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Bank Debt versus Mutual Fund Equity

in Liquidity Provision

Abstract

We propose a unified framework to study liquidity provision by debt-issuing versus equity-issuing

financial intermediaries. We show that both types of intermediaries provide liquidity by insuring

against idiosyncratic liquidity risks as in Diamond and Dybvig (1983) but with distinct frictions.

The fixed value of debt induces panic runs whereas the flexible payoff of equity renders investor

redemptions more sensitive to news on fundamentals, i.e., a flow-to-fundamentals relationship.

Both frictions constrain liquidity provision by generating premature liquidation of long-term

investments. Informed by the theory, we develop the Liquidity Provision Index (LPI) as a

unified measure of liquidity provision. We find that, at the end of 2017, the per dollar liquidity

provision by bond mutual fund shares amounts to a quarter of that by uninsured bank deposits.

The majority of the gap arises from the difference in contract forms instead of regulatory features

such as deposit insurance. However, the gap has been narrowing between 2011 and 2017, which

we show can be ascribed to post-crisis bank regulations and unconventional monetary policies

that restricted bank holdings of illiquid assets. Further applying the LPI to money market funds

(MMFs), we identify a 20% drop in liquidity provision due to the change from debt to equity

funding around the 2016 MMF Reform.



1 Introduction

A predominant function of financial intermediaries is liquidity provision. In a world where in-

vestors face idiosyncratic liquidity risks, banks provide liquidity by issuing debt claims redeemable

at short notice, that is, liquid demand deposits, from investing in a portfolio of illiquid loans.

Liquidity provision is achieved by pooling and thus insuring against idiosyncratic liquidity shocks

across investors, so that collectively, more illiquid assets can be funded using liquid short-term

claims (Diamond and Dybvig, 1983).

While the literature has primarily attributed liquidity provision to banks, intermediaries issue

demandable equity have played an increasingly important role in the economy. For example, US

open-end mutual funds saw their total assets increase from 5% of GDP in the 1980s to 100%

in 2019 with a record $21.3 trillion assets under management (AUM), while commercial banks’

assets remained at around 65% of GDP during the same time period. The proportion of corporate

bonds held by US open-end mutual funds also increased from 8.4% to 21% between 1998 and

2019.

The above trends beg the question of whether liquidity provision is really only confined to

debt-issuing intermediaries. After all, open-end mutual funds also invest in significant amounts of

illiquid assets like corporate bonds, loans, commodities, and even real estate (see Goldstein, Jiang

and Ng, 2017, Chernenko and Sunderam, 2017), while the fund shares they issue are redeemable

at short notice. Further, if equity-issuing intermediaries indeed provide liquidity to investors, is

it any different from that of debt-issuing intermediaries like banks?1

This paper provides a unified framework to study liquidity provision by debt- versus equity-

issuing financial intermediaries. We theoretically show that intermediaries issuing redeemable

equity create liquidity through smoothing idiosyncratic liquidity shocks in the same way as banks

do in Diamond and Dybvig (1983).2 Intuitively, as long as a large number of investors collectively

hold their funds in the intermediary, the intermediary can pool investors’ idiosyncratic liquidity

risks and first use liquid assets to meet redemption requests. As a result, more illiquid assets

can be held until maturity and investors in need of funds early can receive more than what they

would have achieved by holding and selling the underlying portfolio on their own. In other words,

1To be exact, we consider open-end equity contracts redeemable at short notice so although banks also issue
equity, bank equity does not directly fall into our consideration of liquidity provision.

2Our baseline model compares demandable equity with demandable debt absent other regulatory components
and frictions such as deposit insurance. We further disentangle these components in the empirical section.
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the key of liquidity provision lies in the intermediary’s pooling of liquidity risk and its use of

more liquid assets to meet redemption requests first. Whether the claims issued are in the form

of debt or equity per se does not matter for the existence of liquidity provision per se.

However, the issuance of debt versus equity does affect how liquidity is distributed among

investors, and in turn, the magnitude of and frictions underlying liquidity provision. On one

hand, demandable equity with a fully flexible NAV eliminates belief-fueled runs, or so called panic

runs, which have long been viewed as a major drawback of debt contracts. On the other hand,

equity’s flexibly adjusting value exposes investors to news about economic fluctuations, leading

to more volatile flows to fundamentals. Both panic runs and volatile flows-to-fundamentals

induce premature asset liquidations and thereby constrain liquidity provision to investors who

are subject to idiosyncratic liquidity shocks. Hence, their relative magnitude pins down the

liquidity provision capacity of debt- and equity-issuing intermediaries.3

To quantify the amount of liquidity provided by different types of intermediaries, we develop

the first unified empirical measure of liquidity provision: the Liquidity Provision Index (LPI).

Informed by the theory, the LPI captures how much more investors can obtain by redeeming fund

equity (bank deposits) compared to directly holding and selling the underlying portfolio. Using

commercial banks and bond mutual funds as a laboratory, we estimate that a dollar invested

in open-end bond mutual fund shares creates about 20% of the liquidity as a dollar invested

in uninsured bank deposits. We confirm that the bulk of the gap arises from the difference in

contract forms instead of explicit and implicit guarantees on banks. In the time series, the gap

between bank and fund LPI has been shrinking from 2011 onwards in part due to unconventional

monetary policy and post-crisis liquidity regulation.

A key novelty of our paper is to jointly analyze liquidity provision by bank debt and fund

equity under a common theoretical framework. Similar to Diamond and Dybvig (1983), investors

are subject to idiosyncratic liquidity shocks in an incomplete market. They invest through an

intermediary, who chooses a portfolio of liquid cash and illiquid long-term investment projects

at the beginning (t = 0), considering investors’ liquidity shocks in the short run (t = 1) and the

3Our baseline model highlights that the use of debt exposes banks to panic runs whereas the use of redeemable
equity with perfectly adjusting values induces volatile flows-to-fundamentals relationship in funds. In reality,
institutional differences between banks and mutual funds could induce fundamentals-driven, non-panic-based
runs in banks (e.g., Allen and Gale, 1998) and panic-based runs in mutual funds (Chen, Goldstein and Jiang,
2010, Goldstein, Jiang and Ng, 2017, Zeng, 2017). While our theory presents a benchmark case, our empirical
analysis will consider these frictions and their implications for our findings.
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uncertain but potentially higher project return in the long run (t = 2). Notably, as in Goldstein

and Pauzner (2005), there is aggregate uncertainty over the long-run return of the long-term

project, that is, economic fundamentals. Investors receive a noisy private signal about the future

economic fundamentals at t = 1, which they use to decide whether to withdraw their funds

invested in the intermediary.4

In this setting, liquidity provision can be thought of as the difference between the intermedi-

ary’s expected contract payment to investors withdrawing at short notice (t = 1) and the direct

liquidation value of the same intermediary’s underlying asset portfolio. Bank debt provides liq-

uidity because idiosyncratic liquidity risks are pooled across investors so that more of the illiquid

long-term project can be held to maturity. Banks thereby offer a higher debt payment to in-

vestors hit by liquidity shocks than what they would have enjoyed by directly holding and selling

the bank’s assets. In the same context, an intermediary issuing equity contracts redeemable at

flexible net asset values (NAVs) provides liquidity because it also pools investors’ resources at

the intermediary level to invest in more long term projects so that early redemptions can be met

at an NAV higher than the direct liquidation value of the underlying assets. The use of debt

funding is therefore not a necessary condition for liquidity provision by intermediaries.

Nevertheless, the choice of debt versus equity funding determines how contract payments are

distributed among investors, which affects the efficiency of liquidity provision. On one hand,

in the absence of deposit insurance, debt-issuing intermediaries are susceptible to panic runs

because the fixed face value of debt induces a first-mover advantage to withdraw.5 Applying the

global games technique as in Goldstein and Pauzner (2005), we show that panic runs occur only

when fundamentals fall below a threshold. In contrast, even under relatively poor fundamentals,

panic runs would not happen with demandable equity with fully flexible NAVs because NAV

drops from premature liquidations would be born by redeeming shareholders and thus remove

any first-mover advantage.6 The comparative advantage of equity over debt in sufficiently bad

states of the world is illustrated in Figures 1 and 2.

4To be exact, only those without a liquidity shock consider to withdraw or not. Investors hit with a liquidity
shock always consume at t = 1.

5Specifically, banks meets withdrawal requests by prematurely selling the long-term projects and paying out
the face value of debt on a first-come-first-serve basis. Knowing that funds will eventually run out, investors
withdraw early in the hopes of getting paid first once they believe that others will.

6One interpretation of this primitive form of demandable equity is open-end mutual funds using swing pric-
ing to incorporate all possible liquidation-induced costs into the end-of-trading-day NAV, as the U.S. SEC has
recommended since 2016.
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On the other hand, equity with flexible NAVs has the disadvantage of rendering liquidity pro-

vision more sensitive to fluctuations in fundamentals. When equity investors receive private news

about project returns, i.e., fundamentals, they decide whether to redeem based on the signaled

return of staying in the fund versus the payoff from redeeming and storing cash on their own.7

Flexible NAVs cause redemption decisions to be continuously revised following any marginal

change in fundamentals, resulting in volatile flows-to-fundamentals. Volatile redemptions by

investors lead to premature asset liquidations by the fund, which ultimately limit liquidity pro-

vision. In contrast, the fixed payment promised by bank debt render deposit withdrawals less

sensitive to changes in fundamentals as long as they do not fall below the run-threshold as

depicted in Figures 1 and 2.

Having derived the comparative advantage and disadvantage of debt and equity, we ask

how they play out to affect the quantity of liquidity produced by financial intermediaries in

the real world. One advantage of our theoretical notion of liquidity provision - the difference

between an intermediary’s expected contract payment to investors withdrawing at short notice

and the direct liquidation value of the intermediary’s asset portfolio - is the direct mapping

to publicly available data. This allows us to construct the Liquidity Provision Index (LPI) as

the first empirical measure of liquidity production by both debt- and equity-issuing financial

intermediaries. In addition, our theory suggests that equilibrium outflows completely summarize

the relevant frictions under different economic fundamentals. Therefore, we can use observed

outflows as the state variable in our empirical analysis, overcoming the difficulty of proxying for

economic fundamentals.

Specifically, the LPI estimation follows a three-step approach. We first determine the model-

implied contract payment of fund shares and uninsured bank deposits for any given proportion of

early redemptions/withdrawals, i.e., outflows. For example, when outflows are very small, funds

can first use cash to meet redemptions, which do not incur any haircuts, so the contract payment

is 100% of the initial NAV. As outflows increase, funds resort to selling increasingly illiquid

assets with higher haircuts, continuously decreasing the NAV paid out. For banks, incurred

haircuts also increase with withdrawals but uninsured depositors continue to receive the same

face value until funds run out and the bank defaults. Given these differences, the expected

contract payment depends on the distribution of outflows. Therefore, in the second step, we use

7The private storage technology can be thought of as the physical cost of storing cash by investors or as the
return obtainable from investing in riskless assets in capital markets e.g. Treasuries.

4



the observed distribution of fund and bank level outflows, which reflect the respective fund- and

bank-level frictions in equilibrium, to calculate the expected contract payment of a fund’s shares

and a bank’s deposits. Finally, to determine the amount of liquidity provision, we deduct the

direct liquidation value of the underlying portfolio.

Applying the LPI in a laboratory of commercial banks and bond mutual funds, we find that

both uninsured deposits and fund shares provide a positive and significant amount of liquidity.

At the end of 2017, for a dollar invested in uninsured bank deposits, investors expect to obtain

$0.190 more upon early withdrawal than under direct liquidation of the underlying portfolio;

whereas for the average dollar invested in redeemable bond shares, they expect $0.043 more.

This shows that at the end of our sample in 2017, the liquidity provided by bond mutual fund

shares amounts to about a quarter of liquidity provided by bank deposits. However, the gap in

liquidity production capacity between banks and funds has increasingly narrowed over our sample

period from 2011 to 2017. The fall in LPI is more pronounced for banks absorbing more central

bank reserves after Quantitative Easing and those more exposed to the Liquidity Coverage Ratio

because the high proportion of liquid assets on bank balance sheets raises the direct liquidation

value of the portfolio and limits the contribution to liquidity provision by banks.

The LPI is carefully constructed to only map to the uninsured portion of bank deposits.

Uninsured deposits are consistent with the demandable debt in our model and of high empirical

relevance. Egan, Hortacsu and Matvos (2017) estimate that uninsured comprise half of all

consumer deposits in large US commercial banks and show that they are frequently impaired

in bank defaults and subject to runs.8 Nevertheless, explicit and implicit guarantees may still

indirectly affect the estimated LPI of uninsured deposits through equilibrium flows. To further

isolate the effect of contract forms on liquidity provision, we perform two additional tests.

We first use cross-sectional variation in bank liability structure and LPI to project that a

zero deposit insurance and zero non-deposit liabilities bank provides two thirds of the estimated

average bank LPI, which is still higher than the average mutual fund LPI. This result implies

8One notable example of modern commercial bank run is that on Washington Mutual (WaMu). WaMu’s first
wave of depositor run took place on July 12, 2008 mostly in Southern California after the federal government
seized IndyMac. The second wave of run was more wildly spread and started on September 11, 2008, when
Moody’s downgraded WaMu. Another notable example is the depositor run on Northern Rock on September 14
and 17, 2007 amid its attempts to tap Bank of England as the Lender of the Last Resort. Although Bank of
England eventually injected liquidity to compensate the depositors, it did not stop the run in the first place.
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that the bulk of the difference in bank versus fund liquidity provision arises from the use of

demandable debt versus equity.

We further apply the LPI to a sample of money market funds around the 2016 MMF Reform

to identify the effect of debt versus equity funding on liquidity provision. The reform required

institutional prime MMFs to switch from fixed to floating NAVs, which is effectively a transition

from debt-funding to equity-funding.9 At the same time, retail prime MMFs not affected by the

reform provide a natural control group for other changes in the economy during the reform period.

Our difference-in-differences estimates suggest an economically and statistically significant 20%

drop in liquidity provision due to the reform, corroborating that both demandable debt and

equity provide liquidity but with debt performing relatively better.

