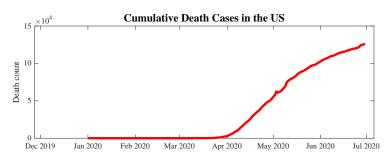
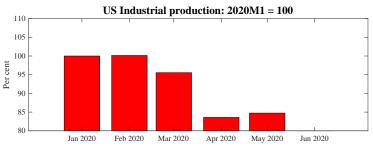
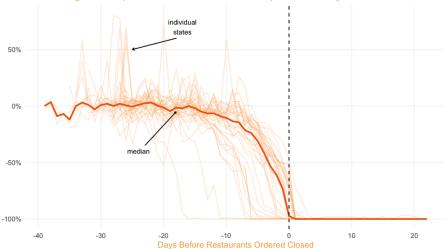
Macroeconomic Dynamics and Reallocation in a Pandemic


Dirk Krueger Harald Uhlig Taojun Xie


University of Pennsylvania, CEPR and NBER University of Chicago, CEPR and NBER National University of Singapore

NBER Summer Institute

July 6, 2020


Motivation: The CoViD-19 Crisis

Private Response to CoViD-19

The Day Before Closures, Restaurant Reservations Had Fallen 73 Percent on Average Percent change in 2020 OpenTable reservations in 37 states compared to same day 2019

Paper in a Nutshell

• Broad Question about COVID 19 Epidemic:

- ► Trading off health v/s econ. Re-opening debate.
- ▶ Specific Question: how much will people do on their own?

• What we do:

- ► Starting point: Eichenbaum-Rebelo-Trabandt [ERT] (2020).
- ▶ Neoclassical economic model cum SIR epidemiological model.
- ► Agents can be susceptible, infected, recovered, or dead.
- ▶ People get infected when they consume.
- ► Key innovation: **consumption sectors** differ in infection risk.
- Susceptible agents make conscious decisions. Shift consumption towards low-infection sectors.
- Key margins: elasticity of substitution η ; rel. contagiousness ϕ .

• What we find:

▶ Output decline, infection rates **reduced substantially** compared to a homogeneous-sector economy [ERT].

The Model, Macro: Neoclassical, no k.

- Continuum of agents $i \in [0, 1]$. Changing health status $j \in \{\mathbf{s}, \mathbf{i}, \mathbf{r}, d\}$
- Preferences over differentiated (by sector k) consumption, hours:

$$U = E\left[\sum_{t=0}^{\infty} \beta^t u^j(c_t^j, n_t^j)\right]$$

where

$$c_t^j = \left(\int (c_{tk}^j)^{1-1/\eta} dk\right)^{\eta/(\eta-1)}$$

and where for $j \in \{s, i, r\}$,

$$u^{j}(c,n) = \ln c - \theta \frac{n^{2}}{2}$$

while for dead agents: $u^d \equiv 0$ and $c_t^d = 0, n_t^d = 0$.

- **Technology**: one unit of labor $\Rightarrow A$ units of goods in each sector.
- Competitive frictionless labor and goods markets. Wage w = A
- Household budget constraint:

$$\int c_{tk}^j dk = A n_t^j$$

The Model, Epidemiology: SIR with Cons Dependency.

Agents can be susceptible, infected, recovered, or dead. Population fractions: S_t , I_t , R_t .

- Infection is transmitted while consuming (or autonomously).
 - ightharpoonup Probability for a susceptible agent s to become infected:

$$\tau_{\mathbf{t}} = \pi_s I_t \int \phi(k) c_{tk}^s c_{tk}^i dk + \pi_a I_t,$$

- (π_s, π_a) are contagion parameters.
- Sector-specific relative contagiousness $\phi(k)$,

$$\int \phi(k)dk = 1$$

- ▶ $T_t = \tau_t S_t$ is the number of new infections.
- Similar mechanics if infections occur in workplace (see paper).
- Dynamics of the pandemic: $I_0 = \epsilon, S_0 = 1 \epsilon, R_0 = 0$ and

$$S_{t+1} = S_t - T_t$$

 $I_{t+1} = I_t + T_t - (\pi_r + \pi_d)I_t$
 $R_{t+1} = R_t + \pi_r I_t$

Analysis: Choices of Infected and Recovered Agents

- Infected and recovered $j \in \{i, r\}$ face no further health risks.
- Value variety of consumption if elasticity of substitution $\eta < \infty$.
- \bullet \Rightarrow spread consumption evenly across sectors: $c_{tk}^{j} \equiv c_{t}^{j},\,\forall t,k,j.$
- Intratemporal optimality condition and budget constraint imply optimal labor, consumption choice for $j \in \{i, r\}$:

$$n_t^j = \frac{1}{\sqrt{\theta}}, c_t^j = \frac{A}{\sqrt{\theta}}$$

Analysis: Choices of Susceptible Agents.

