Are We Overdiagnosing Mental Illnesses? Evidence from Randomly Assigned Doctors

Marieke Bos (Swedish House of Finance, SSE) and Andrew Hertzberg* (Philadelphia Fed) with Andrés Liberman (Stern, NYU)

July 2020

*Disclaimer: The views expressed in this paper do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System
Motivation: Diagnosis of Mental Illness is Prevalent

▶ EU: 17.3% of adults in 2018 were diagnosed with a mental health problem
 ▶ Source: OECD/EU Health a Glance Report

▶ US: During 2011-2014, 12.7% of persons age 12 and over took antidepressant medication in the last month
 ▶ Source: National Health and Nutrition Examination Survey
The Question

Is mental illness over or under diagnosed?
Conceptual Framework

Patients have heterogeneous underlying mental health

Low Underlying Mental Health High
Conceptual Framework

Diagnosis is beneficial for patients with low mental health.

- **Net Benefit from Diagnosis**
 - Helped
 - Harmed

- **Underlying Mental Health**
 - Low
 - High
The role of a doctor is to assess the underlying mental health of a patient and diagnose all who fall below a threshold.
Conceptual Framework

Underdiagnosis: marginal patient has strictly positive benefit from diagnosis
Conceptual Framework

Overdiagnosis: marginal patient is harmed by diagnosis

Net Benefit from Diagnosis

Helped

Harm

Underlying Mental Health

Diagnosed

Low

High
Overdiagnosis: marginal patient is harmed by diagnosis

Helped

Net Benefit from Diagnosis

Low

Underlying Mental Health

High

Diagnosed

Over Diagnosed

Harmed
Our approach to assessing under or over diagnosis

- Measure the causal effect of a mental illness diagnosis on measure associated with welfare of a “marginal” patient
Our approach to assessing under or over diagnosis

- Measure the causal effect of a mental illness diagnosis on measures associated with welfare of a “marginal” patient

Two challenges:

1. How to measure the causal effect on the marginal (not average) patient
 - Exploit random assignment of doctors in Swedish military conscription
Our approach to assessing under or over diagnosis

- Measure the causal effect of a mental illness diagnosis on measures associated with welfare of a "marginal" patient

- Two challenges:
 1. How to measure the causal effect on the marginal (not average) patient
 - Exploit random assignment of doctors in Swedish military conscription
 2. How to adequately measure the welfare of the marginal patient
 - Wide range of health, economic and family outcomes over a twenty-year window after diagnosis
Preview of results

- Diagnosis has a detrimental effect on an 18-year-old man with marginal mental health
Preview of results

- Diagnosis has a detrimental effect on an 18-year-old man with marginal mental health

- Worse life outcomes over 20-year span after diagnosis

- Health outcomes:
 - Increased morbidity
 - More sick days
 - Higher probability of admission to hospital

- Labor market and family outcomes:
 - More likely to be unemployed
 - Less likely to be married
How can overdiagnosis harm a patient?

▶ Several channels are possible. For example:

▶ Treatment (pharmaceutical or otherwise) may have unintended side effects
How can overdiagnosis harm a patient?

▶ Several channels are possible. For example:

▶ Treatment (pharmaceutical or otherwise) may have unintended side effects

▶ Labeling
 ▶ internally: changes self-view, change likelihood of seeking treatment in the future
 ▶ externally: changes the way other doctors assess and treat patients health, and also family and friends.
How can overdiagnosis harm a patient?

- Several channels are possible. For example:
 - Treatment (pharmaceutical or otherwise) may have unintended side effects
 - Labeling
 - internally: changes self-view, change likelihood of seeking treatment in the future
 - externally: changes the way other doctors assess and treat patients health, and also family and friends.
 - Military service
 - We will rule this out as primary channel in our setting
Idealized experiment

Two identical groups containing people with heterogeneous underlying mental health

Group A

Group B

Underlying Mental Health

Low | High
Idealized experiment

Group A: Examined for mental health by Doctor A, who applies a **strict standard** for diagnosing mental illness.

