Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	000000000

Sovereign default and the decline in interest rates

Max Miller James D. Paron Jessica A. Wachter Wharton Wharton Wharton & NBER

July 8th, 2020

NBER Summer Institute - Capital Markets and the Economy Workshop

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
●00	0000	00000	00	00000000

The puzzle?

- Government bond rates have declined sharply over the last 35 years.
- Valuation ratios have not increased at the same pace.

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
•00	0000	00000	00	00000000

The puzzle?

- Government bond rates have declined sharply over the last 35 years.
- Valuation ratios have not increased at the same pace.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
•00	0000	00000	00	00000000

The puzzle?

- Government bond rates have declined sharply over the last 35 years.
- Valuation ratios have not increased at the same pace.

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

- The secular stagnation literature (Hansen, 1939; Summers, 2015; Gordon, 2015) provides myriad potential reasons for the reduction in interest rates.
 - 1. Higher demand for savings coming from changing population demographics and growing inequality.
 - A "savings glut" coming from foreign demand for safe assets (Bernanke, 2005; Caballero et al., 2008).
 - 3. A prolonged regime of low growth.
 - 4. Increased risk leading to a higher demand for precautionary savings.
- Farhi and Gourio (2018) combine these to quantitatively match several macro and asset pricing facts, including the price-dividend ratio.
- These explanations have trouble matching long-run trends and data outside the US.

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

- The secular stagnation literature (Hansen, 1939; Summers, 2015; Gordon, 2015) provides myriad potential reasons for the reduction in interest rates.
 - 1. Higher demand for savings coming from changing population demographics and growing inequality.
 - A "savings glut" coming from foreign demand for safe assets (Bernanke, 2005; Caballero et al., 2008).
 - 3. A prolonged regime of low growth.
 - 4. Increased risk leading to a higher demand for precautionary savings.
- Farhi and Gourio (2018) combine these to quantitatively match several macro and asset pricing facts, including the price-dividend ratio.
- These explanations have trouble matching long-run trends and data outside the US.

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

- The secular stagnation literature (Hansen, 1939; Summers, 2015; Gordon, 2015) provides myriad potential reasons for the reduction in interest rates.
 - 1. Higher demand for savings coming from changing population demographics and growing inequality.
 - A "savings glut" coming from foreign demand for safe assets (Bernanke, 2005; Caballero et al., 2008).
 - 3. A prolonged regime of low growth.
 - 4. Increased risk leading to a higher demand for precautionary savings.
- Farhi and Gourio (2018) combine these to quantitatively match several macro and asset pricing facts, including the price-dividend ratio.
- These explanations have trouble matching long-run trends and data outside the US.

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

- The secular stagnation literature (Hansen, 1939; Summers, 2015; Gordon, 2015) provides myriad potential reasons for the reduction in interest rates.
 - 1. Higher demand for savings coming from changing population demographics and growing inequality.
 - A "savings glut" coming from foreign demand for safe assets (Bernanke, 2005; Caballero et al., 2008).
 - 3. A prolonged regime of low growth.
 - 4. Increased risk leading to a higher demand for precautionary savings.
- Farhi and Gourio (2018) combine these to quantitatively match several macro and asset pricing facts, including the price-dividend ratio.
- These explanations have trouble matching long-run trends and data outside the US.

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

- The secular stagnation literature (Hansen, 1939; Summers, 2015; Gordon, 2015) provides myriad potential reasons for the reduction in interest rates.
 - 1. Higher demand for savings coming from changing population demographics and growing inequality.
 - A "savings glut" coming from foreign demand for safe assets (Bernanke, 2005; Caballero et al., 2008).
 - 3. A prolonged regime of low growth.
 - 4. Increased risk leading to a higher demand for precautionary savings.
- Farhi and Gourio (2018) combine these to quantitatively match several macro and asset pricing facts, including the price-dividend ratio.
- These explanations have trouble matching long-run trends and data outside the US.

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

- The secular stagnation literature (Hansen, 1939; Summers, 2015; Gordon, 2015) provides myriad potential reasons for the reduction in interest rates.
 - 1. Higher demand for savings coming from changing population demographics and growing inequality.
 - A "savings glut" coming from foreign demand for safe assets (Bernanke, 2005; Caballero et al., 2008).
 - 3. A prolonged regime of low growth.
 - 4. Increased risk leading to a higher demand for precautionary savings.
- Farhi and Gourio (2018) combine these to quantitatively match several macro and asset pricing facts, including the price-dividend ratio.
- These explanations have trouble matching long-run trends and data outside the US.