In the cross-section, the within-fund and within-bank variations are also consistent with the

theory. Funds with flows less sensitive to changes in returns, i.e., with a less pronounced flows-

to-fundamentals relationship, generate a higher LPI. For banks, a higher incidence of deposit

insurance, which reduces the incentive of panic runs, relates to a higher bank LPI.

Through analyzing the role of demandable equity versus debt in providing liquidity, our

paper bridges the seminal banking literature on liquidity provision and a large literature on

mutual fund flows and their financial stability implications. The banking literature on liquidity

provision has mostly centered around deposit-issuing banks as in Diamond and Dybvig (1983),

Diamond and Rajan (2001), Kashyap, Rajan and Stein (2002), and Goldstein and Pauzner

(2005), for example.10 More recently, Hanson, Shleifer, Stein and Vishny (2015) consider debt

claims issued by both banks and shadow banks that differ in their access to deposit insurance,11

whereas Dang, Gorton, Holmström, and Ordoñez (2017) compare banks to financial markets

focusing on banks’ ability to keep information on fundamentals secret. Our paper zooms in

on the contractual form of intermediary liabilities, which is a fundamental difference between

banks and non banks. We jointly analyze liquidity provision by demandable equity and debt in

9Institutional prime MMFs were indeed subject to panic runs before the reform, notable examples including
the Reserve Primary Fund, the first MMF that “broke the buck,” and the Putnam Fund, the first MMF that
suddenly closed, both due to severe runs in 2008.

10Other classic papers on the role of banks, to name a few, include Diamond (1984) on bank monitoring, Gorton
and Pennacchi (1990) on bank liabilities as a medium of exchange, and Rajan (1992) on relationship banking.
Recently, He and Krishnamurthy (2013) analyze macroeconomic implications of banking and Drechsler, Savov
and Schnabl (2017) analyze how market power renders banks special in deposit-taking. They do not focus on
liquidity provision as Diamond and Dybvig (1983).

11Other papers on shadow bank liquidity provision includes Gorton and Metrick (2010), Stein (2012), Sunderam
(2015), Nagel (2016) and Xiao (2019).
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a common theoretical framework based on Diamond and Dybvig (1983) to show that equity also

insures against liquidity risk but with different frictions. Given our focus on demandable claims

issued by financial institutions, our framework also fundamentally differs from Jacklin (1987),

which analyzes liquidity provision by financial markets where claims are not demandable but

tradable. In fact, Jacklin (1987) does not consider aggregate risks and thus cannot accommodate

the notions of debt versus equity contracts.

The comparative advantage of equity with flexible NAVs in reducing the incidence of panic

runs speaks to the literature on mutual funds’ financial stability implications. Chen, Goldstein

and Jiang (2010) and Goldstein, Jiang and Ng (2017) find that panic runs may occur when

adjustments in fund NAVs are imperfect. Using a dynamic model, Zeng (2017) illustrates that

fund managers’ cash management and an inherent non-commitment problem may also lead to

panic runs. Chernenko and Sunderam (2017) empirically examine the relationship between fund

cash management and maturity mismatch, focusing on financial stability concerns. We take a

step back and analyze fund equity in its most primitive form with fully flexible NAVs in the

baseline model. Within our framework, sticky and non-forward looking NAVs can be seen as

deviations away from a benchmark equity contract where NAVs are not fully flexible. This would

bring along frictions of debt contracts in liquidity provision consistent with the findings in Chen,

Goldstein and Jiang (2010), Goldstein, Jiang and Ng (2017) and Zeng (2017). Our empirical

measure of liquidity provision accommodates the effect of these frictions on investors’ redemption

decisions through the use of observed outflows. Policies allowing for a more timely and accurate

adjustment of NAVs such as swing pricing may help dampen the magnitude of outflows as shown

by Jin, Kacperczyk, Kahraman and Suntheim (2020) to enhance the capacity of fund liquidity

provision.

We find that the comparative disadvantage of equity is the presence of more volatile flows to

fundamentals. Demonstrating the presence and implications of flows to fundamentals for equity-

funded intermediaries contributes to a large literature on mutual fund flows (see Christoffersen,

Musto and Wermers, 2014, for a review). Starting from Berk and Green (2004), numerous

empirical papers have examined the interplay between fund liquidity holdings and the flow-to-

performance relationship (e.g., Chordia, 1996, Edelen, 1999, Wermers, 2000, Pástor, Stambaugh

and Taylor, 2019, Jiang, Li and Wang, 2020). The novelty of our paper is to relate fundamental-

driven flows to fund liquidity provision.
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Finally, our paper contributes to the measurement of liquidity provision by financial inter-

mediaries. The prior literature has focused on the banking sector (Berger and Bouwman, 2009,

Brunnermeier, Gorton and Krishnamurthy, 2012, Bai, Krishnamurthy and Weymuller, 2018), as

the theoretical foundation of liquidity provision by other types of intermediaries has not yet being

laid out. We derive the LPI as a unified measure of liquidity provision which applies to both

debt-issuing and equity-issuing intermediaries. The LPI provides a useful tool for researchers

and policy-makers to assess the functions and risks of non-bank financial institutions.

2 Theoretical Framework

The economy has three dates, t = 0, 1, 2, with no time discount. There is a [0, 1] continuum

of ex-ante identical households, each of which has one unit of consumption good as the initial

endowment at t = 0, called “cash”, which serves as the numeraire. Each household is uncertain

about her preferences over consumption at t = 1 and t = 2. At the beginning of t = 1 a household

learns her preferences privately: with probability π she is an early-type and gets utility u(c1)

from date-1 consumption only, while with probability 1 − π she is a late-type and gets utility

u(c2) from date-2 consumption only. Let the primitive flow utility function, u(c), be increasing,

concave, and satisfy the Inada conditions.12

The market is incomplete in the sense that no Arrow-Debreu securities are available. The

consumption good, cash, can be directly consumed at any given date or transferred to the next

date via one of two technologies: 1) a long-term, illiquid investment project denoted as “project”,

and 2) a short-term liquid asset denoted as “storage”.13,14

The project is risky, illiquid, and available for investment at t = 0 only. One unit of cash

invested in the project at t = 0 yields R units of cash at t = 2, where R is a random variable

that follows a distribution of G(·) with support [0,+∞). Denote R as the fundamentals of the

12Notably, Inada conditions require u(0) = 0.
13Note that we do not attach any exogenous utility or convenience value to holding cash per se. Instead,

liquidity creation arises endogenously through liquidity insurance in an incomplete market setting as in Diamond
and Dybvig (1983).

14Although the original Diamond and Dybvig (1983) model does not have storage, the portfolio choice between
storage and an illiquid project has been introduced to the Diamond and Dybvig (1983) framework since Cooper
and Ross (1998) and Ennis and Keister (2006).
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economy; since R is uncertain, the economy entails aggregate risks.15 Only the distribution of R,

G(·), is common knowledge to households at t = 0, and we assume E[R] > 1 so that the project

generates a higher expected return than cash. At t = 1, the project has not yet come to fruition

and retains a value of one. If it is prematurely liquidated at this point, a liquidation discount

will be incurred.16 Denote the cash value obtainable when l of the project is liquidated as:

C(l) = l − φ

2
l2 , (2.1)

where 0 < φ ≤ 1 captures the extent of project illiquidity. This parametric form (2.1) can be

micro-founded by a downward-sloping demand for the illiquid project: the more of the project

is prematurely liquidated, the lower the marginal liquidation value.17

Storing cash is riskless. An intermediary always yields one unit of cash on the next date

when using the storage technology. Households are less efficient at storing cash and only obtain

γ units when investing one unit from t = 1 to t = 2. Specifically, we assume

γ = 1− κn , (2.2)

where 0 ≤ κ < 1 captures the decreasing returns to scale when a late household operates the

storage and n is the population of late households who use this storage.18 This can be thought

of as households finding it more costly to physically store cash or being less efficient at investing

cash in capital market securities. It is important to note that intermediaries’ storage efficiency

does not determine the presence of liquidity provision. In other words, all predictions still carry

15The original Diamond and Dybvig (1983) model does not have aggregate risks, but they have been introduced
in the follow-up literature, notably, Allen and Gale (1998) and Goldstein and Pauzner (2005).

16The original Diamond and Dybvig (1983) model does not have this liquidation cost. But it has been introduced
by Cooper and Ross (1998) to consider inefficient liquidation and its interplay with bank liquidity holdings, and
has been so far considered as a standard element of the Diamond and Dybvig (1983) paradigm.

17Formally, let the marginal liquidation value of the project be 1 − φz, where z is the total unit of projects
being liquidated. As a result, if a total of l illiquid project were prematurely liquidated at t = 1, the amount of
cash raised would be ∫ l

0

(1− φz)dz .

Calculating this integral yields (2.1).
18An alternative specification is to explicitly assume γ to be a decreasing function of the units of cash stored by

late households. This specification would not affect the economic insight because it is mathematically equivalent
to assume γ to be decreasing in n in a non-linear way. To see the intuition, notice that any household using this
storage always stores a positive amount of cash, and hence specification (2.2) already implies that γ is decreasing
in cash stored by late households.
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through if the relative inefficiency parameter κ is equal to 0. The purpose of introducing κ is to

capture the extent of the flow-to-fundamentals relationship, which will eventually influence the

magnitude of liquidity provision.

At the beginning of t = 1, every household i receives a private signal of R:

si = θ(R) + εi .

where θ(R) ∈ [0, 1) is strictly increasing in R, and εi is i.i.d. and arbitrarily small.19

To uncover the similarities and differences between debt and equity in liquidity provision, we

compare two scenarios with different intermediary arrangements, keeping the same underlying

economy. In both scenarios, a representative financial intermediary is present who makes portfolio

choices (xk,0, yk,0) at t = 0 on households’ behalf, where xk,0 is the amount of cash and yk,0 the

amount of projects. The subscript k ∈ {b, f} denotes the intermediary type: a bank or a

fund. Since the intermediary is representative, it maximizes households’ utility and breaks even

in equilibrium. Another interpretation is that the intermediary is mutually owned by all the

households without any agency frictions.

In the first scenario, a representative bank offers a standard demandable debt contract

(cb,1, cb,2) to households, where the cash payment at t = 1, cb,1, is subject to a sequential service

constraint as in Diamond and Dybvig (1983).20

In the second scenario, a representative open-end mutual fund offers an NAV-based, pro-rata

equity contract (cf,1(λ(R)), cf,2(λ(R))) in which the cash payments are the end-of-date net asset

values (NAVs). These payments are contingent on the number of households redeeming at t = 1,

λ, which is in turn determined by economic fundamental R in equilibrium. Thus, this payment

structure represents a redeemable equity contract.

It is important to note that we derive optimal debt and equity contracts based on the type of

debt and equity most closely aligned with those in the real world, i.e., demandable deposits and

open end mutual fund shares with flexible NAV. In this sense, we solve for constrained optimal

19This information structure is similar to that in Allen and Gale (1998) and more formally that in Goldstein
and Pauzner (2005).

20Our model insights will not change if we instead assume a pro rata rule following, for example, Allen and
Gale (1998). We do not consider other versions of the sequential service constraint such as that in Green and Lin
(2003).
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contracts just as in Diamond and Dybvig (1983). We do not focus on an unconstrained optimal

contract or mechanism design problem over a general contract space.

2.1 Liquidation Value and Liquidity Provision

Given our focus on liquidity provision by intermediaries, we first define a benchmark case of how

much short-term consumption a household can enjoy by liquidating a given portfolio at short

notice without an intermediary. Formally, we denote this as the liquidation value. Note that

the liquidation value is general in the sense that it can be defined on any portfolio and thus is a

function of (x0, y0); it does not necessarily rely on any equilibrium concept.

Definition 1. Given any t-0 portfolio (x0, y0), its liquidation value at t = 1 is given by

c1(x0, y0)
.
= x0 + y0 −

φ

2
y2

0 (2.3)

= 1− φ

2
y2

0 .

As (2.3) indicates, the liquidation value is lower than the fair value of the portfolio at t = 1

due to the liquidation discount as specified in (2.1). The less liquid a portfolio, the lower the

liquidation value.

According to Diamond and Dybvig (1983), creating deposits that are more liquid than the

underlying portfolio held by banks can be viewed as a liquidity insurance arrangement in which

depositors share the risk of liquidating an illiquid portfolio at short notice and at a loss. Definition

1 allows us to naturally extend this insight to non-bank, equity-issuing financial intermediaries to

define a unified notion of liquidity provision as the difference between the expected intermediary

contract payment and the liquidation value of the underlying portfolio. Formally, the equilibrium

amount of liquidity provision for any intermediary is defined as follows.

Definition 2. For a dollar invested in claims issued by an intermediary k ∈ {b, f}, the amount

of liquidity provision is defined as

E[c∗k,1(R)]− c1(x∗k,0, y
∗
k,0) , (2.4)

11



where the contract payment c∗k,1(R) and intermediary portfolio holdings (x∗k,0, y
∗
k,0) are equilibrium

outcomes given the intermediary arrangement (bank or fund) and the underlying economy, the

expectation E[·] is taken over fundamental R, and c1(·, ·) is the liquidation value function as

defined in Definition 1.

Intuitively, definition 2 indicates that the amount of liquidity provision to a household sub-

ject to realized liquidity shocks is affected by both sides of the intermediary’s balance sheet.

Specifically, liquidity provision is the difference between the expected contract payment (liability

side of the intermediary) and the liquidation value of the underlying portfolio (asset side of the

intermediary). It is positive if the claims issued by the intermediary are more liquid, i.e., have

a higher value upon liquidation at short notice, than the underlying assets it holds. Looking

ahead, we will show that the two sides of the intermediary balance sheet are jointly determined

in equilibrium, and that the equilibrium amount of liquidity provision is characterized by the

endogenous frictions stemming from the different contractual forms.

