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Abstract

In the last decade, new technologies have led to a boom in dynamic pric-

ing. I analyze the most salient example, surge pricing in ride hailing. Using

data from Uber in Houston, I develop an empirical model of spatial equilib-

rium to measure the welfare effects of surge pricing. My model is composed of

demand, supply, and a matching technology. It allows for temporal and spa-

tial heterogeneity as well as randomness in supply and demand. I find that,

relative to a counterfactual with uniform pricing, surge pricing increases total

welfare by 3.53% of gross revenue. The gains mainly go to riders: rider surplus

increases by 6.97% of gross revenue, whereas driver surplus and platform prof-

its decrease by 1.97% and 1.42% of gross revenue, respectively. Disparities in

driver surplus are magnified. Riders, on the other hand, are overwhelmingly

better off.
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1 Introduction

Until about ten years ago, dynamic pricing was mostly limited to a few industries,
such as airlines and hotels. New technologies, however, have led to rapid changes.
Companies can now use the internet and smartphones to communicate prices in-
stantly, and they can use big data to create better pricing algorithms. Consequently,
more and more companies are using dynamic pricing, especially in two-sided mar-
kets and e-commerce. This shift has most likely increased welfare: flexible prices
allow markets to clear, bringing efficiency gains. However, the adoption of dy-
namic pricing might not always be desirable because it often hurts some market
participants.

Ride-hailing platforms like Uber and Lyft have become the most salient adopters
of dynamic pricing—or surge pricing, as Uber calls it. To ensure that the market
runs smoothly, these platforms adjust prices in response to demand and supply
in real time. This flexibility strongly suggests that surge pricing increases welfare.
However, the magnitude and distribution of the welfare gains are far from clear.
Many critics suggest that surge pricing can hurt riders, calling it a form of price
discrimination, or even price gouging (Dholakia, 2015; Crilly, 2016). Others have
suggested that it could hurt drivers, whose earnings might be too low unless they
carefully plan their actions around surge pricing (Goncharova, 2017).

Because of these concerns, cities like Honolulu, Manila, New Delhi, and Singa-
pore have banned or capped surge pricing (Puckett, 2018; Kazmin, 2016; Yee, 2018;
Yusof, 2018). In the US, ongoing litigation might result in a ruling that surge pric-
ing is a form of price fixing (Katz, 2016). Some ride-hailing companies have also
voluntarily chosen to avoid surge pricing. DiDi—the largest platform in China—
stopped using dynamic pricing, instead adopting potentially inefficient queuing
mechanisms (Xinyu, 2017). Determining whether moving away from surge pricing
actually benefits riders and drivers requires a firm understanding of the welfare
effects of surge pricing. So far the evidence has been limited.

In this paper I develop an empirical model of ride hailing to determine who
are the winners and losers from surge pricing. My model allows me to measure
the welfare effects—on riders, drivers, and the platform—if the market moves from
uniform pricing to surge pricing.1 The model is composed of three main parts:
demand, supply, and a matching technology. On the demand side, riders decide

1By uniform pricing I refer to prices that are a function of distance and duration only, as with
standard taxis, but not of market conditions.

1



whether to open the app and whether to request a trip. On the supply side, drivers
decide when to start and stop working and where to move when they are available.
The matching technology determines the drivers to whom riders are matched when
riders request trips, and, thus, how long riders need to wait for pickup. I then inte-
grate all three parts in a model of spatial equilibrium to simulate market behavior
under alternative pricing policies.

I estimate my model using Uber data from Houston in March-April 2017. Uber
was the only ride-hailing platform in Houston at the time; thus, my results speak to
surge pricing in a market that has only one platform. To match supply and demand
patterns realistically, the model accounts for high-resolution spatial and temporal
heterogeneity as well as randomness. I identify agents’ short-run elasticities—how
real-time price changes affect drivers’ movements and riders’ decision to request
a trip—by exploiting rounding in the surge pricing algorithm, as in Cohen et al.
(2016). I identify riders’ response to pickup times, which I use to back out the
value of time, from variation that arises from drivers’ exact position relative to
that of riders. Finally, I use data from Uber-run experiments to estimate long-
run elasticities—how riders’ and drivers’ decisions to log in to the app respond to
changes in expected prices.

My estimates imply that riders are very inelastic in the short run, in terms of
both prices and pickup times. They are more responsive to prices in the long run,
but elasticities are also below one. Riders highly value their time. This is consistent
with trips taking place during time sensitive moments: riders need to be in time for
an appointment, or they need to get to the airport in time for a flight. With regard
to drivers, I find evidence that they are more likely to move to areas with high
surge multipliers. When I put together all these estimates in an equilibrium model,
I obtain simulations that fit spatial and temporal patterns of market behavior well
and match the distribution of surge pricing precisely.

I find that surge pricing increases total welfare by 3.53% of gross revenue—or
$0.41 per trip—relative to uniform pricing. This reflects the fact that surge pricing
brings efficiency gains to the market. However, surge pricing has strikingly dis-
similar effects on different sides of the market. Whereas rider surplus increases by
6.98% of gross revenue, driver surplus and short-run profits decrease by 1.97% and
1.42% of gross revenue, respectively.2

The cause of the asymmetry in welfare effects can be decomposed into three

2These three numbers do not add up to the 3.53% total welfare increase. The remaining 0.06% of
gross revenue corresponds to a decrease in revenue from a 2% sales tax.
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parts. First, surge pricing brings allocative efficiencies, which only benefit riders.
At times of scarcity, uniform pricing allocates trips randomly: only riders that are
lucky to be near a driver get a trip. With surge pricing, trips are allocated to riders
who have a high willingness to pay, which increases rider surplus. Drivers, on the
other hand, see no benefit from a better allocation of trips. Their value for a trip
is fairly homogeneous; in my model, it is simply equal to earnings from the trip
minus the physical cost of completing it, which is the same for every driver.3 Thus,
driver surplus cannot increase from a better allocation.

Second, riders have a much higher value of time than drivers. Besides allocating
trips better, surge pricing further increases welfare because of time-saving matching
efficiencies: riders are picked up more quickly, and drivers wait less between trips.
I find that drivers save more time than riders, but they value these savings less.
Whereas the value of time to drivers is their average hourly earnings net of driving
costs, which is slightly above minimum wages, riders who request trips are very
time sensitive. The welfare gain from time savings is thus substantially higher for
riders than for drivers.

Third, surge pricing allows the platform to set lower prices on average, transfer-
ring welfare from drivers and the platform towards riders. I assume that to maxi-
mize long-run profits, Uber maximizes a weighted sum of its short-run profits, rider
surplus, and driver surplus. I back out the weights as the values that rationalize
the commission rate and the average price in the data. I find that when constrained
to a uniform multiplier, the platform sets it above the average multiplier with surge
pricing. This is the case because, for a given time and place, it is worse to err by
setting prices too low than too high, in part because of a matching failure—which
Castillo et al. (2018) analyze theoretically—that takes place when drivers are scarce.
With uniform pricing, the only way to avoid prices that are too low is with a high
price. With surge pricing, on the other hand, the platform can set a low average
price, and surge pricing automatically avoids the problem.

I also analyze the distributional effects within riders and within drivers. I find
that surge pricing makes driver earnings more unequal. Drivers who work during
busy times—and thus have high earnings—are even better off with surge pricing
because of higher prices. During off-peak hours, in contrast, prices and earnings are
lower. On the riders’ side, I find that the vast majority of riders benefit, including

3Drivers might have idiosyncratic preferences for particular types of trips. However, Uber as a
policy reveals very little information about trips to drivers—nothing beyond the rider’s name and
location; thus, there is limited scope for surge pricing to improve the allocation to drivers.
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those who own expensive phones, those who request trips from low income areas,
and those that have a low willingness to pay.4 The only riders who are hurt are
those who want to request a trip during a couple of hours on Friday afternoon and
Saturday midday, when prices are highest.

The public debate about the desirability of surge pricing has emphasized its
negative effects on riders and drivers. My results suggest that riders’ complaints
are not well-founded. Their confusion might arise because they do not account
for equilibrium effects—higher pickup times and lower reliability without surge
pricing—and because they are unaware that without surge pricing, they would pay
higher average prices. On the other hand, my findings suggest that drivers might
have good reason to complain. Given that their hourly earnings are not much
higher than the minimum wage, even the small effects I find might be a concern.

My analysis focuses on a market that has a single ride-hailing platform, which
provides a clean environment in which to analyze surge pricing in the absence of
competition. Thus, I am not able to say how competition might affect the welfare
effects of surge pricing. An answer to that question would require either data
from two platforms or strong assumptions about multi-homing behavior. Another
limitation is that I do not allow heterogeneity in the response of agents to prices. If
I observed income data, for instance, I could allow riders’ response to depend on
their income. My findings about overall welfare on riders, drivers, and Uber would
be unlikely to change, but I could measure the distributional effects within riders
more accurately.

My analysis begins in section 2, where I introduce the Uber market and describe
the data I use. I introduce my model in section 3. In section 4 I present descriptive
evidence that shows the variation in the data that drives my main model parame-
ters. In section 5 I explain my identification strategy and show parameter estimates.
I analyze the welfare effects of surge pricing in section 6, and I conclude in section
7.

Related work

A few related papers analyze the welfare effects of surge pricing. For example,
Cachon et al. (2017) propose a theoretical model without matching frictions. Ming
et al. (2019) build an empirical model using DiDi data; they do not observe waiting

4I do not observe data on individual riders’ income, so I use phone price and income by trip
request location as proxies for income.
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times, nor do they model spatial heterogeneity, which limits the extent to which
they can account for matching frictions.5 Both papers find that riders, drivers, and
platforms benefit from surge pricing, although riders might be hurt at times. In a
theoretical analysis, Castillo et al. (2018) point out important matching inefficiencies
("wild-goose chases") that arise with excess demand. Those inefficiencies can be
avoided with a high uniform price, or with surge pricing and lower average prices.
Lower prices mean that surge pricing potentially hurts drivers. I confirm empirically
that surge pricing hurts drivers, which underscores the importance of matching
frictions.

Many computer science and operations research papers have analyzed surge
pricing (e.g., Bimpikis et al., 2019; Besbes et al., 2019; Ma et al., 2018; Garg and
Nazerzadeh, 2019). A survey by Korolko et al. (2018) gives a detailed overview.
Their main goal is to improve the design of surge pricing algorithms. In contrast, I
take the current design of the algorithm as a given and analyze its effect on different
market participants.

Methodologically, this work relates to empirical papers on matching and spatial
equilibrium in transportation. The first few contributions analyze taxi markets—
and thus they have little to say about dynamic pricing, which is not used by taxis.
Lagos (2003) analyzes entry restrictions and fares; Frechette et al. (2019) also ana-
lyze entry restrictions, as well as the adoption of Uber-like matching. My notion of
equilibrium is similar to the one used by Buchholz (2018), who finds that the struc-
ture of taxi fares can be modified to decrease search inefficiencies. Bian (2018) and
Shapiro (2018) consider the interaction between taxis and ride hailing. In one coun-
terfactual, Bian shuts down surge pricing, which results in less efficient matching.
None of these papers has data on riders—only on drivers and trips—and so they
rely on structural assumptions to back out demand. In contrast, I observe riders,
whether they request trips; thus, I estimate demand directly from the data.

A number of papers estimate demand and supply in ride-hailing markets.6 Co-
hen et al. (2016) and Lam and Liu (2017) estimate rider surplus. My identification
strategy is closely related to Cohen et al.’s: we both exploit rounding in the surge
algorithm to identify agents’ response to prices. Buchholz et al. (2019) estimate the

5To account for matching frictions, they assume that the utility of riders depends directly on the
number of available drivers and that the utility of drivers depends directly on the number of riders.

6A fast-growing literature analyzes other aspects of ride hailing. Some studies focus on labor
supply (Hall et al., 2019; Chen et al., 2017; Cook et al., 2018), efficiency vs. taxi markets (Cramer
and Krueger, 2016), the matching algorithm (Afeche et al., 2017), market thickness and competition
(Nikzad, 2017), and the customer experience vs. taxis (Athey et al., 2018; Liu et al., 2018).

5



value of time for riders in Prague. Their findings are lower than the ones I estimate,
but they are also above median wages and well above minimum wages.7 Papers
that estimate supply elasticities include Angrist et al. (2017), who design an experi-
ment to estimate drivers’ value for flexibility, and Lu et al. (2018), who, on the basis
of an outage in the Uber platform, estimate drivers’ short-run response to surge
multipliers. Relative to these works, I estimate both sides of the market and put
them together in an equilibrium model to analyze welfare effects.

My paper also adds to the literature on two-sided platforms. The seminal papers
in this literature find that welfare effects are mainly determined by elasticities and
cross-market externalities (Rochet and Tirole, 2003; Armstrong, 2006; Weyl, 2010).
They do not consider matching frictions, which are the main drivers of my results.
Some empirical papers analyze markets in which matching plays a major role, such
as Airbnb (Fradkin, 2017) and online labor platforms (Arnosti et al., 2018; Cullen
and Farronato, 2018). Finally, my paper relates to papers that analyze dynamic
pricing in various settings. In airlines, some consumers benefit and some are hurt,
with ambiguous net effects (Lazarev, 2013; Williams, 2017). Hendel and Nevo (2013)
find that temporary sales in retail increase overall welfare.

2 The Uber market

I analyze the Uber market in Houston between March 16 and April 8, 2017. Before
this period, Uber did not record data about riders who did not request a trip. After
this period, Uber stopped using rounding in its surge pricing algorithm, which I
rely on for my identification strategy. I focus on trips starting in the area of central
Houston shown in figure 1. It covers 8.63% of the area within the city limits of
Houston, but it accounts for 56.4% of all trips and 78.4% of trips with surge pricing.
In total, my sample includes around half a million trips.

I focus on UberX, Uber’s main product, which matches passengers to indepen-
dent drivers. UberPool, which also matches passengers going in similar directions,
was not available in Houston during my period of analysis. Other Uber products,
such as UberXL (larger cars) and UberBlack (luxury cars), accounted for less than
5% of Uber trips.8

7The value of time ranges between $0.40/min during peak weekday hours and $0.05/min during
off-peak weekend hours. The minimum wage was $2.79/h and the mean wage was $10.30/h.

8UberXL and UberBlack drivers can also be matched to people who request UberX or UberPool
trips, in which case they get paid the fare for the product requested by the driver.
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Figure 1: Region of analysis

Note: Central Houston. The shaded area represents the region of analysis. Surge pricing varies
spatially at the hexagon (or location) level.

Lyft was not present in Houston between November 2014 and May 2017.9 Hous-
ton was the one large American city where Uber was the only ride-hailing platform.
Thus, Houston presents a clean setting in which to analyze the welfare effects of
surge pricing without having to consider the effects of competition between plat-
forms. For that reason, my main results speak to a market with only one ride-
hailing platform.

Riders, drivers, and trips The raw data I observe has a high temporal and spatial
resolution: I observe market participants every few seconds whenever the app is
open, and I observe their location up to the precision of their cell phone GPS.
I aggregate the data at the level at which surge pricing varies: into two minute
periods,10 which I index by t ∈ T, and into the hexagons in figure 1, which I call
locations and index by l ∈ L. Each hexagon is roughly 400 meters (one quarter mile)
across. This level of aggregation is much finer than in previous papers, such as
Buchholz (2018) and Frechette et al. (2019).11. A higher resolution is important to

9Lyft decided to exit Houston after the City Council passed an ordinance requiring extensive
background checks for drivers, including fingerprinting and a physical exam.

10Surge multipliers are not updated exactly every two minutes, but over 99% of the time they are
updated after between 100 and 140 seconds. I define periods to start and end whenever multipliers
are updated.

11Frechette et al. (2019) split Manhattan into eight areas. Buchholz (2018) splits Manhattan into 48
areas. Both papers use one-hour periods.
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capture the short run, local imbalances surge pricing is meant to counteract.
I observe riders whenever the app is open. I can see the rider’s location, the

selected destination (if she has chosen one), the fare for a trip to her destination,
and an estimated time of arrival (ETA) before pickup. I aggregate rider data by
session, defined as a period of activity with no gaps of half an hour or longer.
Sessions can end in two ways: the rider can request a trip, or she can be inactive for
half an hour, after which I say the rider leaves the app.12 A new session begins if the
rider opens the app and chooses a destination after the end of a session. I take the
multiplier, fare, and ETA to be the last ones that were observed by the rider before
deciding to request or leave.

I also observe detailed data on drivers. I can see their location whenever they are
logged in, as well as whether they are available to be matched (33.5% of the time),
on their way to pick up a passenger (20.6% of the time), or taking a passenger to
her destination (45.9% of the time). Finally, I observe trip statistics, including the
time and location during request, pickup, and drop-off, as well as the trip fare and
how it was split between Uber and the driver.

0.00

0.25

0.50

0.75

1.00

M T W T F S S

Day of the week

Drivers Riders Trips

Figure 2: Weekly patterns in demand, supply, and trips

Note: The three time series represent the average number of drivers working, the average number
of riders that open the app, and the average number of trips that take place. Riders and drivers are
normalized to have a maximum of one. Trips are on the same scale as riders.