MOTIVATION	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

- The secular stagnation literature (Hansen, 1939; Summers, 2015; Gordon, 2015) provides myriad potential reasons for the reduction in interest rates.
 - 1. Higher demand for savings coming from changing population demographics and growing inequality.
 - A "savings glut" coming from foreign demand for safe assets (Bernanke, 2005; Caballero et al., 2008).
 - 3. A prolonged regime of low growth.
 - 4. Increased risk leading to a higher demand for precautionary savings.
- Farhi and Gourio (2018) combine these to quantitatively match several macro and asset pricing facts, including the price-dividend ratio.
- These explanations have trouble matching long-run trends and data outside the US.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

Our explanation?

- Our explanation: the risk premium on sovereign debt has been falling with little reduction in the true riskfree rate.
- Allowing for consumption storage (inventory) gives rise to a zero lower bound on interest rates, allowing us to match observed reductions in growth and investment.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

Our explanation?

- Our explanation: the risk premium on sovereign debt has been falling with little reduction in the true riskfree rate.
- Allowing for consumption storage (inventory) gives rise to a zero lower bound on interest rates, allowing us to match observed reductions in growth and investment.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	●000	00000	00	00000000

What does the current approach say?

- Standard i.i.d. consumption-based asset pricing model, with a similar flavor of Farhi and Gourio (2018).
- Calibrate to match moments from 1984–2000 and 2001–2016, respectively.
- Results come from an increase in patience β and the probability of disaster p.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	●000	00000	00	00000000

What does the current approach say?

- Standard i.i.d. consumption-based asset pricing model, with a similar flavor of Farhi and Gourio (2018).
- Calibrate to match moments from 1984–2000 and 2001–2016, respectively.
- Results come from an increase in patience β and the probability of disaster p.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	●000	00000	00	00000000

What does the current approach say?

- Standard i.i.d. consumption-based asset pricing model, with a similar flavor of Farhi and Gourio (2018).
- Calibrate to match moments from 1984–2000 and 2001–2016, respectively.
- Results come from an increase in patience β and the probability of disaster p.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0●00	00000	00	000000000

The model

- Agents have Epstein and Zin (1989) utility and choose consumption and to maximize the present value of utility in a complete market in an endowment economy.
- Endowment follows

$$\Delta c_{t+1} = \mu + \eta_{t+1},$$

where η_{t+1} is an independent and identically distributed "disaster" term of the form

$$\eta_{t+1} = \begin{cases} 0 & \text{with probability} \quad 1-p \\ -Z & \text{with probability} \quad p \end{cases}$$

and Z > 0.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0●00	00000	00	000000000

- Agents have Epstein and Zin (1989) utility and choose consumption and to maximize the present value of utility in a complete market in an endowment economy.
- Endowment follows

The model

$$\Delta c_{t+1} = \mu + \eta_{t+1},$$

where η_{t+1} is an independent and identically distributed "disaster" term of the form

$$\eta_{t+1} = \begin{cases} 0 & \text{with probability} \quad 1-p \\ -Z & \text{with probability} \quad p \end{cases}$$

and Z > 0.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	oo	000000000
Asset prices				

• Using the Euler equation for the return on wealth, the price-consumption ratio, κ , is given by

$$\kappa = \frac{\beta e^{(1-\frac{1}{\psi})\mu} \left[1 + p(e^{-(1-\gamma)Z} - 1) \right]^{\frac{1}{\theta}}}{1 - \beta e^{(1-\frac{1}{\psi})\mu} \left[1 + p(e^{-(1-\gamma)Z} - 1) \right]^{\frac{1}{\theta}}}.$$

• The return on the riskfree asset is given by

$$r_f = -\log\beta + \frac{1}{\psi}\mu - \log(1 + p(e^{\gamma Z} - 1)) + \left(\frac{\theta - 1}{\theta}\right)\log(1 + p(e^{-(1 - \gamma)Z} - 1))$$

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	oo	000000000
Asset prices				

• Using the Euler equation for the return on wealth, the price-consumption ratio, κ , is given by

$$\kappa = \frac{\beta e^{(1-\frac{1}{\psi})\mu} \left[1 + p(e^{-(1-\gamma)Z} - 1) \right]^{\frac{1}{\theta}}}{1 - \beta e^{(1-\frac{1}{\psi})\mu} \left[1 + p(e^{-(1-\gamma)Z} - 1) \right]^{\frac{1}{\theta}}}.$$

• The return on the riskfree asset is given by

$$r_f = -\log\beta + \frac{1}{\psi}\mu - \log(1 + p(e^{\gamma Z} - 1)) + \left(\frac{\theta - 1}{\theta}\right)\log(1 + p(e^{-(1 - \gamma)Z} - 1)).$$

