

Measurement of Nominal Wages and Payroll Schedules in Administrative Earnings Data

Seth Murray
University of Maryland

Conference on Research in Income and Wealth
July 13, 2020

Opinions expressed herein are those of the author alone and do not necessarily reflect the views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential data are disclosed. See U.S. Census Bureau Disclosure Review Board bypass numbers: DRB-B0073-CED-20190910, DRB-B0069-CED-20190725, DRB-B0037-CED-20190327, CBDRB-2018-CDAR-061.

Today's talk

Methods for administrative earnings records that identify:

- Persistent wage changes
- Payroll schedules

Evidence of distinct adjustment patterns for nominal wage raises and cuts

- Nominal wage raises follow a Taylor-style annual adjustment pattern
- Pattern of nominal wage cuts is consistent with a Calvo-style random arrival of opportunities to cut nominal wages

Longitudinal Employer-Household Dynamics (LEHD) Dataset

U.S. Census Bureau employer-employee linked dataset

Key LEHD features

- Quarterly earnings from administrative UI records
- Covers $\approx 96\%$ of employment in any state

Sample Used:

- 10% random sample of firms from 30 states from 1998:Q1 to 2017:Q1

Measuring Wage Changes

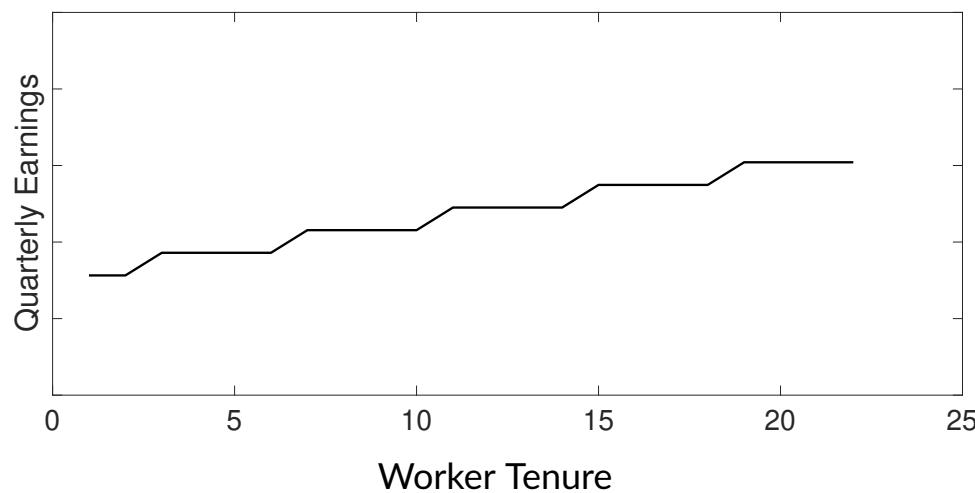
from

Quarterly Earnings Data

Quarterly earnings includes base wage + hours paid

$$y_{ikt} = w_{ikt} + h_{ikt}$$

Salaried Worker



Hourly Worker

$y = \log$ quarterly earnings

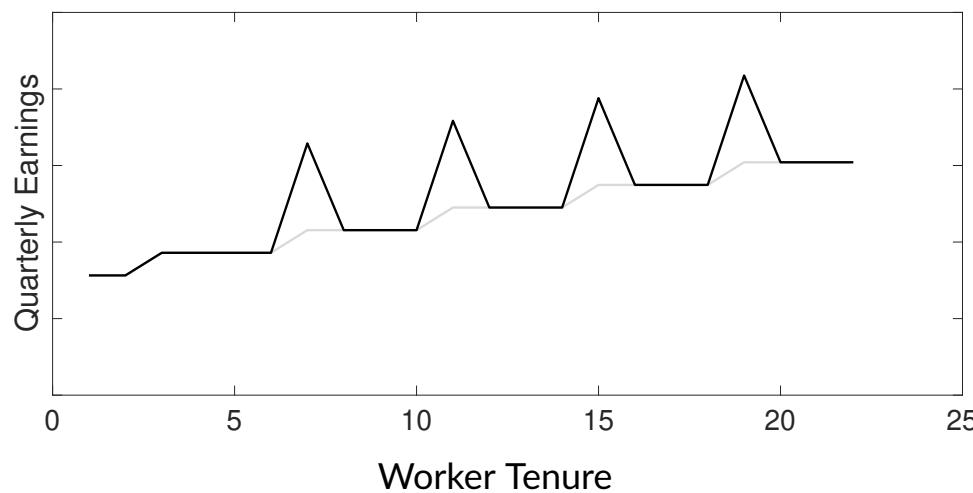
$w = \log$ nominal wage

$h = \log$ hours

Quarterly earnings includes variable compensation

$$y_{ikt} = w_{ikt} + h_{ikt} + v_{ikt}$$

Salaried Worker



Hourly Worker

$y = \log$ quarterly earnings
 $v = \log$ variable compensation

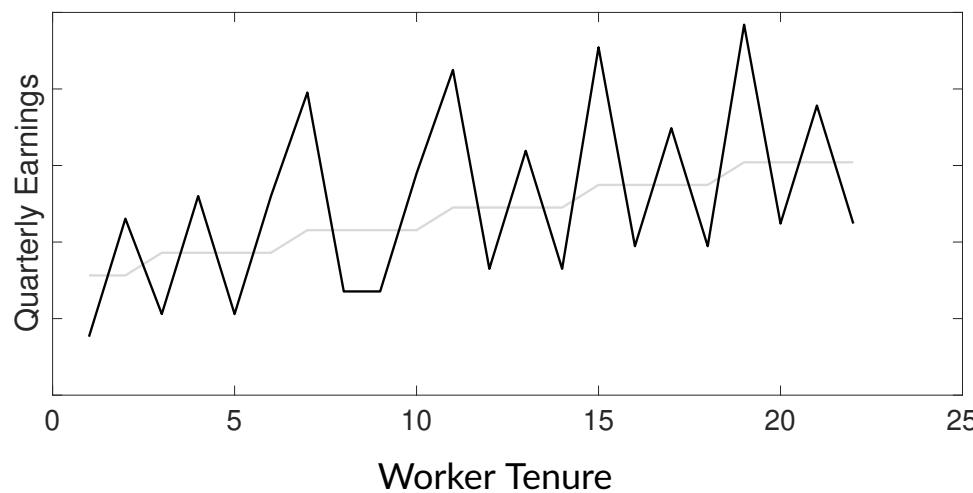
$w = \log$ nominal wage

$h = \log$ hours

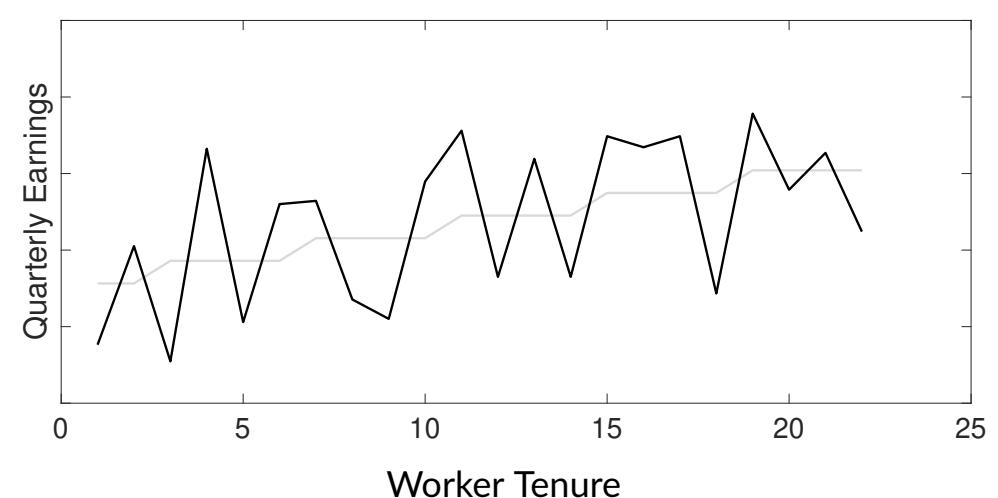
Quarterly earnings includes payday weeks