Figure 2 plots the average market behavior as the week goes by. The main daily
patterns are low activity at night and high activity during the day. During week-
days, a dip takes place around noon, and a big spike occurs around the afternoon

12If the rider requests a trip but cancels it before pickup, I assume the rider never requested it.
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rush hour and the evening. The least busy day is Sunday, and Friday and Saturday
are the most busy days. All three variables behave very similarly. The most no-
ticeable difference is some excess supply around noon during weekdays, as well as
higher demand relative to supply during Friday and Saturday evenings.

Figure 3 shows spatial patterns. The area with most trip requests, towards the
northeast, is Downtown. Another high demand area is The Galleria, a business area
on the west. There is a third area with high demand towards the south, around
NRG Stadium and the Astrodome, two major sports complexes. Drivers tend to be
in areas that have a large number of trip requests and along major highways.
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Figure 3: Spatial patterns in demand and supply

Note: Number of trip requests and available drivers by location for the whole sample. Color scales
are normalized to have mean one.

Matching and surge pricing I explain now how matching and surge pricing work.
This description is specific to my period of analysis; some of these features have
changed since the period of study.13 The matching process starts with the rider
opening the app and selecting pickup and destination points.14 The app then dis-
plays a fare in dollars and an ETA before pickup (see a screenshot in appendix
H.2).15 If the rider decides to request a trip, she is matched to the nearest available
driver, who then has a few seconds to accept the trip. If the driver does not accept
the trip, the rider is then matched to the second nearest available driver, and so on.

13Some changes are: Uber now groups trips into batches that are matched every few seconds.
Surge pricing no longer uses rounding. On drivers’ side, surge pricing is no longer multiplicative;
instead, they get a bonus per trip, no matter how long (Garg and Nazerzadeh, 2019).

14It is possible to request a trip without a destination, but the interface makes it very difficult.
15Until mid 2016 the rider was shown a surge multiplier instead of a fare to the destination.

9



The fare shown to the customer is the product of two components. The first
is an underlying fare—the base or unsurged fare—which is a linear function of the
expected trip distance and duration given the pickup and dropoff coordinates and
the hour of the week. It does not change in real time. The second is a surge multiplier
that responds in real time to supply and demand.
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Figure 4: Distribution of multipliers and ETAs observed by riders

Spatially, multipliers vary by location (see figure 1). They are updated every two
minutes simultaneously across the whole city. Whenever a driver is available, he can
observe a map showing all multipliers in the city (see appendix H.2). Appendix H.1
shows how multipliers behaved during one typical Tuesday afternoon. Less than
half of the variation in prices is predictable: a regression of the surge multiplier on
half hour of the week by location fixed effects has an R2 of 0.288.
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Figure 5: Spatial patterns in surge multipliers and ETAs

Figure 4 shows the distribution of surge multipliers and ETAs that passengers
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observe. 77.8% of passengers see a multiplier of 1 when they open the app.16 When
the multiplier is greater than one, it is typically less than 2 and it is rarely above 3.
Figure 5 shows the average behavior of multipliers and ETAs across space. Multi-
pliers are highest around Downtown and towards the south. ETAs tend to be lowest
in areas with most trip requests, where most available drivers are located, and they
tend to be highest in peripheral areas.

3 Model

I now present a model of a ride-hailing market. I start by giving a brief overview
of the whole model. Subsections 3.1-3.4 explain each part in detail.

Agents make two types of decisions: long-run and short-run decisions. In the
long run, they decide whether to enter the market—i.e., log in to the app—based
on expectations. Riders choose whether to open the app given what they expect
prices to be and how long they expect to wait before being picked up. Drivers
decide if they want to start working depending on how much they expect to earn
should they decide to work. These decisions are based on expectations because
agents must make adjustments ahead of time. A driver might have to arrange for
someone to take care of his children, for instance, and a rider might only open the
app at the end of the workday if she decided not to drive to work in the morning.

In the short run, agents who are already in the market make choices using the
information they observe in the app. Riders observe a fare and an ETA, based on
which they decide whether they want to request a trip. Drivers that are available
observe a map with all surge multipliers in the city. Using the information from
that map, they decide where they want to move.

Besides agents’ decisions, the platform also takes some actions. It computes
surge multipliers, fares, and ETAs, and it shows them to riders and drivers. It also
assigns a nearby driver to riders that request a trip. Figure 6 is a timeline that
clarifies the mechanics of the interaction between riders, drivers, and the platform.
It shows everything that happens during one two-minute period. Steps during
which riders and drivers make decisions are highlighted in bold above the timeline.
Steps below the timeline are mechanical actions taken by the platform.

16I weight multipliers by the number of passengers who observe them. Without weighting, 85.7%
of periods have a surge multiplier of 1.
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State at time t:
(a) available drivers

(b) busy drivers

1. Riders and
drivers arrive

2. Multipliers,
fares and ETAs

generated

3. Riders request
trip or leave

4. Matching
and drop off

5. Available drivers
move or leave

State at
time t + 1

Figure 6: Model timeline

Note: Timeline of events that take place during every period. The initial state is the set of available
and busy drivers. Each available driver is in a certain location, and every busy driver will drop
off a passenger and become available during some future period in a certain location. Riders’ and
drivers’ decisions are highlighted in bold.

3.1 Demand

Riders make two decisions. First, a number of riders decide to open the app and
choose a destination. Second, after having opened the app, riders decide whether
to request a trip or not, based on the fare and ETA that they observe in the app.

3.1.1 Trip requests

Rider i, who already decided to open the app, is in location l at time t (during hour
of the week h) and wants to go to a destination at a distance ri. She gets a “quote"
that includes a price pi and an ETA before pickup wi.

If she requests a trip, the rider gets utility

Ui = α(ri, l, h) + β(ri)pi + γ(ri)wi + εi. (1)

The first term captures patterns in the intrinsic value of a trip by how far the rider is
going, by location, and by hour of the week. The second term captures the disutility
of paying, and the third term captures the disutility from waiting. Finally, εi is an
error that captures all remaining heterogeneity. Utility is measured relative to a
short-run outside option the rider chooses when she does not request a trip. It may
be an alternative form of transportation—e.g., driving herself, biking, or taking a
bus—or simply not going to her destination. The rider requests a trip if Ui > 0.

The key parameters in this model are the coefficients on prices and ETAs. β(ri)

measures the short run elasticity of demand, and γ(ri) measures the ETA elasticity.
I allow both coefficients to change with trip distance: one would expect different
elasticities for someone taking a short, $5 trip, and for someone taking a $30 trip to
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the other side of the city. The ratio γ(ri)
β(ri)

measures the value of time for rider i.
In this model, riders are static decision makers. In reality, riders can decide to

wait and request a trip at a later time. However, dynamic decisions do not seem
to play a major role in the data. Only 21% of trip requests take place more than 2
minutes after choosing a destination. Thus, I do not model explicitly the decision to
wait. I only take into account the final decision the rider made, whether to request a
trip or leave the app. Appendix G.2 shows that previous prices and ETAs observed
by riders have no effect on their decisions, suggesting that modeling riders’ behavior
as a static decision does not bias estimates of their elasticities.

3.1.2 Opening the app

Besides their short-run outside option, riders have a long-run outside option that re-
quires some planning. Thus, they can only choose it before they observe prices and
ETAs. For instance, riders might buy a car or coordinate to carpool with coworkers
when they expect high prices. Let ui be the value of this outside option for rider i,
relative to her short-run outside option. It is drawn from a distribution Fu.

Suppose rider i would want to go from l to a destination at a distance ri during
time of the week h. I aggregate distances into quantiles, which I call distance groups.
Let r̃ be the distance group ri belongs to. Then U(l, h, r̃) = E

[
1

β(ri)
max {Ui, 0}

∣∣l, h, r̃
]

is the rider’s ex-ante dollar value of opening the app. It represents her expectation
on the value of her best choice—either requesting a trip, with value Ui

β(ri)
, or the

short-run outside option, with value 0—given what she knows before opening the
app and observing the fare and the ETA. This is an equilibrium quantity, as it de-
pends on the distribution of prices and ETAs that the rider faces in equilibrium.
Rider i opens the app if and only if U(l, h, r̃) > ui.

There is an arrival rate λ0
lhr̃ of riders that could potentially open the app to go to

a destination in distance group r̃ in location l during hour of the week h. Each one of
them chooses to open the app with probability Pr(U(l, h, r̃) > ui) = Fu(U(l, h, r̃)).
Thus, the actual rate at which riders open the app is λlhr̃ = λ0

lhr̃Fu(U(l, h, r̃)). I
assume that Fu(x) ∝ xρ.17 With this functional form, riders open the app at a rate

λlhr̃ = Alhr̃U(l, h, r̃)ρ (2)

for some demand shifter Alhr̃. Thus, the elasticity of the number of people who

17xρ is unbounded, but it can be interpreted as the left tail of the actual distribution: at any
particular time, the vast majority of people would not request a trip under any price and ETA.
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open the app with respect to U(l, h, r̃) is constant and equal to ρ. Rider surplus rela-
tive to the long-run outside option is

∫ U(l,h,r̃)
0 (U(l, h, r̃)−u)dFu(u) = Alhr̃

1+ρU(l, h, r̃)ρ+1.
The key parameter of this arrival model is ρ. It determines the long run elasticity

of demand—i.e., how the number of requests changes if there is a change in prices
that riders know of in advance.

3.2 Supply

Drivers make three decisions. At the beginning of a shift, they decide whether
they want to start working. If they do, during every period they are available—i.e.,
waiting to be matched—they decide whether they want to keep on working or leave
the platform before the end of the current period. Finally, if they decide to stay, they
must also choose where to move before the beginning of the next period.

A standard approach is to model drivers as fully rational utility maximizers, as
in Buchholz (2018) and Frechette et al. (2019). This approach, however, is substan-
tially more complicated in this setting given my goal of measuring the effects of
surge pricing. First, I want to capture the short-run, local imbalances that surge
pricing aims to correct. Thus, my model has a much higher temporal and spatial
resolution than previous papers. Second, the state space must incorporate all mul-
tipliers that surround the driver, which means it is high dimensional. Computing
the value function of drivers is not feasible due to the curse of dimensionality.

I, thus, need to make some simplifying assumptions that result in a feasible
problem. The first assumption is that utility is equal to earnings minus the physical
cost of driving (fuel, depreciation, and maintenance) minus the opportunity cost
of working. Thus, two drivers with an equal opportunity cost who get the same
net earnings are equally well off, regardless of how they get those earnings. In
particular, it does not matter where in the city they drove, whether they had to
drive in traffic, or whether they were busy or idle most of the time.

3.2.1 Movement

Driver j is available in location l during some time t during hour of the week h,
and he observes surge multipliers mt. The state—the information observed by the
driver that influences his behavior—is st = (l, h, mt).

I assume that the driver’s location in period t + 1 follows a stochastic movement
rule that depends on two things. First, it depends on mean earnings given the
state: the driver is more likely to move to locations where, on average, earnings
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are higher. Mean earnings do not depend on any private information the driver
has about what he might do next. Instead, they are simply an empirical average of
the earnings drivers get for the next t̄ periods if they move to some location k after
being in state st. Second, the movement rule follows road and traffic patterns. For
instance, the driver cannot move instantaneously to the other end of the city, and
he is less likely to move to far-away locations during rush hour than he is at 3 am
in the morning.

Let vk(st) be mean future earnings, the mean of the sum of the net earnings drivers
get during period t + 1 until t + t̄ if they move to location k after being in state st:

vk(st) = E

[
t+t̄

∑
s=t+1

πs

∣∣∣∣∣st, lt+1 = k

]
− ck

l (3)

In this equation πt denotes net earnings during period t—i.e., earnings from trips
minus physical driving costs. I denote the location at time t by lt, and ck

l represents
the physical cost of moving from location l to k. I set t̄ = 45 because, in the data,
most of the effect of surge multipliers on earnings takes place during the first 90
minutes (see appendix G.4). Thus, vk(st) incorporates almost all the information
about future earnings drivers can infer from multipliers.

Mean future earnings vk(st) are an empirical average of market behavior in
equilibrium. There are many possible future outcomes for drivers who move to k
after being in state st. They might subsequently move north or south; they might be
matched immediately, or they might have to wait to be matched. The probability of
each one of these outcomes depends on equilibrium behavior—how drivers behave
after moving to k, how every other driver in the market behaves, and how riders
behave. The mean of net earnings over all these possibilities is v(k, st). Although
this quantity only depends directly on the driver’s movement during the current
period, it implicitly accounts for future movements.

Let lj,t+1 be the location to which driver j moves. The movement rule is

Pr(lj,t+1 = k|st) =
exp

(
ωlkh + δvk(st) + ζkt

)
∑k′ exp

(
ωlk′h + δvk′(st) + ζk′t

) . (4)

The first term inside the exponential is a fixed effect by origin, destination, and
hour of the week. It captures road and traffic patterns. If locations l and k are
very far from each other or have no roads connecting them (e.g., a river separates
them), then ωlkh is very low, and so the probability of moving to k in one period
is negligible. If it is easy to move from l to k in one period at 3 am, but not when
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there is rush hour traffic, then ωlkh is higher at 3 am than during rush hour.
The middle term captures the fact that drivers are more likely to go to locations

that have higher mean future earnings. The key parameter in this model is δ, which
measures the extent to which drivers are more likely to move towards areas with
high earnings. Drivers do not respond to changes in surge multipliers directly;
however, higher multipliers lead to higher expected earnings, so they respond to
multipliers indirectly. For that reason, δ also measures whether drivers are more
likely to move to areas with higher surge multipliers.

Finally, ζkt is an unobserved term that captures systematic shocks that cause
drivers to flock towards specific locations. For instance, if drivers know that an
event will end soon, they might move systematically towards the event location.

Movement rule (4) departs from a standard model of a fully rational—i.e.,
forward-looking and utility-maximizing—driver in three ways. First, vk(st) only
accounts for earnings during the next t̄ periods, so drivers do not respond to any
earnings they might get more than t̄ periods into the future. Second, all drivers re-
spond to earnings until period t + t̄, even if they plan to stop working before then.
Third, vk(st) does not account for future fixed effects ωlkh, unobserved terms ζtk,
or random draws from the distribution specified by the movement rule. This third
point stems from the assumption that drivers’ utility only depends on net earnings
and opportunity costs. My model, thus, views the fixed effects and error terms as
capturing constraints imposed by roads or traffic. They might also capture mistakes
from inattention or limited knowledge.

In this setting, it is not feasible to compute value functions for fully rational
drivers due to the curse of dimensionality. The simpler model I propose allows me
to model drivers in a tractable way, while still capturing the essence of fully rational
behavior. Concretely, drivers are more likely to move towards high-earnings areas
in a forward-looking manner: when deciding where to move based on mean future
earnings, drivers implicitly consider where they will move in subsequent periods,
whether surge multipliers might go up, and whether they will get a trip quickly.

3.2.2 Entry

Driver j is considering whether to start working in location l at time t.18 He has an
outside option that represents, for instance, leisure, or working at a different job.
The hourly value of this outside options, W̄i, is drawn from a distribution FW .

18Drivers have no choice over l and t. They simply log in whenever they finish doing whatever
they were doing before in the location they were.
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I he starts working, the driver expects hourly earnings Wlh before observing surge
multipliers. This is an equilibrium quantity: it depends on how the driver expects
all other agents to behave. In equilibrium, it must be consistent with empirical
averages. The driver starts working if and only if Wlh ≥ W̄i.

There is a rate µ0
lh of potential entrants to the market in location l during hour

of the week h. A fraction Pr(Wlh ≥ W̄i) = FW(Wlh) of them start working. Thus,
the actual rate at which drivers start working is µ0

lhFW(Wlh). I make the functional
form assumption FW(Wlh) ∝ Wσ

lh.19 The entry rate is thus

µlh = BlhWσ
lh, (5)

where Blh is a horizontal demand shifter, and driver surplus for (l, h) is
Blh
∫Wlh

0 (Wlh −W ′)dFW(W ′) = Blh
1+σWσ+1

lh dollars per hour.
The parameter σ represents the elasticity of entry to hourly earnings. It is a

measure of the long run elasticity of supply: it determines the extent to which the
number of drivers who start working responds to expected changes in earnings.

This model does not allow drivers to start working in response to unexpectedly
high multipliers. Although that might happen to some extent in real life, it is un-
likely to have a large effect. I show in appendix G.3 that multipliers can only predict
around 15% of unexpected variation in multipliers—i.e., residuals from location by
hour of the week fixed effects—more than ten minutes into the future. Therefore,
unexpected changes in multipliers convey little information about the total earnings
drivers would get if they decide to start working.20

3.2.3 Exit

At the time that driver j arrives, which I denote by t0
j , he draws an intended shift

duration Dj from distribution Gh, which varies by the hour of the week. The driver
stops working the first time that he is available after t0

j + Dj. Modeling the exit
decision accurately is important to get a good approximation of the number of
drivers who are working at any given time.

In reality, drivers might to some extent respond to surge multipliers by working
a while longer. If I run regressions of a dummy for leaving on nearby multipliers, I

19As with riders’ opportunity cost, this distribution is unbounded, but it can be understood to be
the left tail of a very large distribution.