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	000●	00000	00	000000000

Calibration

	Values		
	1984–2000	2001-2016	
Panel A: Moments in the data			
Price-dividend ratio κ	42.34	50.11	
Riskfree rate r_f	0.0279	-0.0035	
Panel B: Baseline Model Parameters			
μ	0.0350	0.0282	
	0.967	0.979	
	0.0343	0.0663	
Panel C: $\psi = 0.5$			
μ	0.0350	0.0282	
	0.997	0.983	
	0.0343	0.0667	

Notes: Unless otherwise noted, risk aversion $\gamma = 12$, EIS $\psi = 2$, and disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.85)$.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	000●	00000	00	000000000

Calibration

	Values	
	1984 - 2000	2001–2016
Panel A: Moments in the data		
Price-dividend ratio κ	42.34	50.11
Riskfree rate r_f	0.0279	-0.0035
Panel B: Baseline Model Parameters		
μ	0.0350	0.0282
eta	0.967	0.979
p	0.0343	0.0663
Panel C: $\psi = 0.5$		
μ	0.0350	0.0282
	0.997	0.983
	0.0343	0.0667

Notes: Unless otherwise noted, risk aversion $\gamma = 12$, EIS $\psi = 2$, and disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.85)$.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	000●	00000	00	000000000

Calibration

	Values	
	1984 - 2000	2001-2016
Panel A: Moments in the data		
Price-dividend ratio κ	42.34	50.11
Riskfree rate r_f	0.0279	-0.0035
Panel B: Baseline Model Parameters		
μ	0.0350	0.0282
eta	0.967	0.979
p	0.0343	0.0663
Panel C: $\psi = 0.5$		
μ	0.0350	0.0282
eta	0.997	0.983
p	0.0343	0.0667

Notes: Unless otherwise noted, risk aversion $\gamma = 12$, EIS $\psi = 2$, and disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.85)$.

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	●0000	00	00000000

Long-run trends

• The reduction in interest rates has been ongoing for nearly 700 years!

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	0000	00	00000000

Valuation ratios have been flat

• Price-earnings ratios in the US and price-dividend ratios in the UK (and the rest of the developed world) not risen much in the last 150 years.

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	0000	00	00000000

Calibrating to different moments

	Values	
	1984–2000	2001-2016
Panel A: Moments in the data		
US CAPE ratio κ_{US}^{PE}	25.97	26.73
UK Price-dividend ratio $\kappa_{U\!K}$	27.78	30.86
US risk free rate r_f^{US}	0.0279	-0.0035
UK riskfree rate r_f^{UK}	0.0503	0.0042
Panel B: US Moments, CAPE Ratio		
μ	0.0350	0.0282
	0.957	0.968
	0.0556	0.101
Panel C: UK Moments, PD Ratio		
μ	0.0278	0.0156
	0.955	0.971
	0.0134	0.0533

Notes: Risk aversion $\gamma = 12$, EIS $\psi = 2$, and disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.85)$.

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	0000	00	00000000

Calibrating to different moments

_	Values	
	1984 - 2000	2001-2016
Panel A: Moments in the data		
US CAPE ratio κ_{US}^{PE}	25.97	26.73
UK Price-dividend ratio κ_{UK}	27.78	30.86
US risk free rate r_f^{US}	0.0279	-0.0035
UK risk free rate $r_f^{U\!K}$	0.0503	0.0042
Panel B: US Moments, CAPE Ratio		
μ	0.0350	0.0282
β	0.957	0.968
p	0.0556	0.101
Panel C: UK Moments, PD Ratio		
μ	0.0278	0.0156
	0.955	0.971
	0.0134	0.0533

Notes: Risk aversion $\gamma = 12$, EIS $\psi = 2$, and disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.85)$.

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	0000	00	00000000

Calibrating to different moments

	Values	
	1984 - 2000	2001-2016
Panel A: Moments in the data		
US CAPE ratio κ_{US}^{PE}	25.97	26.73
UK Price-dividend ratio κ_{UK}	27.78	30.86
US risk free rate r_f^{US}	0.0279	-0.0035
UK risk free rate $r_f^{U\!K}$	0.0503	0.0042
Panel B: US Moments, CAPE Ratio		
μ	0.0350	0.0282
eta	0.957	0.968
p	0.0556	0.101
Panel C: UK Moments, PD Ratio		
μ	0.0278	0.0156
eta	0.955	0.971
p	0.0134	0.0533

Notes: Risk aversion $\gamma = 12$, EIS $\psi = 2$, and disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.85)$.

