The (Structural) Gravity of Epidemics

A. Cuñat R. Zymek

The (Structural) Gravity of Epidemics

A. Cuñat¹ R. Zymek²

¹University of Vienna and CESifo, alejandro.cunat@univie.ac.at

²University of Edinburgh and CESifo, robert.zymek@ed.ac.uk

A. Cuña R. Zvme Typical epidemiological models (e.g. Ferguson et al., 2020) assume "gravity" interactions of people across space... w/o microfoundation!

Economists have started to incorporate disease transmission into macro models... but with *ad hoc* assumptions about: economic activity \Leftrightarrow disease transmission.

We combine an SIR model with a bare-bones dynamic model of individual location choice \Rightarrow flows of S, I, R across space obey a **structural gravity equation**.

- lacktriangledown offers a clear mapping: observed geography ightarrow disease spread.
- permits a microfounded analysis of the quarantine trade off.
- i highlights key parameters for such an analysis.

A. Cuña R. Zvme Typical epidemiological models (e.g. Ferguson et al., 2020) assume "gravity" interactions of people across space... w/o microfoundation!

Economists have started to incorporate disease transmission into macro models... but with $ad\ hoc$ assumptions about: economic activity \Leftrightarrow disease transmission.

We combine an SIR model with a bare-bones dynamic model of individual location choice \Rightarrow flows of S, I, R across space obey a **structural gravity equation**.

- lacksquare offers a clear mapping: observed geography o disease spread
- permits a microfounded analysis of the quarantine trade off.
- i highlights key parameters for such an analysis.

Typical epidemiological models (e.g. Ferguson et al., 2020) assume "gravity" interactions of people across space... w/o microfoundation!

Economists have started to incorporate disease transmission into macro models... but with ad hoc assumptions about: economic activity \Leftrightarrow disease transmission.

We combine an SIR model with a bare-bones dynamic model of individual location choice \Rightarrow flows of S, I, R across space obey a **structural gravity equation**.

- lacktriangledown offers a clear mapping: observed geography o disease spread
- permits a microfounded analysis of the quarantine trade off.
- 6 highlights key parameters for such an analysis.

A. Cuñat R. Zymel Typical epidemiological models (e.g. Ferguson et al., 2020) assume "gravity" interactions of people across space... w/o microfoundation!

Economists have started to incorporate disease transmission into macro models... but with *ad hoc* assumptions about: economic activity \Leftrightarrow disease transmission.

We combine an SIR model with a bare-bones dynamic model of individual location choice \Rightarrow flows of S, I, R across space obey a **structural gravity equation**.

- $oldsymbol{0}$ offers a clear mapping: observed geography ightarrow disease spread.
- 2 permits a microfounded analysis of the quarantine trade off.
- inighlights key parameters for such an analysis.

$$S_{n't} = \sum_{n} m_{nn't}^{S} \left(S_{nt-1} - \tilde{I}_{nt-1} \right),$$

$$I_{n't} = \sum_{n} m_{nn't}^{I} \left[\left(1 - \pi_r - \pi_d \right) I_{nt-1} + \tilde{I}_{nt-1} \right], \quad \tilde{I}_{nt-1} = \pi_s \frac{I_{nt-1} S_{nt-1}}{L_{nt-1}},$$

$$R_{n't} = \sum_{n'} m_{nn't}^{R} (R_{nt-1} + \pi_r I_{nt-1}),$$

$$L_{nt} = S_{nt} + I_{nt} + R_{nt},$$

$$I_{n0} = R_{n0} = 0$$
, $S_{n0} = L_{n0}$, $\tilde{I}_{n0} \ge 0$.

If $\pi_d \simeq 0$, then $m_{nn't}^S \simeq m_{nn't}^I \simeq m_{nn't}^R \equiv m_{nn't}$, where

$$m_{nn't} = \frac{\left(\tau_{nn't}/v_{n't}\right)^{-\theta}}{\sum_{i=1}^{N} \left(\tau_{nn't}/v_{n't}\right)^{-\theta}}, \quad v_{nt} = e^{\frac{\beta\gamma}{\theta}} u_n \left[\sum_{i=1}^{N} \left(\frac{\tau_{nn't+1}}{v_{n't+1}}\right)^{-\theta}\right]^{\frac{\beta}{\theta}}$$

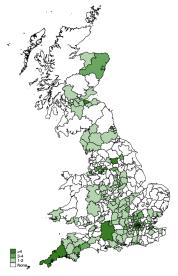
The (Structural) Gravity of **Epidemics**

$$\begin{split} S_{n't} &= \sum_{n} m_{nn't}^{S} \left(S_{nt-1} - \tilde{I}_{nt-1} \right), \\ I_{n't} &= \sum_{n} m_{nn't}^{I} \left[\left(1 - \pi_r - \pi_d \right) I_{nt-1} + \tilde{I}_{nt-1} \right], \quad \tilde{I}_{nt-1} = \pi_s \frac{I_{nt-1} S_{nt-1}}{L_{nt-1}}, \end{split}$$

$$R_{n't} = \sum_{n'} m_{nn't}^{R} \left(R_{nt-1} + \pi_r I_{nt-1} \right),$$

$$L_{nt} = S_{nt} + I_{nt} + R_{nt},$$

$$I_{n0} = R_{n0} = 0$$
, $S_{n0} = L_{n0}$, $\tilde{I}_{n0} > 0$.


