithms is that gradient-based learning rules do not
necessarily converge to Nash equilibria and may exhibit cycling behavior, but often achieve no-regret
properties and thus converge to Coarse Correlated equilibria (CCE) in complete-information games.
An analogous result exists for finite-type (but possibly continuous-action) Bayesian games, where
no-regret learners are guaranteed to converge to a Bayesian CCE (Hartline et al. 2015).

Gradient dynamics are known to converge in certain types of normal-form games such as potential
games, bilinear games (Singh et al. 2000b), and convex games (Mertikopoulos and Zhou 2019).
Letcher et al. (2019) explores gradient dynamics in complete-information continuous-action differential
games. If ex-post payoffs are twice continuously-differentiable, they find properties such that gradient
dynamics converge to at least local equilibria. Unfortunately, the ex-post utility in our auction games
is not differentiable. More importantly, these techniques are defined for complete-information games
with finite-dimensional action-spaces while we search for general functions. Unfortunately, a thorough
understanding of the convergence and limiting behaviors in general continuous games is still missing.
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3.3. Algorithms for Computing Approximate BNE

Earlier approaches to compute approximate BNE in auctions either comprised solving the set of
nonlinear differential equations resulting from the first-order conditions of simultaneous maximization
of the bidders’ payoffs (Marshall et al. 1994, Bajari 2001), or of restricting the action space, e.g. through
discretization (Athey 2001). Armantier et al. (2008) introduced a general BNE-computation method
that is based on expressing the Bayesian game as the limit of a sequence of complete-information
games but defining this sequence requires setting-specific analysis. More recently, research in machine
learning contributed to learning good bidding strategies in repeated revenue-maximizing auctions
(Nedelec et al. 2019).

Bosshard et al. (2017, 2020) were the first to compute BNE in more complex combinatorial auctions
in two recent papers. Their innovative approach explicitly computes point-wise best-responses in a
fine-grained linearization of the strategy space via sophisticated Monte-Carlo integration. Assuming
independent priors (Fvi|v−i

= Fvi
) and risk-neutrality of agents, their verification method can guarantee

an upper bound ε on the ex-interim loss in payoff, thus provably find an ε-BNE. The high worst-case
ex-interim precision comes at computational cost for more complex environments with multi-minded
bidders.

NPGA works entirely different compared to prior best-response algorithms. It learns bid functions for
all possible values (rather than point-wise) by searching the parameter space of the bid function via ex-
ante gradient ascent. It can be adapted to various types of Bayesian games with low reimplementation
effort. Importantly, with the massively parallel implementation of NPGA, we can compute approximate
BNE even for complex first-price combinatorial auctions in less than 1.5 hours on consumer-grade
hardware. NPGA neither requires discretization of the value or action space as in Athey (2001) nor
does it rely on twice differentiable payoff or loss functions as required in the literature on differentiable
games (Singh et al. 2000a, Letcher et al. 2019). We also do not make assumptions on the risk attitude
or independence of the bidders’ valuations, making NPGA a remarkably general numerical solver to
analyze the equilibria of auction games and other complete- or incomplete-information games.

4. Neural Pseudogradient Ascent
In this section, we will first outline the basic algorithmic approach of NPGA, describe problems with
standard backpropagation in neural networks in this context, and show conditions when we can certify
an (ex-ante) κ-BNE.

4.1. NPGA as a Gradient Ascent Scheme

NPGA implements an online gradient ascent scheme, a method known from online convex optimization.
Therefore, we briefly introduce some relevant terms and definitions. In online convex optimization, an
agent makes decisions in an iterative decision process. Online algorithms might make several feedback
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assumptions: This could be full information about the function u to be optimized, or merely oracle
feedback on the n-th order derivatives of the function. Examples are bandit feedback where the agent
observes u(b) for specific b∈A or gradient feedback, where the agent observes ∇u(b). This feedback
might also be noisy where some noise term is added to the gradient at each step. The latter is the
type of feedback relevant for NPGA.

After making a decision, the decision maker observes the feedback from the oracle and suffers a loss,
which can be adversarially chosen. A central performance criterion is regret, which is the difference
between the total cost she has incurred and that of the best static decision in hindsight. An algorithm
performs well if its total regret grows sublinearly, i.e. the loss in each stage asymptotically approaches
zero.

Definition 2 (No-regret learner). Given a complete-information game G= (I,A, u) that
is played repeatedly, we call a sequence of action profiles (bt)t∈N a no-regret sequence if for each agent
i the regret against any fixed action b′i ∈Ai vanishes to zero,

lim
T→∞

1
T

T∑
t=1

ui(b′i, bt−i)−ui(bt) = 0.

One of the best-known approaches in convex optimization is (projected) gradient ascent. At each
stage, the algorithm takes a step towards the gradient of the objective. Then the resulting point
is projected back onto the problem’s feasible region, and the process repeats. When faced with a
different objective function at each step as is the case in online convex optimization, this results in
the online gradient ascent algorithm.
Online gradient ascent enjoys an O(

√
T ) regret bound in the presence of stochastic first-order

feedback, and is known to be a no-regret learner (Zinkevich 2003), as is dual averaging (Nesterov 2009).
Dual averaging aggregates all previous gradient feedback in dual space, the result is then mirrored
onto the problem’s feasible region. A new gradient observation is generated, and the process repeats.
The mirroring step is determined by a strongly convex regularizer. With the squared Euclidean norm
as regularizer, dual averaging is equivalent to online gradient ascent. We’ll draw on both methods in
what follows.

As indicated, NPGA implements an online gradient ascent algorithm with stochastic first-order
feedback. We provide a succinct description of an online gradient ascent scheme in Algorithm 1 and
a detailed pseudo-code for NPGA later in Algorithm 2. Note that we want to find a Bayes-Nash
equilibrium strategy β∗i in the ex-ante state of the game, i.e. for a continuum of types vi that a bidder
can have. Crucially, this means that we want to perform projected gradient ascent in strategy space
Σ and with respect to the ex-ante utilities ũ, i.e. understanding the game in algorithm 1 to be the
ex-ante game G̃. At each time t, every agent i∈ I receives a (noisy) estimate ∇̂ũi of her individual
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(ex-ante) payoff gradient at the current strategy profile. The agents simultaneously take a step along
this gradient estimate and then chose a bid for the next stage and continue playing. Feasibility in
each iteration is ensured in online gradient descent by including a Euclidean projection ProjΣ onto
the the set of feasible strategies. However, as strategies and gradients are infinite-dimensional vectors
in a Hilbert space, this gradient ascent scheme in Algorithm 1 cannot be implemented directly.

Algorithm 1: Gradient Ascent scheme
Input: complete-information game G= (I,A, u), initial action profile b0 ∈A, step size

sequence ηt,

for t := 0,1,2, . . . do
∀i : observe ∇̂ui(bt) ; // observe noisy payoff gradients

∀i : bt+1
i := Proj[bti + ηt∇̂ui] ; // take projected gradient step

end

Instead, we model each agent’s bid function (or strategy) βi(vi) by a neural network, called policy
network πi(vi; θi), which determines bids bi = πi(vi; θi). The policy network is determined by an
appropriate neural network architecture and by a parameter vector θi, which represents di weights
and biases of the network. Thus, for the space of possible parameters we have Θi ⊆ Rdi . These
finitely many network parameters can now be considered the actions in yet another finite-dimensional
complete-information game.

Definition 3 (Proxy game). Let G= (I,A,V , F, u) be a Bayesian game with ex-ante utilities
ũi and let its strategy functions be implemented by some neural network: βi(vi) ≡ πi(vi; θi) with
parameters from some finite-dimensional vector space Θi ⊆Rdi . The resulting game on parameters
Γ = (I,Θ, ũ) with Θ≡

∏
iΘi is a finite-dimensional complete-information game, which is called the

proxy game.
Here we slightly abuse notation and write ũi(θi, θ−i)≡ ũi(πi( · ; θi), π−i( · ; θ−i)). Importantly, common

neural network architectures, like the ones we will use, have been shown to be able to approximate
arbitrarily well any possible (sufficiently regular) function βi, thus the equilibria in G̃ and Γ are
likewise equivalent (up to an error imposed by the approximation capacity of the chosen neural net
architecture).

At a high level, in NPGA, agents observe their individual payoff gradient with respect to θi under
the current strategy profile and apply a small update to their neural network parameters θi (not to
the bids bti directly) that will lead to an improvement in payoff. With the NPGA policy network,
we have transformed the search for bid functions β in an infinite-dimensional strategy space Σ to a
search in a d≡

∑
i di dimensional parameter space Θ of the neural networks.



13

Next, we will discuss the projection step onto the feasible region: In NPGA, we ensure feasibility of
strategies directly by choosing a neural network architecture that only produces feasible bids. In our
implementation, this means applying a ReLU activation in the output layer, which ensures that bids
will always be non-negative. Thus, for any parameter θi ∈Rdi and valuation vi ∈ Vi, bi = πi(vi; θi) will
become a feasible (non-negative) bid bi ∈Ai with 0≤ bi <∞, and we can therefore identify Θi ≡Rdi .
The projection step of online projected gradient ascent is thereby superfluous and not required in our
implementation.