Diagnosed as mentally ill

Group A

Group B

Low Underlying Mental Health High
Idealized experiment

Group B: Examined for mental health by Doctor B, who applies a **lenient standard** for diagnosing mental illness.

- **Group A**: Diagnosed as mentally ill.
- **Group B**: Underlying mental health
 - Low
 - High

Diagnosed as mentally ill
Experiment: Compare outcomes for groups A and B

Any difference will be caused by differential diagnosis of marginal patients

Diagnosed as mentally ill

Group A

Group B

Diagnosed as mentally ill

Low Mental Health

High Mental Health

Underlying Mental Health
Requirements for ideal experiment

- **Counterfactual:** Groups A and B must be ex-ante *identical*
 - Random assignment of doctor will ensure this
 - Check empirically by comparing observable characteristics of each group
Requirements for ideal experiment

- **Counterfactual:** Groups A and B must be ex-ante **identical**
 - Random assignment of doctor will ensure this
 - Check empirically by comparing observable characteristics of each group

- **Variation:** Doctors must vary in the mental illness threshold they apply
 - Check this empirically
 - Verify that leave-out propensity of diagnosing other patients predicts likelihood that a patient is diagnosed
Requirements for ideal experiment

- **Counterfactual:** Groups A and B must be ex-ante identical
 - Random assignment of doctor will ensure this
 - Check empirically by comparing observable characteristics of each group

- **Variation:** Doctors must vary in the mental illness threshold they apply
 - Check this empirically
 - Verify that leave-out propensity of diagnosing other patients predicts likelihood that a patient is diagnosed

- **Monotonicity:** Doctors agree on underlying ranking of mental health
 - Check this empirically
 - Why this matters....
Monotonicity: Doctors agree on underlying ranking of mental illness, but apply a different threshold for diagnosis.
Monotonicity

Experiment without monotonicity
Will potentially confound effect of failure to diagnose with diagnosis of non-marginal patients

Group A

Group B

Diagnosed as mentally ill

Diagnosed as mentally ill

Low

Underlying Mental Health

High
Setting: Swedish military service

- Sweden had mandatory military conscription from 1901 to 2010.
Setting: Swedish military service

- Sweden had mandatory military conscription from 1901 to 2010

- All male citizens report to their regional test office shortly around turning 18
 - Two days of cognitive and physical tests to determine if conscript was fit to serve
Setting: Swedish military service

- Sweden had mandatory military conscription from 1901 to 2010

- All male citizens report to their regional test office shortly around turning 18
 - Two days of cognitive and physical tests to determine if conscript was fit to serve

- As part of this process every conscript is examined by a doctor (GP) who assesses his physical and mental health
The Diagnosis Process

► Assignment of conscript to doctor is random:
 ► Several doctors work in each regional office
 ► After completing several other tests, conscripts place records in a box and are called in order by the next available doctor
The Diagnosis Process

- Assignment of conscript to doctor is random:
 - Several doctors work in each regional office
 - After completing several other tests, conscripts place records in a box and are called in order by the next available doctor

- Doctors go through a standardized protocol (questions, vital signs) and use this to diagnose mental illness
 - The diagnosis includes a code which records the type of mental illness
 - Doctors also assign a severity score to their diagnosis on a scale of 1 to 9
The Diagnosis Process

- Assignment of conscript to doctor is random:
 - Several doctors work in each regional office
 - After completing several other tests, conscripts place records in a box and are called in order by the next available doctor

- Doctors go through a standardized protocol (questions, vital signs) and use this to diagnose mental illness
 - The diagnosis includes a code which records the type of mental illness
 - Doctors also assign a severity score to their diagnosis on a scale of 1 to 9

- Doctors do not provide treatment
 - If a conscript is diagnosed, he is informed of the diagnosis and is referred to a specialist outside of the military

Diagnosis lowers the probability of serving from 74% to 37%
The Diagnosis Process

▶ Assignment of conscript to doctor is random:
 ▶ Several doctors work in each regional office
 ▶ After completing several other tests, conscripts place records in a box and are called in order by the next available doctor