20One exception are drivers who could start working immediately in high demand locations.
However, there are very few of them: only 6% of drivers start working in the main area of analysis.
The remaining 94% start working outside and drive in.
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do not see a significant effect (see appendix G.5), so I abstract from this margin of
response.

3.3 Matching technology

In period t, the set of riders that request a trip is Ir
t and the set of drivers that are

available is Ja
t . Uber sometimes matches drivers who are completing a trip; thus, Ja

t

includes riders who will drop off a rider during the next two periods. The matching
technology determines which drivers in Ja

t are matched to each rider in Ir
t .

Matches take place as follows. First, the platform computes a pickup time wP
ij

for every pair of a rider i ∈ Ir
t and a driver j ∈ Ja

t . The pickup time is drawn from
a distribution G(·|li, lj, bj, h) that depends on the rider’s location li, the driver’s
location lj, whether the driver is busy bj, and the hour of the week h.

Riders in Ir
t are then matched sequentially in a random order. For every rider,

her trip is offered first to the driver with the lowest pickup time, who accepts it with
probability φb if he is busy and probability φa if not.21 If he does not accept the trip,
it is then offered to the next closest driver, who also accepts it with probabilities φb

and φa, depending on whether he is available. The process goes on until the rider
is eventually matched or until no available drivers remain within 10 km, in which
case the rider does not get a trip and is forced to take her outside option.

The matching technology depends on the distribution G(·|li, lj, bj, h), as well as
on parameters φb and φa. Together, they all determine the distribution of realized
pickup times—in other words, the size of the matching inefficiency. A distribution
G(·|li, lj, bj, h) with higher values means a larger matching inefficiency. Lower ac-
cept rates result in matches with drivers who are farther away, and, therefore, a
larger matching inefficiency.

3.4 Surge multipliers and other parts of the model

One essential part of the model is the algorithm Uber uses to generate surge mul-
tipliers. In simulations with surge pricing, I generate multipliers using the exact
same algorithm Uber used in Houston during the period of analysis. I cannot dis-
close the algorithm because it is proprietary. Its most important features are that it
depends on the number of available drivers and on the number of riders who open

21In principle, drivers could accept or reject trips selectively. Uber, however, punishes drivers with
low acceptance rates. I assume acceptance is an exogenous process. This is the case if the main
reason drivers fail to accept trips is because they were not paying attention.
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the app. Both quantities are aggregated over nearby locations and over the last few
minutes. I specify a few more details necessary for my identification strategy in
section 4.1. In other counterfactuals, Uber simply sets a uniform multiplier.

In appendix A I present three additional parts of my model that are necessary
to fully describe market behavior. First, I explain what determines the duration
of trips and how Uber generates fares and ETAs. These are simply mechanical
steps where no agent makes choices. Second, I present a model for the exact trip
destination, which I assume is exogenous. Third, I need to account for the behavior
of drivers who are outside the region of analysis (since there is one unique pool of
drivers in all of Houston). I assume that the behavior of drivers who are far from
the region of analysis is unchanged in counterfactuals.

3.5 Equilibrium

Agents’ choices depend on their beliefs. Rider arrival depends on expected utilities,
driver entry depends on expected earnings, and driver movements depend on how
they believe surge multipliers map into expected earnings. To fully describe market
behavior, I need to specify how those beliefs are determined. I do so based on an
equilibrium condition: beliefs must be consistent with empirical averages.

Let U be the vector of riders’ ex-ante utilities U(l, h, r̃). Let W be the vector
of drivers’ expected hourly earnings W(l, h) before observing surge multipliers.
Finally, let v be the vector of drivers’ mean future earnings vk(st). I define X as the
set of all possible beliefs, so that some triple of beliefs x = (U, W, v) belongs to X .

Suppose the market behaves as described by my model, with a set of parameters
θ (which includes all the parameters from demand, supply, and matching) and
under a certain pricing policy P. Let f P(·, θ) : X → X be the function that maps a
vector of beliefs x into the vector of beliefs that is equal to market averages, given
that agents behave according to x. A market equilibrium for parameters θ and
pricing policy P is characterized by a vector of beliefs x∗ ∈ X that is a fixed point
of f P(·, θ). In other words, it satisfies

x∗ = f P(x∗, θ). (6)

This means that beliefs must be consistent with market averages. Appendix B
proves that an equilibrium exists and that under an additional assumption (which
is always satisfied in my simulations), the equilibrium is unique and stable.22

22Informally, the assumption is that, as beliefs move from x to x′, market averages do not move
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4 Descriptive evidence and identification

In this section I give an informal explanation of my empirical strategy and I show
the variation in the data from which I identify the main model parameters. In
section 5 I explain my exact identification strategy and I justify it formally.

4.1 Short-run demand response

In the trip request model in section 3.1.1, the main parameters I want to identify are
β(ri) and γ(ri), which determine how prices and ETAs affect the probability that
riders request a trip. The main challenge is that prices and ETAs are endogenous.

Response to prices I estimate riders’ response to short-run price changes by ex-
ploiting a feature of the surge pricing algorithm, whose main steps are:

1. After analyzing supply and demand in the whole city, the algorithm computes
a continuous recommended multiplier m̃lt for each location for the next period.

2. Recommended multipliers are rounded to the nearest tenth (or to 1 if <1.15).

3. Rounded multipliers are smoothed out in space and time.23

4. Smoothed multipliers are rounded to the nearest tenth (or to 1 if <1.15). The
outcome mlt is the surge multiplier.

The final price shown to riders is pi = b + mlt( p̄i − b), where p̄i is the unsurged
fare, the price for the trip if the multiplier was one, and b is a $2.30 booking fee.

Steps 2 and 4 provide a source of exogenous variation from which I identify the
effect of prices on demand. Since the final surge multiplier is a deterministic func-
tion of the vector of recommended multipliers m̃t, any correlation between demand
shocks and prices comes through m̃t. Once I control for recommended multipli-
ers, the residual variation, which arises solely from rounding, is uncorrelated with
demand shocks.

Cohen et al. (2016) also exploit rounding to estimate Uber demand, using a
RDD.24 I rely on stronger assumptions (which I state in section 5) that me to capture

too far in the direction x′ − x. One would expect averages to move in the opposite direction: if beliefs
on earnings increase, for instance, the number of drivers increases, decreasing average earnings.

23Temporal smoothing takes place by not allowing multipliers to change too abruptly. Spatial
smoothing takes place by computing a weighted sum of nearby multipliers.

24There is no spatial smoothing in their data, allowing them to set up a clean RDD. A big limitation
of their data is that Uber did not record the destination chosen by riders who did not request a trip.
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variation beyond the immediate neighborhood of the discontinuities; otherwise I
would not have enough power to estimate the main demand model.

Rounding generates small variation in prices. This might seem problematic,
given that my goal is to estimate agents’ response to larger changes in prices that
are generated by changes in pricing policies. However, I observe variation at differ-
ent price levels: sometimes the multiplier is rounded to 1 or 1.2, but it is also often
rounded to 2 or 2.3 (see in figure 4). My estimation procedure in practice chains to-
gether all these small responses to find the demand response to large price changes
without relying on extrapolation.25 In section 5.1.1 I show that this procedure is
valid if (a) the demand response is continuous and (b) the expectation of demand
shocks conditional on recommended multipliers is a continuous function.26

Response to pickup times The ETA that passengers observe depends on which
drivers are nearby. The number of nearby drivers is correlated with demand
shocks—if more people request trips, the number of available drivers goes down,
increasing ETAs—and, thus, it is endogenous. But drivers’ exact location relative to
riders is unlikely to be correlated with any demand shocks. For instance, two riders
may be half a block apart. A driver can pick up one of them right away but has to
go around the block to pick up the second one. The first rider could see an ETA of
three minutes while the second one sees an ETA of one minute.

I use this variation in ETAs to estimate the response of riders to pickup times.
I include fixed effects so that I only use variation within location by time period.
In essence, I compare pairs of riders who are in the same location and in the exact
same time period. Any systematic demand shocks that might cause endogeneity
would affect both riders equally, but fixed effects would clean them out.

Residuals and value of time Figure 7 shows the main variation in the data from
which I identify riders’ response to prices and ETAs, using the identification strat-
egy I described. I also show linear fits that emphasize the main trends. These are
not the actual residuals from my model. Instead, they are simply meant to give a
sense of the patterns in the data that give rise to my demand coefficients.

In figure 7a, the horizontal axis represents the variation in multipliers that re-
mains after controlling for the unrounded multiplier, an estimate of what the multi-

25Cohen et al. (2016) use this idea to build a demand curve and compute rider surplus.
26To be precise, section 5.1.1 shows that this procedure is valid for one particular continuous

demand response, but the same argument holds for an arbitrary continuous demand response.
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Figure 7: Residuals used to identify the response of riders to prices and ETAs

Note: In both figures, the variable in the vertical axis is the residual of a dummy for trip request.
Points represent the mean of this residual by bin of the horizontal axis variable, while point size
represents the number of observations. Subfigure (a) shows residuals from regressions on the un-
rounded multiplier—i.e, what the multiplier would be if there was no rounding in the surge pricing
algorithm. Subfigure (b) presents residuals from regressions on location by period fixed effects; I
omit observations between 11 pm and 7 am, which are unusually likely to have large ETA deviations
and show a small demand response.

plier would have been if there was no rounding in the surge pricing algorithm. I
explain how I compute it in appendix D.1. Observations to the right thus represent
times when the multiplier was rounded up, whereas observations to the left take
place when the multiplier was rounded down. The downward pattern means that
an increase in surge multipliers decreases the probability of trip request.

Figure 7b shows within location by time period variation in ETAs and trip re-
quest dummies. There is also a downward pattern, indicating that a higher ETA
decreases the probability of requesting a trip.

Comparing the slopes in subfigures 7a and 7b gives a sense of how riders trade
off higher multipliers and pickup times. The ETA coefficient divided by the price
coefficient is a rough measure of the value of time for riders. Following this idea,
figure 8 shows the average value of time for different subsamples of the data. I
compute it based on linear regressions of trip request on prices and ETAs, where I
control for the unrounded price and average ETA by location by time period to get
causal estimates. I include location by hour of the week fixed effects, and I allow
heterogeneous coefficients by trip distance.

The value of time for the whole dataset is around $2 per minute. One possible
explanation for this high value is that many riders request trips during time sensi-
tive moments. They might want to be in time for an appointment, or they simply
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might not want someone they are meeting to wait. In the extreme case, they do
not want to miss a flight when they go to the airport. The figure shows significant
variation in the value of time for different subsamples: it is higher during the week
than during weekends, and it is especially high for airport trips.
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Figure 8: Value of time for subsamples of the data

Note: Each bar represents the average value of time for a subsample of the data. For each subsample,
I estimate a linear regression of trip request on price and ETA. I control for the unrounded price and
for the average ETA by location by time period. I allow all coefficients to vary linearly in the base
fare, which is a proxy for trip distance. I also include location by hour of the week fixed effects. For
each observation, I compute the value of time as the ETA coefficient divided by the price coefficient.

These values are similar to those implied by the elasticities that Cohen et al.
(2016) estimate for Uber riders using discontinuities in prices and ETAs. Buchholz
et al. (2019) estimate values for riders in Prague that, as a multiple of average wages,
are roughly one third of the values I estimate.27

My estimates could also be driven by behavioral effects: riders might overreact
to ETAs beyond their true value of time. I explain in my welfare analysis (section
6) that my main qualitative findings still hold if riders’ true value of time is lower.

4.2 Short-run supply response

In the model of drivers’ movements from section 3.2.1, the main parameter I want
to estimate is δ: the extent to which drivers move towards areas with high mean
earnings. This is challenging because changes in mean earnings are mainly driven
by surge multipliers, which are endogenous. If some shock induces drivers to move

27They find average values between $0.20 and $0.30 per minute. The average wage in Prague was
Kc 41,851 per month (around $10 per hour). The average wage in Houston was around $26 per hour.
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towards a certain area—for instance, if they expect an event to end—higher supply
induces lower multipliers.

Just as when estimating demand, I exploit the exogenous variation that arises
from rounding in the surge pricing algorithm to estimate drivers’ response. In
order to measure broad patterns in the data, I aggregate the space surrounding
every available driver into six direction cones, as in the figure to the left of table 1. I
then run six regressions. In each one of them, the outcome variable is a dummy for
whether the driver moved to one of these cones. I regress the dummy on the average
multiplier in every one of the six cones. To obtain a causal estimate, I control for
the average recommended multiplier in each cone; thus, my estimates are identified
from variation that arises from rounding. I also control for the multiplier in the
driver’s location as well as for location by hour of the week fixed effects.

Table 1: Effect of multipliers on movement direction
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Dependent variable:
Dummy for moving to cone in parentheses

(1) (2) (3) (4) (5) (6)

Avg. multiplier 0.22∗∗∗ −0.04 −0.16∗∗∗ 0.07 −0.04 −0.04
in cone 1 (0.07) (0.07) (0.06) (0.07) (0.06) (0.06)

Avg. multiplier −0.04 0.29∗∗∗ 0.08 −0.18∗∗ −0.07 −0.07
in cone 2 (0.07) (0.08) (0.06) (0.07) (0.07) (0.07)

Avg. multiplier −0.05 −0.09 0.16∗∗ −0.04 −0.01 0.04
in cone 3 (0.07) (0.08) (0.07) (0.08) (0.07) (0.07)

Avg. multiplier −0.09 −0.05 −0.05 0.37∗∗∗ −0.06 −0.12∗

in cone 4 (0.06) (0.07) (0.07) (0.09) (0.08) (0.07)

Avg. multiplier −0.08 0.04 −0.05 −0.15∗ 0.22∗∗∗ 0.01
in cone 5 (0.06) (0.07) (0.06) (0.08) (0.08) (0.07)

Avg. multiplier 0.02 −0.13∗ 0.03 −0.07 −0.04 0.19∗∗∗

in cone 6 (0.06) (0.07) (0.05) (0.07) (0.07) (0.07)

Observations 645,133 645,133 645,133 645,133 645,133 645,133

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The figure on the left shows how I aggregate the space surrounding a driver into six location
cones. In the table on the right, each column reports estimates from a regression of a dummy for
whether a driver moved to one of the cones on the average multiplier in every cone. I control for the
average recommended multiplier by cone, for the multiplier in the driver’s location, and for location
by hour of the week fixed effects. Standard errors are clustered by location and hour of the week.

Table 1 shows the estimates from these regressions. The estimates on the diag-
onal are all positive and significant. Off-diagonal terms are noisier, but they tend
to be negative. Thus, as multipliers increase in one cone, drivers are more likely
to move towards that cone and less likely to move to the other five cones. This is
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evidence that drivers tend to move towards areas that have high multipliers.

4.3 Long-run response

Two parameters in my model determine the log run elasticities of demand and
supply (σ and ρ). My data from Houston was all generated under the same surge
pricing policy, so I do not observe any variation I can use to identify agents’ long-
run response. Instead, I use data from one-week experiments that Uber ran in
2017 in six Latin American cities (Belo Horizonte, Guadalajara, Mexico City, Rio de
Janeiro, and São Paulo) with the purpose of estimating long-run elasticities.

On the demand side, riders were split into a control group and two treatment
groups. Treated riders got 10% or 20% discounts for every trip they took during the
experiment week. On the supply side, riders were split into a control group and
a treatment group that got 10% higher earnings for every trip they made during
the week. The experiment ran from Monday to Sunday, and treated agents were
notified on Sunday before the experiment started.

I measure the elasticity of demand with a Poisson regression of the number
of trips taken by each rider on the log price factor (log(1) for the control group,
log(0.9) and log(0.8) for treatment groups). To measure the elasticity of supply,
I run a Poisson regression of a dummy for working on a given day on the log
earnings factor (log(1) for the control group, log(1.1) for the treatment group).28

Table 2 shows the estimates from these regressions.29 Appendix G.6 shows some
additional results, including average treatment effects by city.

There are some potential problems with these experiments. First, they only
measure the response of people who had an Uber account; they do not measure the
effect of new riders and drivers. Second, they only measure the response during
one week; thus, they do not measure the response, for instance, of people who
decide to sell their car. This could be tackled with longer run experiments, but that
would be are prohibitively costly.

Third, these elasticities were not measured in Houston. Uber had at least 80%
of the market share in all these cities at the time of the experiment, alleviating the
concern that cities with alternative ride-hailing apps should have higher elasticities.
There remain, however, many other ways in which cities differ. They are located in

28This regression measures whether a driver works in a given day, but not whether he works more
hours. Appendix G.6 shows that a regression of hours worked yields almost identical estimates.

29I exclude Mexico City from the demand sample because of an unexpected pattern: the 10%
discount group suggests a positive demand slope. See the details in appendix G.6.
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Table 2: Long-run elasticities

(a) Demand

Dependent variable:
Trips per rider

Log price factor −0.633∗∗∗

(0.059)

City FE X
Observations 177,349

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust s.e.

