The Macroeconomics of Epidemics

Martin Eichenbaum, Sergio Rebelo, and Mathias Trabandt

June 2020

The Macroeconomics of Epidemics

Martin Eichenbaum, Sergio Rebelo, and Mathias Trabandt

Introduction

- Epidemiology models widely used to predict course of epidemic.
- While very useful, they don't allow for the two-way interaction between economic decisions and rates of infection.
 - ► Epidemic causes recession as people shop and work less to reduce chances of infection (Chetty et al. '20, Goolsbee-Syverson '20).
 - Number of people that work or go shopping influences rate at which infections spread.
- How important is the two-way interaction? What macroeconomic policies should the government pursue in an epidemic?

Eichenbaum, Rebelo and Trabandt (ERT) model

- Point of departure: SIR model by Kermack and McKendrick (1927).
 - Exogenous transition probabilities between health states.
- Continuum of agents with measure one.
- The population is divided into four groups
 - Fraction S_t: susceptible (not yet been exposed to disease);
 - Fraction *l_t*: infected (contracted disease);
 - Fraction R_t: recovered (survived disease and acquired immunity);
 - ► Fraction *D*_t: deceased (died from disease).

ERT model

• Prior to epidemic, everyone identical and maximize:

$$U = \sum_{t=0}^{\infty} \beta^t \left\{ \ln c_t - \frac{\theta}{2} n_t^2 \right\}$$

- Household budget constraint: $(1 + \mu_t)c_t = w_t n_t + transfers_t$.
- μ_t: tax (Pigouvian) on c_t; proxy for containment measures that reduce social interactions.
 - We refer to μ_t as the containment rate.
- Continuum of competitive representative firms: $C_t = AN_t$.

Population dynamics

• Newly infected people given by transmission function:

 $T_{t} = \pi_{1}(S_{t}C_{t}^{S})(I_{t}C_{t}^{I}) + \pi_{2}(S_{t}N_{t}^{S})(I_{t}N_{t}^{I}) + \pi_{3}S_{t}I_{t}.$

• Number of susceptible people at time t + 1:

$$S_{t+1}=S_t-T_t.$$

• Number of infected people at time t + 1:

$$I_{t+1} = I_t + T_t - (\pi_r + \pi_d) I_t.$$

•
$$\pi_r$$
 = recovery rate. π_d = mortality rate.

Population dynamics

• Number of recovered people at time t + 1:

$$R_{t+1}=R_t+\pi_r I_t.$$

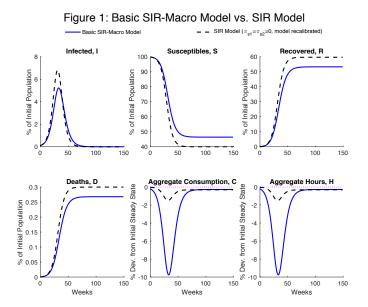
• Number of deceased people at time *t* + 1:

$$D_{t+1} = D_t + \pi_d I_t.$$

Susceptible, infected and recovered people

- Utility susceptibles: $U_t^s = u(c_t^s, n_t^s) + \beta \left[(1 \tau_t) U_{t+1}^s + \tau_t U_{t+1}^i \right]$
 - Infection prob.: $\tau_t = \pi_1 c_t^s (I_t C_t^I) + \pi_2 n_t^s (I_t N_t^I) + \pi_3 I_t$
- Utility infected: $U_t^i = u(c_t^i, n_t^i) + \beta \left[(1 \pi_r \pi_d) U_{t+1}^i + \pi_r U_{t+1}^r \right]$
- Utility recovered: $U_t^r = u(c_t^r, n_t^r) + \beta U_{t+1}^r$
- Budget constraints: $(1 + \mu_t)c_t^j = w_t\phi^j n_t^j + transfers_t, j = s, i, r$

Parameter values


- Weekly parameterization.
- Mortality rate = 0.5 percent.
 - Weighted average of mortality rates by age in South Korea computed using U.S. population weights for people younger than 70 years old.
- Choose A and θ to match hours worked and income before epidemic.
- $\beta = 0.96^{1/52}$: value of life 9.3 million 2019 dollars pre-epidemic.
 - Value used by U.S. government agencies.
 - Discuss robustness for value of life using additive constant as in Hall and Jones (2007) and estimates in Hall, Jones and Klenow (2020).

