Discussion: "Feedback and Contagion through Distressed Competition" by Hui Chen, Winston Wei Dou, Hongye Guo and Yan Ji

Ye Li

The Ohio State University Fisher College of Business

NBER SI 2020 - Capital Markets and the Economy

• Product Demand: $D(P_{1,t}, P_{2,t}, M_{1,t})$, where $M_{1,t}$ is customers' taste

$$-\frac{dM_{1,t}}{M_{1,t}} = gdt + \zeta dZ_t + \sigma_M dW_{1,t} - dJ_{1,t}, \text{ Poisson } dJ_{1,t} = 1 \ (M_{1,t} \downarrow 0) \text{ exit}$$

• Product Demand: $D(P_{1,t}, P_{2,t}, M_{1,t})$, where $M_{1,t}$ is customers' taste

$$-\frac{dM_{1,t}}{M_{1,t}} = gdt + \zeta dZ_t + \sigma_M dW_{1,t} - dJ_{1,t}$$
, Poisson $dJ_{1,t} = 1$ $(M_{1,t} \downarrow 0)$ exit

- Firm 1 sets $P_{1,t}$ to maximizes shareholders' value
 - Decides whether to strategically default and exit, given debt chosen at t = 0
 - Shareholders' value is PV of $(P_{1,t}D(P_{1,t}, P_{2,t}, M_{i,t}) \text{debt coupon})$

• Product Demand: $D(P_{1,t}, P_{2,t}, M_{1,t})$, where $M_{1,t}$ is customers' taste

$$-\frac{dM_{1,t}}{M_{1,t}} = gdt + \zeta dZ_t + \sigma_M dW_{1,t} - dJ_{1,t}, \text{ Poisson } dJ_{1,t} = 1 \ (M_{1,t} \downarrow 0) \text{ exit}$$

- Firm 1 sets P_{1,t} to maximizes shareholders' value
 - Decides whether to strategically default and exit, given debt chosen at t = 0
 - Shareholders' value is PV of $(P_{1,t}D(P_{1,t}, P_{2,t}, M_{i,t}) \text{debt coupon})$
- Stochastic discount rate: $\frac{d\Lambda_t}{\Lambda_t} = -r_f dt \gamma_t dZ_t \zeta dZ_{\gamma,t}$

- The price of risk, γ_t , is mean-reverting and loads on $dZ_{\gamma,t}$

- Markov equilibria with state variables γ_t , $M_{1,t}$, $M_{2,t}$
- Non-collusive: $P_{1,t}$ is a static choice, maximizing one-shot profits

- Markov equilibria with state variables γ_t , $M_{1,t}$, $M_{2,t}$
- Non-collusive: $P_{1,t}$ is a static choice, maximizing one-shot profits
- Collusive: $P_{1,t} \uparrow$, profits \uparrow , Pr(default) \downarrow

- Markov equilibria with state variables γ_t , $M_{1,t}$, $M_{2,t}$
- Non-collusive: P_{1,t} is a static choice, maximizing one-shot profits
- Collusive: $P_{1,t} \uparrow$, profits \uparrow , Pr(default) \downarrow

- Incentive compatibility (IC) constraint under punishment:

PV (collusive profits | $M_{1,t}, M_{2,t}, \gamma_t$) – PV (non-collusive profits | $M_{1,t}, M_{2,t}, \gamma_t$) \geq One-shot deviation gain before Poisson-arriving punishement

- Markov equilibria with state variables γ_t , $M_{1,t}$, $M_{2,t}$
- Non-collusive: P_{1,t} is a static choice, maximizing one-shot profits
- Collusive: $P_{1,t}$ \uparrow , profits \uparrow , Pr(default) \downarrow

- Incentive compatibility (IC) constraint under punishment:

PV (collusive profits | $M_{1,t}, M_{2,t}, \gamma_t$) – PV (non-collusive profits | $M_{1,t}, M_{2,t}, \gamma_t$) \geq One-shot deviation gain before Poisson-arriving punishement

• Exogenous $M_{1,t}$, $M_{2,t}$, and γ_t drive the continuation values

- LHS is increasing in $M_{1,t}$ and decreasing in $M_{2,t}$ and γ_t

- Markov equilibria with state variables γ_t , $M_{1,t}$, $M_{2,t}$
- Non-collusive: P_{1,t} is a static choice, maximizing one-shot profits
- Collusive: $P_{1,t} \uparrow$, profits \uparrow , Pr(default) \downarrow