The final, and most important, question is how the feedback oracle ∇̂ũi in this online optimization
can be implemented and computed in self-play.

4.2. Evolutionary Strategy Pseudogradients
The canonical way of implementing the gradient update would now be to calculate the payoff gradients
∇θũ via sampling ex-post outcomes and applying stochastic gradients via backpropagation (Rumelhart
et al. 1986): If the ui were ex-post differentiable, the policy gradients would be given by

∇θi
ũi(θi, β−i) = Ev

[
∇θi

π(vi; θi)∇bi
ui(vi; bi, β−i(v−i))|bi=πi(vi;θi)

]
, (9)

and we could stochastically sample the right hand side to get unbiased gradient estimates. However,
auction mechanisms are not ex-post differentiable, thus the rightmost gradient term in (9) is not
well-defined. In the following, we demonstrate that learning via backpropagation necessarily fails in
auction games, even on ex-post differentiable intervals of u, and we instead propose direct ex-ante
gradient estimation via evolutionary strategies, an important ingredient of NPGA. Exact gradients
∇bu of the ex-post utility for a fixed valuation and opponent strategy profile (vi, β−i) lead to problems
in gradient updates, because agent i’s ex-post utility will generally be discontinuous in her action.
This is inherent as allocations are discrete: An agent either wins or doesn’t win an item. On any given
segment of the action space that corresponds to a specific allocation, gradients for all agents will
always be non-positive (in all coordinates), as shown in Figure 1 for the one-dimensional single-item
case. Backpropagation will thus lead to a steady decrease of bids in every iteration.
Evolutionary strategies (ES) present an alternative method for gradient estimation in neural

networks that is more applicable in our setting. Most recently, ES has been proposed as a competitive
alternative to backpropagation in MDP-based reinforcement learning (Salimans et al. 2017). In ES,
the parameter vector θ of the model is perturbed randomly P times, for example by adding P

i.i.d. zero-mean, σ2-variance Gaussian noise terms ε1, . . . , εP . The resulting P perturbed models are
evaluated with respect to their “fitness” ϕp ∈R and the model is ultimately updated with a step size
η in the direction of the weighted average of the P noise vectors εp with more desirable perturbations
being weighted higher than less desirable ones:

θt+1 ≡ θt + η

σ2P

P∑
p=1

ϕpεp. (10)
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Figure 1 Ex-post utility function ui(bi) in First-Price Sealed-Bid Auction for fixed opponent bids b−i with highest
opponent bid b

(1)
−i . For any given bid bi, the gradient ∇ui(bi) will be zero whenever the agent is not

winning the item, and negative whenever she is. When all agents update their strategies using analytical
gradients, they will thus eventually all bid zero.

While Salimans et al. (2017) mainly motivate this alternative update with the need for large scale
parallelization across CPU clusters and computational deficiencies of backpropagation in distributed
hardware environments, the method also exhibits an important property that is crucial in our context.
The finite perturbations solve the problem of inconsistent gradient signals at discontinuities of the
utility, and serve as a smoothing technique. If an agent is barely losing an auction, a small perturbation
resulting in a higher bid will also result in the agent winning the auction, thus providing a positive
“pseudo-gradient” signal. The noise-hyperparameter σ > 0 shall be just large enough to serve this
purpose. At the same time, for σ→ 0, the ES pseudogradient is in expectation identical to the
analytical infinitesimal gradient (whenever the latter is well-defined). In NPGA, we thus use ES
pseudogradients to implement the stochastic first-order feedback in Algorithm 1.

In our actual implementation, we extend the basic ES algorithm from Salimans et al. (2017) with
two common practices from reinforcement learning and optimization: (a) we use the agent’s utility
in the previous iteration ũt−1

i as a baseline parameter to reduce sampling variance in the fitness
function, and (b) we replace the pseudo-gradient update with a generalized gradient ascent method
to smoothen the learning trajectories. In particular, we found that Momentum or Adam (Kingma and
Ba 2015) work well. A complete description of NPGA is provided in Algorithm 2.
Finally, in NPGA, we extend online gradient ascent in one more way: We sample large batches

of valuation profiles (valuations for all agents) vh = (v1,h, . . . , vn,h) simultaneously and calculate the
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Algorithm 2: Neural Pseudogradient Ascent using Evolutionary Strategy gradients
Input: agents i∈ I with initial policy β0

i := πi( · ; θ0
i ), with initial parameters θ0

i ; ES population
size P ; ES noise stddev σ; learning rate η; batch size H

for t := 1,2, . . . do
Sample a batch (vh)h=1..H of valuation profiles, with vh ∼ F
Calculate joint utility in current strategy profile:

ũt−1 := 1
H

∑
h

ũ
(
βt−1(vh)

)
for each agent i∈ I do

Sample P perturbations of agent i’s current policy:

πi;p := πi( · ; θp)

with θp := θt−1
i + εp and εp ∼N (0, σ2I) i.i.d. ∀p∈ [P ]

For each p, evaluate the fitness by playing against current opponents:

ϕp := 1
H

∑
h

ui
(
πi;p(vh,i), βt−1

−i (vh,−i)
)
− ũt−1

i︸︷︷︸
baseline

Calculate ES pseudogradient as fitness-weighted perturbation noise:

∇ES := 1
σ2P

∑
p

ϕpεp

Perform a gradient update step on the current policy:

∆θti := ηt∇ESũt−1
i (βt−1(v)), θti := θt−1

i + ∆θti , βti := πi( · ; θti)

end
end

resulting utilities and payoff gradient estimates in parallel leveraging modern hardware accelerators

like GPUs. With a batch-size H � 1, we can therefore vastly reduce the variance of the gradient

estimate in each iteration and thus the number of necessary learning iterations in comparison to

standard online gradient ascent which expects sequential sampling. Overall, one innovation in NPGA

is how we exploit GPU-acceleration to perform parallel computations over the entire type space in

Bayesian games. While neural networks are suitable to such GPU-accelerated computation by design,

this requires appropriate batched implementations of the auction formats.
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4.3. Certification of BNE

The interaction of gradient dynamics and neural networks leads to a fairly complex algorithm such

that an analysis is obviously challenging. Until very recently, convergence of no-regret dynamics to

Nash equilibria was only known for restricted types of finite games. We draw on a very recent result

by Mertikopoulos and Zhou (2019) on the convergence of no-regret learners to Nash equilibria in

finite-dimensional continuous-action and concave complete-information games.

Theorem 1 (Mertikopoulos and Zhou (2019), Theorem 4.1). Suppose that dual averaging

is run with stochastic gradient estimates satisfying zero mean, and finite mean squared error, and

a step-size sequence that is square summable but not summable and produces the sequence (at)t∈T
of action profiles. If a complete-information game with finite-dimensional continuous action space

A⊆Rd is (pseudo-)concave and the sequence of pure strategy profiles (ati)t∈T converges to a∗i ∈Ai for

all i∈ I with positive probability, then a∗ is a Nash equilibrium.

Convergence of no-regret algorithms to Nash equilibria is remarkable, because such algorithms

otherwise only converge to coarse-correlated equilibria (Blum and Mansour 2007, Stoltz and Lugosi

2007), and the same is true for Bayesian games with finite type spaces (Hartline et al. 2015), as we

discussed in Section 3.2.

In contrast to Mertikopoulos and Zhou (2019) we search for an (ex-ante) Bayes-Nash equilibrium

function β∗ in a Bayesian game rather than a complete-information game. The ex-ante state of

the game can be interpreted as a complete-information game G̃ with an infinite-dimensional action

space Σ. At first sight, the infinite-dimensional action space is in contrast to the assumptions in

Mertikopoulos and Zhou (2019). However, instead of finding an equilibrium bid function in an infinite-

dimensional action space, we approximate this bid function with a neural network, which has finitely

many continuous parameters. We can consider the search for parameters as a finite-dimensional

complete-information game Γ.

In order to draw on Theorem 1, we require the proxy game Γ to be concave. Assume that the

ex-ante game G̃ is itself concave.1 Then we desire that concavity of G̃ carry over to concavity of the

finite-dimensional proxy game Γ, where the utility depends only on the network parameters θ. To

achieve this, we rely on a special class of convex neural networks for our theoretical analysis, which is

different from standard architectures used in practice or in our experiments.

1 Unfortunately, analytical verification of concavity in Bayesian games is elusive in general. Without setting-specific
theoretical analysis (which turns out to be difficult even for simple single-item settings), one may perform point-wise
checks for concavity but these only provide weak evidence as they cannot guarantee adherence on the entire action-space
in infinite games. Given the positive experimental results in Section 6, we suppose that payoff-gradient monotonicity
to be satisfied in many auction games.
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Definition 4 (Convex neural network). We call a network architecture πi : Vi×Θi→Ai a
convex neural network, or simply convex, if for every convex objective function g : Σi→R, the function
θi 7→ g(π(·, θi)) is convex.