(b) Supply

Dependent variable:
Worked dummy

Log earnings factor 0.383∗∗∗

(0.099)

City × week day FE X
Observations 266,000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust s.e. clustered by driver

Note: Estimates of the long-run elasticities of demand and supply based on experimental data. For
demand, I estimate a Poisson regression for the number of trips requested by driver on the log of the
price factor—e.g., log(0.9) if the rider was in the treatment group with a 10% discount. For supply,
I estimate a Poisson regression for whether the driver worked during every day on the log of the
earnings factor—e.g., log(1.1) if the driver was in the treatment group with 10% higher earnings.

different countries, for instance, and the availability of public transportation differs.
Because of these concerns, I run my counterfactuals using a large range of values
for ρ to check for robustness. I find that the magnitude of the welfare effects change,
but the main qualitatitve results remain the same (appendix F.1).

5 Estimation and results

5.1 Demand

5.1.1 Trip request

My goal is to estimate equation (1). My identification strategy follows the ideas
from section 4.1: I identify the price response from rounding in surge multipliers
and the ETA response from within location by time period variation.

I estimate the following equation:

Ui = α(ri, l, h) + β(ri)pi + γ(ri)wi + g(m̃t, p̄i, w0
lt; l, h) + ηi, (7)

where w0
lt = E[wi|l, t] is the expected ETA at the location by period level. Rela-

tive to the original utility specification (1), this equation decomposes the error as
εi = g(m̃t, p̄i, w0

lt; l, h) + ηi, where g(m̃t, p̄i, w0
lt; l, h) is a flexible control function that

depends on the vector of all recommended multipliers, the base fare, the expected
ETA, the location, and the hour of the week.

I assume that the error ηi is orthogonal. That is true as long as the control func-
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tion captures all the correlation between εi and covariates, which can be justified
intuitively. First, the fare pi is fully determined by (i) recommended multipliers,
(ii) the base fare, and (iii) rounding in the surge algorithm. Thus, if one controls
flexibly for recommended multipliers and the base fare, the only variation in prices
that remains comes from exogenous rounding. Second, if one controls for w0

lt, only
the variation in wi within location by period remains, which, I have argued, is ex-
ogenous.

This argument relies on a correct specification of the control function. In other
words, it must be flexible enough to capture the true dependence. In appendix C, I
show formally that if the control function is correctly specified, and if the following
assumptions (which I state formally in the appendix) are satisfied, then the error ηi

is indeed orthogonal and the price coefficient is identified:

1. The fare pi is a deterministic function of recommended multipliers and the
base fare that has at least one discontinuity in m̃t.

2. Variation in ETAs within location by period—i.e., (wi −w0
lt)—is orthogonal to

demand shocks, base fares, and recommended multipliers.

3. Demand shocks and recommended multipliers are related smoothly.

The first assumption is a property of the surge pricing algorithm. The discon-
tinuities provide the variation I use to identify the price response. The second
assumption states that within location by period, variation is exogenous. The third
assumption is necessary to identify price coefficients. If it was not true, it would not
be possible to tell apart discrete changes in recommended multipliers and rounding
in the surge multiplier.30 It is true because the surge pricing algorithm computes
recommended multipliers as smooth functions of market observables.

I now describe the functional form I specify for g(·). First, I estimate a model
based on high dimensional splines of recommended multipliers to predict the un-
rounded multiplier m̂it, which is what the surge multiplier would have been if there
was no rounding. My fit depends on all multipliers within the closest seven
rings of hexagons that surround location i. I allow the weights given to loca-
tions in every one of the seven rings to vary by location. The full details of my
specification are presented in appendix D.1. Then I compute the unrounded price

30Part 3 plays the role of the main RDD assumption, which is that the conditional mean of each
treatment group must be continuous in the forcing variable. It is stronger in that (a) the functional
form for conditional means of different treatment groups must be the same and (b) g(·) must be
correctly specified. Stronger assumptions allow me to use variation beyond a small threshold around
the discontinuity.
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p̂i = bi + m̂lt( p̄i − bi), which is the fare the rider would have seen without round-
ing.

I specify g(m̃t, p̄i, w0
it; l, h) = α̃( p̄i; l, h) + g1( p̂it) + g2(m̃t) + g3(w0

it), where the
terms gi(·) are high dimensional splines.3132 With this functional form, the price
coefficient is identified from variation in pi − p̂i, which arises from rounding—
as long as my model for p̂i is correct—and the ETA coefficient is identified from
variation in wi − w0

it. I also include g2(m̃t) to control for any variation that was not
captured by my model for p̂i.

I assume that β(ri) and γ(ri) depend on ri linearly. I set ri = p̄i: I use the un-
surged fare as a measure of traffic-adjusted trip distance. The term α̃( p̄i, l, h) is then
absorbed by the original intercept term α(ri; l, h), which I assume is additively sep-
arable into a cubic function of distance and a function of (l, h). The latter should be
as flexible as possible to capture broad demand patterns. I cannot use fixed effects
at the location by hour of the week level: it would result in 1025× 168 parameters,
which is of the order of magnitude of the number of observations. Instead, I include
two flexible, high order splines that account for variation somewhat more smoothly,
with 155 degrees or freedom.33

To estimate equation (15), I plug in w̄lt for w0
lt.

34 I assume that the error ηi is
distributed iid logistic. My model is thus simply a logit model with a large number
of covariates, which I estimate by maximum likelihood.

Results Table 3 shows estimates for the main demand parameters. The price and
ETA coefficients are negative, as expected. The average over all drivers of the value
of time—the ETA coefficient divided by the price coefficient—is $1.84 per minute,
which is consistent with the analysis in section 4.1.

Figure 9a shows how the price coefficient, the ETA coefficient, and the value of

31All functions are cubic splines with knots placed evenly at quantiles of the distribution of the
variable the spline depends on. g1 is of order 8, g2 is of order 5, and g3 is of order 5.

32In practice, I find that neither omitting g2(·) nor increasing the order of the splines has any
noticeable impact on my results.

33I include a tensor product spline of latitude and longitude with five degrees of freedom on each
coordinate, interacted with a quadratic function of how busy the hour of the week is. I also interact
a sixth order spline of the hour of the day with a function that behaves linearly from Monday to
Friday, as well as dummies for Saturday and Sunday, all of which I interact with a quadratic function
of how busy the location is. In appendix G.7, I compare linear models using this methodology and
fixed effects to show that they both lead to very similar estimates.

34This could be problematic. The number of observations in each location by time period group
is small, so I cannot rely on asymptotics to state that w̄lt converges to w0

lt. In appendix G.1, I present
an alternative specification that avoids this problem, but assumes that w0

lt are uncorrelated with
covariates. I find very similar parameter estimates with both models.
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time vary with the base fare. As the base fare increases, riders are less responsive to
both prices and ETAs: people who want to go far away do not care as much about
one dollar or one minute. The price coefficient approaches zero faster that the ETA
coefficient, so the value of time is higher for riders who want to go far away.

Table 3: Estimates of demand parameters

Dependent variable:
Request

Base fare −0.0253∗∗∗

(0.0027)

Fare −0.0471∗∗∗

(0.0141)

Fare × base fare 0.0010
(0.0007)

ETA −0.0847∗∗∗

(0.0135)

ETA × base fare 0.0004
(0.0011)

Observations 650,233

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Estimates of the parameters of the main demand model (equation (7)), which measures how
the probability that a rider requests a trip responds to changes in prices and ETAs. The price and
ETA coefficients are evaluated at the mean of the base fare.

Figure 9b shows how the price elasticity varies with the base fare. It is very low
for short trips, which account for the majority of the observations. It increases until
an elasticity is reached of around 0.35 for trips around $30, which is the typical
fare for trips from the city center to airports. Thus, the price coefficient decreases
in absolute value as the base fare increases, but not so fast that demand becomes
less elastic. This has an intuitive interpretation: people respond more to a 1% price
change in a $30 trip than in a $5 trip, but they respond more to a $1 change in a $5
trip than in a $30 trip.

The average price elasticity is 0.17. This value is low, but it should not be sur-
prising because it is a very short run elasticity. Furthermore, Houston has few al-
ternative transportation options: there is no competing ride-hailing app, and public
transit is limited. One useful benchmark is the estimates from Cohen et al. (2016).
They find price elasticities around 0.45. Their estimates are probably higher because
they analyze cities like New York, San Francisco, and Chicago, all of which have
good transportation alternatives.
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Figure 9: Coefficients, value of time, and price elasticity from the main demand model

Note: Subfigure (a) plots estimates for the price coefficient, the ETA coefficient, and the value of time
as a function of the base fare. Subfigure (b) shows implied price elasticities as a function of the
base fare. Every observation represents one rider. Tones of grey represent a two-dimensional kernel
density. The red line is a nonparametric fit.

5.1.2 Opening the app

The main parameter of the rider arrival model in section 3.1.2 is ρ, which measures
the long run elasticity of demand. I now explain how it set its value.

In practice, the number of combinations of distance group, location, and hour of
the week (r̃, l, h) is too large to estimate U(r̃, l, h) consistently. Thus, I aggregate the
data into larger groups. I define r̃ as five distance quintiles, I aggregate locations
into 32 zones a with similar number of arrivals, and I aggregate hours of the week
into 14 groups g.35 I set U(r̃, l, h) = Ũ(r̃, a(l), g(h)), where a(l) is the zone that
contains l, g(h) is the hour group that contains h, and Ũ(r̃, a, g) denotes average
utility by distance group, zone, and hour group.

I model Ar̃hl based on the decomposition Ar̃hl = ψd Ãr̃a(l)g(h)χ
g(h)
h χ

a(l)
l . The term

ψd is a uniform scale factor for all demand. Ãr̃a(l)g(h) is a demand shifter at the

distance group by zone by hour group level. χ
g(h)
h is a factor that captures hourly

patterns; I set it to be equal to the fraction of arrivals during hour group g that take
place during hour h. Finally, χ

a(l)
l allows me to model spatial patterns precisely. It

is equal to the fraction of arrivals to zone z that take place in location l.

35The groups are: early morning weekday (7-9 am), late morning weekday (9-11 am), midday
weekday (11 am-1 pm), early afternoon weekday (1-4 pm), mid afternoon Mo-Thu (4-6 pm), late
afternoon Mo-Thu (6-8 pm), early evening Mo-Thu (8-10 pm), late evening Mo-Thu (10 pm-1 am),
Friday afternoon (4-8 pm), evening Fridays and Saturdays (8 pm-12 am), bar hours Fridays and
Saturdays (12 am-3 am), Saturday and Sunday morning (9 am-2 pm), and Saturday and Sunday
afternoon (2-8 pm). All remaining hours are off-peak hours.
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I set the values of Ãr̃ag and ρ jointly so that (a) for every (r̃, a, g), the total arrival
rate is equal to the average arrival rate in the data given the Ũ(r̃, a, g) I compute
from the data and (b) the market-wide elasticity of demand is equal to the value of
-0.633 from table 2. This system is exactly identified. It results in a value of ρ = 1.72.

I set ψd and a similar uniform scale factor ψs for supply at the values such that
simulations of the market equilibrium in the status quo result jointly in the same
number of trips and the average surge multiplier that I observe in the data. This
results in a factor ψd = 1.034. This scale factor is different from one because of
some complications in the data that I do not account for in my model. For instance,
a small percentage of trips are requested from Google Maps or other external apps,
in which case the rider is not in my demand dataset.

5.2 Supply

5.2.1 Movement

I now explain how I estimate the parameters from the movement model from sec-
tion 3.2.1: ω(l, k, h) and δ in equation (4). As with my trip request estimation, I
identify δ only from variation that arises from rounding in surge multipliers.

The model I estimate is

Pr(lj,t+1 = k|st) =
exp

(
ω(l, k, h) + δvk(st) + gM(m̃tk; l, h)

)
∑k′ exp

(
ω(l, k′, h) + δvk′(st) + gM(m̃tk; l, h)

) . (8)

This amounts to assuming that the unobserved term ζkt from equation (4) is equal
to gM(m̃tk; l, h), which is a function of the recommended multipliers surrounding
location k.

This allows me to estimate δ based on variation that arises from rounding. The
intuition is the same as in the trip request model. Mean future earnings vk(st) are a
function of multipliers, which, in turn, are a function of recommended multipliers.
If gM is flexible enough, it captures all of the variation in vk(st) that arises from
recommended multipliers. Thus, the residual variation that identifies δ comes solely
from rounding and is arguably exogenous.

In appendix C I justify this procedure formally under the assumption that the
movement rule arises from a latent variable model. My argument relies on gM

being specified correctly, on the errors in the latent variables having an extreme
value type I distribution, as well as on the following two assumptions, which are
entirely analogous to the assumptions used for the trip request model:

31



1. Mean future earnings are a function of recommended multipliers that have at
least one discontinuity.

2. Supply shocks and recommended multipliers are related smoothly.

Part 1 is necessary because it provides the variation I need to identify δ. It can be
justified by noting, first, that surge multipliers are a function of recommended mul-
tipliers with discontinuities, and, second, that those discontinuities should induce
discrete changes in mean future earnings. Part 2 is analogous to the assumption
of smooth conditional means in RDDs. This is a reasonable assumption because
recommended multipliers depend smoothly on market observables.

The functional form that I use for the control function is gM(m̃tk; l, h) =

ω̃(l, h) + g̃M(m̃tk). The term ω̃(l, h) is then absorbed by ω(l, k, h). g̃M(m̃tk) is the
sum of twelve splines, one for the average unrounded multiplier in each one of the
six nearest hexagon rings around the current location, and one for the average rec-
ommended multiplier in each one of the six nearest hexagon rings. I thus assume
that there is no interaction between terms.

The value of vk(st) that I use for estimation arises from data averages. Let Πjt be
driver j’s realized hourly earnings from time t + 1 until t + t̄ or the time he leaves,
whichever comes earlier.36 I would want to average Πjt by the state and subsequent
position to obtain an estimate of vk(st). However, the state space is so big that there
are far more states than observations. Instead, I fit the following model:

Πjt = α(l′, h) + f (mtl′) + χjt, (9)

where l′ is the direction driver j moved to. The term α(l′, h) plays the role of location
by hour of the week fixed effects. I use the same specification from the trip request
model, which has 155 degrees of freedom.

The term f (mtl′) is a flexible function of mtl, the vector of multipliers surround-
ing location l. My goal is not to predict earnings as accurately as possible; to do
that I would use a machine learning methodology. Instead, I want to capture an
intuitive functional form that models drivers’ expectations well.

I use a relatively simple smooth function that is radially symmetric. It includes
all multipliers and their squares up to a distance 7 from the current location, a
dummy for whether each multiplier is greater than one, and the maximum mul-
tiplier at each distance. To simplify the model, I constrain the coefficient for each

36A naive choice would be to discard all drivers that leave before t + t̄. This, however, would bias
my estimates of the choice-specific value: drivers that are matched quickly are more likely to stay.
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one of these terms to be linear in the distance to the current location. I show in
appendix D.2 that my fit follows the two main patterns one would expect it to fol-
low: expected earnings increase with surge multipliers, and they increase as more
neighboring locations have surge pricing. A surge multiplier of 1.5 in all surround-
ing hexes, for instance, results in expected earnings that are $4.85 higher.

I assume driving costs of $0.26 per mile. This is the internal Uber estimate
for the average UberX car in Houston, including fuel, maintenance, repairs, and
depreciation.37 For available drivers, I assume they drive 1.6 times the straight-
line distance between their origin and destination locations. This approximates the
average ratio of driven to straight-line distance when picking up.

I set ω(l, k, h) = ζk
l + χ

nk
zl ,gh . The term ζk

l represents origin by destination fixed
effects, and it captures the fact that drivers’ movements are defined to a large extent
by road patterns. The term χ

nk
zl ,gh represents fixed effects that model the fact that

traffic patterns change over the week. To capture this, χ
nlk
zl ,gh are fixed effects for the

cartesian product of 9 zones zl for the origin location, 15 hour of the week groups
gh, and 19 movement trends nlk that take into account the general direction and
distance of moving from l to k.38

If driver j is in location l, I limit the driver’s possible destinations to the set Kl of
the nl most frequent movement destinations from l. It includes as many destinations
as it is necessary to account for over 98% of the movements that started in l. This
results, on average, in 25 possible movement choices for each origin location l.

I estimate my model by maximum likelihood. The optimization is complicated
by the large number of fixed effects. Some fixed effects only affect a small num-
ber of observations, which might lead to an incidental parameters problem. Some
Monte Carlo simulations, however, show that the bias from this problem is negligi-
ble.39 The large number of fixed effects also means that maximizing the likelihood
function with a standard nonlinear optimization algorithm would need too many
iterations iterations because of the large parameter space. To reduce the number
of iterations, I divide the problem into an outer loop that maximizes over δ and

37Drivers are covered by insurance paid by Uber while they are working
38The 9 zones are the interaction of three quantiles for latitude and three quantiles for longitude.

The hours of the week are the same as in footnote 35. Movement trends are the product of 6
directions according to the hexagonal lattice and three distance groups. The middle group consists
of movements between 5

6 and 6
5 of the average movement distance by direction and location. An

additional group includes drivers who stay in the same location.
39I simulate data assuming my maximum likelihood estimator (δ̂ = 0.0878) is correct, and maxi-

mize the likelihood based on the simulated dataset. The mean estimate for δ over twenty simulations
is 0.0897 with standard deviation 0.006.
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gM(m̃tk) and an inner loop that maximizes over the fixed effects ζk
l and χ

nk
zl ,gh (see

appendix D.3).