If $\pi_d \simeq 0$, then $m_{nn't}^S \simeq m_{nn't}^I \simeq m_{nn't}^R \equiv m_{nn't}$, where:

$$m_{nn't} = \frac{\left(\tau_{nn't}/v_{n't}\right)^{-\theta}}{\sum_{n'=1}^{N} \left(\tau_{nn't}/v_{n't}\right)^{-\theta}}, \quad v_{nt} = e^{\frac{\beta\gamma}{\theta}} u_n \left[\sum_{n'} \left(\frac{\tau_{nn't+1}}{v_{n't+1}}\right)^{-\theta}\right]^{\frac{\beta}{\theta}}.$$

3 Initial Infections

England: 324

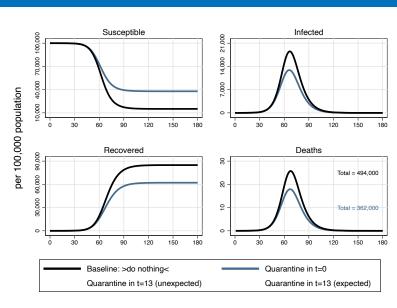
Scotland: 27

Wales: 6

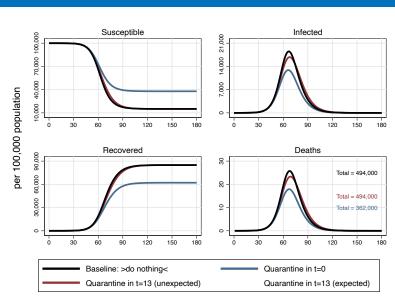
Total: 367

We impose: $I_{n0} =$ reported infections/.30

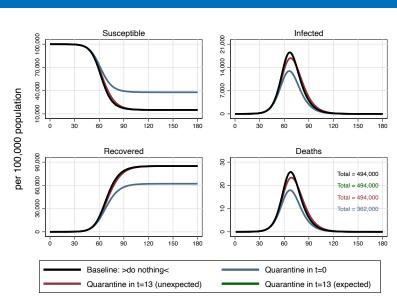
Covid-19 infections (10 March 2020)


The (Structural) Gravity of Epidemics

A. Cuñat R. Zymel


The (Structural) Gravity of Epidemics

> A. Cuñat R. Zymek


The (Structural) Gravity of Epidemics

A. Cuñat R. Zvmel

The (Structural) Gravity of Epidemics

A. Cuña R. Zyme

- Key parameters: "mobility elasticity" (θ) ; "value of life" (u_N) .
- For any reasonable value of these parameters:
 - ① Quarantine in $t = 0 \succ$ "Do nothing"
 - ② Unexpected quarantine in $t = 13 \succ$ "Do nothing"
 - **③** Expected quarantine in $t = 13 \prec$ "Do nothing"
- The model could be generalised (heterogeneity, production side, disease properties, etc.)...
- ...used to assess other interventions (e.g. localised lockdowns)...
- ...and applied in other contexts (e.g. border closures).

- Key parameters: "mobility elasticity" (θ) ; "value of life" (u_N) .
- For any reasonable value of these parameters:
 - Quarantine in $t = 0 \succ$ "Do nothing"
 - 2 Unexpected quarantine in t = 13 > "Do nothing"
 - **3** Expected quarantine in $t = 13 \prec$ "Do nothing"
- The model could be generalised (heterogeneity, production side, disease properties, etc.)...
- ...used to assess other interventions (e.g. localised lockdowns)...
- ...and applied in other contexts (e.g. border closures).

- Key parameters: "mobility elasticity" (θ) ; "value of life" (u_N) .
- For any reasonable value of these parameters:
 - Quarantine in $t = 0 \succ$ "Do nothing"
 - 2 Unexpected quarantine in t = 13 > "Do nothing"
 - **3** Expected quarantine in $t = 13 \prec$ "Do nothing"
- The model could be generalised (heterogeneity, production side, disease properties, etc.)...
- ...used to assess other interventions (e.g. localised lockdowns)...
- ...and applied in other contexts (e.g. border closures).