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

Has the disaster probability really increased?

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	0000	00	00000000

Our approach

- Two main changes to the baseline set-up in our specification.
 - 1. Government bonds are not riskfree: they include default and/or inflation risk.
 - 2. Add production and allow for riskless storage (inventory) which bounds the real interest rate at zero. Agents can costlessly move consumption from one period to the next in lieu of investment.

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	0000	00	00000000

Our approach

- Two main changes to the baseline set-up in our specification.
 - 1. Government bonds are not riskfree: they include default and/or inflation risk.
 - 2. Add production and allow for riskless storage (inventory) which bounds the real interest rate at zero. Agents can costlessly move consumption from one period to the next in lieu of investment.

Motivation	Baseline Model	EVIDENCE	Default Risk	INVENTORY MODEL
000	0000	0000	00	00000000

Our approach

- Two main changes to the baseline set-up in our specification.
 - 1. Government bonds are not riskfree: they include default and/or inflation risk.
 - 2. Add production and allow for riskless storage (inventory) which bounds the real interest rate at zero. Agents can costlessly move consumption from one period to the next in lieu of investment.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	●0	000000000

Default risk

• The government bond is equal to $e^{\eta_{t+1}^b}$ where

$$\eta_{t+1}^b = \begin{cases} 0 & \text{with probability } 1-p \\ -\zeta Z & \text{with probability } p \end{cases}$$

- This can be thought of as either outright (partial) default or as default through inflation.
- In the baseline endowment economy, the expected return on the government bond is given by

$$\log E_t [R_{b,t+1}] = r^f + \underbrace{\log \left(\frac{(1+p(e^{-\zeta Z}-1))(1+p(e^{\gamma Z}-1))}{1+p(e^{-(\zeta-\gamma)Z}-1)}\right)}_{\text{risk premium}}.$$

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	•0	000000000

Default risk

• The government bond is equal to $e^{\eta_{t+1}^b}$ where

$$\eta_{t+1}^b = \begin{cases} 0 & \text{with probability } 1-p \\ -\zeta Z & \text{with probability } p \end{cases}$$

- This can be thought of as either outright (partial) default or as default through inflation.
- In the baseline endowment economy, the expected return on the government bond is given by

$$\log E_t [R_{b,t+1}] = r^f + \underbrace{\log \left(\frac{(1+p(e^{-\zeta Z}-1))(1+p(e^{\gamma Z}-1))}{1+p(e^{-(\zeta-\gamma)Z}-1)}\right)}_{\text{risk premium}}.$$

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	●0	000000000

Default risk

• The government bond is equal to $e^{\eta_{t+1}^b}$ where

$$\eta_{t+1}^b = \begin{cases} 0 & \text{with probability } 1-p \\ -\zeta Z & \text{with probability } p \end{cases}$$

- This can be thought of as either outright (partial) default or as default through inflation.
- In the baseline endowment economy, the expected return on the government bond is given by

$$\log E_t [R_{b,t+1}] = r^f + \underbrace{\log \left(\frac{(1 + p(e^{-\zeta Z} - 1))(1 + p(e^{\gamma Z} - 1))}{1 + p(e^{-(\zeta - \gamma)Z} - 1)} \right)}_{\text{risk premium}}.$$

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	0•	00000000

Default calibration

	Va	lues
	1984 - 2000	2001-2016
Panel A: Moments in the data		
US CAPE ratio κ_{US}^{PE}	25.97	26.73
US bond rate r_b^{US}	0.0279	-0.0035
Panel B: Model with default		
β	0.963	0.964
ζ	0.305	-0.118

Notes: Unless otherwise noted, risk aversion $\gamma = 5$, EIS $\psi = 1$, disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.70)$ and the probability of disaster p = 0.04. All panels are calibrated to the riskfree rate and growth used in Farhi and Gourio (2018) and the cyclically adjusted price-to-earnings ratio of Shiller (2000). In each panel, the 1984–2000 period has $\mu = 0.0350$ and the 2001–2016 period has $\mu = 0.0282$.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	•00000000
The model				

• Households purchase capital and rent it to the firm. The firm produces the consumption good according to a linear, CRS production function

$$Y_t = AK_t$$

• Agents have log utility and face the budget constraint

$$C_t + I_t + \tilde{K}_{t+1} = I_{t-1} + (1 - \delta + A)K_t$$

where I_t is inventory and $\tilde{K}_{t+1} \equiv \frac{K_{t+1}}{e^{\eta_{t+1}}}$ is planned capital and η_{t+1} is a "capital quality shock."