One nice feature about Definition 2 is that, since the liquidation value c1(x∗k,0, y
∗
k,0) is inde-

pendent to fundamental R, (2.4) can be re-expressed as

E[c∗k,1(R)− c1(x∗k,0, y
∗
k,0)] ,

which (before taking the expectation) allows our theory to capture ex-post liquidity provision

for any given realization of R. It thus allows us to compare the relative frictions of bank debt

versus fund equity in liquidity provision for any given state of the underlying economy.

Our definition of liquidation value and liquidity provision has two advantages. Theoretically,

it is in line with the original insight of liquidity provision by Diamond and Dybvig (1983) and

allows for a unified comparison across debt- and equity-issuing financial intermediaries.21 Em-

pirically, all essential inputs for calculating the liquidation value and the magnitude of liquidity

provision are observable, which allows for a direct application of the model to measure liquidity

provision by real-world intermediaries such as banks, open-end mutual funds, and money market

funds (MMFs).

21In Appendix A, we further show that the notion of liquidation value is tightly linked to the equilibrium
outcome in autarky, which serves as a direct welfare benchmark but is not empirically observable.
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2.2 Bank Debt

At t = 0, the representative bank offers a demandable debt contract (cb,1, cb,2), which is subject to

a sequential service constraint at t = 1, to households. Notably, cb,1 represents the face value of

debt, which is agreed on at t = 0. Because the bank breaks even, cb,2 is automatically determined

once cb,1 is chosen so that the face value of debt, cb,1, is sufficient to capture the contract offered

to depositors.22 At t = 0, the bank also chooses the optimal portfolio (xb,0, yb,0) to maximize

ex-ante expected household utility.

Although the debt face value cb,1 is fixed and independent of the number of withdrawals as

long as the bank is solvent, the sequential service constraint implies that the actual payments of

(cb,1, cb,2) implicitly depend on λb given any initial bank portfolio choice (xb,0, yb,0) as shown in

Table 1:

Table 1: Ex-post bank debt payments

t-1 withdrawal λb ≤
1− φ

2
y2
b,0

cb,1
λb >

1− φ
2
y2
b,0

cb,1

t-1 payment cb,1 cb,1 with probability q(λb)

t-2 payment
xb,1 + yb,1R

1− λb
0

where

q(λb) =
1− φ

2
y2
b,0

λbcb,1
(2.5)

is the probability of withdrawing households to be served when the bank fails and the sequential

service constraint is binding, and (xb,1, yb,1) is the bank’s remaining portfolio after meeting date-1

withdrawals:

xb,1 = max{xb,0 − λbcb,1, 0} ,

and

yb,1 =

{
yb,0 if xb,0 > λbcb,1 ,

yb,0 − lb if xb,0 < λbcb,1 ,
(2.6)

22Following Diamond and Dybvig (1983), debt means that cb,1 does not depend on λb (unless a run occurs),
regardless of whether cb,2 depends on λb or R. This focus on t-1 consumption is consistent with our definition of
fund equity, which hinges on date-1 NAV cf,1(λf ) directly depending on λf and and in turn on R in equilibrium
because λf depends on R.
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where lb, the unit of projects that the bank has to liquidate at t = 1, is determined by

λbcb,1 = xb,0 + lb −
φ

2
l2b , (2.7)

if the bank is solvent at t = 1, and clearly lb = yb,0 if the bank fails.

According to Definition 2, bank debt provides liquidity when E[c∗b,1] > c1(x∗b,0, y
∗
b,0). Looking

forward, we provide sufficient conditions to ensure that this is true in equilibrium at the end of

this subsection. Nevertheless, the actual debt payment schedule shown in Table 1 suggests that

the debt-issuing bank is indeed vulnerable to potential panic runs due to strategic uncertainty

among late households.

The intuition of the strategic uncertainty and the underlying first-mover advantage is the

following. suppose the bank has enough cash in the sense that xb,0 is large enough to meet

withdrawal by the π population of early households.23 If a late household expects all other

households to wait until t = 2, it is her best response to wait because that would allow her to

get a strictly positive t-2 consumption level. Nevertheless, if she expects all other households to

withdraw at t = 1, nothing would remain at t = 2 so that her best response would be to run as

well. Thus, the design of (cb,1, cb,2) must take the probability of panic runs at t = 1 into account.

We work backwards by analyzing late households’ run decision, the bank’s optimal choice of

debt face value cb,1 and the portfolio choice problem. In doing so, we apply the global games

technique following Goldstein and Pauzner (2005) to pin down the probability of panic runs.

The advantage of using global games is to link bank run probability to fundamentals while

preserving the panic-based nature of runs. This is important in our framework because it enables

a parallel comparison between bank debt and fund equity in liquidity provision given the same

fundamentals.

To formulate the analysis, we introduce a mild distributional assumption regarding house-

holds’ private signal si. Specifically, we assume θ to be uniformly distributed, and that εi, the

i.i.d. noise term, is uniformly distributed over [−ε, ε], where ε is arbitrarily small. As shown in

Goldstein and Pauzner (2005), under these mild distributional assumptions, there exists a unique

t-1 equilibrium in which a panic run occurs when R is below a threshold R∗, and any equilibrium

23The coordination failure among late households is essentially the same when xb,0 is small but the verbal
discussion is more involved. And in a t-0 equilibrium, the bank always holds a sufficiently high xb,0 to meet early
household withdrawal.
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must be such a threshold equilibrium.24 Thus, we follow the same logic to show that such a

threshold equilibrium exists in our framework, and then analyze the property of the threshold

R∗.

Proposition 1. Given the date-0 fund position (xb,0, yb,0), the promised debt value cb,1, and the

signal si received by households at t = 1, there exists a unique run threshold R∗ > R, where

R > 0 is given in the appendix.

Proposition 1 shows that bank debt subjects the bank to panic runs, which is coordinated

by fundamentals. An important observation from Proposition 1 is that the run threshold R∗

can be either larger or smaller than 1. We depict the idea of Proposition 1 in Figure 1, where

the red step curve illustrates the relationship between late households’ withdrawal decision and

economic fundamentals.

After illustrating that bank liquidity provision entails panic runs, we analyze how bank con-

tract design and portfolio choice affect the magnitude of runs given economic fundamentals:

Proposition 2. Given the date-0 fund position (xb,0, yb,0), the promised debt value cb,1, and the

signal si received by households at t = 1, the unique run threshold R∗(cb,1, xb,0) is increasing in

cb,1 and decreasing in xb,0.

Proposition 2 shows that a higher promised debt value cb,1 renders panic runs more likely.

On one hand, a higher cb,1 directly indicates more liquidity provision at t = 1. On the other

hand, the induced higher run threshold suggests more premature liquidation, hurting liquidity

provision to early investors. It follows that panic runs are a disadvantage of using bank debt

in providing liquidity – a key conceptual point of this paper. Proposition 2 also implies that

stored cash xb,0 helps mitigate panic runs. This observation stems from the role of stored cash in

helping liquidity provision at t = 1. A higher amount of stored cash helps reduce the first-mover

advantage and thus decreases the run threshold.

Proposition 2 is economically important because it illustrates that panic runs indeed comprise

the main friction for bank debt to provide liquidity. To see this, consider the bank’s optimization

24More formally, following Goldstein and Pauzner (2005), we need to assume an “upper dominance region,”
which means that late households never run when R→ +∞, to ensure the existence of a threshold run equilibrium.
This is a technical assumption to ensure that the global games technique works. Since this is a well understood
technical point in the literature and is not crucial to our economic mechanism, we omit the details and refer
interested readers to Goldstein and Pauzner (2005) for the economic motivation of that upper dominance region.
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problem at t = 0. The representative bank solves the optimal debt face value cb,1 and portfolio

allocation (xb,0, yb,0) to maximize the expected utility of households:

max
cb,1,xb,0,yb,0

∫ R∗

0

u(cb,1)q(1)dG(R) +

∫ +∞

R∗
(πu(cb,1) + (1− π)u(cb,2)) dG(R) (2.8)

where the function q is given by (2.5) and R∗ is determined according to Proposition 1. As (2.8)

indicates, a higher run possibility (i.e., a higher run threshold R∗) unambiguously leads to a

lower ex-ante expected household utility. Thus, according to Proposition 2, at the margin, the

bank has to either provide a lower deposit value c∗b,1 or increase its cash position x∗b,0 to reduce

panic runs, both leading to lower equilibrium liquidity provision according to Definition 2.

Finally, we ensure that the bank in our model indeed provides liquidity ex-ante according to

Definition 2. It suffices to give a set of sufficient conditions that ensures E[c∗b,1(R)] > c1(x∗b,0, y
∗
b,0)

without fully solving (2.8).25 When the distribution of G(R) reflects sufficiently good funda-

mentals (e.g., G(R) follows an exponential distribution with a sufficiently small rate), we have

c∗b,1 → 1
π
> 1 whereas c1(x∗b,0, y

∗
b,0) < 1. Thus, by standard continuity argument, there exists a

distribution G(R) that ensures the bank to provide liquidity in our model. For any distribution

G′(R) that first-order stochastic dominates G(R), the bank provides liquidity ex-ante.26

2.3 Fund Equity

The open-end mutual fund offers an NAV-based equity contract (cf,1(λf (R)), cf,2(λf (R))), which

is demandable at the end of each date and whose payments are the end-of-day NAVs.27 To

capture the essence of equity, we consider fully adjustable NAV in the sense that the contract

payment is explicitly written on the number of shareholders who actually redeem at t = 1,

denoted by λf . In practice, open-end mutual funds achieve this by “striking the NAV” – a

standard industry practice during the trading day to form the estimated amount of redemption

requests, perform the necessary asset transactions, and pre-calculate the end-of-day NAVs. We

essentially take this process to be frictionless in the model. In equilibrium, withdrawals λf will in

25This approach is standard in the literature, for example, Theorem 3 in Goldstein and Pauzner (2005).
26Theoretically, we can also easily show that, under the same set of sufficient conditions, the bank provides a

higher expected t-1 consumption than the autarky. See Appendix A for a formal analysis.
27Relatedly, Green and Lin (2003) considers an alternative, hypothetical equity contract implied by a direct

mechanism design problem in the Diamond and Dybvig (1983) setting. As acknowledged by Green and Lin (2003),
however, that hypothetical equity contract is not observed in reality.
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turn be determined by fundamentals R, which is why contract payments are indirectly affected

by R and take the form of (cf,1(λf (R)), cf,2(λf (R))).28

We work backwards on the fund’s optimal contract design and portfolio choice, taking house-

hold decisions into account. First, at t = 1, the fund pays out the end-of-day NAV1 to redeeming

households. The representative fund, which maximizes expected shareholder utility, will first de-

ploy stored cash to meet redemptions at t = 1 because this avoids premature liquidation of the

project that has a higher expected return and also a liquidation cost. If the cash stored no longer

suffices to pay all redeeming households, the fund will resort to liquidating the project prema-

turely, raise cash, adjust the end-of-day NAV downwards, and pay all redeeming households the

resulting NAV.29 Hence, at t = 1, the fund NAV is determined by

cf,1(λf ) = NAV1(λf )

= xf,0 + yf,0 −
φ

2
l2f (λf )

= 1− φ

2
l2f (λf )

= 1− φ

2
(yf,0 − yf,1(λf ))

2 , (2.9)

where lf = yf,0 − yf,1 is the unit of prematurely liquidated projects at t = 1. yf,1 is the fund’s

remaining position in the illiquid project after meeting date-1 redemptions, which is a function

of λf in equilibrium. lf also depends on λf and is determined by

λfNAV1(λf ) = min

{
λf , xf,0 + lf −

φ

2
l2f

}
, (2.10)

28Notice that this is an equilibrium outcome and not because contract payments are directly written on house-
holds’ private signal si.

29In reality, the Investment Company Act of 1940 prohibits open-end mutual funds from borrowing or lending
(i.e., using or extending credit lines), even within the same fund family. Within-fund-family overnight borrowing
and lending is legal only upon application to and approval from the US SEC under emergency situations. The same
legal restriction applies to using redemption gates to suspend daily redemption to shareholders. Mutual funds
may also opt to redeem in-kind rather than redeem in-cash; however, to protect their reputation to facilitate
future share distribution, mutual funds are extremely reluctant to use redemption in-kind even in bad times.
Consistent with this argument, there has been no evidence of open-end mutual funds using redemption in-kind.
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where the LHS is the total amount of cash distributed to redeeming investors and the RHS is

the amount of available cash, both evaluated at the end of t = 1. And clearly, we have

yf,1 =

{
yf,0 if xf,0 > λf ,

yf,0 − lf if xf,0 < λf ,
(2.11)

Two important remarks are in order. First, although households’ private signal si at t = 1

is not contractable and cannot be written into the NAV, fundamentals R influence equilibrium

payments through affecting the number of households who actually redeem at t = 1. Thus, the

equilibrium equity contract payment is written in the form of (cf,1(λf (R)), cf,2(λf (R))). Second,

the value of projects that are not liquidated at t = 1 remains at 1 because they have not yet come

to fruition. This valuation is reflected in the NAVs as a result of its flexibly adjusting contract

value.

Without fully solving for the equilibrium, we first show that fund equity indeed provides

liquidity in the sense of Diamond and Dybvig (1983) in any equilibrium:

Proposition 3. Given any equilibrium fund portfolio (x∗f,0, y
∗
f,0), the fund provides liquidity ex-

ante as defined in Definition 2, that is,

E[c∗f,1(λf (R))] > c1(x∗f,0, y
∗
f,0) ,

where the t-1 NAV function c∗f,1(·) is given by (2.9).

The proof of Proposition 3 is straightforward and thus we give it here to help build intu-

ition. Directly comparing (2.9) and the liquidation value as defined in Definition 1 shows that

cf,1(λf (R)) ≥ c1(xf,0, yf,0), and this inequality takes a strict form if yf,1 > 0. Intuitively, unless

the fund is fully liquidated, the end-of-day NAV promised to households who redeem at t = 1 is

strictly higher than the liquidation value of the underlying fund portfolio. Notice that this state-

ment is true regardless of how many households actually redeem, and thus is also true regardless

of the fundamental. Taking expectations with respect to the fundamental thus yields the result.