Finally, we assume an NPGA policy network to be a convex neural network with a few properties:
Definition 5 (NPGA policy network). An NPGA policy network πi : Vi × Θi → Ai is a

concave neural network, with the following properties:
1. Lipschitz-continuous dependence of the network on its parameters: The networks πi depend

Lipschitz-continuously on the parameters θi in the following sense: There exists some L> 0, such that
for all i∈ I and θi, θ′i we have

Evi
[‖πi(vi, θi)− πi(vi, θ′i)‖] ≤ L‖θi− θ′i‖. (11)

2. Approximability of Σi by Θi: There exists a δ > 0, such that for all i∈ I and βi ∈Σi there exist
parameters θi ∈Θi such that

Evi
[‖βi(vi)− πi(vi, θi)‖] ≤ δ. (12)

Since we assume that for fixed β−i the function βi ∈ Σi 7→ ũi(βi, β−i) is concave, it follows that
the utilities in the finite-dimensional game Γ, given by θ 7→ ũi(πi(·, θi), π−i(·, θ−i)) are also concave
in θi, if πi is convex. Thus, if the networks πi are convex, concavity of G carries over to concavity
of Γ. Importantly, although most common neural network architectures are not convex, networks
that implement Definitions 4 and 5, i.e. which induce a convex optimization problem on θ, have been
shown to exist and to have universal approximation properties (Bach 2017). This means, they are
able to implement any reasonable bid function βi with arbitrary precision (depending on network
size), which justifies the assumption in equation (12) of approximability.

Note that Mertikopoulos and Zhou (2019) focus on the dual averaging method (Nesterov 2009) in
their analysis of no-regret learning in complete-information games. Dual averaging as well as projected
online gradient descent as described in Algorithm 1 include a projection step, where the result of
a gradient step is projected back to the set of feasible actions. Here, we apply the theorem to the
simultaneous search for optimal neural net parameters of all agents. As discussed earlier, the ReLU
output activations in the NPGA policy network ensure that bi = πi(vi; θi) are non-negative and thus
the resulting bids are feasible for any θi in the NPGA policy network, such that no projection is
required. Therefore, our analysis is based on simultaneous gradient ascent as it is widely used in
neural networks and which is known to be no-regret when producing feasible actions (Zinkevich 2003).

Proposition 1. Let G be a smooth and concave Bayesian game, and πi( · ; θi) be NPGA policy
networks with Θi = Rdi . Suppose that the updates in NPGA are chosen as ∆θti ≡ ηt∇ESũt−1(βt−1(v)),
where the step sizes (ηt)t∈N are square summable but not summable. If the sequence (θt)t∈N produced
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by NPGA converges to θ∗ ∈Θ with positive probability, then the strategies πi( · ; θ∗i ) form a κ-Bayes-

Nash-Equilibrium of G where κ∈O(δ+L
√
dσ), σ is the smoothing-parameter of the NPGA algorithm

and d= maxi di is the maximum dimension of the parameter spaces Θi.

Note that the ex-ante error κ can be divided into an O(δ) part, which simply says that the error is
linear in the “density” δ of the network, and a O(L

√
dσ) part, which describes the error that comes

from the fact that we do not use exact gradients. Further note that the factor
√
d here should not be

interpreted as some “curse of dimensionality”: The smoothing parameter σ denotes the magnitude of
perturbation of a single parameter of the parameter vector θi ∈Θi. Thus, if we keep σ constant, but
increase the number of parameters di, the total magnitude of perturbation increases. So, in order to
keep the “total perturbation” constant, σ should be chosen proportional to 1/

√
d.

Proof of Proposition 1: Recall once again that the ex-ante state of the game can be seen as a
complete-information game G̃ with an infinite-dimensional action space Σ. Now, we replace players’
bid functions by NPGA policy networks πi( · , θi), which approximate βi, which yields the proxy game
Γ = (I,Θ, ũ) as described above. Note that Γ is a concave game by Definition 4.
The NPGA algorithm follows a gradient ascent scheme with respect to the ũi(θi, θ−i), where

gradients are approximated by ∇ES. Note that Theorem 1 requires unbiased gradient estimates.
However, the pseudo-gradients computed in the NPGA are in general not unbiased with respect to
ũi(θi, θ−i). Indeed, they are (in expectation) exact gradients of the “smoothed” utilities ũσi (θi, θ−i) =
Eε∼N (0,σ2I) [ũi(θi + ε, θ−i)]. This defines yet another finite-dimensional game Γσ = (I,Θ, ũσ).

Lemma 1. The gradient estimates ∇ES in NPGA are unbiased and have finite mean squared error

with respect to the smoothed utilities ũσi of the game Γσ.

One can easily check, that for a convex function f : Rd→R, also x 7→Eε∼N (0,σ2)[f(x+ ε)] is convex:
For x, y ∈Rd and λ∈ [0,1] we have

Eε∼N (0,σ2) [f(λx+ (1−λ)y+ ε)] = Eε [f(λ(x+ ε) + (1−λ)(y+ ε)] (13)

≤ λEε[f(x+ ε)] + (1−λ)Eε[f(y+ ε)]. (14)

Thus, ũσ satisfies all the assumptions from Theorem 1. Consequently, if NPGA converges in the
smoothed game Γσ, we found strategies θ∗ that yield zero loss by Theorem 1. Now, since ũσi (θi, θ−i) is
close to ũi(θi, θ−i), these strategies have a small loss in Γ as well:

Lemma 2. Consider the utility loss ˜̀Γ
i (θi, θ−i) of agent i with respect to the utility function ũi in

the finite-dimensional proxy game Γ, and the utility loss ˜̀σ
i (θi, θ−i) with respect to the smoothed utility

ũσi in the game Γσ. Then
˜̀Γ
i (θi, θ−i) ≤ ˜̀σ

i (θi, θ−i) + 2ZL
√
diσ.
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Since the loss of θ∗ in Γσ is zero, this gives ˜̀Γ
i (θ∗i , θ∗−i)≤ZL

√
diσ. Finally, as we assume approximability

of any function in Σi by the network πi (Assumption (12) in Definition 5), we can use a similar
argument as in Lemma 2 to show that the loss of θ∗ in the original infinite-dimensional game remains
small: Let βi ∈Σi be a best response to θ∗−i. Notice that now βi is chosen from the whole strategy
space Σi, and is in general not induced by network parameters θi. However, by assumption, there
exist network parameters θ̃i such that

Evi

[
‖βi(vi)− πi(vi, θ̃i)‖

]
≤ δ.

Consequently,

ũi(βi, θ∗−i)− ũi(θ̃i, θ∗−i) = Evi

[
ūi(vi, βi(vi), θ∗−i)− ūi(vi, θ̃i, θ∗−i)

]
≤Z Evi

[
‖βi(vi)− πi(vi, θ̃i)‖

]
≤Zδ.

It follows that we can bound the ex-loss in the game G the following way:

˜̀
i(θ∗i , θ∗−i) = ũi(βi, θ∗−i)− ũi(θ∗i , θ∗−i) = (ũi(βi, θ∗−i)− ũi(θ̃i, θ∗−i)) + (ũi(θ̃i, θ∗−i)− ũi(θ∗i , θ∗−i))

≤Zδ+ ˜̀Γ
i (θ∗i , θ∗−i)≤Zδ+ 2ZL

√
dσ =O(δ+L

√
dσ)

Proofs for the Lemmata 1 and 2 are given in the appendix. This completes the proof of Proposition 1.
�

5. Experimental Design
In order to evaluate the versatility of NPGA to learn BNE in auction games, we explore a large
number of auction settings with single or with multiple items. Table 1 provides an overview of the
auction games that we analyze. For most of them, analytical BNE are known and can serve as an
unambiguous benchmark. However, we also analyze some settings where no BNE are known. In these
cases, in order to evaluate the quality of the outcome, we estimate the utility loss ˜̀ incurred by not
playing a best response to the other agents strategies.

5.1. The Auctions

We begin with single-item auctions for which we consider two different payment rules, namely second-
price sealed-bid (a.k.a. Vickrey/VCG auctions) and first-price sealed-bid (FPSB); we consider both
risk-neutral and risk-averse bidders with symmetric priors, either following a uniform or a Gaussian
distribution. In addition, we explore two cases with asymmetric uniform priors, one with overlapping
and the other with non-overlapping support of the individual type spaces.