• Motion of capital follows

$$\tilde{K}_{t+1} = (1-\delta)K_t + X_t$$

where X_t is investment.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	•00000000
The model				

• Households purchase capital and rent it to the firm. The firm produces the consumption good according to a linear, CRS production function

$$Y_t = AK_t$$

• Agents have log utility and face the budget constraint

$$C_t + I_t + \tilde{K}_{t+1} = I_{t-1} + (1 - \delta + A)K_t$$

where I_t is inventory and $\tilde{K}_{t+1} \equiv \frac{K_{t+1}}{e^{\eta_{t+1}}}$ is planned capital and η_{t+1} is a "capital quality shock."

• Motion of capital follows

$$\tilde{K}_{t+1} = (1-\delta)K_t + X_t$$

where X_t is investment.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	•00000000
The model				

• Households purchase capital and rent it to the firm. The firm produces the consumption good according to a linear, CRS production function

$$Y_t = AK_t$$

• Agents have log utility and face the budget constraint

$$C_t + I_t + \tilde{K}_{t+1} = I_{t-1} + (1 - \delta + A)K_t$$

where I_t is inventory and $\tilde{K}_{t+1} \equiv \frac{K_{t+1}}{e^{\eta_{t+1}}}$ is planned capital and η_{t+1} is a "capital quality shock."

• Motion of capital follows

$$\tilde{K}_{t+1} = (1-\delta)K_t + X_t$$

where X_t is investment.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

Solving as a portfolio choice problem

• Defining $W_t \equiv I_{t-1} + (1 - \delta + A)\tilde{K}_t e^{\eta t}$, this problem can be re-written as a portfolio choice problem where the budget constraint becomes

$$W_{t+1} = (W_t - C_t)(1 + (1 - \theta_t)r_{f,t+1} + \theta_t r_{K,t+1})$$

where $\theta_t \equiv \frac{\tilde{K}_{t+1}}{W_t - C_t}$, $r_{K,t+1} \equiv (1 - \delta + A)e^{\eta_{t+1}} - 1$, and $r_{f,t+1}$ is the net return on the riskfree bond.

- Because of log utility, the consumption-wealth ratio is constant and given by here $\frac{C_t}{W_t} = 1 \beta.$
- This yields the Euler equations

$$E_t \left[\frac{1}{1 + r_{f,t+1} + \theta(r_{K,t+1} - r_{f,t+1})} (1 + r_{i,t+1}) \right] = 1,$$
$$E_t \left[\frac{1}{1 + r_{f,t+1} + \theta(r_{K,t+1} - r_{t+1}^f)} (r_{i,t+1} - r_{f,t+1}) \right] = 0$$

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

Solving as a portfolio choice problem

• Defining $W_t \equiv I_{t-1} + (1 - \delta + A)\tilde{K}_t e^{\eta_t}$, this problem can be re-written as a portfolio choice problem where the budget constraint becomes

$$W_{t+1} = (W_t - C_t)(1 + (1 - \theta_t)r_{f,t+1} + \theta_t r_{K,t+1})$$

where $\theta_t \equiv \frac{\tilde{K}_{t+1}}{W_t - C_t}$, $r_{K,t+1} \equiv (1 - \delta + A)e^{\eta_{t+1}} - 1$, and $r_{f,t+1}$ is the net return on the riskfree bond.

- Because of log utility, the consumption-wealth ratio is constant and given by here $\frac{C_t}{W_t} = 1 \beta$.
- This yields the Euler equations

$$E_t \left[\frac{1}{1 + r_{f,t+1} + \theta(r_{K,t+1} - r_{f,t+1})} (1 + r_{i,t+1}) \right] = 1,$$
$$E_t \left[\frac{1}{1 + r_{f,t+1} + \theta(r_{K,t+1} - r_{t+1}^f)} (r_{i,t+1} - r_{f,t+1}) \right] = 0$$

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

Solving as a portfolio choice problem

• Defining $W_t \equiv I_{t-1} + (1 - \delta + A)\tilde{K}_t e^{\eta_t}$, this problem can be re-written as a portfolio choice problem where the budget constraint becomes

$$W_{t+1} = (W_t - C_t)(1 + (1 - \theta_t)r_{f,t+1} + \theta_t r_{K,t+1})$$

where $\theta_t \equiv \frac{\tilde{K}_{t+1}}{W_t - C_t}$, $r_{K,t+1} \equiv (1 - \delta + A)e^{\eta_{t+1}} - 1$, and $r_{f,t+1}$ is the net return on the riskfree bond.