The intuition behind Proposition 3 is that, by pooling resources among early and late house-

holds at the intermediary level, issuing demandable equity, and paying out early households at

the NAV, the fund is able to provide liquidity insurance among all households exactly in the spirit
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of Diamond and Dybvig (1983).30 Notably, the fund equity under its payment structure (2.9)

does not have any debt-like feature, suggesting that a debt contract is not a necessary condition

for liquidity provision. Again, the key is to create a pool of resources to share idiosyncratic

liquidity risks, be it a bank or a fund.

Nevertheless, the characteristics of liquidity provision by bank debt and fund equity differ

because the former pays a fixed face value unless default whereas the latter promises a flexible

and information sensitive payment. The following lemma offers a first insight into the difference:

Lemma 1. Given any fund portfolio (xf,0, yf,0), the consumption promised to early households is

decreasing in the number of redeeming households, that is, ∂cf,1(λf )/∂λf ≤ 0, and this inequality

takes a strict form if lf > 0.

Lemma 1 illustrates that, by issuing equity, funds are able to flexibly adjust their actual,

ex-post liquidity provision at t = 1 once liquidation losses realize. In contrast, banks would have

to honor the fixed debt value cb,1 to redeeming households unless the bank fails. As we will show

later, the flexible contract value of equity allows funds to eliminate panic runs but comes at the

cost of flows to fundamentals, which represent the comparative advantage and disadvantage of

liquidity provision by equity-issuing intermediaries respectively.

Having analyzed the NAV at t = 1, the NAV at t = 2 is determined by

cf,2(λf ) = NAV2(λf ) =
1

1− λf
(xf,1 + yf,1R) , (2.12)

where

xf,1 = max{xf,0 − λfcf,1(λf ), 0} ,

and yf,1 is given by (2.11).

Taken together, the NAV rules (2.9), (2.10), and (2.12) and Lemma 1 lead to an important

result:

30Similarly to the analysis of bank above, the ability of fund equity liquidity provision is general and holds qual-
itatively if we instead compare the optimally determined E[c∗f,1(λf )] to the autarky outcome c∗a,1 in equilibrium
under certain sufficient conditions. See Appendix A for a formal analysis.
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Proposition 4. 
NAV1(λf ) > NAV2(λf ) if R < 1 ,

NAV1(λf ) = NAV2(λf ) if R = 1 ,

NAV1(λf ) < NAV2(λf ) if R > 1 .

Proposition 4 has two important implications. The first one is that fund equity with fully

flexible NAV is not subject to panic runs. This is because any late households’ redemption

decision is uniquely determined by the comparison between NAV2 and NAV1, which in turn

as shown by Proposition 4 solely depends on economic fundamentals R but not any strategic

motives by households. In contrast, in the original Diamond and Dybvig (1983) framework, bank

liquidity provision goes hand in hand with panic-based bank runs.

The second implication of Proposition 4 is that the comparison between NAV2 and NAV1

is directly linked to fundamentals R, which households infer from the signal they receive. This

direct link between fund NAVs and fundamentals immediately leads to the friction underlying

fund liquidity provision, as we illustrate below. In contrast, for a bank, the deposit value is

indirectly linked to fundamentals, which serve as a coordination device for run decisions.

The above two implications play a key role in understanding late households’ optimal re-

demption decision at t = 1 because they compare NAV2 and NAV1 to decide whether to redeem

or not. Suppose that after observing si, wf late households choose to redeem at t = 1 , the total

portion of redeeming households will be

λf = π + wf

since early households always redeem. Given (2.9) and (2.12), the amount of late householders

wf who choose to redeem at t = 1 will be
wf = 0 if u(cf,1(λf )) < E[u(cf,2(λf ))|si] ,
wf ∈ (0, 1− π) if u(cf,1(λf )(1− κwf )) = E[u(cf,2(λf ))|si] ,
wf = 1− π if u(cf,1(λf )(1− κwf ))) > E[u(cf,2(λf ))|si] .

(2.13)

Solving (2.13) with Proposition 4 in mind yields the late households’ optimal redemption decision

at t = 1:
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Proposition 5. Given date-0 fund position (xf,0, yf,0) and signal si received by households at

t = 1, late households withdrawing from the fund amount to

w∗f =



0 if R ≥ 1

1

2

(
1− π −

√
2

4(1− xf,0)(R− 1) + κ(1− π)2

)
if R < 1 and xf,0 ≥ π

1−R
κ

if R < 1 and xf,0 < π

(2.14)

subject to w∗f ≤ 1− π.

We denote the negative relationship between redemptions wf and fundamentals R as the

flows-to-fundamentals relationship.31 Notice that in contrast to withdrawals induced by bank

runs, there is no strategic element driving the flows to fundamentals. Figure 1 illustrates the

result of Proposition 5 for funds and Proposition 1 for banks. The blue and red lines indicate

the relationship between equilibrium outflows and economic fundamentals for debt-issuing banks

and equity-issuing funds respectively. The abrupt increase in liquidations at R∗ for the red line

indicates the presence of bank runs whereas the negative slope of the blue line corresponds to

the flows-to-fundamentals relationship for funds.

Given the flows-to-fundamentals relationship, the fund liquidates the project in order to meet

redemption requests. The following relationship between fund flows and fundamentals results:

Proposition 6. Given the date-0 fund position (xf,0, yf,0) and the signal si received by households

at t = 1, the fund liquidates

l∗f =



0 if xf,0 ≥ π + w∗f

1−
√

1 + 2φ (π2 + xf,0 − π(1 + xf,0))

(1− π)φ
if R ≥ 1 and xf,0 < π + w∗f

1−
√

1 + 2φ
(
(π + w∗f )

2 + xf,0 − (π + wf )(1 + xf,0)
)

(1− π − w∗f )φ
if R < 1 and xf,0 < π + w∗f

(2.15)

units of project at t = 1 subject to l∗f ≤ yf,0, where w∗f is given by Proposition 5.

31Further, w∗
f is also increasing in 1− π and φ while decreasing in xf,0 and κ.
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Proposition 6 is graphically illustrated in Figure 2 along with the corresponding result for

debt-issuing banks. It shows both bank debt and fund equity are subject to premature liqui-

dations albeit with different characteristics arising from panic runs at banks and the flows-to-

fundamentals relationship at funds.32

Taken together, Propositions 5 and 6 show that liquidity provision by equity-issuing funds is

exposed to premature liquidations arising from the sensitivity of equity valuation to fluctuations

in economic fundamentals. This flow-to-fundamentals friction hurts NAV1 and thereby limits

equilibrium liquidity provision according to Definition 2.

Proposition 6 also suggests that more stored cash between t = 0 and 1 can alleviate the

sensitivity of liquidations to fundamentals through three channels. First, when R ≥ 1 but xf,0 <

π, the fund can directly use stored cash to meet early household redemptions, incurring a lower

liquidation lf . Second, a higher xf,0 translates to lower yf,0, which leads to a lower premature

project liquidation lf . Finally, because the marginal project liquidation value is decreasing in the

unit of projects liquidated, a higher xf,0 also implies a weaker flow-to-fundamentals relationship.

The fund will take these channels into account when maximizing ex-ante household utility to

choose a storage-project mix at t = 0 that optimally trades off liquidity provision to early

households and return generation to late households.

Taking the above analysis into account, the representative fund solves the optimal portfolio

allocation (xf,0, yf,0) at t = 0 to maximize the expected utility of all households:

max
xf,0,yf,0

E [λfu(cf,1(λ)) + (1− λf )u(cf,2(λ))] (2.16)

subject to (2.9), (2.11), (2.12), and (2.15). As we have already shown in Proposition 3, fund

equity indeed provides liquidity ex-ante in any equilibrium.

3 Liquidity Provision Index

Our model shows that both deposit-funded banks and equity-funded funds are able to pool

resources to provide liquidity, in which process they are subject to different endogenous frictions

32Also note that l∗f is increasing in φ, decreasing in xf,0, and concave in R due to the flexible adjustment of
NAV1.
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but both can be captured by endogenous outflows. To quantify how much liquidity is produced by

the two types of financial intermediaries, we map our model to the data and develop the Liquidity

Provision Index (LPI). In line with Definition 2, the LPI aims to measure by how much more a

household cashing out at short notice expects to obtain through holding and liquidating deposit

claims of a bank (shares of a fund) relative to directly holding and liquidating the bank’s (fund’s)

underlying assets themselves. In other words, it is the empirical proxy for E[c∗k,1(R)]−c1(x∗k,0, y
∗
k,0)

as in Definition 2.33

While most components for the LPI can be directly obtained from balance sheet data and

market haircuts, one challenge remains in calculating E[c∗k,1(R)] because economic fundamentals

R are not directly measurable. Fortunately, our theory, in particular, Propositions 1 (for bank

debt) and 5 (for fund equity), suggests that the fundamental R affects liquidity provision through

affecting late households’ withdrawal (redemption) decisions, that is, outflows, captured by λ

in the model. Thus, as long as we observe the distribution of actual household withdrawals

(redemptions), that is, outflows from the respective intermediaries in the data, we are able to

calculate E[c∗k,1(R)] through calculating E[c∗k,1(λ(R))] without relying on the distribution of R

per se. We therefore change the state variable from the fundamentals, R, to the the fundamental-

driven outflows, λ, which have unambiguous empirical counterparts, to facilitate the construction

of the LPI.

Below we first provide a simple example to illustrate the construction of the LPI. Then we

provide a formal step-by-step explanation of the construction and discuss the connection to the

theory in detail.

3.1 An Example

Consider a hypothetical mutual fund that holds 10% cash and 90% of illiquid assets, where

the illiquid asset can only be converted to a fraction, say 70%, of their fair value upon early

redemption. When all investors demand to redeem their shares early, the per unit contract

payment would only be 1 × 0.1 + 0.7 × 0.9 = 0.73 because all illiquid assets would be pre-

maturely liquidated and incur a discount. Notice that an investor directly holding 0.1 of cash

33Notice that the LPI remains agnostic about the long run consumption, or E[c∗k,2] in the model. As discussed
in the introduction, the long run return, or, in other words, the cost of liquidity provision, is an important but
separate question we address in ?.
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and 0.9 of the illiquid assets receives the same 0.73 if she has to liquidate early because she would

also have to sell her entire portfolio as well. In this sense, holding a share at the fund does not

improve the consumption value when all other fund investors also withdraw early because all

risk is systematic and liquidity insurance is ineffective.

In any other case when not all investors redeem early, however, idiosyncratic liquidity risk

is pooled at the fund level and holding fund shares reduces the average discount suffered and

improves the amount of cash obtainable upon short notice. For example, if total outflows amount

to less than 10% of the funds assets, they can be met by just using the fund’s cash and the the

investor can obtain the full contract payment according to fund NAV, which is 1, when she

liquidates early. If redemptions exceed 10%, more illiquid assets would have to be liquidated

and the contract payment would decrease until it reaches 0.73 at a 100% outflows. This trend is

depicted graphically by the blue line in Figure 3. The dotted line indicates the liquidation value

of the underlying portfolio 0.73.

Similarly, a hypothetical bank with 10% cash and 90% of illiquid assets also provides a higher

liquidation value than 0.73 as long as not all depositors prematurely withdraw from the bank

because of the pooling of idiosyncratic liquidity shocks. However, as the red line in Figure

3 shows, the liquidation value does not continuously decrease with the percentage of outflows

because the face value of deposit contracts is fixed until the default threshold is crossed whereas

the equity value of mutual fund shares flexibly adjusts with the actual amount of liquidation.

For a given level of outflows, the difference between the red (blue) line and the dotted line

shows the increase in liquidation value when the bank’s (fund’s) asset are held through the bank

(fund) relative to directly held by the investor herself. It captures the contribution of the bank

(fund) to liquidity available and hence its liquidity provision for a given amount of outflows.

Finally, to calculate expected liquidity provision, we need to know the distribution of redemp-

tions/withdrawls. Note that Figure 3 does not imply that all outflow volumes will actually occur.

In fact, our model specifically predicts how redemptions in equilibrium depends on the use of

debt versus equity contracts and the subsequent portfolio choice on the asset side. We therefore

let the data speak by taking the empirical distribution of fund and bank deposit flows as the

equilibrium outcome of early redemptions. This allows us to calculate the expected liquidity

provision for each bank and fund as its Liquidity Provision Index.
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3.2 Construction and Data

More formally, we can generalize the LPI construction into three steps.

Step 1: The first step is to calculate the contract payment by outflows as in Figure 3. This

requires knowing how much of each asset is liquidated to meet a given proportion of redemp-

tions/withdrawals and at what cost.

Let Ωi be the amount of outflows at bank (fund) i as a percentage of total assets. Ωi is the

empirical counterpart to the number of investors that withdraw in the model, λ. We also extend

the two-asset world of the model to allow for a complete portfolio distribution. Let vector Ait

be bank (fund) i’s asset portfolio distribution at time t with Aijt denoting the portfolio weight

on asset j ∈ J . The asset index, j, is ranked in increasing order with the haircut of the asset

hjt, i.e., hjt ≤ hj′t for any j ≤ j′. In other words, more liquid assets have smaller indexes.

The ranking of liquidation haircuts and the distribution of assets determine which assets are

to be liquidated for a given outflow as banks (funds) meet redemption requests by selling more

liquid assets first.34 To illustrate, recall the above example where a bank (fund) holding 10%

of cash can meet outflows of up to 10% without losses. As outflows increase, banks (funds) use

increasingly more illiquid asset categories to meet their redemption requests until even the most

illiquid assets are liquidated when outflows (hypothetically) reach 100%.

While the contract payment of fund shares follows that of fund assets due to flexible NAVs,

bank deposits do not lose value until there are not enough funds left to pay the face value. Notice

that, to focus on the difference in contract forms, we only consider those deposit contracts without

deposit insurance throughout our calculations, for which the contract payment will fall below the

face value if proceeds from asset liquidations are insufficient to pay the face value of debt. But

the LPI construction is indeed general enough to handle insured deposits, as well as to capture

and isolate the effect of deposit insurance on uninsured deposits (see Appendix B for details).