$$y_{ikt} = h_{ikt} + w_{ikt} + v_{ikt} + p_{ikt}$$

Salaried Worker



Hourly Worker



$y = \log$ quarterly earnings
 $v = \log$ variable compensation

$w = \log$ nominal wage
 $p = \log$ payday weeks

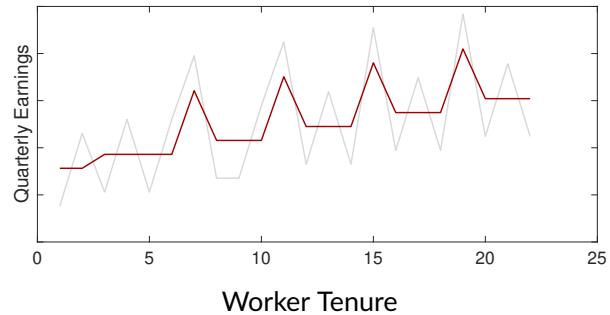
$h = \log$ hours

Estimating payday weeks

$$y_{ikt} - p_t^{SX} = w_{ikt} + h_{ikt} + v_{ikt} + p_{ikt} - p_t^{SX}$$

1. Limited set of potential payday schedules (S1-S22)
2. Each potential payday schedule has a known number of payday weeks in each quarter ($p_t^{S1} - p_t^{S22}$)

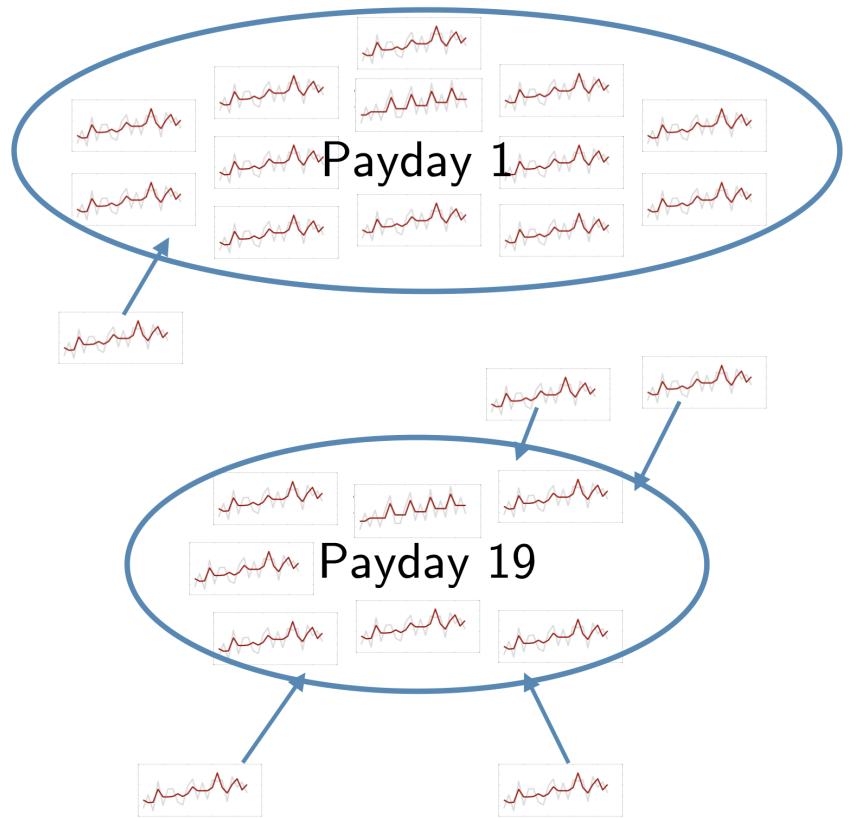
⇒ For each worker, analyze all 22 potential payday schedules to identify the payday schedule that minimizes $Var(y_{ik} - p^{SX})$