- Because of log utility, the consumption-wealth ratio is constant and given by here $\frac{C_t}{W_t} = 1 \beta$.
- This yields the Euler equations

$$E_t \left[\frac{1}{1 + r_{f,t+1} + \theta(r_{K,t+1} - r_{f,t+1})} (1 + r_{i,t+1}) \right] = 1,$$
$$E_t \left[\frac{1}{1 + r_{f,t+1} + \theta(r_{K,t+1} - r_{t+1}^f)} (r_{i,t+1} - r_{f,t+1}) \right] = 0$$

Motivation	BASELINE MODEL	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	000000000

No inventory case

• Agent's choice depends on the unconstrained risk free rate

$$R_{f,t+1}^* = E_t \left[(1 + r_{K,t+1})^{-1} \right]^{-1} = (1 - \delta + A)(1 + p(e^Z - 1))^{-1}.$$

which is the return on the zero-net supply riskfree bond in the model without inventory.

- When $r_{f,t+1}^* > 0$, then the agent chooses not to hold inventory, as she obtains a higher return from investing in the riskfree asset.
- Entire portfolio in risky capital (i.e. $\theta = 1$) and the results are the same as in Barro (2009), but with log utility.

Motivation	BASELINE MODEL	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	000000000

No inventory case

• Agent's choice depends on the unconstrained risk free rate

$$R_{f,t+1}^* = E_t \left[(1 + r_{K,t+1})^{-1} \right]^{-1} = (1 - \delta + A)(1 + p(e^Z - 1))^{-1}$$

which is the return on the zero-net supply riskfree bond in the model without inventory.

- When $r_{f,t+1}^* > 0$, then the agent chooses not to hold inventory, as she obtains a higher return from investing in the riskfree asset.
- Entire portfolio in risky capital (i.e. $\theta = 1$) and the results are the same as in Barro (2009), but with log utility.

Motivation	BASELINE MODEL	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	000000000

No inventory case

• Agent's choice depends on the unconstrained risk free rate

$$R_{f,t+1}^* = E_t \left[(1 + r_{K,t+1})^{-1} \right]^{-1} = (1 - \delta + A)(1 + p(e^Z - 1))^{-1}$$

which is the return on the zero-net supply riskfree bond in the model without inventory.

- When $r_{f,t+1}^* > 0$, then the agent chooses not to hold inventory, as she obtains a higher return from investing in the riskfree asset.
- Entire portfolio in risky capital (i.e. $\theta = 1$) and the results are the same as in Barro (2009), but with log utility.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	000000000

ZLB with inventory

- When $r_{f,t+1}^* < 0$, the agent chooses to hold a positive position in inventory.
- In this case, $r_f = 0$ and the Euler equations become

$$E_t \left[\frac{1}{1 + \theta r_{K,t+1}} (1 + r_{i,t+1}) \right] = 1$$
$$E_t \left[\frac{1}{1 + \theta r_{K,t+1}} r_{i,t+1} \right] = 0.$$

• Taking $r_{i,t+1} = r_f = 0$ in the first Euler equation gives the solution for θ

$$\theta = -\frac{(1-p)r_{K,0} + pr_{K,Z}}{r_{K,0}r_{K,Z}}.$$

where $r_{K,0} = (1 - \delta + A) - 1$ and $r_{K,Z} = (1 - \delta + A)e^{-Z} - 1$.

Motivation	Baseline Model	EVIDENCE	Default Risk	Inventory Model
000	0000	00000	00	00000000

ZLB with inventory

- When $r_{f,t+1}^* < 0$, the agent chooses to hold a positive position in inventory.
- In this case, $r_f = 0$ and the Euler equations become

$$E_t \left[\frac{1}{1 + \theta r_{K,t+1}} (1 + r_{i,t+1}) \right] = 1$$
$$E_t \left[\frac{1}{1 + \theta r_{K,t+1}} r_{i,t+1} \right] = 0.$$

• Taking $r_{i,t+1} = r_f = 0$ in the first Euler equation gives the solution for θ

$$\theta = -\frac{(1-p)r_{K,0} + pr_{K,Z}}{r_{K,0}r_{K,Z}}.$$

where $r_{K,0} = (1 - \delta + A) - 1$ and $r_{K,Z} = (1 - \delta + A)e^{-Z} - 1$.