Results The estimate I obtain for the main parameter is δ̂ = 0.0878 (s.e.= 0.016,
N = 1, 094, 729). To interpret this quantity, consider a driver who is equally likely
to move to one of four destinations surrounding him in the next period. If earnings
in one of the four location increase by $3, which roughly corresponds to an increase
in surge multipliers from 1 to 1.5 in all surrounding hexes, the probability that the
driver goes in that direction increases from 0.25 to 0.302.

A reference point to which one can compare this estimate is the results provided
by Lu et al. (2018), who estimate a similar multinomial logit model based on a surge
pricing outage that affected Uber drivers using iOS but not those using Android.
They find that, on average, the example above would cause an increase in the prob-
ability of going towards the location with higher earnings from 0.25 to 0.269. The
effect they measure is smaller, but it is of the same order of magnitude as the one I
measure.40

5.2.2 Entry

The main parameter of the driver arrival model in section 3.2.2 is σ, which measures
the long-run elasticity of supply. I now explain how it set its value.

Just as with the arrival of riders, the number of groups (l, h) is too large to allow
me to estimate Wlh consistently for each group. I aggregate locations into 32 zones s
with a similar number of driver entries, and I aggregate hours of the week into the
same groups defined in footnote 35. I then set Wlh = W̃s(l)g(h), which is the average
hourly earnings for all drivers who start working in the zone to which l belongs
s(l) during the hour group to which h belongs g(h).

I model Blh based on the decomposition Blh = ψsB̃s(l)g(h)ϕ
g(h)
h ϕ

s(l)
l . The first

term, ψs, is a uniform scale factor for all of supply. B̃s(l)g(h) is a supply shifter at

the zone by hour group level. ϕ
g(h)
h captures hourly patterns. I set it to be equal to

the fraction of drivers who start working during hour group g(h) that do so during
hour h. Finally, ϕ

s(l)
l captures fine spatial patterns. It is equal to the fraction of

drivers who enter to zone z that do so in location l.
40Two reasons might explain the differences. First, their model has no fixed effects, so the error

term has higher variance than it would if they had included fixed effects. Second, earnings are more
correlated than multipliers, so earnings differences across locations are relatively small.
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I set σ and all B̃sg jointly so that: (a) for every (s, g), the total arrival rate is equal
to the average arrival rate in the data given the observed W̃sg; and (b) the market-
wide elasticity of supply is equal to the value of 0.383 from table 2. This system is
exactly identified. It results in σ = 0.246.

As I explain in section 5.1.2, I set ψs and ψd at the values such that simulations
of the market in the status quo result jointly in the same number of trips and the
average surge multiplier that I observe in the data. This results in ψs = 1.274. This
scale factor is different from one because of some complications in the data that I
do not account for in my model, such as the fact that some drivers decide to work
both for UberX and UberBLACK, UberXL, or UberEATS (a food delivery service).

5.2.3 Exit

I assume that the distribution Gh of the intended shift duration during week hour
h is Gamma(αh, βh). I estimate the parameters by maximum likelihood. Let D̄j be
the actual shift duration for driver j, and let t0

j + ¯
Dj be the last time that the driver

was available but did not leave. The driver must have had an intended exit time
between D̄j and

¯
Dj. Thus, the likelihood for driver j is given by

Lj(αh, βh, D̄j, ¯
Dj) = F(D̄j; αh, βh)− F(

¯
Dj; αh, βh). (10)

Appendix D.4 compares the overall distribution I fit for Dj with the distributions of
D̄j and

¯
Dj. The assumption of a Gamma distribution seems well justified.

5.3 Matching technology

I need to estimate two elements in the matching model from section 3.3: (i) the
distribution of ETAs G(·|li, lj, bj, h) for individual rider-driver pairs; and (ii) the
matching rates φa and φb.

For the distribution of ETAs, I first fit a random forest of all realized pickup times
as a function of pickup coordinates, the driver’s coordinates at the time pickup
started, the time of the day, and the hour of the week.41 Let ŵ(xi, xj, h) be the
predicted pickup time of this model, where xi and xj represent the rider and driver
coordinates, respectively. I also fit a linear model of the standard deviation of the

41The random forest includes transformations of the variables to improve out-of-sample MSE: 45◦

rotations of coordinates, latitude and longitude differences and 45◦ rotations, straight-line distance,
the ratio between coordinate differences and straight-line distances, and sines and cosines of the
hour of the day and day of the week.
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residual of this model by bins of the prediction ŵ. Let ˆsd(ŵ) be the fit from this
model.

Based on these two elements, I follow a three-step process to generate draws
from G(·|li, lj, bj, h). First, I draw xi from the empirical distribution of all pickup
coordinates in location li, and I draw xj from the empirical distribution of all co-
ordinates of available drivers in lj.42 Second, I compute ŵ(xi, xj, h) from these co-
ordinates and ˆsd(ŵ) from this prediction. Third, I draw the pickup time from a
lognormal distribution with mean ŵ and standard deviation ˆsd.

I fit driver acceptance rates by the simulated method of moments. The two
moments I match are the average pickup time and the fraction of trips that are
assigned to busy drivers. How the moments relate to the parameters is intuitive:
higher acceptance rates result in matches with lower pickup times, and higher φb

relative to φa leads to a higher fraction of trips assigned to busy drivers. I simulate
moments from all of the trip requests and available drivers in the data. For param-
eters (φb, φa), I run my matching model for every period, after which I compute
moments.

Results The estimates I obtain are φ̂a = 0.816 (s.e.=0.037) and φ̂b = 0.104
(s.e.=0.009). The value for φ̂a is close to 0.8, which is the value in some models
used internally by Uber. The value of φ̂b is low because only a small fraction of
trips are assigned to drivers who are dropping of a passenger, despite the fact that
the number of drivers that will drop off a passenger is about the same as the number
of available drivers.

5.4 Model fit

With the parameter estimates I have described, I can simulate the behavior of the
market given agents’ beliefs. Using simulations to compute market equilibria is
challenging. In appendix B.4 I explain the algorithm I use to compute equilibria
and discuss how it solves those challenges.

To show that my model results in a good fit, I now compare the data with
results from simulations of the status quo in equilibrium. My model involves spatial
heterogeneity at a high resolution: I model trip origin and destination, as well as
driver movements, at the hexagon level. Figure 10 shows that these patterns in

42Fitting times directly on the coordinates of the midpoints of locations li and lj creates a selection
issue: the riders in li and drivers lj that are matched tend to be those who are close to each other.
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the model fit the data well. I focus on specific times of the week that have salient
patterns, but I show in appendix E that other times also have a good fit. Appendix
E also shows that the simulations fit high-resolution temporal patterns in the data.

Figure 11 shows that the simulated distribution of surge multipliers is close to
the one in the data. My model thus captures heterogeneity in a way that results in
the right amount of variation in supply-demand imbalances.43

6 Welfare effects

To measure the welfare effects of surge pricing I compare market simulations under
different pricing policies. I start by defining the components of welfare.

I compute rider surplus and driver surplus as sums of rider and driver surplus,
as defined in section 3, over the whole market:44

RS = ∑
lhr̃

Alhr̃
1 + ρ

U(l, h, r̃)ρ+1, DS = ∑
lh

D̄h
Blh

1 + σ
Wσ+1

lh . (11)

I compute Uber’s short-run profit as

Π = ∑
n

(
(1− τ − ν)pn − πn − In

)
. (12)

In this sum n indexes requested trips; pn is the trip fare, πn is the payment to the
driver, and In is insurance costs. Uber only gets a fraction (1− τ − ν) of the fare,
where τ is a 2% sales tax and ν is a credit card transaction cost that I set at 1%. Uber
pays πn = (1− κ) [(1− τ)pn − b] to the driver, where b is a $2.30 booking fee and κ

is the commission rate. In the data, κ varies between 24% and 28% among drivers,
depending on how long ago they became Uber drivers. I set it at its average, 26.3%.

Uber pays per-mile insurance whenever a driver is picking up or dropping off
a rider. The price they pay is the outcome of bargaining with insurers, and it is a
number they are not willing to disclose. In my model, I use a value of $0.30 per
mile, which is somewhat below market rates for private customers in Houston.45

43The mean of both distributions must be the same because I fit model parameters to that moment.
44The term inside the sum for driver surplus has a factor of D̄h, which is the average shift length

for drivers who start working during hour of the week h, since Blh
1+σ Wσ+1

lh is surplus per hour.
45At this rate, insurance costs are 18% of gross revenue. Uber’s financial statements imply a value

of only 10%, but that is because insurance costs in the US are much higher than in other markets.
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(a) Trips

(b) Driver movements

Figure 10: Trips and driver movements in simulations and in the data

Note: Subfigure (a) shows a 20% random sample of trips at certain hours from Monday to Thursday
for one week. Each line connects the origin and destination of a trip. Similarly, subfigure (b) shows
a random sample of 5% of the movements of available drivers. Each line connects the initial and
final location of an available driver during one period. Colors represent the direction of movement.
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Figure 11: Distribution of surge multipliers in simulations and in the data

Note: Histograms of surge multipliers in simulations and in the data. The fraction of observations
with multiplier 1 is 77.5% in the data and 79.2% in simulations.

6.1 Net welfare effect on riders, drivers, and Uber

In figure 12, I compare different surge pricing and uniform pricing policies. The
horizontal axis represents the average surge multiplier for the whole market. In
the upper left subfigure, the vertical axis represents total welfare—the sum of rider
surplus, driver surplus, profit, and tax revenue—relative to the status quo. The
point at which both dotted lines cross represents the status quo. The red, solid
line represents alternative surge pricing policies in which the multiplier is scaled
up or down by a constant scale factor: If under certain market conditions the surge
multiplier with the status quo is mlt, when the scale factor is f , the surge multiplier
is f mlt. Increasing f thus entails an increase in average multipliers.4647

The blue, dashed line represents policies in which there is a uniform surge mul-
tiplier that applies to all times of the week and all locations. The horizontal axis
simply represents the level at which the uniform multiplier is set. Thus, moving ver-
tically from a uniform pricing policy towards the surge pricing policy right above
it represents a mean preserving spread of the surge multiplier.

Welfare has an inverted-U shape: it is low both with high and low prices. In
the case of surge pricing, it is maximized at an average multiplier that is slightly
above one. This is not mechanical: Uber in fact prices at a level that is close to
welfare maximizing. For every level of the average multiplier, surge pricing results

46The average multiplier is not proportional to f because of equilibrium effects.
47I could counduct a similar exercise in which, instead of scaling the multiplier up or down, I add

or subtract some fixed quantity to the multiplier. This results in almost identical figures.
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Figure 12: Welfare under different pricing policies

Note: These figures compare welfare and its components (rider and driver surplus, short-run profits)
for different pricing policies. The horizontal axis represents the average surge multiplier for the
whole market. The vertical dotted line is the average surge multiplier in the status quo. The vertical
axis represents total welfare, rider surplus, driver surplus, or short-run profits relative to the status
quo. Curves for surge pricing represent different policies in which multipliers are computed just as
in the status quo, but then they are scaled up or down by a factor that is constant across the whole
market, which leads to different levels of average multipliers. Curves for uniform pricing represents
policies that have a unique multiplier for the whole market that is set at different levels.

in higher welfare. This means that there are efficiency gains from surge pricing.
The vertical distance is around 5.5% of gross revenue at the average multiplier in
the status quo.

The other three subfigures break down welfare into rider surplus, driver surplus,
and profit. Remarkably, most of the welfare gap between surge pricing and uniform
pricing is accounted for by rider surplus. Driver surplus and profit are also higher
for surge pricing, but only slightly. As expected, rider surplus is decreasing, except
for low prices, and driver surplus and profit are increasing. Uber prices well below
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short-run profit maximization.
There are two reasons for the large difference in the welfare gains of riders

and drivers. First, allocative efficiencies only benefit riders. When there are few
available drivers, trips are allocated randomly to those riders lucky to be close
to a driver, while unlucky riders do not get a trip. Surge pricing largely avoids
this by increasing prices, moving from a random allocation mechanism to a price
mechanism. While allocative efficiency benefits riders, it has no effect on drivers:
every driver’s valuation for a trip is the same—earnings from the trip minus the
driving cost. The bars at the left in figure 13a show how large those welfare gains
are when the status quo is compared to a uniform multiplier with the same average.

Second, surge pricing also improves welfare through time savings. Riders wait
less time to be picked up, and drivers spend less time picking up passengers and
waiting to be matched. The bars in figure 13b show how big those time savings are.
Drivers save almost four times as much time as riders. However, riders’ valuation
of one minute is much higher than drivers’, and so in dollar terms, riders’ time
savings are significantly more valuable. The bars at the right in figure 13a show the
size of those welfare gains.
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Figure 13: Efficiency gains of surge pricing

Note: These figures break down the efficiency gains of surge pricing, relative to a uniform multiplier
at the average level for the status quo. Subfigure (a) decomposes the change in rider and driver
surplus into better allocation (lower wasted surplus due to denied trips) and time saved (the decrease
in pickup time times riders’ value of time, and the decrease in time between trips times drivers’
average value of time). Subfigure (b) shows how much time riders and drivers save.

On average, surge pricing only saves a few seconds per trip for riders, but the
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savings are spread unevenly. The variance of pickup times goes down (subfigure
14a): surge pricing balances the market, making very low and very high pickup
times less likely. The most clear effect is that the upper tail of the distribution is cut
down (subfigure 14b). At the 95th percentile, pickup times go down by over half a
minute, and they go down by over one minute at the 99th percentile.
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Figure 14: Effect of surge pricing on pickup time

Note: Subfigure (a) shows the distribution of pickup times, both for surge pricing and for a uniform
multiplier at the average level for the status quo. Subfigure (b) shows the reduction in pickup times
for each percentile of the distribution as the market moves from uniform to surge pricing.

Optimal uniform pricing So far I have analyzed the effect of surge pricing relative
to a uniform multiplier at the status quo average. But if, for instance, a regulator
constrained Uber to set a uniform multiplier, Uber would reoptimize and set the
multiplier at a different level. I assume that to maximize long-run profits Uber max-
imizes a weighted sum of its short-run profits, rider surplus, and driver surplus.
Uber cares about rider and driver surplus because its goal is to maximize investors’
value in the long run. Higher rider and driver surplus means satisfied consumers
who are likely to return to the platform.

Let P be the set of policies the platform chooses from. Let Π(P), RS(P), and
DS(P) be short-run profits, rider surplus, and driver surplus, respectively, with
pricing policy P ∈ P . Then the platform’s problem is

max
P∈P

Π(P) + αRRS(P) + αDDS(P). (13)

To find weights αR and αD, I assume that in the status quo Uber selects a pricing
policy by choosing two parameters: the percent commission they take from every
trip, and a scale factor f for the surge multiplier. The weights are such that Uber’s
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first-order conditions for both parameters are equal to zero.
I find welfare weights αR = 0.804 and αD = 0.262: Uber values rider and driver

surplus, but not as much as it values its short-run profit. It also cares more about
rider surplus than driver surplus. Figure 15 plots Uber’s objective function for the
policies analyzed in figure 12. With surge pricing, this function is maximized at the
status quo. This should not be surprising: I chose welfare weights based on the
first order condition for this function. Uniform pricing leads to a lower value for all
average multipliers.
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Figure 15: Uber’s objective function under different pricing policies

Note: These figures compare the platform’s objective function and the average multiplier for different
pricing policies. The solid vertical line indicates the optimal uniform multiplier. The set of policies
I consider are the same as those examined in figure 12.

The most important feature of figure 12 is that the optimum average multiplier
is higher for uniform pricing than for surge pricing. A detailed explanation is
provided by Castillo et al. (2018). Driver scarcity is bad for riders because they are
matched to drivers who are far away. But it is also bad for drivers, who must spend
a long time picking up riders. Drivers end up inefficiently using their time picking
up riders far away, right when their time is most needed. A negative feedback loop
starts, wherein driver scarcity leads to inefficient driver time use, further fueling
driver scarcity. Rider surplus, driver surplus, and profit all decrease in a situation
Castillo et al. call a wild-goose chase.

The implication for the market is that at any given time and place, it is much
more painful for the platform to set prices too low than too high. That is less of an
issue with surge pricing: the algorithm takes care of avoiding prices that are too low.
But with a uniform multiplier, it is optimal to set a high multiplier to avoid wild-
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goose chases and a drop in the objective function. Appendix F.3 shows evidence
that this phenomenon is the reason why uniform pricing results in a higher optimal
multiplier.

●

●

●

●

●

●

●

●0.00%

2.50%

5.00%

Total
welfare

Rider
surplus

Driver
surplus

Short−run
Profit

D
iff

er
en

ce
 (

%
 o

f g
ro

ss
 r

ev
en

ue
)

Uniform multiplier

Status quo avg.

Reoptimized

Figure 16: Welfare effect of surge pricing

Note: The dashed line measures the welfare effect from surge pricing relative to a uniform multiplier
at the average from the status quo. The solid line measures the welfare effect from surge pricing
relative to a uniform multiplier at the level that maximizes Uber’s objective function.