Estimating payday weeks

$$y_{ikt} - p_t^{SX} = w_{ikt} + h_{ikt} + v_{ikt} + p_{ikt} - p_t^{SX}$$

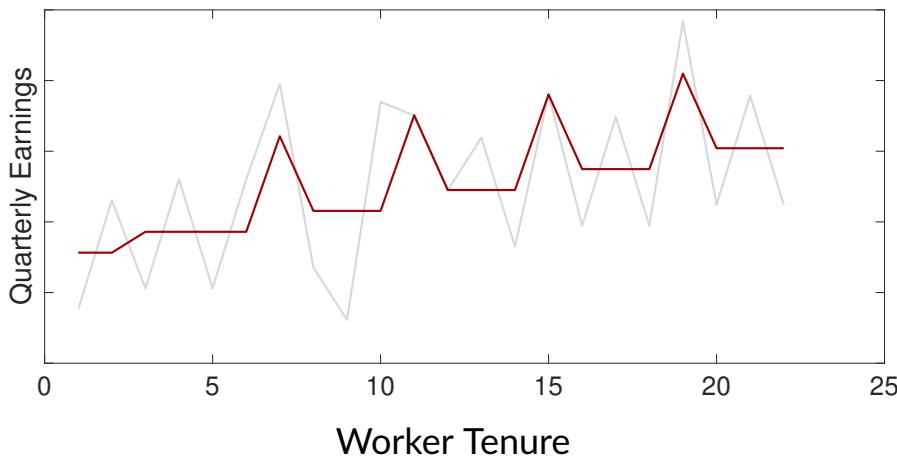
1. Limited set of potential payday schedules (S1-S22)
2. Each potential payday schedule has a known number of payday weeks in each quarter ($p_t^{S1} - p_t^{S22}$)
 - ⇒ For each worker, analyze all 22 potential payday schedules to identify the payday schedule that minimizes $Var(y_{ik} - p^{SX})$
3. A firm has a small number of payday schedules that are common to many workers
 - ⇒ Clustering algorithm selects the payday(s) that minimizes this objective function for the most workers at the firm



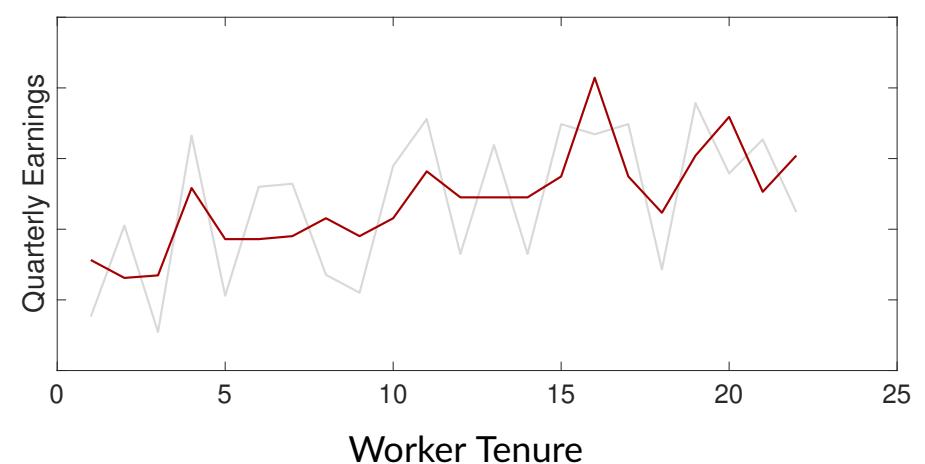
Estimating persistent wage changes

$$\underbrace{y_{ikt} - \hat{p}_{ikt}}_{\tilde{y}_{ikt}} = w_{ikt} + \underbrace{h_{ikt} + v_{ikt} + p_{ikt} - \hat{p}_{ikt}}_{\epsilon_{ikt}}$$