Motivation	Baseline Model	EVIDENCE	Default Risk	Inventory Model
000	0000	00000	00	00000000

ZLB with inventory

- When $r_{f,t+1}^* < 0$, the agent chooses to hold a positive position in inventory.
- In this case, $r_f = 0$ and the Euler equations become

$$E_t \left[\frac{1}{1 + \theta r_{K,t+1}} (1 + r_{i,t+1}) \right] = 1$$
$$E_t \left[\frac{1}{1 + \theta r_{K,t+1}} r_{i,t+1} \right] = 0.$$

• Taking $r_{i,t+1} = r_f = 0$ in the first Euler equation gives the solution for θ

$$\theta = -\frac{(1-p)r_{K,0} + pr_{K,Z}}{r_{K,0}r_{K,Z}}.$$

where $r_{K,0} = (1 - \delta + A) - 1$ and $r_{K,Z} = (1 - \delta + A)e^{-Z} - 1$.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	00000000

$$\frac{C_{t+1}}{C_t} = \frac{W_{t+1}}{W_t} = \beta(1 + \theta r_{K,t+1}) = \beta(\theta e^{\eta_{t+1}}(1 - \delta + A) + 1 - \theta)$$

- Note that the mean and volatility of the consumption and wealth growth processes are decreasing in θ .
- The SDF is less volatile and covaries less with the risky asset.
- Leads to endogenously lower risk premia when the agent chooses to hold inventory.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

$$\frac{C_{t+1}}{C_t} = \frac{W_{t+1}}{W_t} = \beta(1 + \theta r_{K,t+1}) = \beta(\theta e^{\eta_{t+1}}(1 - \delta + A) + 1 - \theta)$$

- Note that the mean and volatility of the consumption and wealth growth processes are decreasing in θ .
- The SDF is less volatile and covaries less with the risky asset.
- Leads to endogenously lower risk premia when the agent chooses to hold inventory.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

$$\frac{C_{t+1}}{C_t} = \frac{W_{t+1}}{W_t} = \beta(1 + \theta r_{K,t+1}) = \beta(\theta e^{\eta_{t+1}}(1 - \delta + A) + 1 - \theta)$$

- Note that the mean and volatility of the consumption and wealth growth processes are decreasing in θ .
- The SDF is less volatile and covaries less with the risky asset.
- Leads to endogenously lower risk premia when the agent chooses to hold inventory.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

$$\frac{C_{t+1}}{C_t} = \frac{W_{t+1}}{W_t} = \beta(1 + \theta r_{K,t+1}) = \beta(\theta e^{\eta_{t+1}}(1 - \delta + A) + 1 - \theta)$$

- Note that the mean and volatility of the consumption and wealth growth processes are decreasing in θ .
- The SDF is less volatile and covaries less with the risky asset.
- Leads to endogenously lower risk premia when the agent chooses to hold inventory.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	000000000

Dynamics in an i.i.d. framework

• The growth rates of capital and output are also the same

$$\frac{K_{t+1}}{K_t} = \frac{Y_{t+1}}{Y_t} = \beta \bigg(\theta e^{\eta_{t+1}} (1 - \delta + A) + e^{\eta_{t+1} - \eta_t} (1 - \theta) \bigg).$$

- Note that these depend on whether the disaster has occurred!
- The investment-capital ratio $\frac{X}{K}$ will also depend on whether the disaster has occurred.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	000000000

Dynamics in an i.i.d. framework

• The growth rates of capital and output are also the same

$$\frac{K_{t+1}}{K_t} = \frac{Y_{t+1}}{Y_t} = \beta \bigg(\theta e^{\eta_{t+1}} (1 - \delta + A) + e^{\eta_{t+1} - \eta_t} (1 - \theta) \bigg).$$

- Note that these depend on whether the disaster has occurred!
- The investment-capital ratio $\frac{X}{K}$ will also depend on whether the disaster has occurred.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	000000000

Dynamics in an i.i.d. framework

• The growth rates of capital and output are also the same

$$\frac{K_{t+1}}{K_t} = \frac{Y_{t+1}}{Y_t} = \beta \bigg(\theta e^{\eta_{t+1}} (1 - \delta + A) + e^{\eta_{t+1} - \eta_t} (1 - \theta) \bigg).$$

- Note that these depend on whether the disaster has occurred!
- The investment-capital ratio $\frac{X}{K}$ will also depend on whether the disaster has occurred.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	000000000

Comparative statics

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	000000000

Preferred calibration

	Va	lues
	1984–2000	2001–2016
Panel A: Moments in the data		
US CAPE ratio κ_{US}^{PE}	25.97	26.73
US bond rate r_b^{US}	0.0279	-0.0035
Growth rate μ	0.0368	0.0189
Panel B: With Inventory		
		0.964
Panel C: Without Inventory		
		0.964