Figure 16 shows the welfare effect of surge pricing on every side of the market.
The dashed line compares the status quo to a uniform multiplier at the average of
the status quo; thus, it only measures welfare changes due to efficiency gains. The
solid line compares the status quo to uniform pricing at the optimum from figure
15. It also takes into account the fact that surge pricing results in lower average
prices, and, thus, it transfers welfare from drivers and Uber towards riders. Rider
surplus increases with surge pricing, both because of efficiency gains and lower
prices. In contrast, there is a net decrease in driver surplus and short-run profits:
the decrease from lower prices overtakes the small increase from efficiency gains.

Appendix F.1 shows that these results are robust to higher long-run elasticities.
Magnitudes differ, but the main qualitative results still hold. The only change is
that, when demand elasticity is high, driver surplus and short-run profits are some-
what higher with surge pricing because the effect from lower prices is not enough
to overcome the effect from better matching.I also show that the main qualitative
results also hold with versions of the trip request model in which the value of time
is lower.
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6.2 Welfare effects within drivers and riders
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Figure 17: Distribution of drivers’ expected earnings

Note: Kernel density plots of drivers’ expected hourly earnings by entry location and hour of the
week. Each observation represents the average earnings of drivers who started working in that
location and time period, regardless of how long they kept on working.

Drivers Figure 17 shows the distribution of drivers’ ex-ante hourly earnings, both
in the status quo and with uniform pricing at the level that maximizes Uber’s ob-
jective function. Surge pricing not only reduces average hourly earnings; it also
increases the dispersion in earnings, and, as a consequence, the density of drivers
that get low earnings is higher. This is perhaps not surprising. With surge pricing,
multipliers go down at times of low demand, precisely when hourly earnings are
lowest (see appendix F.2). The opposite happens during high-demand times.

Some critics (e.g., Goncharova, 2017) argue that surge pricing is undesirable
because it forces drivers to plan their actions carefully around surge pricing. If
drivers do not, they get earnings that are too low to cover their costs. My findings
suggest these critics might be correct. My results also suggest an explanation for the
structure of surge pricing, which has a low multiplier most of the time and higher
levels a small fraction of the time. If Uber lowered prices even further at times of
low demand, the negative effect on low-earning drivers would be magnified.

Riders Surge pricing might have undesirable distributional effects within riders.
Rich, high willingness to pay riders might be better off because they reliably get a
trip with a low pickup time—for which they sometimes have to pay a high price—
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while poor, low willingness to pay riders are priced out of the market when multi-
pliers are high.

In appendix F.2 I analyze how the effect of surge pricing varies by the price
of the rider’s cell phone and by the median income at the census tract where the
trip originated. I do not find any evident pattern, and, in particular, I do not find
that welfare gains are higher for riders with a more expensive cell phone or in
high-income areas. I also analyze how welfare effects vary by how much riders are
willing to pay. Riders who are willing to pay the most get the largest benefit from
surge pricing, but low willingness to pay riders are also better off. Sometimes they
are priced out, but they benefit when prices are low. Furthermore, they get lower
ETAs and their trip is less likely to be denied. The net effect is that they are ex-ante
better off.

I find heterogeneity in the welfare effects of surge pricing along other dimen-
sions, such as time of the week and trip distance (also see appendix F.2). In all cases
I find that all riders are better off, with one exception: riders who want to request a
trip during a couple of hours on Friday evening and Saturday midday each week,
when surge multipliers are highest. All this evidence suggests that concerns about
redistribution within riders are not well justified.

One limitation of my model is that it does not capture heterogeneity in riders’
behavior by income. Presumably, higher income riders are less elastic and have
a higher value of time; surge pricing could therefore affect riders differently de-
pending on their income level. I do not have access to data on riders’ income, so I
cannot measure heterogeneity by income level directly. One possible extension of
my model, however, would be to allow for heterogeneity by the price of riders’ cell
phone, which can be thought of as a proxy for riders’ income.

7 Conclusion

In the debate about the desirability of surge pricing, economists’ standard argu-
ments about efficiency gains are challenged by concerns that individual market
participants might be hurt. My results provide evidence that supports both sides of
the debate. I find efficiency gains that lead to higher welfare. I also find that riders
benefit substantially from surge pricing, and I do not find evidence that any riders
are worse off. Riders’ frequent complaints might arise because they are not aware
that, without surge pricing, they would have to wait longer for less reliable trips.
On the other hand, my findings about drivers’ earnings—a small overall decrease
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and an increase in variance—suggest that drivers might be right to complain about
surge pricing. This is especially true given their low average earnings, which are
only slightly above minimum wages.

A question left unanswered by my paper is what the effects of surge pricing
would be if there was competition between platforms. This is a complicated issue
given that platforms compete for both riders and drivers, some of whom might
multi-home. It could be, for instance, that at times of scarcity higher multipliers
would induce riders to switch to a competing platform that would then deplete a
common pool of multi-homing drivers. Platforms would then be more reluctant to
increase prices, even if it would improve the efficiency of the market. The main
challenge that prevents me from tackling these issues is data availability, but cer-
tain assumptions about agents’ multi-homing behavior might shed light on these
questions.
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Appendix A Remaining details about the model

In this section I describe the parts of the model I did not explain in the main text. I
first explain how I model them, and then how I fit them to the data.

A.1 Rider destination, trip distance and duration, and base fare

Consider rider i, who opened the app at time t, during hour of the week h, at
location l, and wants to go to a destination in distance group r̃. His destination k
is drawn from a distribution Gdest(·|l, h, r̃) over locations in distance group r̃ from l,
which varies by hour of the week.

The dropoff distance (i.e., how many miles of driving are needed to get from the
origin to the destination) is equal to the straight-line distance between the origin
and destination times a factor that is drawn from a distribution Gdist(·|l, k, h) that
varies by origin, destination, and hour of the week. The dropoff duration (i.e.,
how much driving time it takes to get from the origin to the destination) is equal
to the dropoff distance times a factor drawn from a distribution Gduration(·|l, k, h)
that varies by origin, destination, and hour of the week. The dropoff distance and
duration are then used to compute the base fare using the fare structure used by
Uber at the time: the sum of a $2.30 commission plus a $1.00 fixed rate plus $0.87
per mile and $0.11 per minute.

Estimation

I split rider locations into 128 similarly sized origin groups o and into 128 similarly
sized destination groups d. For each pair, I compute which distance group r̃ the
distance between the midpoints lies in.

I assume that Gdest(·|l, h, r̃) is generated as follows. Let Klr̃ be the set of all
locations in destination groups d that are at a distance r̃ from ol, the origin group

where l is. Location k is drawn with probability
νkµol dk

λhdk
∑k′∈Klr̃

νk′µol dk′
λhdk′

. µoldk
is a factor

that measures how frequent is it to go from ol to dk. I estimate it as the fraction of
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trips from ol that go to dk. λhdk
measures how likely are people to go to locations

in dk during h, relative to other times of the week. I estimate it as the ratio between
the fraction of trips going to dk during h and the fraction of trips going to dk at all
times of the week. νk is a measure of how likely trips going to dk go to k. I simply
estimate it as the empirical probability.

I assume that Gdist(·|l, k, h) is a lognormal distribution with parameters
(µdist

lkh , σdist
lkh ). I estimate µlkh from a model of the log ratio between dropoff distance

and straight-line distance on origin group by destination group and hour fixed ef-
fects. I estimate σdist

lkh with a linear model of residual standard deviation by bins of
µdist

lkh .
I assume that Gduration(·|l, k, h) is a lognormal distribution with parameters

(µduration
lkh , σduration

lkh ). I estimate these parameters as above, starting from a model
of the log ratio between trip duration and dropoff distance.

A.2 ETAs and actual pickup distance and duration

The ETA shown to rider i is a function w(at, l, h) of the rider’s location and the hour
of the week, as well as on the number of available drivers in every nearby location,
denoted by at.

If the rider requests a trip and is matched to driver j, the actual pickup duration
is the one that was generated in the matching process (section 3.3). The pickup
distance, which is relevant to compute driver costs, is equal to the straight-line dis-
tance between the midpoints of the request location the location where the pickup
starts (either the driver’s location, or, if he is busy, the dropoff location) times a
factor drawn from a distribution Gpickup that has support [1, ∞).

Estimation

I generate the ETAs shown to riders from a random forest of ETAs on the coordi-
nates of the midpoint of the rider’s location, the hour of the week, and the number
of available drivers in every location relative to the rider’s location. As in my model
to predict ETAs for rider-driver pairs, I include transformations of the variables to
improve the model fit (see footnote 41).

In order to use the functional form I fit in my counterfactuals, this relation must
be causal. The exogeneity assumption is justified if I assume that, after controlling
for the number of available drivers in every surrounding location, variation in wait-
ing times arise only because of the idiosyncratic location of drivers around a rider,
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which is uncorrelated with any market characteristics.
I take Gpickup to be a shifted Gamma distribution (so that the minimum value

is one). I set the rate and scale parameters so that the average and variance of this
distribution match the empirical moments of the distribution of the ratio between
driving and straight line distances for pickups.

A.3 Outside behavior

I focus on an area of central Houston. However, I cannot simply ignore the behavior
in surrounding areas. The main problem is that few drivers work a whole shift
without ever exiting this central area.

In order to solve this issue, I split all of Houston into three regions. The first
one is my main region of analysis, where my full model applies. The second one is
a buffer zone surrounding the central area, which has roughly the same area as the
central region, in which I model drivers’ movements and match riders and drivers
just as in the inside region, but I do not model the response of demand to prices
and ETAs. Finally, the third area includes all locations outside of the buffer area.
I do not model drivers’ movements in this area. I simply model a single pool of
outside drivers that might be matched to riders who mechanically request trips in
this outside area.

Let l be a location outside the area of analysis. Regarding trip requests, I con-
sider the outside area to be one such location. During hour of the week h, riders
request trips from location l to a destination in distance group r̃ at a rate νlhr̃. For
every such request, the destination is chosen from a distribution Gdest,out(·|l, h, r̃),
and the distance and duration are drawn as with inside trips, using distributions
Gdist,out(·|l, k, h) and Gduration,out(·|l, k, h). For trips in the buffer area, pickup times
are the ones generated in the matching process. For those in the outside area,
pickup times are drawn from a distribution Gpickup,out(·|h) that varies by hour of
the week. For those in the buffer area, it is drawn as for inside trips, with a distri-
bution Gpickup,bu f f er.

Drivers’ movement model applies to the buffer area. Moving outside is just
one more option in the choice set they can take. Drivers that are outside move to
location l in the buffer area with probabilities pmovein(l; h) that depend on the hour
of the week, and stay outside otherwise. Drivers that drop off passengers after trips
that end in the outside area join the pool of outside drivers.

53



Estimation

I assume that Gdest,out(·|l, h, r̃), Gdist,out(·|l, k, h), Gduration,out(·|l, k, h), Gpickup,out(·|h),
and Gpickup,bu f f er are generated by the same process as their equivalents for inside
trips. I fit their parameters the same way, using the sample of trips that take place
outside. I estimate pmovein(l; h) as empirical frequencies.

Appendix B Details about equilibrium

B.1 Existence

Proposition 1. f P(·, θ) has at least one fixed point x∗ ∈ X .

Proof. f P(·, θ) is a continuous function, since all functions that are involved are
continuous. X can be bounded below by the greatest loss a driver can get (moving
back and forth between the two locations that are furthest away) and by zero utility,
and above by the earnings a driver would get if he was matched immediately in
all subsequent periods to the most profitable trip possible and by drivers’ utility if
prices and ETAs were both always zero. X is thus a convex, compact space, and by
Brouwer’s fixed point theorem Π has a fixed point.

B.2 Uniqueness

Assumption 1. f P(·, θ) is uniformly continuous, and there exists some δ < 1 such that
( f P(x, θ)− f P(x′, θ)) · (x− x′) < δ||x− x′||2 for every x, x′ ∈ X .

I cannot prove that assumption 1 is true, but it holds for every single pair (x, x′)
I have tried. A simple intuition justifies the second part. As beliefs change from
x to x′, drivers would tend to move towards locations and times with higher earn-
ings, and more riders would request trips at times and locations with higher util-
ities. Those crowded locations and times should then get lower earnings/utilities,
suggesting that the new vector x is negatively correlated with the old vector, i.e.,
( f P(x, θ)− f P(x′, θ)) · (x− x′) < 0. This condition is stronger than assumption 1.
It would only be violated if there are strong complementarities between riders and
drivers.

Proposition 2. Under assumption 1, f P(·, θ) has a unique fixed point.

Proof. Consider the mapping gγ : X → X defined by gγ(x) = (1− γ)x + γ f P(x, θ),
where 0 < γ < 1. It is straightforward to see that the set of fixed points of f P(·, θ)
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and gγ is the same. I will show that there exists some γ such that gγ is a contraction
mapping, which implies, by the contraction mapping theorem, that gγ has a unique
fixed point.

By uniform continuity, there exists some β < ∞ such that || f
P(x,θ)− f P(x′,θ)||
||x−x′|| <

β. For all x, x′ ∈ X we have that ||gγ(x) − gγ(x′)||2 = (1 −
γ)2||x− x′||2 + 2γ(1− γ)〈 f P(x, θ)− f P(x′, θ), x− x′〉+ γ2|| f P(x, θ)− f P(x′, θ)||2 <[
(1− γ)2 + 2γ(1− γ)δ + γ2β2] ||x − x′||2. A Taylor expansion about γ = 0 of the

term in brackets yields (1− γ)2 + 2γ(1− γ)δ + γ2β2 = 1 + 2(δ− 1)γ +O(γ2). This
quantity is less than one for small enough γ > 0, and since β is bounded, there
exists some γ > 0 and some δ ∈ (0, 1) such that ||gγ(x)− gγ(x′)|| ≤ δ||x− x′|| for
all x, x′ ∈ X . This means that gγ is a contraction mapping.

B.3 Stability

The most common notion of stability requires f P(·, θ) to be a contraction mapping
(at least in some subset of X , the basin of attraction of the equilibrium). The idea is
that, after some perturbation, the market is brought back to equilibrium by repeated
belief updating according to f P(·, θ). This is not necessarily true in my model. In an
extreme case, if drivers are too sensitive to earnings, they will all herd to the most
profitable locations, which will then get very small earnings according to f P(·, θ).
The next iteration would result in the opposite: drivers would herd away from those
regions.

The mapping gγ I used in the proof above corresponds to stability in terms of
a different belief update process. Suppose that only a fraction γ of agents update
their beliefs in every iteration. Alternatively, suppose that agents’ beliefs have some
inertia so that in every iteration they only give weight γ to new observations. The
mapping gγ(·) represents this kind of belief update process. Since gγ(·) is a con-
traction mapping, the market is stable according to this belief updating process.

B.4 Computation

Computing market equilibria has some complications. First, I cannot compute
f P(x, θ) directly. Instead, I can only compute an estimator f̂ P(x, θ) such that
E[ f̂ P(x, θ)] = f P(x, θ) by simulation. Second, a naive iterative algorithm, where
a sequence of beliefs (xn)∞

n=1 is generated according to xn+1 = f̂ P(xn, θ), often di-
verges. Third, even when this algorithm converges, it is hard to asses convergence
because of the randomness in the simulation.
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In order to solve these issues, I compute market equilibria by iterating on

xn+1 = (1− γn)xn + γn f̂ P(xn, θ), γn ∝ n−b, (14)

where b ∈ (0, 1). New beliefs are not empirical averages under old beliefs, but a
convex combination between old beliefs and the empirical average.

In essence, this algorithm consists of iteratively applying the contraction map-
ping gγ I defined to prove proposition 2, with a decaying value of γ. Beyond
assumption 1, in order to prove convergence I need the following assumption:

Assumption 2. Draws from simulation averages can be written as f̂ P(x, θ) = f P(x, θ) +

ε, where ε are mean-zero independent random variables with bounded variance.

Note that this specification for f̂ P(x, θ) is very flexible: I allow the distribution
of ε to depend on (x, θ) arbitrarily, as long as it has mean zero and the variance is
bounded.

Proposition 3. Let (xn)∞
n=0 be a sequence over X defined iteratively by equation (14),

where x0 ∈ X . Under assumptions 1 and 2, xn
P→ x∗.

Proof. First, note that E
[
||xn − x∗||2

]
= E

[
||(1− γn)xn−1 + γn f P

n (xn−1, θ)− x∗||2
]
+

γ2
nVar

[
ε
]
, where both terms can be separated by the independence of the error

terms ε. The algebra in the proof of proposition 2 implies that ||xn − x∗||2 <
[
(1−

γn)2 + 2γn(1− γn)δ + γ2
nβ2
]
||xn−1 − x∗||2 pointwise, so Vn <

[
(1− γn)2 + 2γn(1−

γn)δ + γ2
nβ2
]
Vn−1 + γ2

nΓ, where Vn = E
[
||xn − x∗||2

]
and Γ < ∞ is such that Γ >

Var
[
ε
]
. This recursion over Vn converges to zero (see Broadie et al., 2011, online

appendix), which implies that E
[
||xn− x∗||2

]
converges to zero and xn converges in

probability to x∗.