Denoting 1−Ht(Ωi, Ait) as the contract payment for investors withdrawing (redeeming) a dollar

of deposits (fund shares) when outflows are Ωi under bank (fund) asset distribution Ait, we have

for bank i:

Ht(Ωi, Ait) =

{
0 if the bank survives∑J

j=1 Aijthjt if the bank fails ,
(3.1)

34 Jiang, Li and Wang (2020), among others, identify this order of liquidation in the data.
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and for fund i:

Ht(Ωi, Ait) =

JΩ−1∑
j=1

Aijthjt + ÂiJΩthJΩt , (3.2)

where ÂiJΩt is the position of the least liquid asset being liquidated to meet Ωi while assets more

liquid than JΩ are fully liquidated.

Regarding data, we use bank call reports and mutual fund holdings from the CRSP database

to obtain the distribution of assets Ait for banks and funds respectively.35 For haircuts, we use

collateral haircuts in repo markets and discounts on loan sales in secondary markets. Following

Bai, Krishnamurthy and Weymuller (2018), we collect securities haircuts from the New York

Fed’s repo data series, commercial loan haircuts from the Loan Syndications and Trading Asso-

ciation and real estate loan haircuts from the Federal Home Loan Banks.36 Also similar to Bai,

Krishnamurthy and Weymuller (2018), we smooth the series to reduce the impact of outliers.37

Figure 4 plots the predicted haircut series for different asset categories over our sample period. As

expected, safe assets such as Treasuries have smaller and less volatile haircuts whereas relatively

illiquid assets such as loans have higher and more volatile haircuts.

Step 2 : Since contract payments vary with outflows, the expected contract payment depends

on the distribution of outflows. We take the empirical distribution of bank deposit flows (mutual

fund flows) to proxy for early withdrawals (redemptions) realized in equilibrium. Our model

predicts how early redemptions/withdrawals vary with the use of debt versus equity and its

subsequent choice in asset portfolio. Our empirical approach directly measures the realized

flows, which can be seen as the equilibrium outcome of this decision-making process. In reality,

outflows may be affected by other institutional features as well, e.g., implicit guarantees at banks

and sticky NAVs at mutual funds. We elaborate on the impact of these frictions in the results

section.

With the estimated distribution F (·), we can derive the bank and fund level expected contract

payment as ∫
(1−Ht(Ωi, Ait))dF (Ωi) . (3.3)

35Please refer to the Online Appendix for details.
36We combine different data sources similar to Bai, Krishnamurthy and Weymuller (2018) as there is no one

market in which all types of assets under consideration are traded and observed.
37Please refer to the Online Appendix for details.
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Viewed through the lens of the model, this expected contract payment of bank deposits (fund

shares) proxies for the expected consumption available to bank depositors (fund share holders)

withdrawing prematurely at the end of the first period, E[c∗k,1(λ)]. Importantly, the difference

between t = 0 and 1 in Diamond and Dybvig (1983)-type models conceptually captures an ultra-

short-term period. Thus, when we take the model to data to measure liquidity provision in reality,

the construction of the contract payment as in (3.3) also reflects an ultra-short time period in

which the net return on assets are negligible38,39 and focuses on the shape of the function c∗k,1(λ),

which directly depends on flows.

For banks, we calculate flows as percentage changes in total bank liabilities over total bank

assets, using bank call reports from 2010 to 2017. Since deposit flows account for the vast bulk

of short-term changes in bank liabilities, our results are robust to alternative approaches such as

directly measuring deposit flows or non-equity flows. We augment the resulting flow distribution

with data on bank failures, in which case we assign an outflow of 100%.40 For each mutual fund,

flows are calculated using its monthly (portfolio-level) total net asset changes using the CRSP

database. For positive flows, we assume that no assets are prematurely liquidated and that the

effective contract payment is one.

Step 3 : Finally, we calculate and subtract the liquidation value an investor expects to obtain

by directly holding the bank’s (fund’s) assets on her own as the benchmark. In this case, she has

to sell the entire portfolio to meet her own withdrawal needs, which is equivalent to the effective

contract payment of the bank (fund) with outflows equal to one, i.e., 1−Ht(1, Ait).

Taken together, the LPI of bank (fund) i at time t is the expected liquidity it provides relative

to direct holding:

LPIit =

∫
(1−Ht(Ωi, Ait))dFi(Ωi)− (1−Ht(1, Ait)), (3.4)

where Fi(Ωi) is the estimated distribution of bank deposit (fund) outflow Ωi and Ht(Ωi, Ait) is

given by (3.1) and (3.2).

38This is consistent with our model that between t = 0 and 1, the investment project has not yet come to
fruition and thus retains a value of one, and thus the fund’s NAV is also one at the beginning of t = 1. For a
bank, although the level of the optimal deposit value at t = 1 can be theoretically different from one in a static
setting following Diamond and Dybvig (1983), the effective ultra-short-term net asset return is still negligible.

39While the focus of the LPI is short-term liquidity provision, or E[c∗k,1], the long run consumption, E[c∗k,2], is
also an important element of our model and relates to the cost of liquidity provision.

40This is consistent with our model that when a panic run occurs, all late households withdraw at t = 1.
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To summarize, we have the following close mapping between the theory and empirics as shown

in Table 2:

Table 2: Mapping between equilibrium outcomes and empirical counterparts

Outflows Asset holdings Contract Payment Liquidation Value

Theory λ y∗0 E[c∗k,1(λ)] c1(x∗k,0, y
∗
k,0)

Empirics Ω A
∫

(1−Ht(Ωi, Ait))dF (Ωi) 1−Ht(1, Ait)

4 Liquidity Provision by Bank Debt and Fund Equity

We apply the LPI to compare and contrast liquidity provision by two important intermediaries

using debt and equity financing respectively: commercial banks and bond mutual funds. We focus

on uninsured deposits and tease out any indirect effects from regulatory features such as deposit

insurances and non-deposit liabilities. We also apply the LPI to money market funds (MMFs)

as an identification, focusing on around the 2016 MMF Reform when institutional MMFs were

required to switch from debt to equity funding. It also serves as an independent application

to demonstrate the generality of the LPI – it applies to any intermediaries issuing demandable

claims. We further verify comparative statics implied by our theory using the cross-section of

LPIs. Finally, we examine time-series variations in LPI and find evidence for post-crisis liquidity

regulation and quantitative easing to have narrowed the gap in liquidity provision between banks

and equity.

4.1 Construction and Aggregate Results

We follow the procedure described in Section 3.2 to construct the LPI for each bank-quarter and

each fund-quarter in our sample. We report the aggregate results to illustrate the magnitude.

We first construct the contract payment as a function of outflow for uninsured bank deposits

and mutual funds shares in our sample. We report the aggregate results in Figure 6. This aggre-
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gate result can be thought of as a representative bank holding the average portfolio of the banking

sector and a representative fund holding the same proportion of assets as the bond mutual fund

sector.41 Similar to the Example in Section 3.1, the contract payment for funds continuously

declines with early redemptions because the value of fund shares adjusts to reflect the incurred

haircuts when increasingly illiquid assets are liquidated. Banks also sell more illiquid assets

as deposit withdrawals increase but the uninsured debt contract guarantees a constant contract

payment until the bank defaults, i.e., deposit withdrawals cannot be met at their promised value.

When outflows reach 100%, an intermediary has to fully liquidate the underlying portfolio,

and the contract payment of uninsured bank deposits and mutual fund shares reach 78% and 95%

respectively, as shown in Figure 6. These two numbers, by construction, are also the liquidation

values of the underlying portfolios. These two numbers differ because the assets that banks and

funds hold in equilibrium are different with banks’ portfolio being more illiquid. One rationale

provided by our theory is that the use of debt versus equity contracts induce different incentives

for holding liquid assets. As our theoretical framework implies, deposit funded banks hold liquid

assets to reduce the incidence of panic runs whereas equity funded funds hold liquid assets to

reduce the flow to fundamentals sensitivity. The aggregate result is consistent with the latter

concern being more pronounced in the time period we examine.

We then estimate the flow distribution for each bank and fund in our sample. Figure 5

plots the distribution of bank and fund flows from 2011 to 2017 for a representative bank and

a representative fund. As we argued before, these empirical flow distributions indeed take into

account the impact of fundamentals on flows in equilibrium, that is, panic runs for a bank and

flow-to-fundamentals for a fund. Notice that in practice, imperfections in the adjustment of fund

NAVs could have influenced the observed outflows to be more pronounced in response to negative

shocks to fundamentals. These imperfections could arise from NAV adjustments being lagged as

in Chen, Goldstein and Jiang (2010) and Goldstein, Jiang and Ng (2017) or not being perfectly

forward looking as in Zeng (2017). Since the observed outflows would be more pronounced than

they would have been under perfectly flexible NAVs, the fund LPI we obtain can be seen as a

lower bound to fund LPI with frictionless NAVs.42

41The size of the sector does not affect the result because both outflows and contract payments are expressed
as percentages.

42Going forward, the introduction of swing pricing could potentially alleviate frictions in the adjustment of NAVs
and improve the liquidity provision capacity by funds. Evidence for outflows becoming less negative following
the introduction of swing pricing has been established in the UK market by Jin, Kacperczyk, Kahraman and
Suntheim (2020).
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Finally, we use the estimated flow distribution for each intermediary to calculate the LPI for

each intermediary-quarter, using the constructed contract payment function and the calculated

liquidation value in the first step. Up to this point, we are able to assemble a panel of LPIs at

the intermediary-quarter level.

4.2 Baseline Results

Figure 7 plots the distribution of bank and fund level LPIs in the cross-section. It shows that

an average dollar invested in funds and banks contributes 0.04 and 0.22 more to early consump-

tion respectively. In other words, according to the LPI, liquidity provision in mutual funds

is economically significant and comprises about a fifth of that by commercial banks per unit

investment.

Regarding bank LPI, although our calculation only considers the uninsured portion of de-

posits, one may ask whether regulatory features such as deposit insurances and non-deposit

liabilities may indirectly affect the estimated LPI through bank portfolio choice. As explained

in Appendix B in detail, deposit insurance, along with other similar regulatory policies, does not

affect the nature and validity of the LPI construction. However, it could impact the magnitude

of LPI through affecting investors outflows and intermediary portfolio choices in equilibrium.

Empirically, to perfectly isolate the indirect effects of deposit insurance and other regulatory

policies requires the ideal experiment of the same bank operating without deposit insurance.

Although this ideal experiment does not exist, we perform two tests to show that regulation has

some influence but does only partially explain the difference in liquidity provision by debt versus

equity funded intermediaries; the bulk of the difference arises from the difference in contract

forms.

We first directly relate bank-level LPIs to the ratio of insured deposits in the data and project

the LPI that would have applied with zero-insured deposits in Table 3. The constant term in

column (1), which is statistically significant, indicates that without deposit insurance, the LPI

for uninsured deposits in an average bank in our sample would be about 0.16, which is a 27%

drop from the average LPI of 0.22 for banks. In other words, without deposit insurance, the gap

in liquidity provision capacity between bank debt and fund shares is further reduce to 0.16 versus
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0.04. Similarly, column (2) indicates that a linear-projected bank without insured deposits or

non-deposit liabilities would have had an LPI of 0.15 for its uninsured deposits.

4.3 Application: Money Market Mutual Fund Reform

There may be remaining concerns of regulatory differences other than deposit insurance, some

of which cannot be directly observed such as implicit guarantees by the government. To this

end, we apply the LPI to a laboratory of money market funds (MMFs) before and after the

Money Market Fund Reform as an identification of the pure effect arising from debt versus

equity. Implemented in October 2016, the Securities and Exchange Commission’s MMF Reform

requires institutional prime MMFs to switch from reporting a $1 fixed share price to floating

net asset values, which effectively corresponds to a switch from debt to equity contracts in our

framework. Importantly, among other dimensions of the reform, only the floating NAV rule did

not apply to retail prime funds who continued reporting a $1 fixed share price. This setting

naturally lends itself to a difference-in-differences analysis with institutional and retail prime

funds as treatment and control groups to study the difference in liquidity provision by debt and

equity funded intermediaries.

Figure 10 plots the LPI of institutional and retail prime MMFs from three years before to

three years after the reform. To account for changes in the sensitivity of fund flows, the flow

distribution for the LPI calculation are constructed separately for the pre and post reform periods

respectively. The lower panel repeats the analysis with the subset of funds that appeared in both

pre and post reform periods. For both samples, institutional and retail prime fund LPI largely

followed the same pattern before October 2016, agreeing with the parallel trends assumption.

Since the onset of the reform, institutional MMFs experienced a significantly larger drop in LPI

than retail funds. This trend is corroborated by a formal difference-in-differences test in Table

4. The coefficient on the interaction term reflects the difference in LPI for funds using debt

versus equity contracts. Using the full sample of funds, the baseline result in column (1) shows

that the LPI is only 42/(203+9)=20% lower when the institutional MMFs switches from fixed

to floating NAVs. This result confirms that demandable equity can provide significant amounts

of liquidity, albeit 20% less than in the case of demandable debt. Columns (3) and (4) repeat

the analysis excluding flows around the implementation from August to October 2016 columns

(5) and (6) shifts the treatment date a year back to account for potential anticipation effects.
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Even-numbered columns focus on the subsample of funds appearing in both pre and post period

respectively.

4.4 Liquidity Provision in the Cross-section

In addition to the LPI gap between banks and funds, Figure 7 also displays dispersion in liquidity

provision within the fund and banking sector respectively. For banks, as seen in Table 3, deposit

insurance cannot fully explain but has a positive effect on the LPI, which is consistent with lower

bank run probability allowing for more liquidity provision in the theory. The same trend is also

depicted in the upper panel of Figure 9. Other factors, such as leverage ratio and the proportion

of non-deposit types of funding may also affect the probability of runs while banks of different

asset sizes may be subject to different regulatory constraints. The lower panel of Figure 9 shows

that the relationship between LPI and deposit insurance ratio is robust to these variables.

Regarding mutual fund fund LPIs, our model shows that liquidity provision by equity is

constrained by flows to fundamentals. In line with the theory, we find that the more sensitive

fund flows are to changes in fund returns, the lower its liquidity provision as shown in Figure 8.