▶ Doctors go through a standardized protocol (questions, vital signs) and use this to diagnose mental illness
 ▶ The diagnosis includes a code which records the type of mental illness
 ▶ Doctors also assign a severity score to their diagnosis on a scale of 1 to 9

▶ Doctors do not provide treatment
 ▶ If a conscript is diagnosed, he is informed of the diagnosis and is referred to a specialist outside of the military

▶ Diagnosis lowers the probability of serving from 74% to 37%
Types of mental illnesses diagnosed

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>All</th>
<th>Severe</th>
<th>Intermediate</th>
<th>Less severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression</td>
<td>35%</td>
<td>23%</td>
<td>47%</td>
<td>30%</td>
</tr>
<tr>
<td>Psychosomatic disorders</td>
<td>29%</td>
<td>4%</td>
<td>52%</td>
<td>44%</td>
</tr>
<tr>
<td>Psychological development disorders</td>
<td>15%</td>
<td>84%</td>
<td>14%</td>
<td>2%</td>
</tr>
<tr>
<td>Neurosis, Anxiety disorders</td>
<td>12%</td>
<td>7%</td>
<td>30%</td>
<td>63%</td>
</tr>
<tr>
<td>Personality disorders</td>
<td>3%</td>
<td>83%</td>
<td>16%</td>
<td>1%</td>
</tr>
<tr>
<td>Addiction</td>
<td>3%</td>
<td>64%</td>
<td>31%</td>
<td>5%</td>
</tr>
<tr>
<td>Other</td>
<td>3%</td>
<td>65%</td>
<td>32%</td>
<td>2%</td>
</tr>
</tbody>
</table>

- **Diagnosis rate in our sample:** 2.84%
- **Examples:**
 - **Psychosomatic disorders**: Stress induced physical ailment such as ulcers and high blood pressure
 - **Psychological development disorders**: Autism, attention deficit/hyperactivity disorder
 - **Personality disorders**: Narcissistic personality disorder, paranoia
Sample and data

- Sample of Swedish males called to enlist between 1989 and 2001
 - Chosen to ensure consistency of diagnosis protocol throughout sample

- Only include a doctor in a year if she saw at least 500 conscripts in that year
- Only include conscripts who saw this set of doctors

The resulting analysis sample contains 410,146 conscripts assessed by 102 doctors

- We link each individual in the draft data to National medical board records (diagnosis, prescriptions, death, hospital admission)
- Statistics Sweden data on wealth, family and labor market outcomes
Sample and data

- Sample of Swedish males called to enlist between 1989 and 2001
 - Chosen to ensure consistency of diagnosis protocol throughout sample

- Only include a doctor in year t if she saw at least 500 conscripts in that year
 - Only include conscripts who saw this set of doctors

The resulting analysis sample contains 410,146 conscripts assessed by 102 doctors.

We link each individual in the draft data to National medical board records (diagnosis, prescriptions, death, hospital admission) and Statistics Sweden data on wealth, family and labor market outcomes.
Sample and data

- Sample of Swedish males called to enlist between 1989 and 2001
 - Chosen to ensure consistency of diagnosis protocol throughout sample

- Only include a doctor in year t if she saw at least 500 conscripts in that year
 - Only include conscripts who saw this set of doctors

- The resulting analysis sample contains 410,146 conscripts assessed by 102 doctors
Sample and data

- Sample of Swedish males called to enlist between 1989 and 2001
 - Chosen to ensure consistency of diagnosis protocol throughout sample

- Only include a doctor in year t if she saw at least 500 conscripts in that year
 - Only include conscripts who saw this set of doctors

- The resulting analysis sample contains 410,146 conscripts assessed by 102 doctors

- We link each individual in the draft data to
 - National medical board records (diagnosis, prescriptions, death, hospital admission)
 - Statistics Sweden data on wealth, family and labor market outcomes
Empirical strategy
Doctor leniency

We construct our instrument using a residualized, annual leave-out mean doctor leniency measure similar to that used to exploit variation in judge propensities for:

▶ Sentence length (Kling 2006)
▶ Juvenile incarceration (Aizer and Doyle 2015)
▶ Pretrial detention (Dobbie et al. (2018))

We account for two sources of non-random variation in the construction of our instrument:

▶ variation in diagnosis rates across recruitment centers
▶ variation in diagnosis rates over time
Let the diagnosis of mental illness after removing the effect of enlistment-center-by-year fixed effects X_{ct} be denoted by

\[\text{Draft _ Diagnosis}_{ict} = \gamma X_{ct} + \varepsilon_i \]
Doctor leniency

Let the diagnosis of mental illness after removing the effect of enlistment-center-by-year fixed effects X_{ct} be denoted by

$$Draft_Diagnosis_{ict} = \gamma X_{ct} + \varepsilon_i$$

Then, we define Z_{ict} as doctor j’s tendency to diagnose a mental illness for each individual i in center c in year t as

$$Z_{ict} = \frac{\sum_{k \in N_{j,t}} \varepsilon_k - \varepsilon_i}{N_{c,j,t} - 1}$$

where N_{cjt} is the total number of draftees k attended by doctor j in center c in year t
Variation in Doctor leniency

This figure reports the first stage relationships between draftee mental illness diagnosis during conscript and the numerical value of Doctor leniency.

The solid line represents a local linear regression of mental illness on Doctor leniency.
Monotonicity: Variation in leniency should come from different tendency to diagnose marginal cases.

Group A

Diagnosed as mentally ill

Group B

Diagnosed as mentally ill

Low

Underlying Mental Health

High
Monotonicity: Leniency calculated separately on severe and mild diagnoses
Monotonicity: Among all people who are not diagnosed, those who saw the lenient doctor should have higher average health.
Monotonicity: Average mental health of subsample of undiagnosed conscripts

Subsample not diagnosed as mentally ill at the draft

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Mental Illness Diagnosis over next 10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above median leniency</td>
<td>-0.00288***</td>
</tr>
<tr>
<td></td>
<td>(0.000652)</td>
</tr>
<tr>
<td>Observations</td>
<td>393,285</td>
</tr>
<tr>
<td>Dep. var mean</td>
<td>0.04369</td>
</tr>
</tbody>
</table>
Main Results
The effect of diagnosis on health at age 30 (2SLS)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Death up to age 30 (1)</th>
<th>Complete suicide up to age 30 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft diagnosis</td>
<td>0.00764*</td>
<td>0.00118</td>
</tr>
<tr>
<td>Mental illness</td>
<td>(0.00460)</td>
<td>(0.00250)</td>
</tr>
<tr>
<td>Observations</td>
<td>407,162</td>
<td>405,273</td>
</tr>
<tr>
<td>% change</td>
<td>123</td>
<td>73</td>
</tr>
<tr>
<td>Dep. Var mean</td>
<td>0.0062</td>
<td>0.0016</td>
</tr>
<tr>
<td>Time x center FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nr of clusters</td>
<td>102</td>
<td>102</td>
</tr>
</tbody>
</table>
The effect of diagnosis on health at age 30 (2SLS)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Outpatient at age 30</th>
<th>Inpatient at age 30</th>
<th>Sick days at age 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>(3) 0.204***</td>
<td>(4) 0.0388*</td>
<td>(5) 10.74***</td>
</tr>
<tr>
<td>Draft diagnosis</td>
<td>(0.0587)</td>
<td>(0.0226)</td>
<td>(2.846)</td>
</tr>
<tr>
<td>Mental Illness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>404,909</td>
<td>404,909</td>
<td>397,566</td>
</tr>
<tr>
<td>% change</td>
<td>88</td>
<td>127</td>
<td>244</td>
</tr>
<tr>
<td>Dep. Var mean</td>
<td>0.2315</td>
<td>0.0305</td>
<td>4.4078</td>
</tr>
<tr>
<td>Time x center FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nr of clusters</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
</tbody>
</table>
The effect of diagnosis on labor market at age 30 (2SLS)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Unemployed at age 30 (1)</th>
<th>Income from work at age 30 (2)</th>
<th>Years of schooling at age 30 (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft diagnosis</td>
<td>0.153***</td>
<td>-42,020</td>
<td>-0.551</td>
</tr>
<tr>
<td>Mental Illness</td>
<td>(0.0503)</td>
<td>(30,920)</td>
<td>(0.644)</td>
</tr>
<tr>
<td>Observations</td>
<td>397,566</td>
<td>402,839</td>
<td>397,440</td>
</tr>
<tr>
<td>% change</td>
<td>136</td>
<td>-16</td>
<td>-4.3</td>
</tr>
<tr>
<td>Dep. Var mean</td>
<td>0.1125</td>
<td>266799.7621</td>
<td>12.7694</td>
</tr>
<tr>
<td>Time x center FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nr of clusters</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
</tbody>
</table>
The effect of diagnosis on wealth at age 30 (2SLS)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Wealth at age 28</th>
<th>1/Home owner >0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Draft diagnosis</td>
<td>-382.4</td>
<td>-0.0482</td>
</tr>
<tr>
<td>Mental Illness</td>
<td>(36,590)</td>
<td>(0.149)</td>
</tr>
<tr>
<td>Observations</td>
<td>296,258</td>
<td>10,395</td>
</tr>
<tr>
<td>% change</td>
<td>-.53</td>
<td>-7.2</td>
</tr>
<tr>
<td>Dep. Var mean</td>
<td>71766.4522</td>
<td>0.6723</td>
</tr>
<tr>
<td>Time x center FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nr of clusters</td>
<td>74</td>
<td>102</td>
</tr>
</tbody>
</table>