We continue with multi-unit auctions in which bidders compete for multiple homogeneous units. The
standard payment rules for selling multiple units include “pay-your-bid” (discriminatory-price) and
uniform-price (all items are sold at the same price). For the sale of m identical objects K= {1, . . . ,m},
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Type Payment rule Agents
Single-item VCG risk-neutral

FPSB symmetric risk-neural, uniform prior
FPSB symmetric risk-neural, Gaussian prior
FPSB symmetric risk-averse, uniform prior
FPSB asymmetric risk-neutral, uniform prior

Multi-unit discriminatory risk-neutral, uniform prior
uniform risk-neutral, uniform prior

Combinatorial VCG risk-neutral, uniform prior
(LLG, 2 items, single-minded) Core (nearest-VCG) risk-neutral, uniform prior
(independent values) Core (nearest-zero) risk-neutral, uniform prior

Core (nearest-bid) risk-neutral, uniform prior
FPSB* risk-neutral, uniform prior

(LLG, 2 items, single-minded) Core (nearest-VCG) risk-neutral, uniform prior
(correlated values) Core (nearest-zero) risk-neutral, uniform prior

Core (nearest-bid) risk-neutral, uniform prior
(LLLLGG, 6 items, multi-minded) FPSB* risk-neutral, uniform prior
(independent values) nearest-VCG* risk-neutral, uniform prior
(Split-award, 2 items, multi-minded) FPSB risk-neutral, uniform prior
Table 1 Overview of auction settings learned with NPGA. For settings with the asterix (∗) no analytical BNE is

known

the type profile and action profile of each bidder fulfills Vi,Ai ⊂Rm, leading to a total number of

n ·m bids and allocations x∈ {0,1}n×m. In each of the auctions, the items are awarded to the bidders

corresponding to the m-highest bids. Each bid-component corresponds to the bidders’ willingness to

pay for one additional unit. The utility in equation (1) extends naturally to

ui =
(

m∑
k=1

xi,k · (vi,k− pi,k)
)ρi

. (15)

A detailed introduction to these standard multi-unit auctions can be found in chapters 12 and 13 of

Krishna (2009).

Finally, we analyze three specific forms of combinatorial auctions. The first is known as a local-

local-global (LLG) auction with two items k = 1,2; two local bidders i= 1,2 who are interested only

in the item i; and one global bidder, interested in the set of both items {1,2} as perfect complements.

Agents in the LLG setting are single-minded, i.e. they are interested in one bundle only. In this

setting, we analyze environments both with independent priors F =
∏
iFvi

, and with correlated priors

Fvi|v−i
6= Fvi

, and consider FPSB and Vickrey-Clarke-Groves (VCG) as well as three core-selecting

payment rules for which Ausubel and Baranov (2018) provide closed form equilibrium solutions.

These payment rules are called the nearest-VCG, the nearest-zero, and the nearest-bid core-selecting

payment rules. We analyze these auctions in the independent private values model, but also allow for

correlation (Ausubel and Baranov 2018).
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An extension to LLG is the LLLLGG setting with 6 items, 4 local bidders, each interested in
two bundles of size 2, and 2 global bidders, each interested in 2 bundles of size 4. All bundles are
partially overlapping. Bidders in this setting are multi-minded and Ai = R2

+, significantly increasing
the complexity. A detailed description can be found in Bosshard et al. (2020), who introduced the
environment as a benchmark for a complex auction environment for which no analytical BNE is
known.
The third combinatorial auction exhibits two pure BNE, i.e. bidders face a coordination problem.

The model has been analyzed in the context of split-award procurement auctions (Anton and Yao
1992, Kokott et al. 2019). In first-price split-award auctions with two identical units, two suppliers
(bidders) who have diseconomies of scale compete by offering prices for taking one or both units
(Kokott et al. 2019). The auctioneer either buys one lot (50%) from each supplier or two lots (100%)
from a single supplier at the offered prices based on a FPSB payment rule, depending on which award
is cheaper. The equilibrium selection problem makes this environment particularly interesting.

5.2. Experimental Procedures

The focus of the experiments are the learned bidding strategies π( · ; θ), and their parameter vectors θ.
In our implementation, we use fully connected policy networks with 2 hidden layers of 10 nodes each,
using SeLU activation functions (Klambauer et al. 2017) in the hidden layers and a ReLU activation
function in the output layer2. Instead of standard gradient ascent, we apply the Adam optimization
algorithm with default parameters (see Kingma and Ba (2015)) and a learning rate of 0.001. In each
iteration we generate P = 64 perturbations of the network πi for ES gradient estimation, using zero-
mean Gaussian noise with a standard deviation of σ = 1/di (as suggested by Salimans et al. (2017)).
We use batch sizes of H = 218 chosen such that the largest (10-bidder) settings would fit into available
GPU memory. In the presence of asymmetries or multiple items, degenerate initializations (e.g.,
when some players never win) can impede convergence. To alleviate this, we force close-to-truthful
initializations by pre-training the networks towards the truthful strategy using supervised learning
(RMSE-loss, 500 steps of vanilla stochastic gradient descent). The network architecture performs well
throughout most of the settings presented here. We did not perform setting-specific hyperparameter
tuning to allow for comparable results. There are possibilities to improve the performance of our
results when tuning the hyperparameters for a specific environment.
When possible, we take advantage of symmetry in the game and implement self-play with model

sharing, i.e. symmetric bidders share a common policy πi( · ; θ) with identical parameter vector θ.
As a result, the inner for-loop in Algorithm 2 has to be computed only once each time, leading to

2 Note that this architecture does not adhere to Definition 4, but parameter search in neural networks usually works
remarkably well even when the induced problem is nonconvex. The exact reasons for this remain poorly understood.
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a considerable speedup in settings with many symmetric bidders. In the asymmetric first-price and
the local-global combinatorial settings, the weak and strong bidder and local and global bidders,
respectively, have different policy networks.
We implemented the auctions using the PyTorch framework (Paszke et al. 2017) with a focus on

computing many auctions in parallel. All experiments were performed on a single Nvidia Geforce
RTX 2080Ti GPU with 5000 iterations (unless noted otherwise) and 10 replications of every setting
provided in Table 1.

5.3. Evaluation Criteria

In order to assess the ability of NPGA to learn different auction settings and their BNE, we report a
number of evaluation criteria introduced in the following. In particular, we compare the performance
to the analytical BNE β∗, whenever known. For auction settings where the analytical BNE is unknown,
we estimate the utility loss of not playing a best response to the opponents actions. It is important to
stress that even though we use the analytical BNE in our evaluation, no knowledge of β∗ is used in
training: NPGA only uses information achieved from self-play of the network πi against other players’
networks π−i. Evaluations of πi against the (opponent) analytical BNE β∗−i are independent of the
learning algorithm and only performed for analysis.
To estimate ex-ante utility in self-play, we use the sample-mean of ex-post utilities achieved in a

batch which is an unbiased estimator:

û(βi, β−i)≡
1
H

∑
h

ui(vh;i, β(vh))≈ ũi(βi, β−i) (16)

Whenever an analytical BNE, β∗, is known we implement it and sample the BNE-utility of
a player ûi(β∗) ≈ ũi(β∗) as well as the utility of player i’s learned strategy βi against the BNE

ûi(βi, β∗−i)≈ ũi(βi, β∗−i) with a batch size of Heval = 222. With this batch size, the standard error of
the sampled BNE utility is on the order of Ω(10−4), so this provides a natural limit to the precision
of the results we report. Whenever additionally a closed-form solution of ũi(β∗) (and not just β∗) is
known, we use the closed form formulation for higher precision. We use the following metric as our
main evaluation criterion whenever available:
1. The relative utility loss incurred by not playing the BNE strategy profile β∗ but individually

deviating with the learned strategy βi:

L(βi)≡ 1− ûi(βi, β∗−i)/ûi(β∗) (17)

For a near-perfect strategy, the fractional term approaches 1 and the loss vanishes. It’s possible that
a learned strategy leads to a utility very close to that of the BNE strategy (L(βi) very close to zero),
yet there are differences of βi and β∗i in the action space. Therefore, a second metric is the RMSE.
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2. The probability-weighted root mean squared error of βi and β∗i in the action space, which
approximates the L2 norm of these two functions:3

RMSE(βi)≡
√

1
H

∑
h

(βi (vh;i)− β∗i (vh;i))2 ≈
√
Evi

[
(βi (vi)− β∗i (vi))2

]
= ‖βi− β∗‖Σi

(18)

In cases where no analytical BNE is available, we estimate the utility losses ˜̀ and ` that were
introduced in Section 2. Estimating these requires access to best response strategies for a given
opponent strategy profile. For a given valuation profile vh in a batch, we consider an equidistant
grid of W possible bids bw ∈ Ai of player i on the support of Fvi

,4 which in the single-item case
corresponds to possible bids bw ∈ [0, Vi] where Vi = maxVi. For each of these possible bids bw we
evaluate their ex-interim utility against the current opponent strategy profile, ui(vh;i; bw, β−i) (again
via Monte-Carlo sampling). We then estimate `i(vh;i, bw, β−i) by considering the best of these W bids
as the best response at vh;i:
λ̂h;i(vh;i; bh;i;β−i)≡maxw ui(vh;i; bw, β−i)−ui(vh;i, bh;i, β−i). Now we can define the following two

metrics:
3. The estimated ex-ante utility loss of a learned strategy profile β:

ˆ̀
i(βi) = 1

H

∑
h

λ̂h;i(vh;i;βi(vh;i);β−i)≈ ˜̀
i(βi;β−i) (19)

4. The estimated worst-case ex-interim utility loss of a learned strategy profile β:

ε̂i = max
h
λ̂h;i(vh;i;βi(vh;i);β−i)≈ sup

vi

`(vi;βi(vi), β−i) = inf ε︸︷︷︸
s.t. eq. 4 holds for i

(20)