While fund returns are used as an empirical measure for economic fundamentals, other features of

the fund, such as size, age and expense ratio, may simultaneously influence outflows. The lower

panel of Figure 8 shows that the negative relationship between liquidity provision and fund flow

sensitivity is preserved upon including fund-level characteristics as controls. The corresponding

regression results are in Table 5.

4.5 Liquidity Provision in the Time-series

We proceed to examine how liquidity provision has evolved over time. Plotting the quarterly

weighted average of bank and fund level LPIs, Figure 11 shows that the difference has been

narrowing over time with bank LPI sharply decreasing from 0.285 in 2011 to 0.190 in 2017 and

fund LPI increasing from 0.039 in 2011 to 0.043 in 2017. In other words, within six years, liquidity

provided by an average dollar invested in funds has approximately increased from a seventh to

a quarter of an dollar invested in commercial banks.
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While a full characterization of the trend’s determinants is beyond the scope of this paper, we

highlight that changes in the regulatory landscape have had significant impacts on the capacity

of liquidity provision by commercial banks.

First is the increase in central bank reserves following Quantitative Easing. Excess reserves

held with the Federal Reserve are liquid assets redeemable at short notice. The overall effect

of more reserves on liquidity provision can go in both ways. It could have a positive effect

because, as Proposition 2 suggests, more liquid bank balance sheets are less prone to runs. This

is illustrated by the rightward shift of the default threshold for outflows from Ω to Ω
′

in Figure

12. On the other hand, a portfolio with more reserves also has a higher liquidation value under

direct holding by investors, which is reflected by the increase in liquidation value of the bank

portfolio from C to C
′

in Figure 12. Correspondingly, the potential increase and decrease in

liquidity provision are indicated by the areas shaded in green and orange respectively.

Empirically, we find evidence consistent with the latter effect being dominant, that is, QE

decreases the capacity of liquidity provision by banks. As shown in Figure 13, the expansion

in excess reserves from 1 trillion in 2011Q3 to more then 2.5 trillion in 2014Q3 is mirrored by

a corresponding sharp fall in bank LPI during the same period. Sorting banks into quartiles

of reserve uptake as a proportion of balance sheet size, we observe that the LPI drops consis-

tently more for banks in the upper quartile, which lends further support for the aggregate effect.

Therefore, QE lowers bank LPI through raising the liquidation value under direct holding, which

limits how much banks can contribute to liquidity provision in non-default states. In the limit,

this argument also suggests that narrow banks, which only hold liquid assets such as reserves

backed by deposits, create much less liquidity than traditional commercial banks.

In this context, the Liquidity Coverage Ratio (LCR) has similar effect on bank liquidity

provision as Quantitative Easing. In the U.S., the LCR stipulates that banks with $250 billion

or more in total assets or $10 billion or more in on-balance sheet foreign exposures are required

to hold sufficient High Quality Liquid Assets (HQLA), which include cash, central bank reserves

and some agency MBS, to cover expected net cash outflows for a 30-day stress period. Banks with

$50 billion or more in consolidated assets are also subject to a less stringent LCR requirement.

As a result, large banks hold a higher fraction of liquid assets on their balance sheets, which

raises the default threshold in terms of outflows but also increases the liquidation value of the

benchmark asset portfolio as in the case of QE shown in Figure 12.
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We find evidence for an overall negative impact of the LCR on bank liquidity provision within

our sample period. Figure 14 shows that banks most impacted by the LCR, i.e., above $250 billion

in total assets, also experience the most pronounced decline in LPI relative to those without and

with a less stringent LCR requirement. This is again consistent with the interpretation that the

LCR moves commercial banks more towards a narrow-banking business model, for which the gap

between the liquidation value of bank assets and the contract payment of bank liabilities (i.e.,

deposits) is reduced and liquidity provision is diminished.

5 Conclusion

This paper demonstrates that open-end equity issued by non-bank intermediaries is able to pro-

vide liquidity in the sense of Diamond and Dybvig (1983) just like demandable debt issued by the

traditional banking sector. Liquidity creation stems from the pooling of idiosyncratic liquidity

shocks at the intermediary level, which occurs independently of the claims issued by the interme-

diary as long as they are redeemable at short notice. The characteristics of liquidity provision,

however, are different. Equity is not prone to panic runs as in the case of debt because flexible

NAVs removes the first mover advantage in redemptions. However, the continuous adjustment

of equity’s contract value also renders investor outflows more sensitive to fluctuations in the

economy.

Based on the theory, we develop the Liquidity Provision Index (LPI) as a parsimonious mea-

sure of liquidity creation across different types of intermediaries. It captures the extra proceeds an

investor expects to obtain by withdrawing a debt or equity claim from an intermediary relative to

directly holding and selling the underlying portfolio of assets herself. Applied to deposit-issuing

commercial banks and equity-issuing bond mutual funds, we find that the average LPI of funds

is economically significant and about a quarter of the LPI of banks at the end of 2017. The

LPI gap between banks and funds has also been continuously narrowing over time, coinciding

with an increase in liquid assets on bank balance sheets following Quantitative Easing and the

Liquidity Coverage Ratio. These results highlight a new side effect of unconventional monetary

policy and post crisis liquidity regulation.
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Figure 1: Investor Withdrawals and Economic Fundamentals

This graph depicts withdrawals (ω) by late households against variation in economic fundamen-
tals (R). The blue line represents the equilibrium withdrawal decisions of fund investors, where
the negative slope indicates a flows-to-fundamentals relationship for funds. The red line corre-
sponds to withdrawal decisions of bank investors, where the abrupt rise in withdrawals at R∗

indicates the presence of panic runs, with R∗ being the run threshold.
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Figure 2: Premature Liquidations and Economic Fundamentals

This graph depicts the level of premature liquidations (l) against economic fundamentals (R).
The blue line represents the premature liquidations at the fund, where the negative slope arises
from a flows-to-fundamentals relationship. The red line corresponds to premature liquidations
at the bank, where the abrupt rise in liquidations at R∗ indicates the presence of panic runs,
with R∗ being the run threshold. Note that the fund curve is currently depicted under xf,0 ≥ π.
The flat portion for funds (when R > 1) is strictly higher than 0 if xf,0 < π.
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Figure 3: Contract Payment, Liquidation Value and Liquidity Provision (Example)

This graph plots the contract payment of bank deposits (fund shares) when a given percentage of
the bank assets (fund assets) has been withdrawn. The hypothetical bank and fund considered
both hold 10% of cash and 90% of illiquid assets, where the latter incur a haircut of 30% upon
early redemption. The dotted line is the liquidation value of the portfolio of assets when directly
held and sold by an investor.
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Figure 4: Haircuts

This graph plot the average market haircuts for different asset categories over time. Securites
haircut data (upper panel) is obtained from the Federeal Reserve Bank of New York’s pulished
repo series. Haircuts for commercial loans, real estate loans and personal loans (lower panel)
are from the Loan Syndications and Trading Association (LSTA), the Federal Home Loan Banks
website and the Federal Reserve respectively. To remove outliers in the original data, we calculate
the first principal component of the underlying series and plot the predicted value from the
loadings regression hk = ak + bkPCt + εkt for each asset category k.
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Figure 5: Distribution of Bank and Fund Flows

This graph plots frequency distribution of monthly flows of funds (upper panel) and bank lia-
bilities (lower panel). The sample covers all commercial banks and mutual funds in our sample
from 2011 to 2017. For presentation purposes, the distribution is truncated at -20% and 20%
with observations in the tail assigned to the last bin.
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Figure 6: Contract Payment, Liquidation Value and Liquidity Provision

This graph plots the contract payment of bank deposits (fund shares) when a given percentage
of bank assets (fund assets) have been withdrawn. The bank (fund) asset porfolio reflects the
volume weighted average of all commercial banks’ (bond mutual funds’) portfolios during our
sample period from 2011 to 2017. The dotted lines represent the liquidation value of the portfolio
of bank (fund) assets when directly held and sold by an investor.
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Figure 7: Cross-section of Bank and Fund Liquidity Provision

This graph plots the distribution of average commercial bank and bond mutual fund LPIs in the
cross-section. The LPI for each bank and fund is calculated as the average LPI over the sample
period from 2011 to 2017.
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Figure 8: Sensitivity of Fund Liquidity Provision

This graph plots average LPI against fund flow sensitivity at the fund level for bond mutual funds.
Fund level LPIs are averaged over the sample period from 2011 to 2017. Fund flow sensitivity is
obtained by regressing fund flows against lagged fund returns and lagged fund flows from 2011 to
2017. The upper panel is a univariate binned plot while the lower panel also controls for log(fund
age), log(assets) and expense ratio by residualizing the variables on the controls before binning
and plotting.
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Figure 9: Sensitivity of Bank Liquidity Provision

This graph plots average LPI against the ratio of insured deposits over total deposits at the bank
level for commercial banks. Bank level LPIs and insured deposit ratios are averaged over the
sample period from 2011 to 2017. The upper panel is a univariate binned plot while the lower
panel also controls for log(assets), equity ratio and the ratio of non-deposit liabilities over total
assets by residualizing the variables on the controls before binning and plotting.
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Figure 10: MMF Liquidity Provision and Floating NAVs

This graph plots average LPIs of institutional and retail prime MMFs from September 2013
to September 2019. The vertical line marks the implementation of the MMF Reform, which
requires institutional prime funds to report floating NAVs. The upper panel covers the full
sample whereas the lower panel restricts fund share-classes that appear at least once in both the
pre and post reform period.
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Figure 11: Liquidity Provision Index from 2011 to 2017

This graph plots the average LPI for commercial banks and bond mutual funds from 2011 to
2017. We first calculate the LPI for each bank and fund in each quarter and then plot the
asset-size weighted LPI from 2011 to 2017.
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Figure 12: Liquidity Provision Pre- and Post-QE and LCR

This graph plots illustrates the contract payment of bank deposits when a given percentage
of bank assets have been withdrawn before and after the implementation of QE (LCR). The
liquidation value follows the orange line pre QE (LCR) and shifts to the green line post QE
(LCR). This shifts the default threshold for outflows from Ω to Ω

′
and the liquidation value of

the asset portfolio under direct holding from C to C
′
.
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Pre

C
′

C
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Figure 13: Bank Liquidity Provision and Excess Reserves

This graph plots the LPI for commercial banks by reserve uptake quartile (left axis) and the
aggregate volume of excess reserves (right axis) from 2011 to 2017. Reserve uptake is measured
by the percentage change in reserves as a fraction of total assets from 2011Q1, the beginning of
the sample, to 2014Q3, when reserve levels peak. The median LPI in each quartile is selected,
normalized by its initial value in 2011Q1 and plotted.

1
1.

5
2

2.
5

3
Ex

ce
ss

 R
es

er
ve

s 
(T

ril
lio

n)

.7
.8

.9
1

1.
1

Li
qu

id
ity

 P
ro

vi
si

on
 In

de
x 

(n
or

m
al

iz
ed

)

2011q3 2013q1 2014q3 2016q1 2017q3

1st Quartile 2nd Quartile
3rd Quartile 4th Quartile
Excess Reserves

47



Figure 14: Bank Liquidity Provision and the Liquidity Coverage Ratio

This graph plots the LPI for commercial banks by asset size groups for the Liquidity Coverage
Ratio. Banks are sorted by asset size into those above 250 billion, between 50 and 250 billion
and below 50 billion. The median LPI in each asset group is selected, normalized by its initial
value in 2011Q1 and plotted.
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Table 3: Bank LPI and Insured Deposits Ratios

This table shows the relationship between bank LPI and the ratio of insured deposits. Control
variables include non deposit ratio over all liabilities, and bank size measured by log(assets).
Bank LPI and all other variables are averaged over the sample period from 2011 to 2017. Note
that the constant term in the second column represents the expected LPI of banks without
insured deposits or non-deposit liabilities.

(1) (2) (3)
LPI LPI LPI

Insured Deposits Ratio 0.055∗∗∗ 0.064∗∗∗ 0.144∗∗∗

[0.006] [0.006] [0.006]

Non-deposits Ratio 0.052∗∗∗ 0.034∗∗∗

[0.008] [0.008]

Log(assets) 0.017∗∗∗

[0.001]

Constant 0.164∗∗∗ 0.147∗∗∗ -0.127∗∗∗

[0.005] [0.006] [0.010]
Observations 7535 7535 7535
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Table 4: The Effect of Floating NAV on MMF Liquidity Provision

This table shows the effect of the 2016 MMF Reform on liquidity provision by institutional
prime funds versus retail prime funds. Institutional Fund is a dummy variable for the treatment
group as the floating NAV requirement of the MMF reform only applies to institutional but not
retail share-classes . Post Reform is an indicator variable for the treatment period. For columns
(1) to (2), the treatment period begins with the official implementation date of the reform in
October 2016. Columns (3) and (4) repeat the analysis in columns (1) and (2) but exclude flows
around the implementation period from August to October 2016. Columns (5) and (6) account
for potential anticipation effects by setting the treatment period to begin one year earlier in
October 2015. Columns (2), (4) and (6) restrict the sample to the set of fund share classes
that appear in both the pre and post period, that is, those funds which survived the reform.
The dependent variable is share-class level LPI averaged for both the pre and post period. The
coefficient on the interaction variable, Post Reform ∗ Institutional Fund, corresponds to the
difference-in-differences result. Standard errors are clustered at the share-class level.

(1) (2) (3) (4) (5) (6)
LPI LPI LPI LPI LPI LPI
All Survived All Survived All Survived

Oct 16 Oct 16 Oct 16 Oct 16 Oct 15 Oct 15
Excl. Excl.