- Incentive compatibility (IC) constraint under punishment:

 $\begin{aligned} & PV \left(\text{collusive profits} \, | \, \textit{M}_{1,t}, \textit{M}_{2,t}, \gamma_t \right) - PV \left(\text{non-collusive profits} \, | \, \textit{M}_{1,t}, \textit{M}_{2,t}, \gamma_t \right) \\ & \geq \text{One-shot deviation gain before Poisson-arriving punishement} \end{aligned}$

• Exogenous $M_{1,t}$, $M_{2,t}$, and γ_t drive the continuation values

- LHS is increasing in $M_{1,t}$ and decreasing in $M_{2,t}$ and γ_t

New What are the implications of debt (and distress) on competition?

 Competition in turn affects Pr(distress), Corr.(firm profits, SDF), expected stock return, and credit spread

Channel Shocks \rightarrow *M*_{1,t}, *M*_{2,t}, γ_t \rightarrow continuation value \rightarrow IC

Channel Shocks \rightarrow $M_{1,t}$, $M_{2,t}$, γ_t \rightarrow continuation value \rightarrow IC

• Consider negative fundamental shocks to $M_{1,t}$, customer's taste

 $\rightarrow\,$ Firm 1's distress likelihood $\uparrow,$ continuation value $\downarrow,$ and IC tightens

- Consider negative fundamental shocks to $M_{1,t}$, customer's taste
 - $\rightarrow\,$ Firm 1's distress likelihood $\uparrow,$ continuation value $\downarrow,$ and IC tightens
 - $\rightarrow\,$ Firm 2 expects future non-collusion likelihood \uparrow , so its continuation value $\downarrow\,$

- Consider negative fundamental shocks to $M_{1,t}$, customer's taste
 - $\rightarrow\,$ Firm 1's distress likelihood $\uparrow,$ continuation value $\downarrow,$ and IC tightens
 - → Firm 2 expects future non-collusion likelihood \uparrow , so its continuation value \downarrow Firm 2's IC tightens → Firm 1's expectation deteriorates, IC tightens ...
 - Distress contagion: Firm 1's distress spills over to Firm 2

- Consider negative fundamental shocks to $M_{1,t}$, customer's taste
 - $\rightarrow\,$ Firm 1's distress likelihood $\uparrow,$ continuation value $\downarrow,$ and IC tightens
 - → Firm 2 expects future non-collusion likelihood \uparrow , so its continuation value \downarrow Firm 2's IC tightens → Firm 1's expectation deteriorates, IC tightens ...
 - Distress contagion: Firm 1's distress spills over to Firm 2
- Discount-rate shocks also feed into the loop via continuation value
 - Firms' beta > 0 so an increase of γ_t reduces continuation values

- Consider negative fundamental shocks to $M_{1,t}$, customer's taste
 - $\rightarrow\,$ Firm 1's distress likelihood $\uparrow,$ continuation value $\downarrow,$ and IC tightens
 - → Firm 2 expects future non-collusion likelihood \uparrow , so its continuation value \downarrow Firm 2's IC tightens → Firm 1's expectation deteriorates, IC tightens ...
 - Distress contagion: Firm 1's distress spills over to Firm 2
- Discount-rate shocks also feed into the loop via continuation value
 - Firms' beta > 0 so an increase of γ_t reduces continuation values
- When a firm exits, a new firm enters with its own M

- Consider negative fundamental shocks to $M_{1,t}$, customer's taste
 - $\rightarrow\,$ Firm 1's distress likelihood $\uparrow,$ continuation value $\downarrow,$ and IC tightens
 - → Firm 2 expects future non-collusion likelihood \uparrow , so its continuation value \downarrow Firm 2's IC tightens → Firm 1's expectation deteriorates, IC tightens ...
 - Distress contagion: Firm 1's distress spills over to Firm 2
- Discount-rate shocks also feed into the loop via continuation value
 - Firms' beta > 0 so an increase of γ_t reduces continuation values
- When a firm exits, a new firm enters with its own M
 - Strong entrant relaxes IC collusion > deviation gains + facing the entrant

- Consider negative fundamental shocks to $M_{1,t}$, customer's taste
 - $\rightarrow\,$ Firm 1's distress likelihood $\uparrow,$ continuation value $\downarrow,$ and IC tightens
 - → Firm 2 expects future non-collusion likelihood \uparrow , so its continuation value \downarrow Firm 2's IC tightens → Firm 1's expectation deteriorates, IC tightens ...
 - Distress contagion: Firm 1's distress spills over to Firm 2
- Discount-rate shocks also feed into the loop via continuation value
 - Firms' beta > 0 so an increase of γ_t reduces continuation values
- When a firm exits, a new firm enters with its own M
 - Strong entrant relaxes IC collusion > deviation gains + facing the entrant
 - The threat of entry weakens the amplification mechanism

• Industry-level distress anomaly: consider γ_t variation...