Then maxi ε̂i can be considered an estimate of the smallest ε, such that β constitutes an ex-interim
ε-BNE and κ≡maxi ˆ̀

i is our best estimate for an ex-ante κ-BNE.
Both ˆ̀

i and ε̂i are imperfect: First, their computation for n players requires evaluating n ·H2 ·W
auctions (for each vi,h, W candidates for bi are evaluated over H values of b−i). We again leverage
concurrent computation on the GPU and use H = 212,W = 213 in our reports. Still, this is considerably
less efficient than a learning iteration, which requires the evaluation of only n · P · K auctions.
Second, both estimators are optimistically biased estimates of ˜̀ and the “true” ε, respectively. This is
because both ex-ante and ex-interim loss take into account many, but only finitely many, potential
ex-interim best responses b′i, and we can consider only finitely many potential worst-case valuations
vi. Nevertheless, these estimates are a useful decision aid and similar to those used in Bosshard et al.
(2020). Based on these estimates, we can now compute a relative ex-ante utility loss without the
analytical BNE available:

3 For multidimensional actions, m> 1, we flatten the vectors for simplicity, as there is no necessity for separate
evaluation in the presented settings.
4 For priors with unbounded support, we use the 99.9th percentile as the “maximum” value.
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5. The estimated relative ex-ante utility loss incurred by not playing a best response, approximating
the relative utility loss (equation 17) in the absence of known BNE:

L̂(βi) = 1− ûi(β)
ûi(β) + ˆ̀

i(β)
(21)

Note that while opponents play a BNE strategy when computing L(βi) they play their learned
strategy when computing L̂(βi). As a result, L(βi) can be larger than L̂(βi).5

Additionally, we report the runtime per iteration and, for all the experiments presented here, we
set the maximum number of iterations to 5,000, and for more complex experiments to 20,000, a-priori.
To indicate convergence in learning, we report stationarity once the maximum difference of the last
three consecutive measurements6 of ˆ̀ decreases below 0.0001, which can also constitute a termination
criterion.

6. Results
A full table of NPGA’s performance according to those criteria can be found in Table 10 in the
Appendix. It allows for a compact comparison of all experiments’ results while we focus on more specific
criteria when reporting the individual results. In the following subsections we start by describing the
analytical BNE solution, followed by a summary of the experimental results.

6.1. Vickrey-Clarke-Groves (VCG) Auctions
In any VCG auction, bidding truthful is a dominant strategy, therefore also a BNE (Vickrey 1961).

Result 1 NPGA converges to the BNE in only a few iterations because of pre-training to truthful
bidding. Without pre-training NPGA also learns a close approximation of the truthful strategy, but
after significantly more iterations.

Due to the pre-training to bidding truthful, NPGA is already in or very close to the BNE in
all experiments with VCG auctions, such as the single-item or in combinatorial auctions. We saw
convergence after just a few iterations in all Vickrey auctions (single-item and combinatorial), for all
priors (uniform and Gaussian), and for any number of bidders (up to 10 in the single-item case). We
thus omit detailed quantitative results for VCG auctions for brevity. When we did not pre-train to
the truthful strategy, NPGA also learned a close approximation to the truthful strategy, but after
serveral 100s to even thousands of iterations.
5 For the specific environment of combinatorial auctions with independent priors and risk-neutral agents, Bosshard
et al. (2020) report an ex-interim utility loss that is different. We also consider risk aversion and correlation in our
experiments. Besides, NPGA takes long to converge for very low valuations. These lead to wins very rarely such that
there is not much that can be learned in every round. Errors in the bidding strategy for very low values have very
little impact on the overall utility as the probability of winning is low and the payoff is low. This is why we focus on
ex-ante utility loss.
6 ˆ̀ is computed every 100 iterations.
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6.2. Single-Item Auctions
We consider symmetric as well as asymmetric single-item auctions. For both, we report the FPSB
only, as the second-price or Vickrey auction is covered in 6.1. In FPSB auctions, unique BNE are
known for n risk-neutral (ρ= 1) players with arbitrary but symmetric prior valuations, n risk-averse
(ρ < 1) bidders under symmetric uniform priors (Menezes and Monteiro 2005), as well as for 2 players
with asymmetric uniform valuation distributions with a stronger and a weaker player (Plum 1992).

Result 2 Considering symmetric bidders, both risk averse and risk neutral, with uniform distributed
valuations, NPGA converges to the BNE within a few minutes or up to 2h depending on the number
of bidders; with Gaussian distributed valuations NPGA doesn’t always meet the convergence criterion
in time. The relative utility loss L is <0.35% (uniform) and <1.3% (Gaussian) considering only few
bidders and ≤ 1% (uniform) and <3.2%(Gaussian) considering 10 bidders. The learned bid strategy
from NPGA closely approximates the analytical BNE.
With asymmetric bidders and overlapping valuations NPGA learns a strategy with L <0.7% for

both, the weak and the strong bidder. With non-overlapping valuations NPGA has difficulties learning
a good strategy for the weak bidder and results in a strategy with L <0.7% for the strong bidder and
20% for the weak bidder.

6.2.1. Symmetric We ran experiments in the symmetric environments with uniform and Gaus-
sian distributed valuations for 2, 3, 5 and 10 bidders each. In the uniform-prior case, we considered
risk-neutral r = 1 and risk-averse r = 0.5 bidders, with a Gaussian prior only risk-neutral bidders.
In all of these settings, we measure bidders’ utilities based on self-play in NPGA as well as when
unilaterally playing their learned strategy against the analytical BNE after each observation. We
observe convergence according to our convergence criterion described in Section 5.3 for uniform
distributed valuations but not always for normal distributed valuations, yet the utility as well as
utility loss is low and stable after around 18,000 iterations. One reason is that we focus on the absolute
difference of the ex-ante utility loss which varies more if valuations are higher as in this setting;
however, relying on a relative measurement leads to high fluctuation for minimal changes in settings
with low valuations. Another reason is the sample variance which, in future, can be reduced by an
increased batch size or more advanced sampling techniques.
Table 2 presents the utility loss incurred when playing a learned strategy against the analytical

BNE. When learning with this ‘standard’ architecture without any hyper-parameter tuning, NPGA
achieves a relative utility loss of less than 1.3% in all but one setting.
As an example, Figure 2 presents the learning behavior (a) and learning result (b) for NPGA in

a FPSB auction with symmetric-normal prior distributions for 10 bidders. First, all bidders’ utility
decreases because they are forced to increase their bids given the others bidding behavior (left). After
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Table 2 Results of NPGA learning in first-price auctions with symmetric bidders averaged over 10 runs. If not
all runs satisfied the convergence criterion, the number of runs that fulfilled the criterion are noted as subscript.

1After 5,000 iterations. 2After 20,000 iterations. 3Only the weaker 0.0005 criterion is met.

Setting bidders Relative loss L conv.
(iters)

sec per
itermean (stdev)

Uniform risk-neutral1
U(0,10)
ρ= 1

2 0.0001 0.0009 1,350 0.31
3 0.0017 0.0006 870 0.40
5 0.0034 0.0020 900 0.46

10 0.0084 0.011 720 0.73

Uniform risk-averse2

U(0,10)
ρ= 0.5

2 0.0011 0.0004 5,720 0.46
3 0.0006 0.0003 2,100 0.52
5 0.0012 0.0011 4,170 0.63

10 0.0100 0.0068 8,410 0.92

Gaussian risk-neutral2
N (15,100)
ρ= 1

2 0.0015 0.0011 – 0.31
3 0.0037 0.0043 7,0502

3 0.39
5 0.0129 0.0135 11,7005

3 0.44
10 0.0314 0.0212 9,6758

3 0.68
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egy (red line) after 20,000 iterations.

Figure 2 NPGA in 10-bidder FPSB with symmetric Gaussian valuation priors.

about 10,000 iterations the utility remains relatively stable at around 0.525, however, they are not
done learning. The dashed blue line shows the utility when the learned strategy plays against bidders
following the analytical BNE: the bidders improve still after iteration 10,000 and converge in utility
only after iteration 18,000 to around 0.52.

The resulting bid function is shown in 2b. The dotted blue line indicates the learned strategy and
the solid red line indicates the BNE strategy. We often see behavior where bidders do not conform to
the equilibrium strategy for low valuations, particularly in settings with a high number of bidders.
This results from the fact that in equilibrium, a bidder with a low random valuation will almost never
win an auction, and even if she does, the utility gained is minuscule. As a result, the learning with
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(b) LLG with nearest-zero core payment rule.

Figure 3 Learned strategies with NPGA. Solid lines correspond to analytical equilibria and dotted lines to the
learned strategy.

very low valuations converges very slowly to the analytical BNE. However, bidders learn the correct
bid level for more frequent valuations very quickly.

6.2.2. Asymmetric Asymmetric prior distributions are harder to analyze analytically. We
again chose an environment where the analytical BNE is known with two bidders having uniform
prior distributions with overlapping valuations on (5,15) and (5,25), respectively (Plum 1992). In
equilibrium, the weaker bidder learns to bid more aggressively than the strong bidder.

Table 3 Average NPGA utilities achieved in asymmetric first-price setting with overlapping valuations.
Aggregated over 10 runs of 20,000 iterations each.

