Monetary Policy with Opinionated Markets

Ricardo J. Caballero MIT and NBER Alp Simsek MIT, NBER, and CEPR

July 2020

Caballero and Simsek ()

Opinionated Markets

July 2020 1 / 22

The Fed and markets disagree about interest rates

- Risk premium adjustment? But large gaps still remain
- Survey-based measures show qualitatively similar gaps

Caballero and Simsek ()

- Literature: Fed's signaling of superior info about actions/economy
- But market disagrees with Fed even after the FOMC announcements
- Opinionated markets: Dec 2007: "hawkish" interest rate cut. WSJ:

"From talking to clients and traders, there is in their view no question the Fed has fallen way behind the curve," said David Greenlaw, economist at Morgan Stanley. "There's a growing sense the Fed doesn't get it." We develop a model with **opinionated markets.** Key features:

- $({\sf i})$ Fed and market disagree about future aggregate demand
- (ii) They both learn from data

Main findings:

- Natural explanation for disagreements about interest rates
- Disagreements matter for optimal monetary policy
- Heterogeneous data sensitivity (in learning) matters for: How asset prices and interest rates react to macro shocks

Setup: Fed sets rates under uncertainty about AD shocks

Current period

Fed sets rate to target $E[y] \sim E[q] \sim q^*$

Market "sets" $y \sim q$

Different beliefs about AD shock => Market thinks Fed makes a "mistake"

to mitigate "mistake"s impact on asset prices

Result: Disagreement + Learning explains Dot-Forward gaps

3 🕨 🖌 3

Result: With more data sensitive Fed Shocks have dampened effect on asset prices (Shocks are bundled with "mistakes")

Blue Chip forecasts support our ingredients

Q Rate forecasts correlate with AD (inflation) forecasts
 Q Forecasts feature confident disagreement

Caballero and Simsek ()

July 2020 9 / 22

Blue Chip forecasts: Confident AD disagreement

	Fed funds rate (FFR) prediction						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
GDP price index prediction	0.11**		0.11**				0.04**
	(0.02)		(0.02)				(0.01)
Real GDP prediction		0.03*	0.03 +				0.01+
		(0.02)	(0.02)				(0 01)
FFR prediction last month				0.69**	0.69**	0.69**	0.68**
				(0.03)	(0.03)	(0.02)	(0.02)
FFR consensus last month				0.29**	-0.17**		
				(0.03)	(0.06)		
FFR futures last month					0.47**		
					(0.06)		
Time FE	Yes	Yes	Yes	No	No	Yes	Yes
Forecaster FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R^2 (adjusted, within)	0.03	0.00	0.03	0.96	0.97	0.48	0.49
Forecasters	110	111	110	108	108	108	107
Months	230	230	230	229	226	229	229
Observations	10,365	10,645	10,363	10,370	10,244	10,370	10,052

Table 1: Correlates of interest rate predictions

- Potential output A_t . Output y_t is demand determined
- Financial assets:
 - Market portfolio: Ex-dividend price $Q_t A_t$
 - Risk-free asset: Zero supply. Return r_t^f
- Rep agent (M) with log utility spends $y_t \simeq Q_t A_t$
- Targeting $y_t = A_t$ requires targeting $q_t = \log Q_t = q^*$
- Fed (F) sets r_t^f under uncertainty (about current AD shock):

$$E_t^F\left[q_t\right] = q^*$$

- AD shocks g_t (news about future $A_{t+1} = A_t + g_t$)
- Equilibrium asset price:

Outcomes reflect MP "mistakes" and "mistake shocks"

• Equilibrium interest rate:

$$r_t^f \simeq \rho + \underbrace{E_t^F[g_t]}_{\text{expected AD}} + E_t^F\left[\tilde{q}_{t+1}^M\right] \text{ where } \overbrace{\tilde{q}_{t+1}^M \equiv E_{t+1}^M[q_{t+1}] - q^*}^{\text{perceived "mistake"}}$$

• Equilibrium asset price:

$$q_{t} \simeq q^{*} + \underbrace{g_{t} - E_{t}^{F}\left[g_{t}\right]}_{\text{AD shock}} + \overbrace{\widetilde{q}_{t+1}^{M} - E_{t}^{F}\left[\widetilde{q}_{t+1}^{M}\right]}^{\text{``mistake'' shock}}$$

Beliefs: Persistent AD shock induces disagreement

• Heterogeneous prior beliefs (agree to disagree):

$$u \sim N\left(u_0^i, \quad \frac{var(v_t)}{C_0^i}\right) \text{ for } i \in \{F, M\}$$

- Bayesian updating: C_0^i ("confidence") controls data sensitivity
- Define relative confidence as $\mathbf{c}_{s,s+t}^i = rac{C_0^i + s}{C_0^i + s + t}$

Agents learn over time

$$E'_{t}[g_{t}] = \mathbf{c}'_{t-1,t}E'_{t-1}[g_{t-1}] + (1 - \mathbf{c}'_{t-1,t})g_{t-1}$$

. .

