Discussion of Bacher-Hicks, Billings, and Deming (2020) – The School to Prison Pipeline: Long-Run Impacts of School Suspensions on Adult Crime

Chris Walters

UC Berkeley and NBER

NBER Summer Institute 2020

Overview

- Bacher-Hicks, Billings, and Deming (BBD, 2020) study the impacts of school suspensions on crime and other outcomes
 - Estimate regression-adjusted school suspension rates (suspension "value-added")
 - Relate these to crime outcomes using Charlotte-Mecklenburg attendance boundary reform
 - ► Find substantial adverse effects of attending schools with high suspension rates
- Convincing evidence that high-suspension schools increase crime an important and provocative new finding
- Suggests "suspension hypothesis:" Strict school discipline policies cause crime
 - Contrasts with lottery evidence for "No Excuses" charter schools (Dobbie and Fryer, 2014; Angrist et al., 2016)
- Discussion agenda: To what extent do BBD's findings support the suspension hypothesis?

Research Question vs. Research Design

- ► Research question: BBD are interested in estimating the causal effect of suspensions on crime
 - ► Title: "Impacts of School Suspensions on Adult Crime"
 - Intro: "In this paper, we study the impact of school discipline on the achievement, educational attainment, and subsequent criminal activity of students"
- Research design: Changes in school attendance boundaries
 - Generates exogenous variation in school attendance, not suspensions
- What assumptions allow us to infer the effects of suspensions from a school attendance experiment?

Estimation Procedure

► Two-stage estimation procedure:

$$S_i = \sum_j \mu_j D_{ij} + X_i' \delta + \eta_i,$$

$$Y_i = \beta \hat{S}_i + X_i' \gamma + \epsilon_i$$

- Y_i is crime, D_{ij} are school dummies, S_i is suspension, X_i are controls, \hat{S}_i is predicted value from first stage
- $ightharpoonup D_{ij}$'s assumed as good as randomly assigned conditional on X_i
- Implementation details:
 - Different samples and controls in each stage
 - Shrink \hat{S}_i to deal with finite-sample noise
 - School attendance vs. assignment
- Details matter, but basic interpretation unaffected

2SLS Interpretation

$$S_{i} = \sum_{j} \mu_{j} D_{ij} + X'_{i} \delta + \eta_{i},$$
$$Y_{i} = \beta \hat{S}_{i} + X'_{i} \gamma + \epsilon_{i}$$

- ► This is a two-stage least squares (2SLS) approach
 - ► Endogenous variable: Suspensions
 - Instruments: School indicators
- ▶ How should we interpret β ?

Interpretation 1: Standard 2SLS

$$S_i = \sum_j \mu_j D_{ij} + X_i' \delta + \eta_i,$$

 $Y_i = \beta \hat{S}_i + X_i' \gamma + \epsilon_i$

- ► In a standard 2SLS model, we are trying to estimate the effect of the endogenous (instrumented) variable
- \triangleright β is interpreted as the causal effect of a suspension on crime the answer to BBD's research question
- ▶ But requires exclusion restriction: instruments (schools) only affect crime through suspensions. This does not seem plausible
 - Deming (2011): schools affect crime through peer networks and human capital

Interpretation 2: School-Level Regression Coefficient

Reduced form and first stage for 2SLS system:

$$Y_i = \sum_j \theta_j D_{ij} + X_i' \psi + u_i,$$

$$S_i = \sum_j \mu_j D_{ij} + X_i' \delta + \eta_i$$

▶ 2SLS produces (weighted) regression of RF on FS:

$$\beta pprox rac{\mathsf{Cov}(heta_j, \mu_j)}{\mathsf{Var}(\mu_j)}$$

- Interpret β as the coefficient from a linear projection of a school's crime effect on its suspension effect
- More palatable than defending exclusion restriction, and establishes that suspension effects predict crime effects

IV Without Exclusion?

- But without the exclusion restriction, β doesn't answer BBD's research question
 - Not the effect of suspension on crime for an individual kid
 - Not the effect of changing a school's suspension rate on crime
- Possible solution: Maybe exclusion violations average out
 - "Many invalid instruments" idea (Kolesar et al., 2015)
 - Some evidence that μ_j is uncorrelated with observables (Fig. 5)
 - But beware the ecological regression!
- ► Without exclusion, group-level relationship between suspensions and crime could be driven by generic clustering or general impacts on behavior
 - Rose, Schellenberg, and Shem-Tov (2019): teacher effects on future suspensions and crime are correlated due to "non-cognitive value-added"

Alternative: Focus on the Reduced Form

- With a good research design for school attendance, why not estimate school effects on crime (θ_i 's) directly?
 - Crime effects and suspension effects are identified under similar assumptions
 - No exclusion restriction required!
- $ightharpoonup Var(\theta_j)$ speaks to "school to prison pipeline" question
- Many interesting potential predictors of crime effects besides suspension effects: school inputs, characteristics of schools, teachers, students, neighborhoods
- ► If suspension effects are the dominant predictor, perhaps evidence in favor of the suspension hypothesis

Thanks

► Thanks, great paper!