- Industry-level distress anomaly: consider γ_t variation...
 - Industry with firms facing high intensity of Poisson destruction -

Non-collusive: insensitive & low profits, *high distress likelihood*, not responsive to γ_t variation \rightarrow *low* expected return in equilibrium

- Industry-level distress anomaly: consider γ_t variation...
 - Industry with firms facing high intensity of Poisson destruction -

Non-collusive: insensitive & low profits, *high distress likelihood*, not responsive to γ_t variation \rightarrow *low* expected return in equilibrium

- Industry with firms facing low intensity of Poisson destruction -

Collusive: high profits, *low distress likelihood*, responsive to γ_t variation (triggering switch to non-collusive) \rightarrow *high* expected return in equilibrium

- Industry-level distress anomaly: consider γ_t variation...
 - Industry with firms facing high intensity of Poisson destruction -

Non-collusive: insensitive & low profits, *high distress likelihood*, not responsive to γ_t variation \rightarrow *low* expected return in equilibrium

- Industry with firms facing low intensity of Poisson destruction -

Collusive: high profits, *low distress likelihood*, responsive to γ_t variation (triggering switch to non-collusive) \rightarrow *high* expected return in equilibrium

• Credit spread puzzle: the switch from collusive to non-collusive strengthens the link between SDF and default prob. (via profits/cash-flow reduction)

• Among infinite equilibria, the one selected has IC binding state by state

• Among infinite equilibria, the one selected has IC binding state by state

- Shocks to $M_{1,t}$, $M_{2,t}$, $\gamma_t
ightarrow$ continuation value ightarrow product price, because IC

 $profits(P_{1,t}, P_{2,t}) + PV$ (future collusive profits)

sensitive to shocks

 $= {\sf deviation \ profits} + \underbrace{{\it PV}\left({\sf future \ non-collusive \ profits}\right)}_{}$

not sensitive to shocks

• Among infinite equilibria, the one selected has IC binding state by state

- Shocks to $M_{1,t}$, $M_{2,t}$, $\gamma_t
ightarrow$ continuation value ightarrow product price, because IC

 $profits(P_{1,t}, P_{2,t}) + \underbrace{PV(\text{future collusive profits})}_{sensitive to shocks}$ = deviation profits + $\underbrace{PV(\text{future non-collusive profits})}_{not sensitive to shocks}$

- Price sensitivity to shocks adds to the amplification & spillover
 - [−] Bad shocks → *PV* (future collusive profits) \downarrow → cut price so *profits*(*P*_{1,t}, *P*_{2,t}) \uparrow → competitors' profits \downarrow → competitor cuts price ...

- If the chosen equilibrium features constant product prices,
 - or more generally, product prices that are less sensitive to shocks,

- If the chosen equilibrium features constant product prices,
 - or more generally, product prices that are less sensitive to shocks,
 - Amplification mechanism still exists, via the shadow value of IC constraint and firms' expectation of future non-collusion probability and distress probability, but weakens

- If the chosen equilibrium features constant product prices,
 - or more generally, product prices that are less sensitive to shocks,
 - Amplification mechanism still exists, via the shadow value of IC constraint and firms' expectation of future non-collusion probability and distress probability, but weakens
 - 1 Competition results: feedback, spillover, collaborative defense against entrants (or not)
 - 2 Pr(default) sensitivity to shocks declines and Corr.($PV_{collusive}$, SDF) \downarrow , which affect the predictions on expected stock returns and credit spread

- If the chosen equilibrium features constant product prices,
 - or more generally, product prices that are less sensitive to shocks,
 - Amplification mechanism still exists, via the shadow value of IC constraint and firms' expectation of future non-collusion probability and distress probability, but weakens
 - 1 Competition results: feedback, spillover, collaborative defense against entrants (or not)
 - 2 Pr(default) sensitivity to shocks declines and Corr.($PV_{collusive}$, SDF) \downarrow , which affect the predictions on expected stock returns and credit spread
- New implications? For example, if γ_t hits a threshold, prices jump down