Caballero and Simsek ()

July 2020 15 / 22

Agents expect the other agent to "learn"

$$E_{s}^{i}\left[E_{s+t}^{j}\left[g_{t_{2}}\right]\right] = \mathbf{c}_{s,s+t}^{j}E_{s}^{j}\left[g_{s}\right] + \left(1 - \mathbf{c}_{s,s+t}^{j}\right)E_{s}^{i}\left[g_{s}\right]$$

July 2020 16 / 22

Result: Disagreements affect current & expected rates

Suppose common C_0 but $u_0^F \neq u_0^M$

• Fed is "constrained" by the market's belief:

$$q_t = q^* + g_t - E_t^F[g_t]$$

$$r_t^f \simeq \rho + (1 - \mathbf{c}_{t,t+1}) E_t^F[g_t] + \mathbf{c}_{t,t+1} E_t^M[g_t]$$

Result: Disagreements affect current & expected rates

Suppose common C_0 but $u_0^F \neq u_0^M$

• Fed is "constrained" by the market's belief:

$$\begin{aligned} q_t &= q^* + g_t - E_t^F[g_t] \\ r_t^f &\simeq \rho + (1 - \mathbf{c}_{t,t+1}) E_t^F[g_t] + \mathbf{c}_{t,t+1} E_t^M[g_t] \end{aligned}$$

• Dot and forward curves reflect disagreements:

$$E_{1}^{F}\left[r_{t}^{f}\right] \simeq \rho + E_{1}^{F}\left[g_{1}\right] + \underbrace{\mathbf{c}_{1,t+1}\left(E_{1}^{M}\left[g_{1}\right] - E_{1}^{F}\left[g_{1}\right]\right)}_{\text{limits to zero as horizon } t \text{ increases}}$$

$$E_{1}^{M}\left[r_{t}^{f}\right] \simeq \rho + E_{1}^{M}\left[g_{1}\right] - \overbrace{\mathbf{c}_{1,t}\left(1 - \mathbf{c}_{t,t+1}\right)\left(E_{1}^{M}\left[g_{1}\right] - E_{1}^{F}\left[g_{1}\right]\right)}^{\text{ints to zero as horizon } t \text{ increases}}$$

Fed optimism shock: Market expects "too high" rates

Heterogeneous data sensitivity: "MP mistake" shocks

Suppose heterogeneous data sensitivity, e.g., $C_0^{F} < C_0^{M}$

July 2020 19 / 22

Shocks come bundled with a "MP mistake" shock

$$q_{t} \simeq q^{*} + \underbrace{g_{t} - E_{t}^{F}\left[g_{t}\right]}_{\text{AD shock}} + \underbrace{\tilde{q}_{t+1}^{M} - E_{t}^{F}\left[\tilde{q}_{t+1}^{M}\right]}_{\text{"mistake" shock}}$$

• Result: Heterogenous sensitivity affects price impact of shocks

$$q_{t} = q^{*} + \mathbf{D_{t}}\left(g_{t} - E_{t}^{F}\left[g_{t}\right]\right)$$

where

• **Corollary:** Heterogeneous sensitivity affects the risk premium (~D²_{t+1})

Caballero and Simsek ()

Data-sensitive Fed: Shocks are "absorbed more" by rates

Suppose Fed is more data-sensitive and initial shock positive $\Delta g_0 > 0$

Model with **opinionated disagreements** between markets and Fed:

- With learning, translates into disagreements in expected rates
- Disagreements affect current policy rate through MP "mistakes"
- Heterogeneous data sensitivity. Shocks bundled w/ MP "mistakes"
- Data-sensitive Fed: Dampened price impact/amplified rate impact

Extension with Fed's (some) superior information and signaling:

- Baseline results are robust
- New shocks: Signaling \implies information shock or "mistake" shock