Salaried Worker



Hourly Worker



$y = \log$ quarterly earnings
 $v = \log$ variable comp

$w_t = \log$ wage in t
 $p = \log$ payday weeks

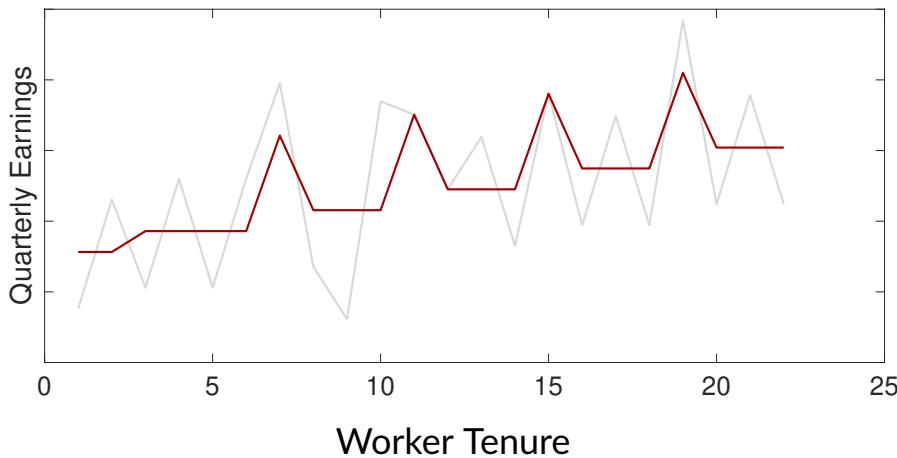
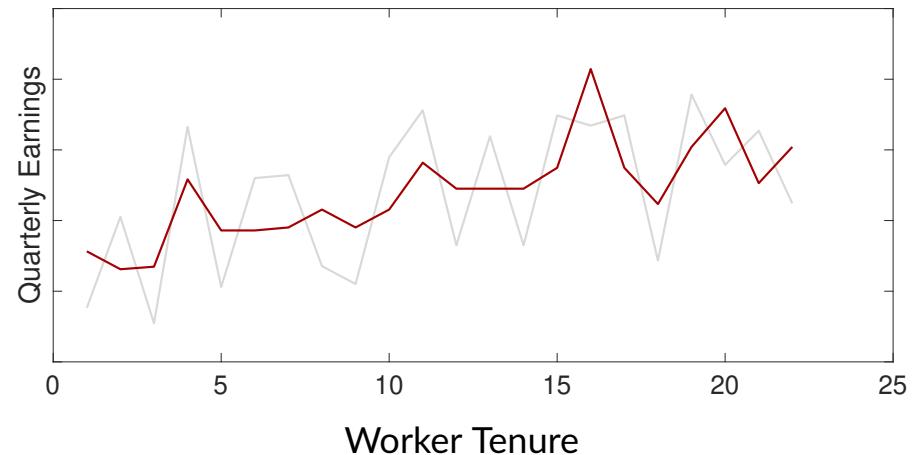
$h = \log$ weekly hours worked
 $\hat{p} = \text{estimated log payday weeks}$

Estimating persistent wage changes

$$\tilde{y}_{ikt} = w_{ik1} + \underbrace{\sum_{s=2}^t \Delta_{iks}^w}_{w_{ikt}} + \epsilon_{ikt}$$

Salaried Worker

Hourly Worker



\tilde{y} = payday-adjusted log earnings
 ϵ = error: hours, variable comp

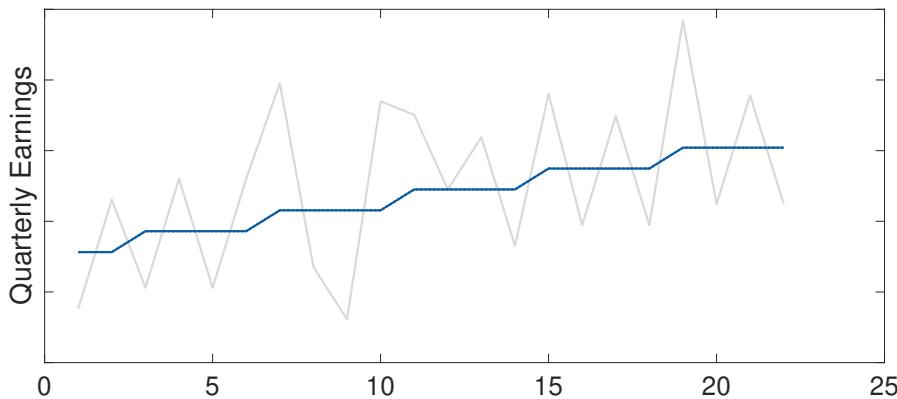
w_1 = log starting wage
 w_t = log wage in t