- The sticky of product prices move when price of risk spikes

- If the chosen equilibrium features constant product prices,
 - or more generally, product prices that are less sensitive to shocks,
 - Amplification mechanism still exists, via the shadow value of IC constraint and firms' expectation of future non-collusion probability and distress probability, but weakens
 - 1 Competition results: feedback, spillover, collaborative defense against entrants (or not)
 - 2 Pr(default) sensitivity to shocks declines and Corr.($PV_{collusive}$, SDF) \downarrow , which affect the predictions on expected stock returns and credit spread
- New implications? For example, if γ_t hits a threshold, prices jump down
 - The sticky of product prices move when price of risk spikes
 - The model accommodates more theoretical possibilities than the presented
 - ightarrow strong explanatory power but discipline is needed to form unique predictions

- If the chosen equilibrium features constant product prices,
 - or more generally, product prices that are less sensitive to shocks,
 - Amplification mechanism still exists, via the shadow value of IC constraint and firms' expectation of future non-collusion probability and distress probability, but weakens
 - 1 Competition results: feedback, spillover, collaborative defense against entrants (or not)
 - 2 Pr(default) sensitivity to shocks declines and Corr.($PV_{collusive}$, SDF) \downarrow , which affect the predictions on expected stock returns and credit spread
- New implications? For example, if γ_t hits a threshold, prices jump down
 - The sticky of product prices move when price of risk spikes
 - The model accommodates more theoretical possibilities than the presented
 - $\rightarrow\,$ strong explanatory power but discipline is needed to form unique predictions
 - Equilibrium selection is an empirical question instead of following literature

- Firms choose debt at t = 0 and incur constant flow of coupon payments
 - Pay all profits to equity shareholders

- Firms choose debt at t = 0 and incur constant flow of coupon payments
 - Pay all profits to equity shareholders
- Financial slack = distance between $M_{i,t}$ and its default lower bound

- Firms choose debt at t = 0 and incur constant flow of coupon payments
 - Pay all profits to equity shareholders
- Financial slack = distance between $M_{i,t}$ and its default lower bound
- Alternative: firms split profits between payout and investment in $M_{i,t}$

- Firms choose debt at t = 0 and incur constant flow of coupon payments
 - Pay all profits to equity shareholders
- Financial slack = distance between $M_{i,t}$ and its default lower bound
- Alternative: firms split profits between payout and investment in $M_{i,t}$
 - Good shocks, $dZ_t > 0$ and $dW_{i,t} > 0 \rightarrow$ high revenues \rightarrow investing in $M_{i,t}$ to buffer against future bad shocks
 - The shock amplification mechanism weakens

- Firms choose debt at t = 0 and incur constant flow of coupon payments
 - Pay all profits to equity shareholders
- Financial slack = distance between $M_{i,t}$ and its default lower bound
- Alternative: firms split profits between payout and investment in $M_{i,t}$
 - Good shocks, $dZ_t > 0$ and $dW_{i,t} > 0 \rightarrow$ high revenues \rightarrow investing in $M_{i,t}$ to buffer against future bad shocks
 - The shock amplification mechanism weakens
- Capture the management of financial slack without adding firms' cash holding as additional state variable

- Firms choose debt at t = 0 and incur constant flow of coupon payments
 - Pay all profits to equity shareholders
- Financial slack = distance between $M_{i,t}$ and its default lower bound
- Alternative: firms split profits between payout and investment in $M_{i,t}$
 - Good shocks, $dZ_t > 0$ and $dW_{i,t} > 0 \rightarrow$ high revenues \rightarrow investing in $M_{i,t}$ to buffer against future bad shocks
 - The shock amplification mechanism weakens
- Capture the management of financial slack without adding firms' cash holding as additional state variable
 - Profits \rightarrow cash \uparrow and investment in $M_{i,t}$, simultaneous move anyway

- Firms choose debt at t = 0 and incur constant flow of coupon payments
 - Pay all profits to equity shareholders
- Financial slack = distance between $M_{i,t}$ and its default lower bound
- Alternative: firms split profits between payout and investment in $M_{i,t}$
 - Good shocks, $dZ_t > 0$ and $dW_{i,t} > 0 \rightarrow$ high revenues \rightarrow investing in $M_{i,t}$ to buffer against future bad shocks
 - The shock amplification mechanism weakens
- Capture the management of financial slack without adding firms' cash holding as additional state variable
 - Profits \rightarrow cash \uparrow and investment in $M_{i,t}$, simultaneous move anyway
- Technically easy to implement since $M_{i,t}$ is already a state variable
 - Optimal investment strategy involves the derivative of continuation value w.r.t. $M_{i,t}$, which adds only one step in the numeric solution