Utility
in BNE

Utility NPGA Rel. loss
Lself-play vs BNE

Weak Bidder 0.9694 0.9475 0.9628 0.0069
Strong Bidder 5.0688 5.0754 5.0535 0.0030

NPGA again does not meet the convergence criterion, yet learns a stable strategy yielding good
results. The relative utility loss is <0.7% for the strong and the weak bidder. Aggregated performance
results over 10 model runs are displayed in Table 3. Figure 3a shows an example of the learned bid
functions for both bidders.

Maskin and Riley (2000) and Lebrun (2006) prove that the Bayes–Nash equilibrium of asymmetric
first-price auctions is also unique. This uniqueness requires the assumption that a buyer never bids
above her value. More recently, Kaplan and Zamir (2015) showed that relaxing this assumption results
in additional equilibria (although, no buyer wins by overbidding). We ran NPGA in their setting also
with bidders that have non-overlapping uniform valuations, V = [0,5]× [6,7], see Table 4.

In spite of the equilibrium selection problem in this game, the bidding tends to converge to the
lower priced equilibria (denoted BNE 1 and 2 in Kaplan and Zamir (2015)). Only the weaker bidder
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Table 4 Average NPGA utilities achieved in asymmetric first-price setting with non-overlapping valuations.
Aggregated over 10 runs of 20,000 iterations each. Compared against the first equilibrium of Kaplan and Zamir

(2015).
Utility
in BNE

Utility NPGA Rel. loss
Lself-play vs BNE

Weak Bidder 0.0334 0.0245 0.0270 0.1940
Strong Bidder 2.0332 1.9456 2.0206 0.0062

has difficulties finding a particular strategy for low valuations, because bids in this range are far from
competitive to any opposing bids, which leads to higher errors. The high relative loss of approximately
20% of the weak bidder is due to his strategic disadvantage in this game. She rarely wins and thus
rarely has an opportunity to learn in this specific setting.

6.3. Multi-Unit Auctions

A natural extension to single-unit auctions are multi-unit auctions of multiple homogeneous goods.
Typically, the valuations of each bidder are assumed i.i.d. and marginally decreasing (Krishna 2009).
For a number of multi-unit auction environments the analytical BNE is known. This includes the
discriminatory (first-price) auction with n=m= 2 (Engelbrecht-Wiggans and Kahn 1998a) and the
case with constant marginal valuations for n= 2 bidders and an arbitrary number of items m (Anwar
2007). Furthermore, for the uniform-price scheme, symmetric distributions of valuations, n= 2 and
m= 3, where bidders are only interested in two of the units each, the equilibrium strategy can be
stated explicitly (Bresky 2008).

Result 3 In a multi-unit auction in the independent private values model with a VCG or uniform

pricing rule NPGA learns a strategy that is payoff equivalent to the BNE (L < 0.1%); learning

converges after only 330 iterations on average. With a discriminatory pricing rule NPGA learns a

strategy with an estimated ex-ante utility loss of L̂< 3% and the convergence criterion is met after

5,860 iterations on average.

Table 5 NPGA performance achieved after 5,000 (Discriminatory: 20,000) iterations in standard multi-unit
settings with m= n= 2. BNE was not available for the discriminatory price auction as it’s only known implicitly.

Payment Rule n Rel. loss L RMSE L̂
Discriminatory 2 – – 0.0245

VCG 2 -0.0008 0.0250 0.0003
Uniform 2 0.0005 0.0695 0.0000

The case of n = m = 2 for the uniform pricing-scheme is of special interest, because there is a
continuum of equilibria (Krishna 2009, Bresky 2008, Engelbrecht-Wiggans and Kahn 1998b). Under
the uniform payment rule units are sold to them highest bids all at the same price of the (k+1)-highest
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bid. For these auctions in general it is known that bidders are incentivized to shade some of their bids.
Assuming identically and independently uniformly distributed valuations Vi = {vi ∈ [0,1]2 : vi,1 ≥ vi,2},
a BNE is given by the strategy profile β∗ = (β∗1 , β∗2) with

β∗i (vi) = (vi,1,0), i= 1,2.

As a result each bidder wins one unit at a price of zero in equilibrium (Krishna 2009, p. 195). Another
equilibrium strategy is given by β∗∗i (vi)≡ (1,0), resulting in the same allocations and payments as in
the previous equilibrium. Here again, a utility improvement assuming the opponent keeps playing
according to β∗∗i is impossible, since the price for one unit cannot be lowered and trying to win both
units would require bidding (1,1), thus raising the price to one without even being certain of winning
both units.
When initializing with (approximately) truthful pre-training, NPGA learns to bid zero on the

second unit remarkably fast (within the first 100 iterations), while the first bid remains close to
truthful. As soon as this state of cooperation is reached, the value of the first bid becomes extraneous
in terms of the payoff. The reward signal in self-play diminishes, because marginal changes in strategy
no longer affect the payoff. This prevents convergence and the first bid is exposed to small random
adjustments due to the stochasticity in valuations and gradient estimates, especially when learning
with Adam. However, there is a mean relative utility loss of only L≤ 0.0005 over ten runs with 5,000
iterations each.7

6.4. Combinatorial Auctions

Multi-item auctions of multiple heterogeneous goods have received significant attention in the past
decade in the form of combinatorial auctions. In particular, core-selecting combinatorial auctions have
become popular for their use in spectrum auctions world-wide (Bichler and Goeree 2017). For several
environments an analytical BNE is available. We consider three specific settings of a combinatorial
auction. The first two are the well-known local-local-global (LLG) environment (Goeree and Lien
2016) with single-minded bidders, who are only interested in one package. Next, we analyze an
extension, the LLLLGG model which was introduced by Bosshard et al. (2020) as a benchmark
for equilibrium computation. For the latter no analytical BNE is known. The third model is the
split-award procurement auction analyzed in Anton and Yao (1992) and Kokott et al. (2019).

Result 4 In the LLG auction, NPGA converges to the BNE with a relative utility loss of less than

0.24% in all six settings with core payment rules (known BNE) for independent and dependent values;

7 The utility loss L is sometimes (here for VCG) negative. This minimal error arises because we have a closed-form
solution of the BNE strategy, but not of the utility. The sampling of utility can lead to very small errors.
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also for a FPSB payment rule it converges with an estimated relative utility loss of <1%. In the
LLLLGG auction, NPGA converges in utility and estimated utility loss for both, a first-price and
nearest-vcg payment rule. It achieves a relative utility loss of L̂< 0.01 for both local and global bidders.
In the split-award auction, there are multiple BNE, but NPGA converges consistently converges to the
payoff-dominant BNE.

6.4.1. Local-Local-Global Auction (LLG) Ausubel and Baranov (2018) provide closed form
solutions for the LLG environment with independent and correlated valuations considering the
following payment rules: a VCG rule, a nearest-VCG rule, a nearest-zero (or proxy) rule, and a
nearest-bid rule. As in Ausubel and Baranov (2018), we consider the local-local-global (LLG) setting
with two local bidders, interested in winning one item only with a uniform prior of U(0,1), and one
global bidder, interested in winning only the two items as perfect complements whose valuations are
drawn from U(0,2). For all three core payment rules (a nearest-VCG rule, a nearest-zero (or proxy)
rule, a nearest-bid rule) the global bidder is bidding truthfully in the BNE (Ausubel and Baranov
2018). The local bidders BNE strategies differ in each payment rule.

Figure 3b illustrates the BNE strategy for the nearest-zero payment rule with independent valuations
indicated by the lines. The dotted line represents the learned strategy. In general, NPGA converges to
the BNE in all core payment rules with independent valuations after only a few hundred iterations (see
Table 6) and also converges with correlated valuations (see Table 7). The computation of estimated
relative utility loss is not straightforward considering correlated valuations since the sampling of each
bidder’s valuations depend on each other. Therefore, we did not compute the estimated relative utility
loss for this setting and can not report on the convergence criterion being met. However, the more
relevant utility loss (playing against BNE) is so low that we assume convergence.

Considering the FPSB without known BNE, the relative utility loss for playing a strategy learned
by NPGA is minuscule for independent valuations. Note that we do not know an analytical solution
for first-price combinatorial auctions in this settings.

6.4.2. LLLLGG Auction An extension to the LLG auction is the LLLLGG auction with 4
local and 2 global bidders, 6 items and each bidder interested in 2 bundles, for which no analytical
BNE are known.

As shown for first-price payment rule in Figure 4, the bidders’ utility converges fast to around 0.24
(local bidders) and 0.18 (global bidders) and the utility losses drop quickly. However, NPGA continues
learning and the final convergence criterion is met after 4,300 iterations.