Notes: The model is solved under log-utility so risk aversion $\gamma = 1$ and EIS $\psi = 1$. The probability of a disaster is p = .04, the disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.35)$ and the marginal product of capital A = .12.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

Preferred calibration

	Va	lues
	1984 - 2000	2001–2016
Panel A: Moments in the data		
US CAPE ratio κ_{US}^{PE}	25.97	26.73
US bond rate r_b^{US}	0.0279	-0.0035
Growth rate μ	0.0368	0.0189
Panel B: With Inventory		
β	0.963	0.964
ζ	0.247	-0.036
δ	0.043	0.057
θ	1.000	0.898
$\frac{X}{K}$	0.080	0.076
Panel C: Without Inventory		
		0.964

Notes: The model is solved under log-utility so risk aversion $\gamma = 1$ and EIS $\psi = 1$. The probability of a disaster is p = .04, the disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.35)$ and the marginal product of capital A = .12.

Motivation	Baseline Model	Evidence	Default Risk	INVENTORY MODEL
000	0000	00000	00	00000000

Preferred calibration

	Values	
	1984 - 2000	2001–2016
Panel A: Moments in the data		
US CAPE ratio κ_{US}^{PE}	25.97	26.73
US bond rate r_b^{US}	0.0279	-0.0035
Growth rate μ	0.0368	0.0189
Panel B: With Inventory		
β	0.963	0.964
ζ	0.247	-0.036
δ	0.043	0.057
θ	1.000	0.898
$\frac{X}{K}$	0.080	0.076
Panel C: Without Inventory		
β	0.963	0.964
ζ	0.247	0.100
δ	0.043	0.061
heta	1.000	1.000
$\frac{X}{K}$	0.080	0.082

Notes: The model is solved under log-utility so risk aversion $\gamma = 1$ and EIS $\psi = 1$. The probability of a disaster is p = .04, the disaster size (decline in log consumption in the event of a disaster) $Z = -\log(.35)$ and the marginal product of capital A = .12.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	

- Jointly explain patterns in interest rates and valuations ratios over the near- and long-term horizons.
- Decrease in risk premia on sovereign debt can explain the reduction in government interest rates over the short- and long-term.
- Allowing for consumption storage introduces a zero lower bound on real interest rates.
- In a model with production, this crowds out investment in productive capital.
- Next steps: extend to Epstein and Zin (1989) with unit IES and to more general cases where the consumption-wealth ratio varies with wealth, add a richer production environment, and include a mechanism for endogenous inflation.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	00000000

- Jointly explain patterns in interest rates and valuations ratios over the near- and long-term horizons.
- Decrease in risk premia on sovereign debt can explain the reduction in government interest rates over the short- and long-term.
- Allowing for consumption storage introduces a zero lower bound on real interest rates.
- In a model with production, this crowds out investment in productive capital.
- Next steps: extend to Epstein and Zin (1989) with unit IES and to more general cases where the consumption-wealth ratio varies with wealth, add a richer production environment, and include a mechanism for endogenous inflation.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	00000000

- Jointly explain patterns in interest rates and valuations ratios over the near- and long-term horizons.
- Decrease in risk premia on sovereign debt can explain the reduction in government interest rates over the short- and long-term.
- Allowing for consumption storage introduces a zero lower bound on real interest rates.
- In a model with production, this crowds out investment in productive capital.
- Next steps: extend to Epstein and Zin (1989) with unit IES and to more general cases where the consumption-wealth ratio varies with wealth, add a richer production environment, and include a mechanism for endogenous inflation.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	

- Jointly explain patterns in interest rates and valuations ratios over the near- and long-term horizons.
- Decrease in risk premia on sovereign debt can explain the reduction in government interest rates over the short- and long-term.
- Allowing for consumption storage introduces a zero lower bound on real interest rates.
- In a model with production, this crowds out investment in productive capital.
- Next steps: extend to Epstein and Zin (1989) with unit IES and to more general cases where the consumption-wealth ratio varies with wealth, add a richer production environment, and include a mechanism for endogenous inflation.

Motivation	Baseline Model	Evidence	Default Risk	Inventory Model
000	0000	00000	00	

- Jointly explain patterns in interest rates and valuations ratios over the near- and long-term horizons.
- Decrease in risk premia on sovereign debt can explain the reduction in government interest rates over the short- and long-term.
- Allowing for consumption storage introduces a zero lower bound on real interest rates.
- In a model with production, this crowds out investment in productive capital.
- Next steps: extend to Epstein and Zin (1989) with unit IES and to more general cases where the consumption-wealth ratio varies with wealth, add a richer production environment, and include a mechanism for endogenous inflation.