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Today’s talk

Methods for administrative earnings records that identify:

- Persistent wage changes

- Payroll schedules

Evidence of distinct adjustment patterns for nominal wage raises and cuts

- Nominal wage raises follow a Taylor-style annual adjustment pattern

- Pattern of nominal wage cuts is consistent with a Calvo-style random arrival of
opportunities to cut nominal wages

1/11



Longitudinal Employer-Household Dynamics (LEHD) Dataset

U.S. Census Bureau employer-employee linked dataset

Key LEHD features

- Quarterly earnings from administrative Ul records

- Covers ~ 96% of employment in any state

Sample Used:

- 10% random sample of firms from 30 states from 1998:Q1 to
2017:Q1
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Measuring Wage Changes

from

Quarterly Earnings Data



Quarterly earnings includes base wage + hours paid

Vikt = Wikt + ikt

Quarterly Earnings
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Quarterly earnings includes variable compensation

Vikt = Wikt + Pigt + Vike
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Quarterly earnings includes payday weeks
Yikt = ikt + Wit + Vikt + Pike
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Estimating payday weeks

Yikt — PPN = Wikt + it + Vike + Pixe — P

1. Limited set of potential payday schedules
(S1-522)

2. Each potential payday schedule has a known

number of payday weeks in each quarter

(pP1-pP22)

= For each worker, analyze all 22 potential payday
schedules to identify the payday schedule that
minimizes Var (yy—p°X)

Quarterly Earnings

AN

o

5 10 15 20

Worker Tenure

25

6/11



Estimating payday weeks

Yikt — PPN = Wikt + it + Vike + Pixe — P
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3. A firm has a small number of payday schedules
that are common to many workers

— Clustering algorithm selects the payday(s) that
minimizes this objective function for the most AN AN

workers at the firm
6/11



Estimating persistent wage changes
Yikt— p/kt = Wikt + h/kt + Vikt + Pikt — ﬁikﬁ

Quarterly Earnings
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Estimating persistent wage changes
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Quarterly Earnings
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Estimating persistent wage changes
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Comparison of QoQ nominal wage change measures

Source Data Raise Freeze Cut
Barattieri Basu Gottschalk (2014) SIPP 78.4-84.8%
Grigsby Hurst Yildirmaz (2019) ADP 50+ 18.5% 80.6% 0.9%
Persistent base wage LEHD30 13.6% 84.9% 1.6%
(Payday Adjusted Post-Lasso Estimate)
Annual wage changes Minimum wage changes Persistence of changes
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Evidence on
Taylor- and Calvo-style

Wage Adjustment



Nominal wages exhibit downward rigidity
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Nominal wage change probability by wage spell duration
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Probability of a nominal wage change in the persistent base wage given the wage spell age. Shaded areas
correspond to 95% confidence intervals using robust standard errors clustered at the SEIN level.
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Implications for macro modeling of wage adjustment

Evidence on Wage Adjustment Patterns

Taylor-style Calvo-style
Annual Staggering Random Arrival

Nominal Cuts None Strong

Nominal Raises Strong Weak

- Consider models with distinct wage adjustment regimes if an optimal real wage
change requires a nominal cut (Calvo) versus nominal raise (Taylor)

— State-dependent wage adjustment: the incidence of nominal wage cuts and nominal
wage freezes rise during downturns

= Asymmetric persistence of positive versus negative shocks: persistence of shocks is

higher in Calvo models
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