Aug-Oct Aug-Oct
Post Reform 0.0006 -0.0009 0.0004 -0.0012 -0.0003 -0.0018∗∗∗

[0.0009] [0.0009] [0.0009] [0.0010] [0.0007] [0.0007]

Institutional Fund 0.0009∗ -0.0005 0.0014∗∗ 0.0000 0.0023∗∗∗ 0.0016∗∗∗

[0.0006] [0.0007] [0.0006] [0.0007] [0.0006] [0.0006]

Post Reform * -0.0042∗∗∗ -0.0030∗∗ -0.0040∗∗∗ -0.0030∗∗ -0.0040∗∗∗ -0.0032∗∗∗

Institutional Fund [0.0012] [0.0013] [0.0012] [0.0013] [0.0009] [0.0009]

Constant 0.0203∗∗∗ 0.0213∗∗∗ 0.0208∗∗∗ 0.0221∗∗∗ 0.0210∗∗∗ 0.0219∗∗∗

[0.0005] [0.0006] [0.0005] [0.0006] [0.0005] [0.0005]
Observations 659 452 646 429 745 624
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Table 5: Fund LPI and Fund Flow Sensitivity

This table shows the relationship between fund LPI and the sensitivity of fund flows to lagged
fund returns. Other control variables include the expense ratio, log(total net assets) and log(fund
age). Fund LPI and all other variables are averaged over the sample period from 2011 to 2017.

(1) (2) (3) (4)
LPI LPI LPI LPI

Flow Sensitivity -0.329∗∗ -0.328∗∗ -0.330∗∗ -0.456∗∗∗

[0.158] [0.158] [0.158] [0.154]

Expense Ratio 0.014 0.014 0.013
[0.020] [0.020] [0.019]

Log(Total Net Assets) 0.000 0.001∗∗∗

[0.000] [0.000]

Log(Fund Age) -0.009∗∗∗

[0.001]

Constant 0.036∗∗∗ 0.036∗∗∗ 0.035∗∗∗ 0.049∗∗∗

[0.001] [0.001] [0.002] [0.002]
Observations 2626 2626 2626 2626
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Appendix

A Autarky, Liquidation Value, and Liquidity Provision

In this appendix, we first formally characterize an autarky outcome and show that it is tightly linked

to the definition of liquidation value as in Definition 1. Then we show that our definition of liquidity

provision, that is, Definition 2, is tightly related but preferable to an alternative definition based on the

autarky.

Consider households live in autarky without access to financial intermediaries. They choose their

portfolio (xa,0, ya,0) at t = 0, where xa,0 is the amount of cash stored in the storage and ya,0 the amount

of projects invested before knowing their types.

At the beginning of t = 1, the household learns her type and receives the signal si. An early

household always liquidates all her projects regardless of si, and consume the cash:

ca,1 = xa,0 + ya,0 −
φ

2
y2
a,0

= 1− φ

2
y2
a,0 , (A.1)

where (xa,0, ya,0) represents her portfolio choice at t = 0. An important observation from (A.1) is that

what an early household can get in the autarky is indeed the liquidation value of her portfolio, as defined

in Definition 1.

Late households, however, will only liquidate the project and store the proceeds as cash if she expects

a sufficiently poor performance after observing si. Formally, conditional on si, the late household’s

optimal portfolio choice problem at t = 1 is given by

max
la>0

E [u(ca,2)|si] ,

where

ca,2 = xa,1(1− κ) + ya,1R , (A.2)

where in turn  xa,1 = xa,0 + la −
φ

2
l2a ,

ya,1 = ya,0 − la
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are the late household’s position at the end of t = 1.43 It is easy to show that, given the date-0 position

(xa,0, ya,0) and the signal R received at t = 1, an early household always liquidates all the illiquid asset

holding ya,0 regardless of R, while a late household optimally liquidates

la =
1

φ

(
1− R

1− κ

)
(A.3)

units of project at t = 1, subject to la ≥ 0 and la ≤ ya,0.

Taking the decisions at t = 1 into account, households optimally choose their portfolios at t = 0

before knowing their type:

max
xa,0

E[πu(ca,1) + (1− π)u(ca,2)] ,

subject to conditions (A.1), (A.2), (A.3). Without fully solving for the equilibrium, it is straightforward

to see that the optimal c∗a,1 is strictly lower than 1 when the household invests in a positive amount of

projects at t = 0, that is, y∗a,0 > 0, and hence x∗a,0 < 1.

The analysis above about the autarky allows us to link our definition of provision, as in Definition 2,

to an alternative definition in which one compares the t-1 consumption level promised by an intermediary

and the autarky outcome. Formally, by the Principle of Optimization, we have:

Proposition 7. If an intermediary k ∈ {b, f} provides liquidity in the sense that E[c∗k,1]− c∗a,1 > 0, it

must provide liquidity in the sense that E[c∗k,1]− c1(x∗k,0, y
∗
k,0) > 0.

Proposition 7 suggests that liquidity provision based on Definition 2 is a necessary condition of

liquidity provision under the alternative definition based on autarky. Thus, given the advantages of

Definition 2 that 1) it is conceptually tightly linked to the insight of Diamond and Dybvig (1983) and

2) is all relies on empirically observable outcomes and thus can be more directly mapped to empirics,

we use it as our preferred definition of liquidity provision.

B Deposit Insurance

In this appendix, we provide a detailed example showing that our framework, both theoretically and

empirically, is robust to the consideration of deposit insurance and other similar institutional and reg-

ulatory features. Our empirical LPI construction is indeed general enough to handle deposit insurance.

It also illustrates that deposit insurance contributes to bank liquidity provision but only partially.

43One unit of cash invested in the storage yields 1 − κ units of cash since one unit of late households is using
the storage.
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Consider a hypothetical bank that holds 10% cash and 90% of illiquid loans, where the loans, if

liquidated at short notice, can be only recovered at 60% of their fair value (i.e., the haircut is 40%).

Different from our baseline model, suppose this bank has 50% insured deposits and 50% uninsured

deposits. Also suppose that the empirical distribution of outflows is uniform on [0,1]. (To be precise,

we only take the 50-50 mix of insured and uninsured deposits as exogenously given in this example;

the distribution of outflows and the bank portfolio should be viewed as endogenously determined by

household and bank optimization.) Under this example, the liquidation value of the bank portfolio

is 1 × 0.1 + 0.6 × 0.9 = 0.64. Thus, for an insured depositor, a dollar invested in the insured deposit

generates an LPI of 1−0.64 = 0.36. While for an uninsured depositor, a dollar invested in the uninsured

deposit generates an LPI of (1− 0.64)× 0.64 = 0.2304.

Now suppose for this same bank, all deposits become uninsured. According to the theoretical model

of Allen, Carletti, Goldstein and Leonello (2018),44 few insured deposits lead to a higher run threshold

(i.e., a higher run probability), and consequently, a more liquid bank portfolio. Consistent with this

argument, suppose the distribution of outflows becomes a triangular distribution with a densify function

of f(λ) = 2λ, and the bank portfolio becomes 20% cash and 80% loans. Under this case, the liquidation

value of the bank portfolio becomes 1 × 0.2 + 0.6 × 0.8 = 0.68, which is higher than before. For an

uninsured depositor, a dollar invested in the uninsured deposit generates an LPI of
∫ 0.68

0 (1−0.68)2λdλ =

0.1479. Compared to the case above, the LPI decreases by 0.2304−0.1479 = 0.0825, which suggests that

for this actual bank with a 50-50 mix of insured and uninsured deposits, deposit insurance contributes

0.0825 towards its total LPI of 0.2304.

The example above has two important implications. First, it clearly illustrates that, what our LPI

captures is indeed the amount of liquidity provision by uninsured bank deposits. In other words, by

design, the LPI is independent to the consideration of deposit insurances. Second, because the LPI

construction uses information about the two equilibrium outcomes of 1) the empirical distribution of

flows and 2) the bank portfolio, and deposit insurance affects bank liquidity through affecting these two

equilibrium outcomes, our LPI as an empirical measure of bank liquidity provision is indeed robust to

the consideration of deposit insurances.

44Similar to our baseline model, Allen, Carletti, Goldstein and Leonello (2018) build a global-games based model
with a different focus on the interplay between general government guarantees (including deposit insurance) and
bank runs.
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C Proofs

Proof of Proposition 1. Denote the run threshold as R′ = R (θ′), that is, if household i observes a

private signal si < θ′ she runs; otherwise she stays. Then the population of households who runs, λb,

can be written as

λb
(
θ, θ′

)
=


1 if θ ≤ θ′ − ε
π + (1− π)

(
θ′−θ+ε

2ε

)
if θ′ − ε < θ ≤ θ′ + ε

π if θ > θ′ + ε

.

Let v (R (θ) , λb) be the difference of utilities between staying and running, then

v (R (θ) , λb) =


u
(
xb,0−λbcb,1+yb,0R(θ)

1−λb

)
− u (cb,1(1− κ (λb − π))) if π ≤ λb <

xb,0
cb,1

u

(
(yb,0−lb(λb,cb,1))R(θ)

1−λb

)
− u (cb,1(1− κ (λb − π))) if

xb,0
cb,1
≤ λb <

1−φ
2
y2
b,0

cb,1

−q (λb)u (cb,1(1− κ (λb − π))) if
1−φ

2
y2
b,0

cb,1
< λb ≤ 1

,

where lb (λb, cb,1) satisfies λbcb,1 = xb,0 + lb − φ
2 l

2
b . If household i observes signal si, given that other

households use the threshold strategy, she will run if
∫ si+ε
si−ε v (R (θ) , λb (θ, θ′)) dθ > 0; or stay otherwise.

To prove that there exists a unique run threshold R∗, we need to prove that there is a unique θ∗

such that if θ′ = θ∗, the household who observes signal si = θ′ = θ∗ is indifferent between run and stay.

That is,

V (θ∗) ≡
∫ θ∗+ε

θ∗−ε
v (R (θ) , λb (θ, θ∗)) dθ = 0.

The graph of v (R (θ) , λb (θ, θ′)) is depicted in Figure A1, where θ̂ satisfies λb

(
θ̂, θ′

)
=

1−φ
2
y2
b,0

cb,1
. It is

easy to check that v is constant on (0, θ′ − ε), decreasing on
(
θ′ − ε, θ̂

)
and increasing on (θ̂, 1). Figure

A1 also illustrates how v changes when θ′ increases. As θ′ increases, the integral of v on (0, θ′ − ε)
remains the same since v does not directly depends on θ in this interval and the length of the interval is

constant given ε; on (θ̂, θ′ + ε), for any given λb, if θ′ goes up, v increases because all θ in this interval

goes up. Thus the integral on (θ̂, θ′ + ε) increases. In summary, V (θ′) is increasing in θ′.

Since G (·) is supported on [0,+∞), R → +∞ when θ → 1. That is, limθ′→1 V (θ′) = +∞.

Furthermore, V (0) < 0. Then by the intermediate value theorem, there exists θ∗ such that V (θ∗) = 0.

The uniqueness of θ∗ follows by the monotonicity of V (·) and so does R∗.

Intuitively, the threshold R∗ must larger than the lower dominance region R since the households

face more risks in the sense that bankrupt may happen. R is pinned down by letting households be in-
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Figure A1: The graph of v(R(θ), λb(θ, θ
′))

θ0

1

λb(θ, θ
′
1)π

θ′1 − ε θ′1 + ε

v(R(θ), λb(θ, θ
′
1))

θ̂1

1−φ
2
y2
b,0

cb,1

θ0

1

λb(θ, θ
′
2)π

θ′2 − ε θ′2 + ε

v(R(θ), λb(θ, θ
′
2))

θ̂2

1−φ
2
y2
b,0

cb,1

different between run and stay if there is no withdrawal, that is, u
(
xb,1+yb,1R

1−λb

)
= u (cb,1(1− κ (λb − π))),

or, R =
cb,1(1−κ)(1−π)+πcb,1−xb,0

1−xb,0 .

Proof of Proposition 2. In the proof of Proposition 1, we know that V (·) is increasing and θ∗ is

pinned down by V (θ∗) = 0. Thus, to prove that dθ∗
dcb,1

> 0, it is sufficient to prove that V (θ′) is decreasing

in cb,1. Note that when θ ∈ (θ′ − ε, θ′ + ε), π+ (1− π)
(
θ′−θ+ε

2ε

)
= λb, so we have dθ = − 2ε

1−πdλb. Then

V (θ′) can be rewritten as

V
(
θ′
)

=

∫ 1

π
v

(
R

(
θ′ + ε

(
1− 2

λ− π
1− π

))
, λb

)
2ε

1− π
dλb

=

∫ xb,0
cb,1

π

2ε

1− π

u
xb,0 − λbcb,1 + yb,0R

(
θ′ + ε

(
1− 2λ−π1−π

))
1− λb

− u (cb,1(1− κ (λb − π)))

 dλb

+

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

2ε

1− π

u
(yb,0 − lb (λb, cb,1))R

(
θ′ + ε

(
1− 2λ−π1−π

))
1− λb

− u (cb,1(1− κ (λb − π)))

 dλb

−
∫ 1

1−φ2 y
2
b,0

cb,1

2ε

1− π
q (λb)u (cb,1(1− κ (λb − π))) dλb.
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Let V = 0, which pins down θ∗ and thus R∗. And since V is continuous in ε, we can take the limit

of the equation above at ε→ 0:

∫ 1

π
v (R (θ∗) , λb) dλb =

∫ xb,0
cb,1

π

(
u

(
xb,0 − λbcb,1 + yb,0R (θ′)

1− λb

)
− u (cb,1(1− κ (λb − π)))

)
dλb

+

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

(
u

(
(yb,0 − lb (λb, cb,1))R (θ′)

1− λb

)
− u (cb,1(1− κ (λb − π)))

)
dλb

−
∫ 1

1−φ2 y
2
b,0

cb,1

q (λb)u (cb,1(1− κ (λb − π))) dλb.