Δ_s^w = log wage change in s

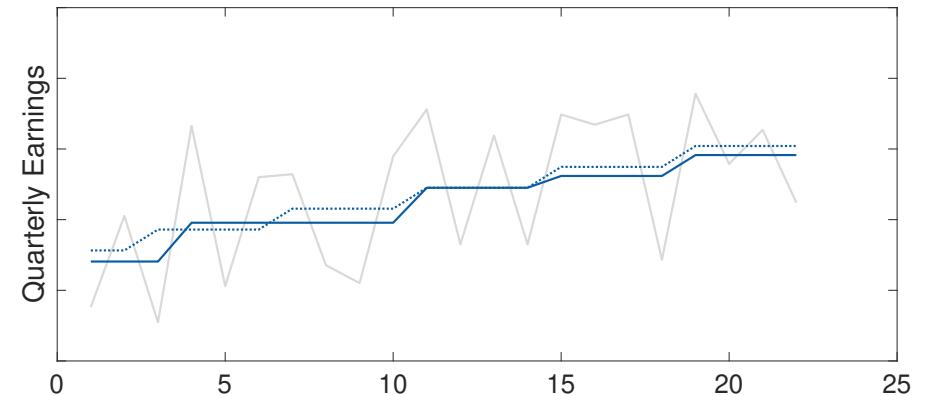
Estimating persistent wage changes

$$\tilde{y}_{ikt} = \underbrace{\beta_{ik}^1}_{w_{ik1}} d_{ikt}^1 + \sum_{s=2}^T \underbrace{\beta_{ik}^s}_{\Delta_{iks}^w} d_{ikt}^s + \epsilon_{ikt}$$

Salaried Worker



Hourly Worker



Lasso estimation:

$$\min_{\hat{\beta}_{ik}^1, \dots, \hat{\beta}_{ik}^T} \left(\sum_{t=1}^T \tilde{y}_{ikt} - \sum_{s=1}^T \hat{\beta}_{ik}^s d_{ikt}^s \right)^2 + \lambda_{ik} \left(\sum_{s=1}^T \|\hat{\beta}_{ik}^s\| \right)$$

\tilde{y} = payday-adjusted log earnings
 ϵ = error: hours, variable comp

$w_1 = \beta^1$ log starting wage
 $d_{ikt}^s = 1$ if $s \leq t$

$\Delta_s^w = \beta^s$ log wage change in s

Comparison of QoQ nominal wage change measures

	Source Data	Raise	Freeze	Cut
Barattieri Basu Gottschalk (2014)	SIPP		78.4-84.8%	
Grigsby Hurst Yildirmaz (2019)	ADP 50+	18.5%	80.6%	0.9%
Persistent base wage (Payday Adjusted Post-Lasso Estimate)	LEHD30	13.6%	84.9%	1.6%