This process resembles maximization of an objective function by stochastic gra-
dient descent, with a decaying step γn. The fact that it decays ensures that the
sequence converges, since noise variance decreases with the weight. It converges to
the fixed point since ∑∞

n=1 γn = ∞, which means that the starting point eventually
becomes irrelevant.

There is a tradeoff when setting b. If it is too low, noise variance decays too
slowly. If it is too high, it takes a long time to incorporate information from new
runs. I set b = 0.8, which typically leads to stable beliefs after around 10 iterations.
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Appendix C Formal results about the identification strategy

C.1 Demand (trip request)

My identification strategy relies on the following assumption:

Assumption 3. Rider i’s utility is given by equation (1), which satisfies the following
properties:

1. pi = p(m̃t; p̄i, l), where p(·) is a deterministic function.

2. wi = w0
lt + ξi, where w0

lt = E[wi|l, t], and ξi is orthogonal to (εi, p̄i, m̃t).

The rider requests a trip if Ui > 0.

Under assumption 3, the causal effect of prices and ETAs can be isolated by
adding a control function that depends on (m̃t, w0

lt):

Proposition 4. Under assumption 3, the rider’s utility (1) can be rewritten as

yi = α(ri, l, h) + β(ri)pi + γ(ri)wi + g(m̃t, p̄i, w0
lt; l, h) + ηi, (15)

where g(m̃t, p̄i, w0
lt; l, h) = E[εi|m̃t, p̄i, w0

lt; l, h] and the error ηi has zero conditional mean:
E[ηi|pi, wi, m̃t, p̄i, w0

lt, l, h] = 0.

Proof. We can write εit = g(m̃t, p̄i, w0
lt; l, h) + ηi, where E[ηi|m̃t, p̄i, w0

lt, l, h] =

0 by the definition of conditional mean. This yields equation (15).
Since pi is a deterministic function of (m̃t, p̄i, l) and wi = w0

lt + ξi,
E[ηi|pi, wi, m̃t, p̄i, w̄lt, l, h] = E[ηi|wi, m̃t, p̄i, l, h, ξi] = E[εi|wi, m̃t, p̄i, l, h, ξi] −
E[E[εi|m̃t, p̄i, w0

lt; l, h]|wi, m̃t, p̄i, l, h, ξi]. By assumption, ξi is orthogonal to
(εi, p̄i, m̃t), and by its definition, it is orthogonal to (w0

lt, l, t). ξi can thus be dropped
out of both terms in the last expression, which is then equal to zero.

My identification strategy relies on estimating equation (15). This equation can
be estimated by standard regression techniques by proposition 4, which states there
are no remaining endogeneity issues after including the control function g(·).

The following assumption is necessary to ensure β(ri)pi and g(m̃t, p̄i, w0
lt; l, h)

are identified:

Assumption 4. Agents’ utility (1) satisfies the following properties:

1. p(m̃t; p̄i, l) has at least one discontinuity in m̃t.
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2. E[εi|m̃t, p̄i, w̄lt, l, h] is continuously differentiable in m̃t.

The first part of this assumption is a property of the surge pricing algorithm. The
second part states that recommended multipliers, unsurged fares, and the number
of available drivers are related smoothly with demand shocks. This is a reason-
able assumption since all the variables that are used as inputs to the surge pricing
algorithm and to define unsurged fares enter through smooth functional forms.

Proposition 5. Under assumption 4, there exists a finite vector X(m̃t, p̄i, w0
lt; l, h)

that is continuously differentiable in m̃t and such that E[εi|m̃t, p̄i, w̄lt, l, h] ∈
Span(X(m̃t, p̄i, w0

lt; l, h)). For any such vector, and for any nonzero function f (ri),
f (ri)p(m̃t; p̄i, l) /∈ Span(X(m̃t, p̄i, w0

lt; l, h)).

Proof. X(m̃t, p̄i, w0
lt; l, h) = E[εi|m̃t, p̄i, w̄lt, l, h] is continuously differentiable in m̃t

and E[εi|m̃t, p̄i, w̄lt, l, h] is in its span, which proves existence. Every linear
combination of X(m̃t, p̄i, w0

lt; l, h) is continuously differentiable in m̃t, whereas
f (ri)p(m̃t; p̄i, l) has at least one discontinuity in m̃t, so f (ri)p(m̃t; p̄i, l) /∈
Span(X(m̃t, p̄i, w0

lt; l, h)).

A practical concern is finding a vector X(m̃t, p̄i, w0
lt; l, h) whose span contains

E[εi|m̃t, p̄i, w̄lt, l, h]. A combination of high order splines should approximate it
well.

C.2 Supply (movement model)

Consider driver j in location l at time t during hour of the week h. Suppose that the
driver movement rule is given by lj,t+1 = argmaxk yk

j,t+1, where

yk
j,t+1 = ω(l, k, h) + δvk + ζk

j,t+1 (16)

My identification strategy relies on the following assumption:

Assumption 5. vk = vk(mt(m̃t); l, h) is a deterministic function of (m̃t; l, h).

Under this assumption, the causal effect of vk can be isolated by adding a control
function that depends on m̃t:

Proposition 6. Under assumption 5, yk
j,t+1 can be rewritten as

yk
j,t+1 = ω(l, k, h) + δvk + gM(m̃tk; l, h) + ψk

j,t+1, (17)

where gM(m̃tk; l, h) = E[ζk
j,t+1|m̃tk; l, h] and the error ψk

j,t+1 has zero conditional mean:
E[ψk

j,t+1|vk, m̃tk, l, h] = 0.
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Proof. We can write ζk
j,t+1 = gM(m̃tk; l, h) + ψk

j,t+1, where E[ψk
j,t+1|m̃tk; l, h] = 0 by

the definition of conditional mean. This yields equation (17). Since vk is a deter-
ministic function of m̃tk,, E[ψk

j,t+1|vk, m̃tk, l, h] = E[ψk
j,t+1|m̃tk, l, h] = 0.

My identification strategy relies on estimating equation (17). It can be estimated
by standard regression techniques by proposition 6, which states there are no re-
maining endogeneity issues after including the control function gM(·). Note that, if
ψk

j,t+1 are iid random variables with an extreme value type I distribution, then this
model reduces to movement rule (8).

The following assumption is necessary to ensure δvk and gM(m̃tk; l, h) are iden-
tified:

Assumption 6. The latent variable for drivers’ movement (16) satisfies the following prop-
erties:

1. vk = vk(mt(m̃t); l, h) has at least one discontinuity in m̃t.

2. E[ζk
j,t+1|m̃tk; l, h] is continuously differentiable in m̃t.

The first part of this assumption is justified if (a) mt(m̃t) has discontinuities, and
(b) those discontinuities translate into discrete jumps in vk. The second part states
that recommended multipliers are related smoothly with supply shocks. This is a
reasonable assumption since all the variables that are used as inputs to the surge
pricing algorithm and to define unsurged fares enter through smooth functional
forms.

Proposition 7. Under assumption 6, there exists a finite vector Z(m̃tk; l, h) that is con-
tinuously differentiable in m̃t and such that E[εi|m̃tk, l, h] ∈ Span(X(m̃tk; l, h)). For any
such vector, vk /∈ Span(X(m̃tk; l, h)).

Proof. Z(m̃tk; l, h) = E[ζk
j,t+1|m̃tk, l, h] is continuously differentiable in m̃t and

E[ζk
j,t+1|m̃tk, l, h] is in its span, which proves existence. Every linear combination

of Z(m̃tk; l, h) is continuously differentiable in m̃t, whereas vk has at least one dis-
continuity in m̃t, so vk /∈ Span(Z(m̃tk; l, h)).

A practical concern is finding a vector Z(m̃tk; l, h) whose span contains
E[ζk

j,t+1|m̃tk, l, h]. A combination of high order splines should approximate it well.
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Appendix D Estimation

D.1 Unrounded multipliers

I estimate a model of the form mlt = h(m̃t) + φlt to compute m̂lt = h(m̃t), the
unrounded multiplier, the multiplier that would have been set if there was no round-
ing in the surge pricing algorithm. The basic idea of this model is that it has the
same form as the surge pricing algorithm (described in section 4.1), except that I
omit the steps in which there is rounding. The recommended multipliers are sim-
ply smoothed out in space and time to obtain unrounded multipliers. I allow the
dependence on recommended multipliers to vary very flexibly by location, giving
me confidence that I am really accounting for everything except for the effect of
rounding.

First, let m̄lt be the bounded multiplier, which is the recommended multiplier
subject to the upper and lower bounds that the surge pricing algorithm sets on
multipliers, depending on the previous surge multiplier, to avoid abrupt multiplier
changes. These bounded multipliers are smoothed out spatially using the following
function:

mlt = α0,lh0(m̄lt) +
rmax

∑
r=1

αr,l ∑
k∈Rr,l

hr(m̄kt) + φlt (18)

Rr,l is the set of locations at a distance r from location l. The α coefficients repre-
sent the weight given to multipliers at a given distance from the current location.
Functions hr(·) represent a flexible functional form that gives the dependence of
multipliers on bounded multipliers at a distance r.

The functional form for takes into account the fact that the surge pricing algo-
rithm gives the same weight to all nearby locations that are at the same distance.
It is very important to allow α coefficients to vary by location because different lo-
cations have different number of nearby locations. For instance, the northernmost
locations have no neighbors to the north, so they have to give higher weights to
locations that are south of them. Furthermore, more dense areas give weights to a
smaller number of nearby locations.

I restrict the function for each distance to be the same for all locations. I use a
spline basis with 10 degrees of freedom to generate these functions.48 This results
in a nonlinear model which I estimate by iterating back and forth between two

48I select knots that are closer to each other for lower values of the bounded multiplier, where
most of the data lies. I also saw that further increasing the degrees of freedom has essentially no
effect.
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linear estimations. First, I estimate the weights given by each location to nearby
rings given some value of the splines. Then I estimate the splines given some
weights, and I use these splines to compute new weights. In other words, I follow
a coordinate descent algorithm until convergence.

0

1

2

3

1 2 3 4

Bounded recommended multiplier

F
u

n
c
tio

n
 v

a
lu

e Ring

0

1

2

3

Figure 18: Functional form of h(·) functions.

Results Figure 18 shows the functional form of the estimated h(·) for the first
three rings. They are all very close to the identity function, except for an important
nonlinearity close to 1. The reason for this is the gap due to the fact that the
multiplier is never 1.1. Figure 19 shows the residual variation φlt that I use to
identify the demand response to prices as a function of the bounded multiplier
at the observed location. There is substantial variation, especially around the gap
created by the fact that the multiplier cannot be 1.1.

D.2 Mean earnings fit

Figure 20 shows how f (mtk) varies as multipliers change. Earnings increase as
multipliers increase, and as more locations have higher surge levels. I plug in
vk(st) = α(k, h) + f (mtk)− ck

l to estimate the supply model.

D.3 Algorithm for estimation of the movement model

The likelihood of one individual observation is

Ljt =
λc

jlt

Λjlt
(19)
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Figure 19: Residual variation in multipliers

Note: Residual of regression (18) as a function of the bounded multiplier for a random subsample of
the data. The red line in the subfigure on the right represents a local fit.

where λk
jlt = exp(αk

l + γ
mk
zlht

+ βxk
jlt), and Λjlt = ∑k∈Kl

λk
jlt. The term βxk

jlt is equal
to δvk(st) + gM(m̃tk; l, h), written out as a linear combination of variables. In all
these expressions, k = c represents the action chosen by the driver in the current
observation.
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Figure 20: Expected hourly earnings as a function of multipliers

Note: Expected hourly earnings for the next 90 minutes as a function of surrounding surge multi-
pliers, relative to earnings when all multipliers are one. Each series increases the multiplier at the
origin. Rings refers to how many locations around the origin have surge pricing. For the series
with rings=4, for instance, all multipliers up to a distance 4 are equal to the multiplier at the origin.
Multipliers further than 4 decay smoothly all the way down to one.
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The likelihood maximization problem I wish to solve is

(α̂, γ̂, β̂) = argmax
(α,γ,β)

∑
jt

log Ljt(α, γ, β). (20)

The vector (α̂, γ̂, β̂) is very high dimensional, so a standard nonlinear optimization
algorithm takes too many iterations to converge. Instead, I follow an algorithm that
finds quickly the optimal value of (α, γ) given some value of β (I “concentrate" the
likelihood function). In other words, I solve

max
β

max
(α,γ)

∑
jt

log Ljt(α, γ, β), (21)

where the outer problem is a standard quasi-Newton algorithm for nonlinear opti-
mization. I now describe how I solve the inner problem.

Let f k
l be the fraction of drivers that move to location k after starting at location l,

and let pk
jlt be the probability that driver j in location l at time t moves to destination

k. The first order condition for likelihood maximization with respect to αk
l takes the

form f k
l = 1

Nl
∑jt pk

jlt, where the sum is over all observations where the driver starts
at location l. In other words, the value for fixed effects is such that the predicted
fraction of movements from l to k is equal to the sample fraction. This intuitive
condition arises from the assumption of extreme value type 1 errors.

Similarly, if f m
zh is the fraction of drivers that start in a location in z and at a

time in h that follow a movement trend in m and pm
jlt is the predicted probability of

driver j moving to a location corresponding to m, the first order condition for γm
zh is

that f m
zh = 1

Nzh
∑jlt pm

jlt, where the sum is over all observations staring in a location
in z and at a time in h.

These two conditions can be used to compute the values of the fixed effects
that maximize the likelihood, conditional on values of the main model parameters.

The probability pk
jlt can be written as

exp(αk
l ) exp(θXo

jlt)

∑o exp(αo
l ) exp(θXo

jlt)
, where θXjlt is the term cor-

responding to all variables that are not related to origin-destination fixed effects
(and it includes movement trend fixed effects). Thus, f k

l = 1
Nl

∑jt pk
jlt determines all

fixed effects implicitly, and they can be computed by iterating on s for the following
equation:

exp(αk,s+1
l ) =

f k
l

1
Nl

∑jt
exp(θXk

jlt)

∑o exp(αo,s
l ) exp(θXo

jlt)

(22)

This process is a sample analogue to the iterative process in Berry et al. (1995) to
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compute effects that are consistent with observed market shares, and converges for
the same reason: it is a contraction mapping. An analogous process allows me to
compute the set of fixed effects γm

zh.
My full algorithm thus looks as follows:

Set initial value of main model parameters and initial value for fixed effects;
while magnitude of gradient is greater than tolerance do

while maximum overall share gap is greater than tolerance do
while maximum gap between predicted and actual shares for
origin-destination is greater than tolerance do

Compute origin-destination fixed effects;
end
while maximum gap between predicted and actual shares for movement
trends is greater than tolerance do

Compute movement trends fixed effects;
end
Compute overall gap as the maximum of origin-destination and
movement trend gaps;

end
Compute gradient;
Compute new parameters based on gradient and inverse Hessian;

end

D.4 Shift length fit

Figure 21 compares the empirical distribution of D̄j and
¯
Dj with the distribution

of generated shift lengths. The estimated distribution is intermediate between both
distributions. Most importantly, it shows that the assumption of a gamma distribu-
tion seems reasonable.

Appendix E Model fit

In the next few figures I compare the output of my simulations and the data. Figure
22 shows temporal patterns of supply, demand, and the number of trips. Demand
and the number of trips fit the data very well. The number of drivers is somewhat
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Figure 21: Empirical and estimated distribution of shift length

Note: Distributions related to shift length. The actual duration represents how long the driver
worked before logging out. The last stay represents the last time the driver was available and chose
not to stop working. The intended duration represents the estimated distribution for the shift length,
which must be between the last stay and the actual duration.
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Figure 22: Temporal patterns in simulations and in the data

Note: Temporal patterns for supply, demand, and number of trips in simulations and in the data.
Demand is the number of sessions. Supply is the number of drivers working. Trips is the number
of trips that take place. All three figures are normalized so that the maximum in the data is one.
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less precise, but it still follows the broad patterns in the data.49

(a) Trips, data (b) Trips, simulation

(c) Driver movements, data (d) Driver movements, simulation

Figure 23: Spatial patterns in the data and simulations

Note: Each figure shows a random subsample of 10,000 observations. Figures showing the simulation
are for the status quo. For the first two figures, each line connects the origin and destination of a
trip. For the first two figures, each line connects the locations in which an available driver was at the
beginning and at the end of a two-minute period.

Figure 23 compares the main spatial patterns from my model, aggregated over
time. The first two subfigures show the main pattern of trips. The last two sub-

49It is much harder to match the supply in the data because it is a stock variable. It is not
enough to include fixed effects in the entry process, as with demand, since the exit process depends
endogenously on market behavior in equilibrium.
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(a) Trips

(b) Driver movements

Figure 24: Trips and driver movements in simulations and in the data

Note: Subfigure (a) shows a 20% random sample of trips at certain hours from Monday to Thursday
for one week. Each line connects the origin and destination of a trip. Similarly, subfigure (b) shows
a random sample of 5% of the movements of available drivers. Each line connects the initial and
final location of an available driver during one period. Colors represent the direction of movement.
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figures show the main movement patterns followed by drivers. In both cases, the
simulation follows the data closely.