Wealth= Financial Assets at Market Value
The effect of diagnosis on family structure at age 30 (2SLS)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Married at age 30</th>
<th>Divorced at age 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Draft diagnosis</td>
<td>-0.101**</td>
<td>0.00964</td>
</tr>
<tr>
<td>Mental Illness</td>
<td>(0.0393)</td>
<td>(0.00893)</td>
</tr>
<tr>
<td>Observations</td>
<td>397,566</td>
<td>397,566</td>
</tr>
<tr>
<td>% change</td>
<td>-53</td>
<td>80</td>
</tr>
<tr>
<td>Dep. Var mean</td>
<td>0.1907</td>
<td>0.0121</td>
</tr>
<tr>
<td>Time x center FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nr of clusters</td>
<td>102</td>
<td>102</td>
</tr>
</tbody>
</table>
Results So Far

▶ Diagnosis at age 18 makes marginal patient worse off at age 30
Results So Far

- Diagnosis at age 18 makes marginal patient worse off at age 30

- Next: outcomes at other ages
Effect of diagnosis ages 18 to 38: death (2SLS)
Effect of diagnosis ages 18 to 38: health outcomes (2SLS)

<table>
<thead>
<tr>
<th>Health Outcomes</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Completed Suicide</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Inpatient</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Outpatient</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sick Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Sign of all Statistically Significant 2SLS Estimates by Age
(Statistically Insignificant Estimates Left Blank)
Effect of diagnosis ages 18 to 38: other outcomes (2SLS)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployed</td>
<td></td>
</tr>
<tr>
<td>Income from Work</td>
<td></td>
</tr>
<tr>
<td>Years of Schooling</td>
<td></td>
</tr>
<tr>
<td>Wealth</td>
<td></td>
</tr>
<tr>
<td>Home Ownership</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td></td>
</tr>
</tbody>
</table>

Sign of all Statistically Significant 2SLS Estimates by Age

Statistically Insignificant Estimates Left Blank
Summary of Results

▶ Diagnosis at age 18 makes marginal patient worse off at all ages

▶ Health outcomes are worse
 ▶ Mortality
 ▶ Admission to hospital as an inpatient or outpatient
 ▶ Sick days

▶ Higher unemployment

▶ Lower probability of being married
How does diagnosis affect life outcomes?
Is the mechanism: diagnosis alters the probability of serving in the military?