(C.1)

Multiplying both sides of (C.1) with cb,1 and taking derivative with respect to cb,1, we have the

derivative expressed by

cb,1

∫ xb,0
cb,1

π

(
− λb

1− λb
u′
(
xb,0 − λbcb,1 + yb,0R (θ∗)

1− λb

)
− (1− κ (λb − π))u′ (cb,1(1− κ (λb − π)))

)
dλb

+ cb,1

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

− ∂lb
∂cb,1

R (θ∗)

1− λb
u′
(

(yb,0 − lb (λb, cb,1))R (θ∗)

1− λb

)
− (1− κ (λb − π))u′ (cb,1(1− κ (λb − π)))

 dλb

−
∫ 1

1−φ2 y
2
b,0

cb,1

1− φ
2y

2
b,0

λb
(1− κ (λb − π))u′ (cb,1(1− κ (λb − π))) dλb

+

∫ xb,0
cb,1

π

(
u

(
xb,0 − λbcb,1 + yb,0R (θ∗)

1− λb

)
− u (cb,1(1− κ (λb − π)))

)
dλb

+

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

(
u

(
(yb,0 − lb (λb, cb,1))R (θ∗)

1− λb

)
− u (cb,1(1− κ (λb − π)))

)
dλb

−
∫ 1

1−φ2 y
2
b,0

cb,1

q (λb)u (cb,1(1− κ (λb − π))) dλb ,

where ∂lb
∂cb,1

= λb
1−φlb and ∂q

∂cb,1
= −1−φy2

b,1

λbc2
< 0. Note that it suffices to prove that

cb,1

∫ xb,0
cb,1

π
− λb

1− λb
u′
(
xb,0 − λbcb,1 + yb,0R (θ′)

1− λb

)
dλb

+ cb,1

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

−
∂lb
∂cb,1

R (θ′)

1− λb
u′
(

(yb,0 − lb (λb, cb,1))R (θ∗)

1− λb

)
dλb

+

∫ xb,0
cb,1

π
u

(
xb,0 − λbcb,1 + yb,0R (θ′)

1− λb

)
dλb

60



+

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

u

(
(yb,0 − lb (λb, cb,1))R (θ′)

1− λb

)
dλb < 0 . (C.2)

Integrating by parts, we have the LHS of (C.2) re-expressed as:

−

(
cb,1

xb,0 − cb,1 + yb,0R (θ′)

xb,0
cb,1

(
1−

xb,0
cb,1

)
u

(
yb,0R (θ′)

1− xb,0
cb,1

))

+
cb,1

xb,0 − cb,1 + yb,0R (θ′)
π (1− π)u

(
xb,0 − πcb,1 + yb,0R (θ′)

1− π

)
+

1

xb,0 − cb,1 + yb,0R (θ′)

∫ xb,0
cb,1

π

(
xb,0 + yb,0R

(
θ′
)
− 2λbcb,1

)
u

(
xb,0 − λbcb,1 + yb,0R (θ′)

1− λb

)
dλb

+ cb,1

(
1− xb,0

cb,1

)
xb,0
cb,1

1− cb,1
u

(
yb,0R (θ′)

1− xb,0
cb,1

)

+

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

(cb,1gλb (cb,1, λb) + 1)u

(
(yb,0 − lb (λb, cb,1))R (θ′)

1− λb

)
dλb, (C.3)

where g (cb,1, λb) = (1−λb)λb
1−cb,1−φyb,0lb(λb,cb,1)

.

We first consider the first three terms of (C.3). Since u
(
xb,0−λbcb,1+yb,0R(θ∗)

1−λb

)
is decreasing in λb and

xb,0 − cb,1 + yb,0R (θ′) < 0 for cb,1 > 1, the sum of these three terms is less than:

−

(
cb,1

xb,0 − cb,1 + yb,0R (θ′)

xb,0
cb,1

(
1−

xb,0
cb,1

)
u

(
yb,0R (θ′)

1− xb,0
cb,1

))

+
cb,1

xb,0 − cb,1 + yb,0R (θ′)
π (1− π)u

(
xb,0 − πcb,1 + yb,0R (θ′)

1− π

)
+

1

xb,0 − cb,1 + yb,0R (θ′)

∫ xb,0
cb,1

π

(
xb,0 + yb,0R

(
θ′
)
− 2cb,1

xb,0
cb,1

+ π

2

)
u

(
xb,0 − λbcb,1 + yb,0R (θ′)

1− λb

)
dλb

< −

(
cb,1

xb,0 − cb,1 + yb,0R (θ′)

xb,0
cb,1

(
1−

xb,0
cb,1

)
u

(
yb,0R (θ′)

1− xb,0
cb,1

))

+
cb,1

xb,0 − cb,1 + yb,0R (θ′)
π (1− π)u

(
xb,0 − πcb,1 + yb,0R (θ′)

1− π

)
+

1

xb,0 − cb,1 + yb,0R (θ′)

(
yb,0R

(
θ′
)
− cb,1π

)(xb,0
cb,1
− π

)
u

(
xb,0 − πcb,1 + yb,0R (θ′)

1− π

)
< −

(
cb,1

xb,0 − cb,1 + yb,0R (θ′)

xb,0
cb,1

(
1−

xb,0
cb,1

)
u

(
yb,0R (θ′)

1− xb,0
cb,1

))
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+
R (θ′) yb,0xb,0

cb,1 (xb,0 − cb,1 + yb,0R (θ′))
u

(
yb,0R (θ′)

1− xb,0
cb,1

)

−πu
(
xb,0 − πcb,1 + yb,0R (θ′)

1− π

)
< −

xb,0
cb,1

u

(
yb,0R (θ′)

1− xb,0
cb,1

)
− πu

(
xb,0 − πcb,1 + yb,0R (θ′)

1− π

)
< 0 .

We then consider the last two terms of (C.3), which decrease in φ. When φ = 0, we have lb =

πcb,1 − xb,0, and gλb (cb,1, λb) = 1−2λb
1−cb,1 . Then the sum of these two terms becomes

cb,1

(
1− xb,0

cb,1

)
xb,0
cb,1

1− cb,1
u

(
yb,0R (θ′)

1− xb,0
cb,1

)
+

∫ 1
cb,1

xb,0
cb,1

(
1 +

cb,1 (1− 2λb)

1− cb,1

)
u

(
(1− λbcb,1)R (θ′)

1− λb

)
dλb

< cb,1

(
1− xb,0

cb,1

)
xb,0
cb,1

1− cb,1
u

(
yb,0R (θ′)

1− xb,0
cb,1

)
+

∫ 1
cb,1

xb,0
cb,1

1 +
cb,1

(
1− 2

1+xb,0
2cb,1

)
1− cb,1

u

(
(1− λbcb,1)R (θ′)

1− λb

)
dλb

= cb,1

(
1− xb,0

cb,1

)
xb,0
cb,1

1− cb,1
u

(
yb,0R (θ′)

1− xb,0
cb,1

)
+

∫ 1
cb,1

xb,0
cb,1

−
xb,0

1− cb,1
u

(
(1− λbcb,1)R (θ′)

1− λb

)
dλb

< cb,1

(
1− xb,0

cb,1

)
xb,0
cb,1

1− cb,1
u

(
yb,0R (θ′)

1− xb,0
cb,1

)
−

xb,0
1− cb,1

1− xb,0
cb,1

u

(
yb,0R (θ′)

1− xb,0
cb,1

)

= −
xb,0
cb,1

u

(
yb,0R (θ′)

1− xb,0
cb,1

)
< 0 .

In summary, V is decreasing in cb,1 and thus ∂θ∗

∂cb,1
> 0. That is, R∗ is increasing in cb,1.

To see why θ∗ is decreasing in xb,0, take the derivative of (C.1) with respect to xb,0 and note that

yb,0 = 1− xb,0, we have

∫ xb,0
cb,1

π
−R (θ′)− 1

1− λb
u′
(
xb,0 − λbcb,1 + yb,0R (θ′)

1− λb

)
dλb

+

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

(
1

1−φlb − 1
)
R (θ′)

1− λb
u′
(

(yb,0 − lb (λb, cb,1))R (θ′)

1− λb

)
dλb

=
R (θ′)− 1

R (θ′)− cb,1 − (R (θ′)− 1)xb,0

(
(1− π)u

(
xb,0 − cb,1π + yb,0R (θ′)

1− π

)
−
(

1−
xb,0
cb,1

)
u

(
yb,1R (θ′)

1− xb,0
cb,1

)

+

∫ xb,0
cb,1

π
u

(
xb,0 − λbcb,1 + yb,0R (θ′)

1− λb

)
dλb

)
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+

∫ 1−φ2 y
2
b,0

cb,1

xb,0
cb,1

(
1

1−φlb − 1
)
R (θ′)

1− λb
u′
(

(yb,0 − lb (λb, cb,1))R (θ′)

1− λb

)
dλb.

Similar to above, we can prove that the first term is positive. Furthermore, note that φlb = 1 −√
1− 2φ (λbcb,1 − x) < 1, the second them is also positive. Following the same logic, V is increasing in

xb,0, and thus R∗ is decreasing in xb,0.

Proof of Proposition 4. Let C(lf ) be the amount of cash raised by prematurely liquidating lf project

at t = 1. Assume that C(0) = 0 and for any lf > 0, 0 < C(lf ) < lf . Note that the parametric form of

C(lf ) in our baseline model satisfies these conditions. We consider two cases below.

First, consider lf > 0. Note that equations (2.9) and (2.10) give two ways to calculate NAV1:

NAV1(λf ) = 1− lf + C(lf ) (C.4)

=
xf,0 + C(lf )

λf
. (C.5)

Solving (C.5) as an equation of λf yields:

λf =
xf,0 + C(lf )

1− lf + C(lf )
. (C.6)

Plugging (C.6) into the expression of NAV2 (2.12):

NAV2(λf ) =
yf,0 − lf
1− λf

R

=
1− lf + C(lf )

1− xf,0 − lf
(yf,0 − lf )R ,

which by (C.4) and the fact that xf,0 + yf,0 = 1 immediately leads to

NAV2(λf ) = NAV1(λf )R .

Hence, NAV2(λf ) > NAV1(λf ) if and only if R > 1 when lf > 0.

Then, consider lf = 0. In this case, NAV1(λf ) = 1, and

NAV2(λf ) =
xf,0 − λf + yf,0R

1− λf
= 1 +

yf,0
1− λf

(R− 1) (C.7)
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= NAV1(λf ) +
yf,0

1− λf
(R− 1) ,

where (C.7) uses xf,0 + yf,0 = 1. This implies that NAV2(λf ) > NAV1(λf ) if and only if R > 1 when

lf = 0.

Proof of Proposition 5. Because εi is arbitrarily small, there is no fundamental uncertainty between

t = 1 and 2. Thus, late households’ problem reduces to:
wf = 0 if cf,1(λf ) < E[cf,2(λf )|R] ,

wf ∈ (0, 1− π) if cf,1(λf )(1− κwf ) = E[cf,2(λf )|R] ,

wf = 1− π if cf,1(λf )(1− κwf )) > E[cf,2(λf )|R] .

(C.8)

Note that (C.8) is reduced as a quadratic equation of wf . Directly solving for wf under the con-

straints yields the desired results.

Proof of Proposition 6. This proof is directly built on the results of Proposition 5. There are three

cases.

Case 1. When xf,0 ≥ π + w∗f , stored cash is sufficient to meet the redemption needs regardless of

the flow-to-fundamental relationship. As a result, l∗f = 0.

Case 2. When R ≥ 1 and xf,0 < π (note that w∗f = 0 when R ≥ 1), only early households redeem at

t = 1 but stored cash is not sufficient to meet their redemption needs. Thus, solving (2.10) at λf = π,

which is a quadratic function of lf , yields the desired result.

Case 3. When R < 1 and xf,0 < π + w∗f , all early households and some late households redeem

at t = 1 and stored cash is not sufficient to meet their redemption needs. Thus, solving (2.10) at

λf = π + w∗f , which is a quadratic function of lf , yields the desired result.
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Online Appendix

Not for publication

A Haircut Data Contruction

Haircut data construction follows the procedure developed in Bai, Krishnamurthy and Weymuller (2018).

We first construct the panel of haircuts. Identify asset categories for banks and funds, and obtain haircut

series for these categories over the sample period. See Table OA1 and Table OA2 for sources and details.

Then, using the entire panel of haircuts, conduct principal component analysis across all asset classes

and extract the first principal component, PCt. Calculate haircut series {hj}t for each asset class j as

the predicted value from regressing the original haircut on PCt, i.e. hjt = αj + βjPCt.
45

Next step is to determine per-dollar liquidation value of bank deposits and fund shares for a given

outflow, 1 − Ht(Ωi, Ait). We first calculate asset category shares for each bank and fund. Using the

haircut panel, order the shares for bank (fund) i at time t from most to least liquid, represented as

vector Ait. The first component of Ait is the share of the most liquid asset category that the bank

(fund) i holds at time t, and the last component is the share of the most illiquid.

We finally calculate effective average haircut Ht(Ωi, Ait) for an outflow Ωi. For bank i,

Ht(Ωi, Ait) =

 0 if Ωi ≤
∑J

j=1Aijt(1− hjt)∑J
j=1Aijthjt otherwise (bank fails)

(A.1)

whereas for fund i, we have,

Ht(Ωi, Ait) =

JΩ−1∑
j=1

Aijthjt + ÂiJΩthJΩt (A.2)

where ÂiJΩt is the amount of the least liquid asset JΩ being liquidated to meet withdrawal needs induced

by outflow Ωi.

45For consumer loans, only the latest period haircut value is available, so we allow the series to follow the
loading of the family real estate loans series such that it ends at the observed latest value.
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Table OA1: Haircuts by Asset Class

This table shows the average haircuts for the different asset classes over the sample period
from 2010 to 2018. Cash holdings are assigned 0% haircut while fixed assets are assigned a
100% haircut. Securities haircut data is obtained from the Federal Reserve Bank of New York’s
published repo series. Haircuts for commercial loans, real estate loans and personal loans are
from the Loan Syndications and Trading Association (LSTA), the Federal Home Loan Banks
website and the Federal Reserve respectively.

Category Mean

1. Treasuries & Agency Debentures 0.0200

2. Agency MBS & CMO 0.0216

3. Commercial Loans 0.0412

4. Money Market 0.0419

5. Municipal 0.0495

6. Corporate Bonds 0.0597

7. Equities 0.0767

8. Private ABS & CMO 0.0753

9. Consumer Loans 0.2850

10. Real Estate Loans (Family Housing) 0.2378

11. Real Estate Loans (Other) 0.3539

12. Cash 0

13. Fixed Assets 1
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