- At t, two firms set prices given demand elasticities
 - The game repeats every t + dt as γ_t , $M_{1,t}$, and $M_{2,t}$ evolve exogenously, driving the collusive and non-collusive continuation values

- At t, two firms set prices given demand elasticities
 - The game repeats every t + dt as γ_t , $M_{1,t}$, and $M_{2,t}$ evolve exogenously, driving the collusive and non-collusive continuation values
- Consumer habit formation, accumulation of customer capital:
 - $dM_{i,t}$ depends on *i*'s current market share and $P_{i,t}$
 - When choosing $P_{i,t}$, Firm *i* considers the impact on continuation value

- At t, two firms set prices given demand elasticities
 - The game repeats every t + dt as γ_t , $M_{1,t}$, and $M_{2,t}$ evolve exogenously, driving the collusive and non-collusive continuation values
- Consumer habit formation, accumulation of customer capital:
 - $dM_{i,t}$ depends on *i*'s current market share and $P_{i,t}$
 - When choosing $P_{i,t}$, Firm *i* considers the impact on continuation value
 - Cutting price boosts continuation value

- At t, two firms set prices given demand elasticities
 - The game repeats every t + dt as γ_t , $M_{1,t}$, and $M_{2,t}$ evolve exogenously, driving the collusive and non-collusive continuation values
- Consumer habit formation, accumulation of customer capital:
 - $dM_{i,t}$ depends on *i*'s current market share and $P_{i,t}$
 - When choosing $P_{i,t}$, Firm *i* considers the impact on continuation value
 - Cutting price boosts continuation value
- Amplification mechanism weakens:
 - Bad shocks \rightarrow continuation value \downarrow (impatience) \rightarrow price cutting (competing aggressively) \rightarrow continuation value \uparrow

- Conditional on survival, firms' revenues outgrow debt coupon payments
 - $M_{i,t}$ grows exponentially and Firm *i*'s revenues are proportional to $M_{i,t}$, but coupon payment is constant
 - Empirically, do interest expenses grow with firm size?

- Conditional on survival, firms' revenues outgrow debt coupon payments
 - $M_{i,t}$ grows exponentially and Firm *i*'s revenues are proportional to $M_{i,t}$, but coupon payment is constant
 - Empirically, do interest expenses grow with firm size?
 - Poisson-arriving opportunities to adjust debts (computational complexity)

- Conditional on survival, firms' revenues outgrow debt coupon payments
 - $M_{i,t}$ grows exponentially and Firm *i*'s revenues are proportional to $M_{i,t}$, but coupon payment is constant
 - Empirically, do interest expenses grow with firm size?
 - Poisson-arriving opportunities to adjust debts (computational complexity)
- Why does it matter?

- Conditional on survival, firms' revenues outgrow debt coupon payments
 - $M_{i,t}$ grows exponentially and Firm *i*'s revenues are proportional to $M_{i,t}$, but coupon payment is constant
 - Empirically, do interest expenses grow with firm size?
 - Poisson-arriving opportunities to adjust debts (computational complexity)
- Why does it matter?
 - Default: (1) strategic; (2) forced by Poisson shock $M_{i,t}$ to 0

- Conditional on survival, firms' revenues outgrow debt coupon payments
 - $M_{i,t}$ grows exponentially and Firm *i*'s revenues are proportional to $M_{i,t}$, but coupon payment is constant
 - Empirically, do interest expenses grow with firm size?
 - Poisson-arriving opportunities to adjust debts (computational complexity)
- Why does it matter?
 - Default: (1) strategic; (2) forced by Poisson shock $M_{i,t}$ to 0
 - Now the term structure of Pr(strategic default) is strongly downward-sloping

- Conditional on survival, firms' revenues outgrow debt coupon payments
 - $M_{i,t}$ grows exponentially and Firm *i*'s revenues are proportional to $M_{i,t}$, but coupon payment is constant
 - Empirically, do interest expenses grow with firm size?
 - Poisson-arriving opportunities to adjust debts (computational complexity)
- Why does it matter?
 - Default: (1) strategic; (2) forced by Poisson shock $M_{i,t}$ to 0
 - Now the term structure of Pr(strategic default) is strongly downward-sloping
 - The importance of continuation value (game being repeated) is overstated