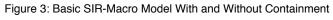
Parameter values: transmission function

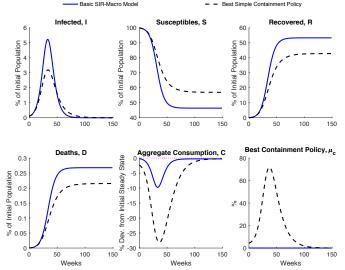
- Based on Ferguson et al. (2006), BLS 2018 ATUS and Lee (2009) choose π_1, π_2 and π_3 so that at the beginning of the epidemic:
 - 1/6 of new infections due to consumption.
 - ▶ 1/6 of new infections due to work.

Thus, remaining 2/3 of new infections due to general infections.

- 60 percent of population either recovers or dies from infection in simple SIR model (Merkel scenario).
- Discuss robustness w.r.t. π_1 , π_2 and π_3 .

The Macroeconomics of Epidemics


Martin Eichenbaum, Sergio Rebelo, and Mathias Trabandt


ERT model

- In our model, epidemic has both aggregate demand and supply effects.
- Supply effect: epidemic exposes people who are working to the virus.
 - People react to that risk by reducing their labor supply.
- Demand effect: epidemic exposes people who are purchasing consumption goods to the virus.
 - People react to that risk by reducing their consumption.
- Supply and demand effects work together to generate a large, persistent recession.

Simple containment

- Infection externality: people infected with virus do not fully internalize effect of their consumption and work decisions on virus spread.
- What policies should gov't pursue to deal with infection externality?
- "Simple containment":
 - Optimal path μ_t that maximizes welfare $U_0 = S_0 U_0^s + I_0 U_0^i + R_0 U_0^r$.
 - Best simple containment implies trade off between economic activity and health outcomes: recession exacerbated – death toll reduced.

Benchmark ERT model

- Basic ERT model plus the following three extensions:
 - Medical preparedness: mortality rate increases as number of infections rises because efficacy of healthcare system deteriorates.
 - Treatment: with probability δ_c per period an effective treatment that cures infected people is discovered.
 - Vaccine: with probability δ_v per period an effective vaccine is discovered.

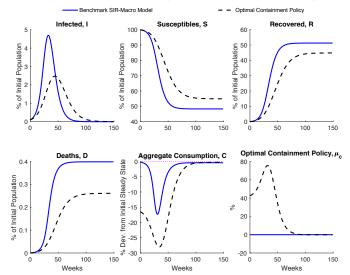


Figure 7: Benchmark SIR-Macro Model (Vaccines, Treatment, Med. Preparedness)

Smart containment

- How well can a social planner do if she can treat people differently according to their health status?
- Key result: Smart containment much better than simple containment.
 - No tradeoff between economic activity and health outcomes much milder recession and far fewer deaths than in competitive equilibrium.
- Implementing smart containment requires policy makers to know the health status of different individuals.

The Macroeconomics of Testing and Quarantines

Martin Eichenbaum, Sergio Rebelo, and Mathias Trabandt

June 2020

The Macroeconomics of Testing and Quarantines

Martin Eichenbaum, Sergio Rebelo, and Mathias Trabandt

The Macroeconomics of Testing and Quarantines

- Study impact of testing with and without quarantining infected people in a model in which people are uncertain about their health status.
- Result 1: testing without quarantines can worsen the economic *and* health repercussions of an epidemic.
- Result 2: testing with quarantines has very large social benefits:
 - Amelioration of tradeoff between economic activity and health outcomes associated with lockdowns/simple containment.
- Result 3: with temporary immunity after infection, testing and quarantining has huge social benefits.

Model with Unknown Health Status - - Model with Testing and Smart Containment ---- Model with Testing and Strict Containment Infected, I Susceptibles, S Recovered, R 6 100 60 % of Initial Population % of Initial Population 90 % of Initial Population 0 0 0 0 00 10 80 70 60 50 0 40 0 0 50 100 0 50 100 Ó 50 100 Deaths. D Aggregate Consumption, C Aggregate Hours, H 0.2 from Initial Steady State Dev. from Initial Steady State 0 % of Initial Population % 0.1 -2 -2 -4 -4 -6 -6 -8 -8 Dev. % % 0 -10 -10 50 50 0 50 100 0 100 0 100 Weeks Weeks Weeks

Figure 7: Model with Testing and Strict Containment

The Macroeconomics of Testing and Quarantines

Martin Eichenbaum, Sergio Rebelo, and Mathias Trabandt

Robustness

- Our conclusions are robust to allowing for capital accumulation and nominal rigidities.
- See Eichenbaum, Rebelo and Trabandt, 2020, Epidemics in the Neoclassical and New Keynesian Models.

Thank you for your attention.

*Matlab and Matlab/Dynare replication codes available at: https://sites.google.com/site/mathiastrabandt/home/research