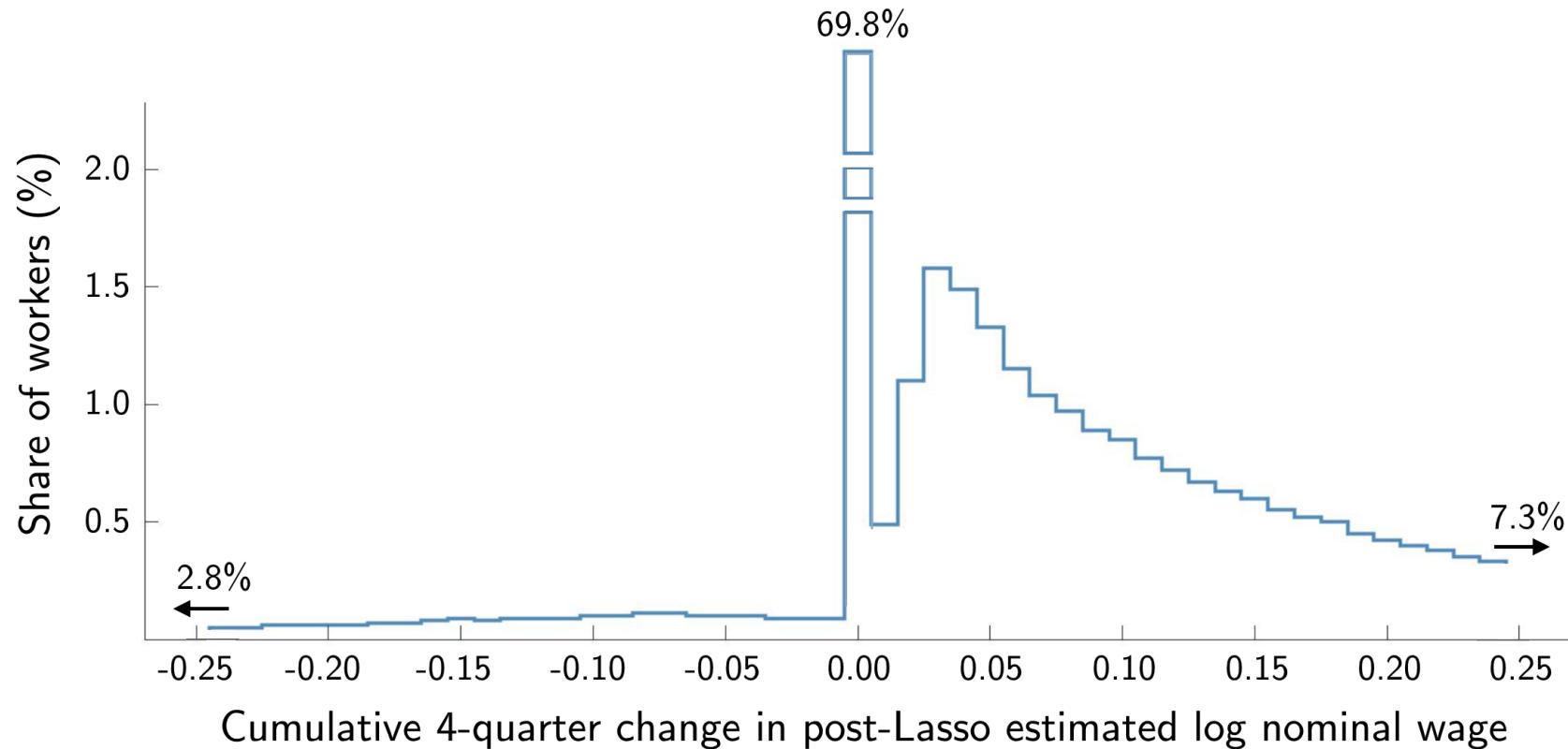
Annual wage changes

Minimum wage changes

Persistence of changes

Evidence on
Taylor- and Calvo-style
Wage Adjustment

Nominal wages exhibit downward rigidity

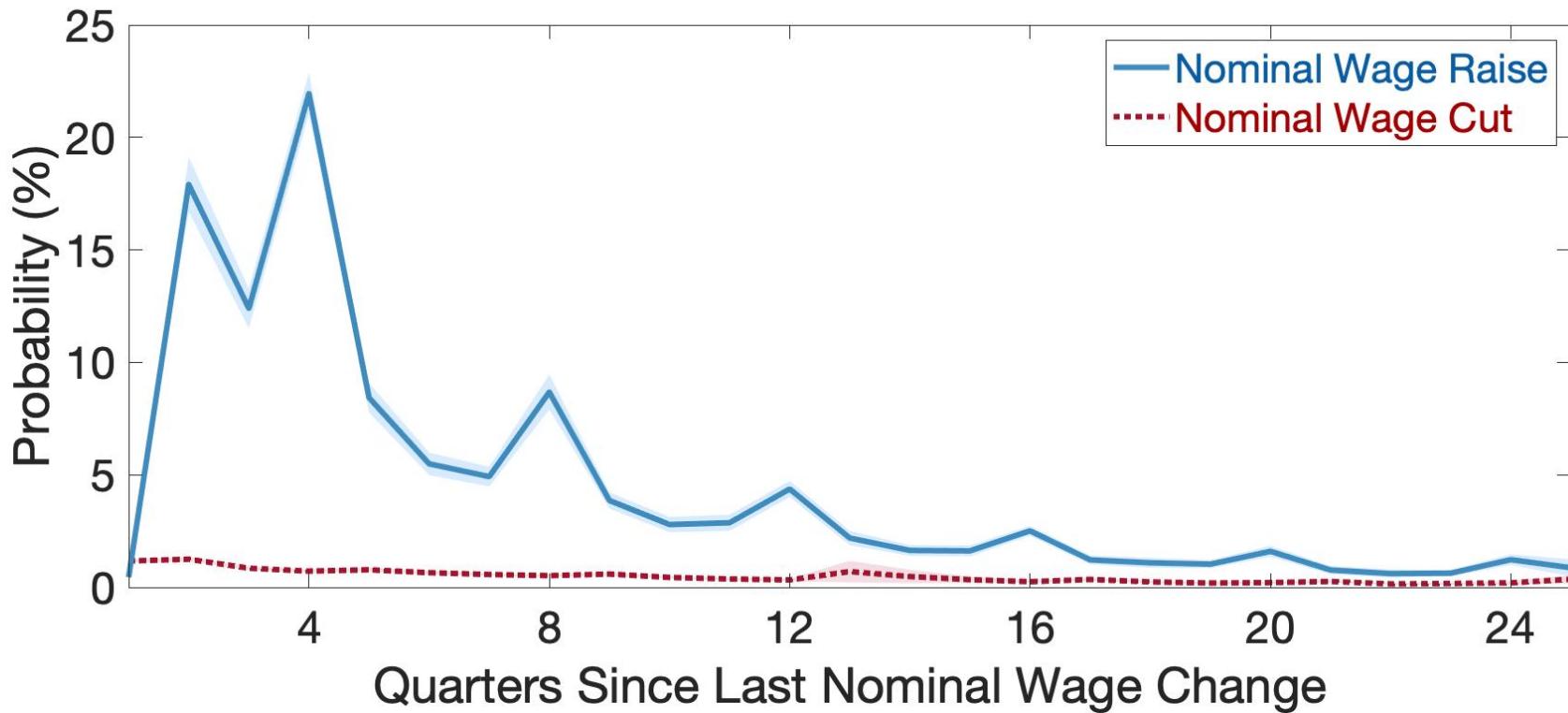


Source: U.S. Census Bureau LEHD, 10% random sample of firms from 30 states between 1998:Q1 and 2017:Q1

RD at Nominal Zero

Nominal Cut Suppression

Nominal wage change probability by wage spell duration



Probability of a nominal wage change in the persistent base wage given the wage spell age. Shaded areas correspond to 95% confidence intervals using robust standard errors clustered at the SEIN level.

Implications for macro modeling of wage adjustment

Evidence on Wage Adjustment Patterns

	Taylor-style Annual Staggering	Calvo-style Random Arrival
Nominal Cuts	None	Strong
Nominal Raises	Strong	Weak

- Consider models with **distinct wage adjustment regimes** if an optimal real wage change requires a **nominal cut (Calvo)** versus **nominal raise (Taylor)**
 - ⇒ **State-dependent wage adjustment**: the incidence of nominal wage cuts and nominal wage freezes rise during downturns
 - ⇒ **Asymmetric persistence** of positive versus negative shocks: persistence of shocks is higher in Calvo models

Thank you

Seth Murray

murrase@umd.edu