- Conscripts diagnosed as mentally ill are 38.5 percentage points less likely to serve in the military
 - Is this why diagnosis affects life outcomes?
Is the mechanism: diagnosis alters the probability of serving in the military?

- Conscripts diagnosed as mentally ill are 38.5 percentage points less likely to serve in the military
 - Is this why diagnosis affects life outcomes?

- We separately measure the causal effect of serving in the military on the same set of outcomes
 - Borrow the identification strategy first used by:
Is the mechanism: diagnosis alters the probability of serving in the military?

- Conscripts diagnosed as mentally ill are 38.5 percentage points less likely to serve in the military
 - Is this why diagnosis affects life outcomes?

- We separately measure the causal effect of serving in the military on the same set of outcomes
 - Borrow the identification strategy first used by:

- Exploits random assignment of conscripts to officiator and variation in the influence of each officiator
 - Caveat: effect of service may be different for conscript with marginal mental health
The effect of Military Service, 2SLS

<table>
<thead>
<tr>
<th></th>
<th>Sick days at age 30</th>
<th>Unemployed at age 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(Military service>0)</td>
<td>-1.323</td>
<td>-0.0618***</td>
</tr>
<tr>
<td></td>
<td>(1.840)</td>
<td>(0.0139)</td>
</tr>
<tr>
<td>Observations</td>
<td>256,770</td>
<td>256,770</td>
</tr>
<tr>
<td>% change</td>
<td>-30</td>
<td>-58</td>
</tr>
<tr>
<td>Dep. Var mean</td>
<td>4.4513</td>
<td>0.1068</td>
</tr>
<tr>
<td>Nr of clusters</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

- Multiplying these estimates by 38.5% and subtracting from original 2SLS estimates only partially offsets our estimated effects
- Example: Effect of diagnosis on number of sick days (unmediated by military service) becomes 10.2 days
Does the harmful effect of diagnosis come through increased exposure to antidepressants?

Figure 15: Event time evolution of 2SLS estimates for effect of mental illness diagnosis on future medical treatment

- Prozac was first prescribed in Sweden in 1991
Conclusion: Evidence points to overdiagnosis of mental illness

- First evidence of long-term effects of a mental illness diagnosis for the marginal patient
- Being diagnosed mentally ill at 18 has harmful effects on mortality, health, employment
 - Same conclusion at any horizon in the 20 years after diagnosis
 - This effect remains after removing the effect of diagnosis mediated by military service

- Diagnosis rate in our sample: 2.84%
- In the Swedish general population in 2014: 7.7% of 18-year-old men were diagnosed with a mental illness

Open questions:
- Other ages?
- What about for women?
Conclusion: Evidence points to overdiagnosis of mental illness

- First evidence of long-term effects of a mental illness diagnosis for the marginal patient
- Being diagnosed mentally ill at 18 has harmful effects on mortality, health, employment
 - Same conclusion at any horizon in the 20 years after diagnosis
 - This effect remains after removing the effect of diagnosis mediated by military service

- Applying our results to the diagnosis of mental illness outside of the military
 - Diagnosis rate in our sample: 2.84%
 - In the Swedish general population in 2014: 7.7% of 18-year old men were diagnosed with a mental illness
Conclusion: Evidence points to overdiagnosis of mental illness

- First evidence of long-term effects of a mental illness diagnosis for the marginal patient
- Being diagnosed mentally ill at 18 has had harmful effects on mortality, health, employment
 - Same conclusion at any horizon in the 20 years after diagnosis
 - This effect remains after removing the effect of diagnosis mediated by military service

- Applying our results to the diagnosis of mental illness outside of the military
 - Diagnosis rate in our sample: 2.84%
 - In the Swedish general population in 2014: 7.7% of 18-year old men were diagnosed with a mental illness

- Open questions:
 - Other ages? What about for women?
Are We Overdiagnosing Mental Illnesses?
Evidence from Randomly Assigned Doctors

Marieke Bos (Swedish House of Finance, SSE) and Andrew Hertzberg* (Philadelphia Fed) with Andrés Liberman (Stern, NYU)

July 2020

*Disclaimer: The views expressed in this paper do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System