- Conditional on survival, firms' revenues outgrow debt coupon payments
 - $M_{i,t}$ grows exponentially and Firm *i*'s revenues are proportional to $M_{i,t}$, but coupon payment is constant
 - Empirically, do interest expenses grow with firm size?
 - Poisson-arriving opportunities to adjust debts (computational complexity)
- Why does it matter?
 - Default: (1) strategic; (2) forced by Poisson shock $M_{i,t}$ to 0
 - Now the term structure of Pr(strategic default) is strongly downward-sloping
 - The importance of continuation value (game being repeated) is overstated
 - ⁻ If the Poisson shock hits $M_{i,t}$ by a percentage < 100%, the term structure of Pr(exogenous default) is also strongly downward-sloping because post-shock $M_{i,t}$ (and firm value) outgrows debt value

- Conditional on survival, firms' revenues outgrow debt coupon payments
 - $M_{i,t}$ grows exponentially and Firm *i*'s revenues are proportional to $M_{i,t}$, but coupon payment is constant
 - Empirically, do interest expenses grow with firm size?
 - Poisson-arriving opportunities to adjust debts (computational complexity)
- Why does it matter?
 - Default: (1) strategic; (2) forced by Poisson shock $M_{i,t}$ to 0
 - Now the term structure of Pr(strategic default) is strongly downward-sloping
 - The importance of continuation value (game being repeated) is overstated
 - ⁻ If the Poisson shock hits $M_{i,t}$ by a percentage < 100%, the term structure of Pr(exogenous default) is also strongly downward-sloping because post-shock $M_{i,t}$ (and firm value) outgrows debt value
- Avoid growth by setting the $M_{i,t}$ -disaster intensity high
 - But GBM growth is in line with existing theories and evidence

Comment 5: The Model Explains Profitability Premium

• How the distress puzzled is explained?

- Industries with more frequent $M_{i,t}$ disaster tend to be non-collusive –
- $\rightarrow~$ Lower expected returns due to less corr. with SDF

Comment 5: The Model Explains Profitability Premium

- How the distress puzzled is explained?
 - Industries with more frequent $M_{i,t}$ disaster tend to be non-collusive –
 - $\rightarrow~$ Lower expected returns due to less corr. with SDF
- Industries with less frequent $M_{i,t}$ disaster tend to be collusive
 - $\rightarrow\,$ High profitability & higher corr. with SDF
 - $\rightarrow~$ High expected stock return in equilibrium

- Use evidence to guide the choice of collusive equilibrium
 - How product prices vary with $M_{1,t}$, $M_{2,t}$, and γ_t ? Measurement challenge.

- Use evidence to guide the choice of collusive equilibrium
 - How product prices vary with $M_{1,t}$, $M_{2,t}$, and γ_t ? Measurement challenge.
- $M_{1,t}$ and $M_{2,t}$ are already state variables, so enrich them

- Use evidence to guide the choice of collusive equilibrium
 - How product prices vary with $M_{1,t}$, $M_{2,t}$, and γ_t ? Measurement challenge.
- $M_{1,t}$ and $M_{2,t}$ are already state variables, so enrich them
 - Firm manage financial flexibility via investment in customer capital

- Use evidence to guide the choice of collusive equilibrium
 - How product prices vary with $M_{1,t}$, $M_{2,t}$, and γ_t ? Measurement challenge.
- $M_{1,t}$ and $M_{2,t}$ are already state variables, so enrich them
 - Firm manage financial flexibility via investment in customer capital
 - Product price is a dynamic choice under consumer habit formation

- Use evidence to guide the choice of collusive equilibrium
 - How product prices vary with $M_{1,t}$, $M_{2,t}$, and γ_t ? Measurement challenge.
- $M_{1,t}$ and $M_{2,t}$ are already state variables, so enrich them
 - Firm manage financial flexibility via investment in customer capital
 - Product price is a dynamic choice under consumer habit formation
 - The qualitative implications are all robust

- Use evidence to guide the choice of collusive equilibrium
 - How product prices vary with $M_{1,t}$, $M_{2,t}$, and γ_t ? Measurement challenge.
- $M_{1,t}$ and $M_{2,t}$ are already state variables, so enrich them
 - Firm manage financial flexibility via investment in customer capital
 - Product price is a dynamic choice under consumer habit formation
 - The qualitative implications are all robust
- Bring imperfect competition to dynamic finance
 - Read this and other papers by the authors an exciting research agenda!