• Recall infection probability:

$$\tau_t = \pi_s I_t \int \phi(k) c_{tk}^s c_{tk}^i dk + \pi_a I_t,$$

where
$$c_{tk}^i \equiv c_t^i = \frac{A}{\sqrt{\theta}}$$
.

• Bellman equation:

$$U_t^s = u(c_t^s, n_t^s) + \beta[(1 - \tau_t)U_{t+1}^s + \tau_t U_{t+1}^i]$$

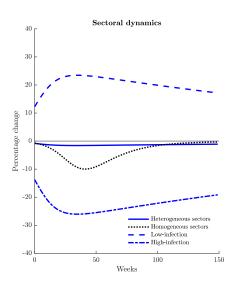
• First-order condition wrt consumption $\mathbf{c_{tk}^s}$ of variety k:

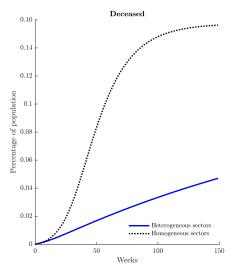
$$u_1(c_t^s, n_t^s) \cdot \left(\frac{c_t^s}{\mathbf{c_{tk}^s}}\right)^{1/\eta} = \lambda_{bt}^s + \lambda_{\tau t} \pi_s \frac{A}{\sqrt{\theta}} I_t \phi(\mathbf{k})$$

- $ightharpoonup \lambda_{bt}^s$: Lagrange multiplier the budget constraint: common across k.
- $\lambda_{\tau t}$: Lagrange multiplier on infection constraint. Higher $\phi(\mathbf{k})$ rises price of good k. Lowers consumption $\mathbf{c}_{t \mathbf{k}}^{\mathbf{s}}$.

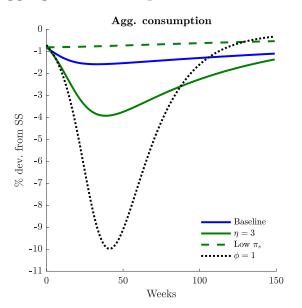
Three Theoretical Results

- $\eta = 0$ (Leontief): Back to homogeneous-sector ERT case.
- $\mathfrak{g} \quad \eta \to \infty$: Substitution mechanism becomes maximally potent. Susceptible agents only consume least contagious goods.
- $\eta = \infty$: Multiple equilibria.

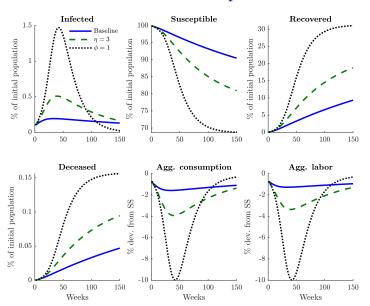

Numerical Illustration: Choice of Parameter Values


- Most parameters borrowed from ERT.
- For this presentation, autonomous infections $\pi_a = 0$.
- Mostly two equally-sized sectors. Clarifies the mechanisms.
- Relative contagiousness: $\phi_1 = 0.2, \phi_2 = 1.8.$
- Substitution elasticity $\eta = 10$. Also: $\eta = 3$.
- Compare to ERT scenario: $\phi_1 = \phi_2 = 1$ (homogeneous sectors).
- Choose π_s to get 10% consumption decline in ERT scenario.
- Robustness Analysis:
 - $\pi_a > 0$ to obtain 50% susceptible in the limit.
 - ▶ 9 sectors.
 - ▶ Vary η .
 - ▶ Somewhat lower π_s .