Solving the LLLLGG auction considering a nearest-vcg payment rule is much more computational
demanding because it requires solving a linear- and a subsequent quadratic optimization problem
(Day and Cramton 2012). Because NPGA solves many thousand auctions at once, we implemented a
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Table 6 Results of NPGA in the LLG auctions with independent valuations.1Only the weaker 0.0005 criteria is
met.

payments bidder L RMSE L̂ conv.
iters

sec per
iter

nearest-vcg locals 0.0011 0.0050 0.0018 320 0.84global 0.0000 0.0269 0.0000

nearest-bid locals -0.0013 0.0073 0.0026 540 0.79global 0.0000 0.0424 0.0000

nearest-zero locals -0.0007 0.0078 0.0018 630 0.79global 0.0000 0.0088 0.0000

FPSB locals – – 0.0062 8501 0.65global – – 0.0038

Table 7 Results of NPGA after in the LLG auctions with correlated valuations.

payments bidder L RMSE sec per
iter

nearest-vcg locals -0.0007 0.0042 0.80global 0.0000 0.0305

nearest-bid locals 0.0023 0.0064 0.83global 0.0000 0.0498

nearest-zero locals 0.0006 0.0059 0.81global 0.0000 0.0072

Table 8 Results of NPGA after 5,000 (1,000) iterations in the LLLLGG first-price (nearest-vcg) auction.
Results are averages over 10 (2) replications and the standard deviation displayed in brackets.

payments bidder ˆ̀ ε̂ L̂ sec per
iter

first-price locals 0.0015 (0.0003) 0.0110 (0.0025) 0.0085 (0.0015) 0.97
(0.005)globals 0.0010 (0.0002) 0.0077 (0.0016) 0.0041 (0.0007)

nearest-vcg locals 0.0013 (0.0003) 0.0052 (0.0012) 0.0065 (0.0016) 275.22
(0.670)globals 0.0011 (0.0006) 0.0100 (0.0060) 0.0063 (0.0033)

solver that allows to solve batches of quadratic optimization problems on the GPU. Nonetheless, we

had to reduce the number of experiments to run all experiments in a reasonable time.8

Even for the much more computational demanding nearest-vcg rule we meet the weaker 0.0005

convergence criterion after only 600 iterations. Both, local and global bidders, show a very small

estimated ex-ante relative utility loss of L̂ < 0.007, indicating little incentive to deviate from the

learned strategy.

8 We adjusted the parameters for LLLLGG with nearest-vcg (compared to the original). Number of runs: 2 (10),
number of training iterations: 1000 (5000 or 20000), population size: 32 (64), training batch size: H = 214 (H = 218),
utility loss batch size: H = 27 (H = 212), utility grid size: W = 28 (W = 213)
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Figure 5 The figure depicts the WTA equilibrium (solid line), bounds for range of efficient pooling equilibria
(grey shaded), and NPGA strategies (dotted lines) for the first-price split-award auction. As the NPGA
strategy is within the continuum of efficient pooling equilibria, two bidders playing according to this
strategy always end up with a split contract for one lot each.

6.4.3. Split-Award Auction A particularly interesting environment of a combinatorial auction

with multi-minded bidders has been analyzed in Anton and Yao (1992) and later in Kokott et al.

(2019). This is an environment with multiple pure BNE, which makes it particularly interesting for

our analysis due to the BNE selection problem.
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The model is a reverse auction and it is described by the bidders’ type (or cost) distribution

Vi = {vi ∈R2|vi,1 ∼ F, vi,2 =C · vi,1}, i= 1,2,

where vi,1 corresponds to the cost of two 50% lots (or items) and the efficiency parameter C corresponds
to the fraction of total costs for one of the lots.9 The model describes diseconomies of scale in
the production costs. Bayes-Nash equilibria can be categorized into (a) the economically inefficient
“winner-takes-all” (WTA) equilibrium where one bidder wins both lots or goods, and (b) a continuum
of efficient pooling equilibria (grey shaded in Figure 5) where both suppliers coordinate and each
bidder wins one good at a high pooling price (Anton and Yao 1992). The equilibrium with the highest
bids on one lot out of all the efficient pooling equilibria is the payoff-dominant strategy for each bidder.
Apart from these two pure-strategy Nash equilibria, hybrid equilibria are known to exist and there
might even be mixed equilibria in nondeterministic strategies, which makes this setting strategically
challenging.
Figure 5 depicts the analytically known equilibria alongside a representative strategy learned via

NPGA. Running NPGA multiple times, it always converges to a state close to a pooling pure-strategy
BNE: the bidders cooperate in the split equilibrium. Similar to our analysis in the uniform-price
auctions in Section 6.3, once the bidders have agreed on cooperation, the non-price-determining bid
becomes subject to slight random changes as there is no “reward signal”. The relative ex-ante utility
loss L̂ falls below 2% (see Table 9). Again, the root mean squared error of the winning bid compared
to that of the analytical pure BNE strategy shows close proximity in action space.

Table 9 Results of NPGA in the split-award setting. Standard deviations are stated in parentheses; aggregated
over 40 runs of 20,000 iterations each. In all runs the strategies learned were closer to the payoff-dominant

pooling equilibrium.
Utility
in BNE

Utility NPGA L Winning
bid RMSEself-play vs BNE

Pooling 0.3400 0.3584 (0.01) 0.3337 (0.00) 0.0185 (0.00) 0.0351 (0.00)

Let us finally make a remark on the auction settings for which Cai and Papadimitriou (2014)
showed that finding a BNE is PP-hard. Their paper describes a larger set of sub-additive valuations
and a full exploration of different subsets (such as XOS or submodular valuations is beyond the scope
of this paper). However, we did explore the most basic CA setting with item-bidding for which the
complexity results hold: All bidders have additive valuations, with the exception of one bidder who
has unit demand. For up to three items and three bidders, we achieve a estimated relative utility loss
L̂(βi) of less than 2.5%.

9 In our experiments we set parameters F = U(1.0,1.4) with C = 0.3, being consistent to previous work on the
split-award auction (Kokott et al. 2019). Due to the linear relationship of the costs, the policies can be defined either
as β : R→R2 or as β : R2→R2. Experimental results are presented from the first choice.
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7. Conclusions
For most auction settings, no Bayes-Nash equilibrium is known and the equilibrium analysis, especially
of multi-item auctions, is very challenging. We introduce a very general numerical method to learn
Bayes-Nash equilibria in continuous type and action Bayesian games and focus on auctions in our
analysis. Neural Pseudogradient Ascent is based on neural networks and self-play. The method
implements a gradient ascent algorithm and approximates the expected utility via Monte Carlo
sampling where we run many auctions with different value draws with slight perturbations of the
weights in the policy network. This allows us to derive an estimate of the payoff gradient, and the
individual bidders adapt their policy by taking a step along their payoff gradient.
Training neural networks in such an environment is challenging as the ex-post payoff function for

individual batches of auctions played against a fixed set of opponents is discontinuous. Rather than
standard backpropagation, we use Evolutionary Strategies to smoothen the utility function and derive
the pseudo-gradients of the payoff function. We show conditions for which we can certify that NPGA
finds a ε-Bayes-Nash equilibrium. Note that NPGA neither makes assumptions on the parametric
form of the utility or bid functions nor on the independence of valuations and it does not require
discretization of the value or bid space.

Our experimental results show that Neural Pseudogradient Ascent finds Bayes-Nash equilibria in a
large variety of different auction games. NPGA leverages the potential of GPUs to parallelize the
Monte Carlo sampling. The method scales well with an increasing number of parameters, finding
approximate Bayes-Nash equilibria in auction settings with up to ten bidders and multiple items
within minutes on a single GPU. Monte Carlo experiments can be used to compute the relative
loss compared to an approximate best response in environments where the analytical solution is
unknown and we find very low estimated utility loss in these environments as well. Interestingly,
NPGA converged even in those environments where payoff monotonicity cannot hold (i.e., those with
multiple pure Bayes-Nash equilibria). These results stand in contrast to the worst-case complexity
results in Cai and Papadimitriou (2014), for which NPGA also converged in initial experiments.
We conjecture that for auction games with well-behaved priors and quasi-linear utility functions,
pure Bayes-Nash equilibria describe large “areas of attraction” in the utility landscape such that
the likelihood is high for gradient dynamics to converge to payoff-dominant Bayes-Nash equilibria
even though it can be very hard to find equilibria in the worst case. A comprehensive analysis of
conditions when we can expect gradient dynamics to converge in auction games in general is obviously
challenging and beyond a single article. Apart from its practical relevance in the equilibrium analysis
of auction games, our results reemphasize the importance of research on gradient dynamics in games.
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Experiment Valuations n L RMSE estimated util. loss conv.
(iters)

time
(sec/iter)(ˆ̀) (ε̂) (L̂)

Single-Item
Symmetric

Uniform
U(0,10)
ρ= 1

2 0.0001 0.0072 0.0011 0.0059 0.0065 1,350 0.31
3 0.0017 0.0104 0.0007 0.0051 0.0082 870 0.40
5 0.0034 0.0194 0.0005 0.0053 0.0138 900 0.46
10 0.0084 0.0303 0.0003 0.0047 0.0288 720 0.73

Uniform1

U(0,10)
ρ= 0.5

2 0.0011 0.0057 0.0012 0.0065 0.0051 5,720 0.46
3 0.0006 0.0069 0.0008 0.0048 0.0062 2,100 0.52
5 0.0012 0.0161 0.0006 0.0066 0.0096 4,170 0.63
10 0.0100 0.0383 0.0005 0.0085 0.0212 8,410 0.93

Gaussian1

N (15,100)
ρ= 1

2 0.0015 0.3684 0.0443 0.4394 0.0083 – 0.31
3 0.0037 0.4478 0.0225 0.9723 0.0082 3,8002

2 0.39
5 0.0129 0.8819 0.0176 1.7324 0.0135 3,8255

2 0.45
10 0.0314 1.8801 0.0118 2.1660 0.0220 4,3008

2 0.68

1-Item Asym.1
Overlapping

U(5,15) weak 0.0069 0.3178 0.0403 0.2365 0.0410 – 0.61U(5,25) strong 0.0030 0.2872 0.0379 0.1897 0.0074

1-Item Asym.1
Non-Overlapping

U(0,5) weak 0.1943 1.1534 0.0006 0.0281 0.0231 3,530 0.71U(6,7) strong 0.0062 0.1426 0.0000 0.0000 0.0000

Multi-Unit
Discriminatory1 2 – – 0.0087 0.0570 0.0245 5,860 1.14

Uniform 2 0.0005 0.0695 0.0000 0.0000 0.0000 330 1.43
VCG 2 -0.00083 0.0250 0.0001 0.0031 0.0003 310 1.54

Combinatorial
LLG

independent
values
(γ = 0.0)

nearest-vcg locals 0.0011 0.0050 0.0002 0.0009 0.0018 320 0.84global 0.0000 0.0269 0.0000 0.0001 0.0000
nearest-bid locals -0.00133 0.0073 0.0003 0.0013 0.0026 540 0.79global 0.0000 0.0424 0.0000 0.0001 0.0000
nearest-zero locals -0.00073 0.0078 0.0002 0.0019 0.0018 630 0.79global 0.0000 0.0088 0.0000 0.0001 0.0000

FPSB locals – – 0.0009 0.0031 0.0062 8502 0.65global – – 0.0016 0.0064 0.0038

Combinatorial
LLG

correlated
values
(γ = 0.5)

nearest-vcg locals -0.00073 0.0042 – – – – 0.80global 0.0000 0.0305 – – –
nearest-bid locals 0.0023 0.0064 – – – – 0.83global 0.0000 0.0498 – – –
nearest-zero locals 0.0006 0.0059 – – – – 0.81global 0.0000 0.0072 – – –

Combinatorial
LLLLGG FPSB locals – – 0.0015 0.0109 0.0085 4,300 0.97globals – – 0.0010 0.0077 0.0040

nearest-vcg locals – – 0.0013 0.0052 0.0065 6002 275.00globals – – 0.0011 0.0098 0.0063
Combinatorial1
Split-Award Pooling 2 0.0185 0.03514 0.0011 0.0124 0.0031 3,49739

2 0.73

Table 10 Summary of all experiments’ results averaged over 10 runs (except Split-Award is averaged over 40
runs). If not all runs satisfied the convergence criterion, the number of runs that fulfilled the criterion are noted
as subscript 1Setting performed with 20,000 iterations instead of 5,000. 2Only the weaker 0.0005 criteria is met.

3Relative utility loss is negative only due to sampling variance. It must be L≥ 0. 4Only the relevant bid
component is used.
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Appendix B: Additional Proofs

Lemma 1 The gradient estimates ∇ES in NPGA are unbiased and have finite mean squared error with
respect to the smoothed utilities ũσi of the game Γσ.

Proof. We consider the smoothed ex-ante utility ũσi . For fixed σ > 0, we have

ũσi (θi, θ−i) := Eε∼N (0,σ2I)[ũi(θi + ε, θ−i)].

This is equal to the convolution of ũi with a Gaussian kernel in the i-th coordinate. As was noted by Salimans
et al. (2017), its (exact) gradient with respect to θi is thus given by

∇θi
ũσi (θi, θ−i) = 1

σ
Eε∼N (0,I)[ε(ũi(θi +σε, θ−i)− ũi(θi, θ−i))].

By the substitution ε′ = σε, we see by the transformation formula that

∇θi
ũσi (θi, θ−i) = 1

σ2 Eε∼N (0,σ2I)[ε(ũi(θi + ε, θ−i)− ũi(θi, θ−i))].

If we approximate this term by taking P independent samples εp ∼N (0, σ2I), we get

∇θi
ũσi (θi, θ−i)≈

1
Pσ2

∑
p

εp(ũi(θi +σεp, θ−i)− ũi(θi, θ−i)).

In the same way, we can approximate ũi by sampling H valuation profiles vh with respect to the distribution
the valuations are drawn from:

ũi(θi +σεp, θ−i)≈
1
H

∑
h

ui(vh,i, πi(vh,i, θi +σεp), π−i(vh,−i, θ−i)).

The combination of these approximations is exactly how ∇ES is computed in Algorithm 2:

∇ESũi(θi, θ−i) = 1
PHσ2

∑
p

εp
∑
h

ui(vh,i, πi(vh,i, θi+σεp), π−i(vh,−i, θ−i))−ui(vh,i, πi(vh,i, θi), π−i(vh,−i, θ−i)).

Since we sample independently and with respect to the original distributions, the approximation is in
expectation equal to the true gradient. Thus, the approximation is unbiased with respect to the smoothed
utilities ũσi . ∇ES also has finite mean squared error: Define

Xp,h = εp (ui(vh,i, πi(vh,i, θi + εp), π−i(vh,−i, θ−i))−ui(vh,i, πi(vh,i, θi), π−i(vh,−i, θ−i))) .

Because of Equation (8) in Definition 1, we have

Ev[ui(vh,i, πi(vh,i, θi + εp), π−i(vh,−i, θ−i))2]≤ S and

Ev[ui(vh,i, πi(vh,i, θi), π−i(vh,−i, θ−i))2]≤ S.

This implies E[X2
p,h] ≤ 4SE[‖ε‖2] = 4Sdiσ2, where we used the inequality (a − b)2 ≤ 2a2 + 2b2. Since

∇ESũi(θi, θ−i) = 1
PHσ2

∑
p,hXp,h, we have that

E
[
∇ESũi(θi, θ−i)2]= 1

P 2H2σ2 E

(∑
p,h

Xp,h

)2
= 1

σ2 E

(∑
p,h

Xp,h

PH

)2
≤

≤ 1
PHσ2 E

[∑
p,h

X2
p,h

]
≤ 1
PHσ2 4PHdiσ2S = 4Sdi <∞.

Consequently, our gradient estimate has finite mean squared error. �
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Lemma 2 Consider the utility loss ˜̀Γ
i (θi, θ−i) of agent i with respect to the utility function ũi in the finite-

dimensional game Γ, and the utility loss ˜̀σ
i (θi, θ−i) with respect to the smoothed utility ũσi in the game Γσ.

Then
˜̀Γ
i (θi, θ−i)≤ ˜̀σ

i (θi, θ−i) + 2ZL
√
diσ.

Proof. We start by bounding the difference between the utilities of the game Γ and the game Γσ. To be
precise, we prove the following bound:

|ũi(θi, θ−i)− ũσi (θi, θ−i)| ≤ZL
√
diσ (22)

for arbitrary strategies θ. By definition, ũσi (θi, θ−i) = Eε∼N (0,σ2I)[ũi(θi + ε, θ−i)]. Since ũi(θi, θ−i) =
Eε∼N (0,σ2I)[ũi(θi, θ−i)], we have the inequality

|ũi(θi, θ−i)− ũσi (θi, θ−i)| ≤Eε∼N (0,σ2I)[|ũi(θi + ε, θ−i)− ũi(θi, θ−i)|]. (23)

Next, we show that for fixed ε, |ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤ZL‖ε‖. We compute

|ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤Evi
[|ūi(vi, πi(vi, θi + ε), θ−i)− ūi(vi, πi(vi, θi), θ−i)|]

Since by assumption, ūi is differentiable with respect to bi and the differential is uniformly bounded by Z

(Equation (7) in Definition 1), we have for every ε

|ūi(vi, πi(vi, θi+ε), θ−i)−ūi(vi, πi(vi, θi), θ−i)| ≤
∥∥∥∥∂ūi∂bi

∥∥∥∥
∞
‖πi(vi, θi+ε)−πi(vi, θi)‖ ≤Z‖πi(vi, θi+ε)−πi(vi, θi)‖.

Consequently, by Assumption 11 in Definition 5,

|ũi(θi + ε, θ−i)− ũi(θi, θ−i)| ≤Z Evi
[‖πi(vi, θi + ε)−πi(vi, θi)‖]≤ZL‖ε‖

which implies by Equation (23)

|ũi(θi + ε, θ−i)− ũσi (θi, θ−i)| ≤ZLEε∼N (0,σ2I)[‖ε‖]≤ZL
√
diσ.

This proves equation (22). Now let θ̃i be a best response to θ−i in the game Γ. Then

˜̀Γ
i (θi, θ−i) = ũi(θ∗i , θ−i)− ũi(θi, θ−i) =

= (ũi(θ∗i , θ−i)− ũσi (θ∗i , θ−i)) + (ũσi (θ∗i , θ−i)− ũσi (θi, θ−i)) + (ũσi (θi, θ−i)− ũi(θi, θ−i))≤

≤ZL
√
diσ+ ˜̀σ

i (θi, θ−i) +ZL
√
diσ= ˜̀σ

i (θi, θ−i) + 2ZL
√
diσ.
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