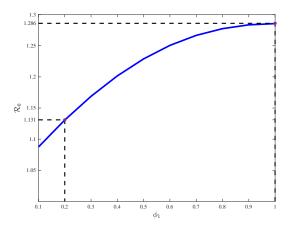
Numerical Results: Parameter Values


Param.	$\pi_a = 0$	$\pi_a \neq 0$	Description
π_s	4.05×10^{-7}	1.77×10^{-7}	Infection from cons.
π_r	0.387	0.387	Recovery
π_d	1.944×10^{-3}	1.944×10^{-3}	Death
π_a	0	0.34	Autonomous infection
η	10	10	Elasticity of substitution
heta	1.275×10^{-3}	1.275×10^{-3}	Labor supply parameter
A	39.835	39.835	Productivity
β	$0.96^{1/52}$	$0.96^{1/52}$	Discount factor
ϕ_1	0.2	0.2	Rel. contagiousn., sect. 1
ϕ_2	1.8	1.8	Rel. contagiousn., sect. 2

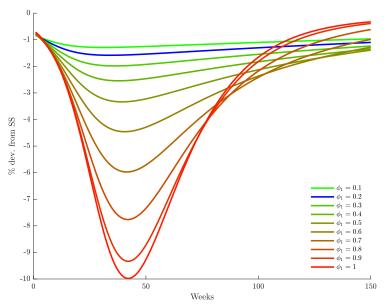
Results: Key Results



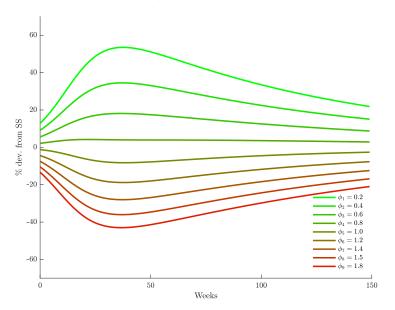
Results: Aggregate Consumption Decline

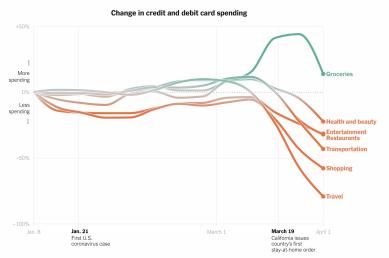


Numerical Results: Baseline Comparison

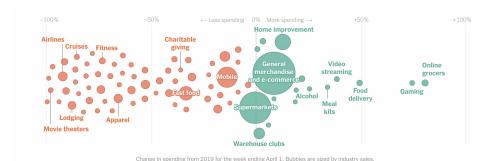


Basic Reproduction Number, \mathcal{R}_0


$$\mathcal{R}_0 = \sum_{t=0}^{\infty} (1 - \pi_r - \pi_d)^t \times \frac{T_0}{I_0} = \frac{T_0/I_0}{\pi_r + \pi_d}$$


Results: Aggregate Consumption Decline, Various ϕ_1

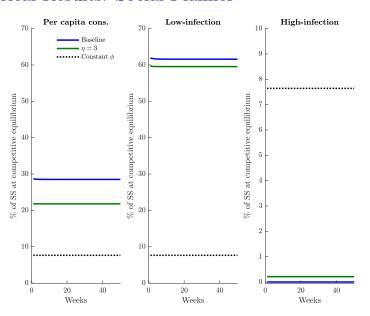
Results: Sectoral Shifts, 9 sectors



Anecdotal Data for Sectoral Shifts: NYT 2020-04-14

The chart shows the percentage change in spending from the beginning of the year. Each line is an average of the previous two weeks, which smooths out weekly anomalies. I Source: Earnest Research

Anecdotal Data for Sectoral Shifts: NYT 2020-04-14


Social Planner Solution

- Model has an **externality**. Equilibrium inefficient.
- What constraints does **social planner** face?
 - ▶ Agents in the model know whether they are susceptible, infected or recovered (or dead).
 - ► Give the social planner the same knowledge (needs widespread testing). Can discriminate between **s** and **i,r** when allocating **c**.
 - ▶ But: planner cannot change the consumption/infection technology
- Intuition for efficient allocation:
 - ▶ The social planner will seek to minimize the infection via infected agents ...
 - ... while still having to feed them.

Numerical Results: Social Planner

Numerical Results: Social Planner

Conclusions

- COVID 19 epidemic: lockdown and re-opening debate.
- **Key question**: how much will private reallocation do?
- Neoclassical economic-SIR model. Infections while consuming.
 - ▶ Sectoral variety choices: sectors differ in infectuousness.
 - Susceptible agents reduce consumption and shift towards low-infection sectors.
- Result: output decline and infection rates reduced substantially compared to homogeneous-sector [ERT] version.
- Even **reversal** rather than just flattening of curve is possible.
- Plus: an extreme social planner result.
- Next step: serious quantification of reallocation mechanism!

Thank you!