Figure 24 shows the spatial patterns during the week at times that were not
shown in figure 10. Similar patterns can be seen for weekend trips. The number
of trips for the periods 7-11 am and 11 pm-3 am has a certain degree of mismatch.
The reason is that it depends on the number of available drivers, which are only a
small fraction of the total drivers. Any small mismatch in the number of drivers is
amplified when measuring the number of available drivers.

Appendix F Additional counterfactual results

F.1 Robustness of welfare effects

Long-run elasticities In order to explore how sensitive my main results are to
the values of the long-run elasticities, I fit the parameters of my model to higher
elasticities. Based on the new fits, I rerun all the counterfactuals in order to obtain
new estimates of the welfare effects of surge pricing.

Panel B in table 4 shows the result from that process. Every row represents one
version of the market that has different values of the elasticities. These results can
be compared to welfare results from the baseline market (panel A). The numbers
vary across rows, but the main qualitative takeaways do not change. Surge pricing
increases total welfare, and the main beneficiaries are riders. Driver surplus and
Uber’s short-run profits sometimes increase and sometimes increase, but by small
amounts. Its sign varies because of two opposing effects: an increase because of
matching that reduces drivers’ idle time, and a decrease because of lower prices. In
most cases the price effect is more important, but with high demand elasticity the
idle-time effect takes over.

Value of time I also measure welfare effects when modifying the parameters from
the request model so that the value of time is lower. In some counterfactuals I scale
up the price coefficient β(ri) by a factor of 1.5 or 2, and in some counterfactuals I
scale down the ETA coefficient γ(ri) by a factor of 0.75 or 0.5.

Panel C in table 4 shows these results. Every row represents one version of the
market that has different values of the trip request coefficients. The main qualitative
takeaways all remain the same. Total welfare increases, and the main beneficiaries
are riders. Driver surplus and Uber’s short-run profits decrease by a small amount.
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Table 4: Welfare effects of surge pricing with different model parameters

Market Demand Supply Fare coef. ETA coef. Total Rider Driver Short-run
elasticity elasticity factor factor welfare surplus surplus profits

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Baseline
Baseline – – – – 3.53% 6.98% -1.97% -1.42%

Panel B: Higher long-run elasticities

Higher supply elast. – 1 – – 4.37% 7.16% -1.43% -1.31%
– 1.5 – – 9.05% 10.20% -0.34% -0.81%

Higher demand elast. -1 – – – 4.20% 4.87% -0.25% -0.44%
-1.5 – – – 6.62% 6.26% 1.00% -0.69%

Higher supply and -1 1 – – 6.27% 7.62% -0.54% -0.83%
demand elasticities -1.5 1.5 – – 12.87% 8.35% 2.41% 1.86%

Panel C: Lower value of time for riders

Higher fare coef. – – 1.5 – 5.73% 8.69% -1.77% -1.16%
– – 2 – 6.14% 9.03% -1.75% -1.11%

Lower ETA coef. – – – 0.75 4.88% 6.55% -0.89% -0.76%
– – – 0.5 5.53% 7.45% -1.05% -0.85%

Higher fare coef. and – – 1.5 0.75 5.46% 7.46% -1.11% -0.87%
Lower ETA coef. – – 2 0.5 6.97% 8.88% -1.07% -0.83%

Note: This table shows the welfare effects of surge pricing when setting different values for some
model parameters. Every row represents one version of the market with different parameters. Panel
A represents the baseline market. Rows in panel B represent alternative markets with higher long-
run elasticities. Rows in panel C represent alternative markets with a lower value of time for riders,
in which the price coefficient is scaled up by some factor or the ETA coefficient is scaled down
by some factor. For every alternative market I rerun all the counterfactuals that are necessary to
measure the welfare effects shown in figure 16. Column (1) describes how the model differs from
the baseline market. Columns (2)-(5) describe in detail how parameters are modified relative to the
baseline market. A dash means that parameters are unchanged relative to the baseline market—i.e.,
elasticities are those from table 2, and coefficient factors are one. Columns (6)-(9) show effects on
total welfare, rider and driver surplus, and the platform’s short-run profits as the market moves
from an optimal uniform multiplier to the status quo.

F.2 Redistribution within riders and drivers

Drivers Figure 25 measures changes in drivers’ hourly earnings at different times
of the week. Drivers who work during busy times that have higher prices, especially
during Friday and Saturday, benefit from surge pricing. Drivers who work during
less busy times with low prices, in particular Monday-Wednesday, are hurt by surge
pricing.

Riders I run nonparametric fits of riders’ realized utility (max{Ui, 0}) as a function
of several variables for different counterfactuals. I then compare the model I fit
for different counterfactuals to measure how the welfare effects of surge pricing
(figure 26) vary along certain dimensions. I start by running models to measure
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Figure 25: Heterogeneity in the welfare effect of surge pricing on drivers

Note: The black, solid line represents changes in earnings as pricing moves to the status quo from a
uniform multiplier at Uber’s preferred level. The blue, dashed line represents changes in earnings
as pricing moves to the status quo from uniform pricing at the average multiplier in the data. The
lines are the differences between nonparametric fits. I run models of hourly earnings on the time
of the week (the tensor product of cyclic cubic regression splines for time of the week and time of
the day, using a cross-validated penalty). A shaded background indicates times when the average
multiplier with surge pricing is above the mean of the full sample. For each counterfactual, I run a
model based on simulated data for 15 weeks.

heterogeneity along proxies for drivers’ income. The first proxy is the price of the
rider’s smartphone in November 2019 (see upper left panel). The second proxy
is the median income in the census tract where the trip was requested (see upper
right panel). This is a good measure of rider income if rich people tend to request
trips from higher income neighborhoods. I find that although there is some slight
heterogeneity along both variables, there is no increasing trend, as would be the
case if surge pricing especially benefitted rich riders.

I run similar models to capture heterogeneity along riders’ willingness to pay
for a trip with ETA zero—α(ri, l, h) + εi in equation (1). That allows me to tell which
riders are willing to pay the most within a given location and time period. The middle
left panel shows that riders with a high willingness to pay benefit most from surge
pricing, but there is no level of willingness to pay at which riders are worse off.
The effect at a very low willingness to pay is zero—these riders would not request
a trip anyway. As willingness to pay approaches actual trip prices and people start
requesting trips, the benefits from surge pricing start to increase. Some of these
riders are priced out when multipliers are high, but they get a higher utility when
prices are low. Furthermore, they get lower ETAs and they are less likely to be
denied a trip. The net effect is that they are all ex-ante better off. Benefits then
increase along the whole distribution.

The middle right panel of figure 26 shows how the effect of surge pricing on
riders’ realized utility varies by base fare. Utility is measured as a percent of the
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Figure 26: Heterogeneity in the welfare effect of surge pricing on riders

Note: These figures show changes in riders’ realized utility as a function of several different variables.
Black, solid lines represent changes as pricing moves to the status quo from a uniform multiplier
at Uber’s preferred level. Blue, dashed lines represent changes as pricing moves to the status quo
from uniform pricing at the average multiplier in the data. The lines are the differences between
nonparametric fits (see details in the main text). For each counterfactual, I fit a model based on
simulated data for 15 weeks.
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trip price. Before taking into account average price changes, riders with short trips
benefit most: lower ETAs (which do not depend on the base fare) have a bigger im-
pact on them as a percent of the base fare. After considering average price changes,
riders who are going far are better off, because price effects take over.

To find heterogeneity by time of the week, I run models of realized utility on a
tensor product of two cyclic cubic regression splines, one for the time of the week
and one for the hour of the week. The subfigure on the bottom of figure 26 shows
how the effect of surge pricing on riders’ realized utility varies by the hour of the
week. The vast majority of riders are better off. Only a few riders who want to
request trips during a couple of hours when prices are highest, on Friday afternoon
and Saturday midday, are hurt by surge pricing.

F.3 Evidence of wild-goose chases

In this section I show some evidence that the wild-goose chases (WGCs) (Castillo et
al., 2018) are the reason why welfare and Uber’s objective function are maximized at
a higher average multiplier with a uniform price than with uniform pricing. Castillo
et al. show that WGCs can be diagnosed using a simple descriptive statistic: slack,
the ratio of available drivers to drivers that are picking up riders. It is a measure
of the availability of drivers. WGCs take place when slack goes below a certain
threshold that depends on the matching technology, but which is between 0.25 and
0.5.

Figure 27a shows the fraction of time that slack is below some threshold for
different pricing policies. In order to compute these fractions, I aggregate the out-
come of my simulation into half-hour periods. I only show results for thresholds of
0.25 and 0.5 for clarity, but similar, intermediate results can be seen for thresholds
between these two values.

Regardless of the threshold, it is evident that WGCs (i.e., times with low slack)
start taking place at higher prices with uniform pricing than with surge pricing. As
Castillo et al. emphasize, WGCs result in a decline in welfare. Thus, my findings are
consistent with welfare and Uber’s objective function starting to decrease quickly
after decreasing multipliers beyond a certain level that is higher for uniform pricing
than for surge pricing. Furthermore, the gap between surge pricing and uniform
pricing starts to widen precisely at the price level at which welfare and Uber’s
objective function start to drop down quickly relative to surge pricing (figures 12
and 15). This supports my claim that Uber sets higher prices with uniform pricing
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Figure 27: Evidence of wild-goose chases

Note: These figures show, for different pricing policies, how often slack—the ratio of available drivers
to drivers that are picking up riders—is below some threshold and how often pickup times are above
some threshold. Both types of event are telltale signs of wild-goose chases.

than with surge pricing because it wants to avoid entering WGCs.
I also show further evidence based on the number of extremely high pickup

times, which quickly start becoming more frequent as the market enters WGCs.
Figure 27b shows a similar pattern to figure 27a: high pickup times are extremely
infrequent with high multipliers. But as prices go down they suddenly become
frequent. The point at which they start taking place is higher with surge pricing
than with uniform pricing.
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Appendix G Additional empirical evidence

G.1 Hierarchical demand model

Suppose that riders’ utility follows equation 7, where

w0
lt ∼ N(µkh, ν), wi ∼ N(w0

lt, σ). (23)

The mean µkh represents some mean by location group k and hour of the week h,
and w0

lt represents a location by time period random effect.
This model avoids plugging in w̄lt as an estimator for w0

lt as in my main model,
which creates some bias because of the combination of two elements: (a) the main
model is nonlinear, and (b), the number of observations within every group lt is
small so I cannot rely on w̄lt being a consistent estimator for w0

lt. This new model,
however, has the drawback that it assumes random effects. In other words, it as-
sumes no correlation between w0

lt and my main model variables.
I estimate this new model by two-step maximum likelihood. In the first step, I

estimate σ2, ν2, and µkh based on the observed values of wi, i.e.,

µ̂kh = ∑
i∈kh

wi, σ̂2 =
∑lt(nlt − 1)s2

lt
∑lt(nlt − 1)

, ν̂2 = s2 − σ̂2 − 1
n ∑

i
(w̄kh − w̄)2 (24)

where w̄ = 1
n ∑i wi, w̄lt =

1
nlt

∑i∈lt wi, s2 = 1
n ∑i(wi− w̄)2, s2

lt =
1

nlt−1 ∑i∈lt(wi− w̄lt)
2,

n is the total number of observations, and nlt is the number of observations within
group lt.

In the second step, I maximize the conditional likelihood

L(θ, σ̂, ν̂, µ̂kh) = ∑
lt

∫
∑
i∈lt

Λ(ui(w0
lt))

yi(1−Λ(ui(w0
lt)))

1−yi dF(w0
lt|w, σ̂, ν̂, µ̂kh), (25)

where yi is an indicator variable for whether the rider requested a trip, and Λ is the

logistic function. The conditional distribution of w0
lt is normal with mean

µ̂kh
ν2 +

nltw̄lt
σ2

1
ν2 +

nlt
σ2

and variance 1
1

ν2 +
nlt
σ2

. I compute the integral by quadrature. In order to ensure the

optimization converges quickly—which is challenging given the high dimensional
parameter space—I use an iteratively reweighted least squares algorithm.

Table 5 reports the estimates from this model. Most of the parameters are very
close to the ones for the main model in table 3. The only noticeable difference is
that the coefficient for the interaction of ETA and the base fare changes sign. This
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Table 5: Estimates of the parameters of the hierarchical demand model

Dependent variable:
Request

Base fare −0.0288∗∗∗

(0.0027)

Fare −0.0466∗∗∗

(0.0122)

Fare × base fare 0.0011
(0.0008)

ETA −0.0947∗∗∗

(0.0127)

ETA × base fare −0.0035
(0.0021)

Observations 650,233

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Estimates of the main parameters of the hierarchical demand model. The price and ETA
coefficients are evaluated at the mean of the base fare.

means that riders’ value of time increases more quickly as the trip length increases.

G.2 Effect of past prices and ETAs on requests

I model rider’s behavior as a static decision. One important question is to what
extent this simplifying assumption biases my estimates for their response to price
and ETA changes. In order to measure this, I build a dataset with one observation
for every two minute period during which a rider interacted with the app. I focus
on the 79% of sessions in which the rider interacted at least twice with the app.

My goal is to determine what affects whether riders decide to request a trip,
leave the app, or wait until a later period (i.e., interact again with the app in the
following half hour). I run regressions of dummies for each one of these decisions
on my main demand model variables, as well as their lags, i.e., the last value that the
rider observed. In order to make sure I am measuring a causal relation, I include a
flexible function of the recommended multipliers surrounding the rider, the average
ETA at the location by time period level, as well as lags of both of these variables.

Table 6 shows the result of this exercise. Columns (1), (3), and (5) show regres-
sions that do not include lags. Higher prices and ETAs both lead to fewer requests
and a higher probability of staying. In other words, it seems that at least some
riders do choose to wait until later times. The coefficients on leaving are not sig-
nificant. Columns (2), (4), and (6) also include the lags of the main covariates. The
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coefficients are almost identical to those without lagged variables, which suggests
that not modeling the full dynamic process does not have a major effect on the
estimates of my model.

Table 6: Effect of previous prices and ETAs on probability of request

Dependent variable:
Request Leave Stay

(1) (2) (3) (4) (5) (6)

Base fare 0.0057∗∗∗ 0.0060∗∗∗ −0.0071∗∗∗ −0.0073∗∗∗ 0.0014∗∗ 0.0013∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0007) (0.0007)

Fare −0.0082∗∗∗ −0.0079∗∗∗ −0.0045 −0.0045 0.0127∗∗∗ 0.0124∗∗∗

(0.0030) (0.0029) (0.0034) (0.0034) (0.0038) (0.0038)

Fare lag 0.0007 −0.0023 0.0016
(0.0034) (0.0034) (0.0034)

Fare × base fare 0.0004 0.0004 −0.0001 −0.0001 −0.0004 −0.0004
(0.0003) (0.0003) (0.0002) (0.0002) (0.0003) (0.0003)

Fare lag × base fare −0.00003 −0.00002 0.0001
(0.0002) (0.0003) (0.0003)

ETA −0.0210∗∗∗ −0.0205∗∗∗ 0.0039 0.0039 0.0171∗∗∗ 0.0166∗∗∗

(0.0031) (0.0030) (0.0033) (0.0033) (0.0031) (0.0031)

ETA lag −0.0032 0.0025 0.0007
(0.0025) (0.0023) (0.0032)

ETA × base fare −0.00003 −0.00004 −0.0001 −0.0001 0.0001 0.0001
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

ETA lag × base fare −0.00001 0.0001 −0.00005
(0.0003) (0.0002) (0.0002)

Control function X X X X X X
Control fn. of lags X X X
Loc. × week hour FE X X X X X X

Observations 291,504 291,504 291,504 291,504 291,504 291,504

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Linear regressions of indicators for whether a rider requests a trip, leaves the app, or waits to
make a decision later. I only include the subsample of observations in which drivers had already
interacted with the app at least once during the previous half hour. Columns (1), (3), and (5) include
the main covariates in my demand model. Columns (2), (4), and (6) also include the lags of the
main covariates (prices and ETAs), i.e., the last value the rider observed. To measure causal effects,
all regressions include a flexible function of nearby recommended multipliers and average ETAs
by location and period, and regressions with lags include a flexible function of the lags of these
variables. Standard errors are computed by clustering at the location by hour of the week level.

G.3 Temporal correlation of multipliers

Figure 28 shows the temporal correlation of multipliers. Each point is the coefficient
of a regression of the surge multiplier on a lag of itself and location by hour of the

76



week fixed effects. Thus, it measures the persistence of unexpected variation in
multipliers. There is significant correlation for the first ten minutes. After that, the
correlation settles down at around 0.15.
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Figure 28: Temporal correlation of multipliers

Note: This figure shows an autocorrelation plot of the residuals of surge multipliers after control-
ling for location by hour of the week fixed effects. All correlations are so precisely estimated that
confidence intervals are within the line for the point estimate.

G.4 Effect of multipliers on expected earnings

In this section I present evidence of the effect of surge multipliers on expected
earnings. In order to do so, I estimate regressions of drivers’ net earnings for the
next h hours as a function of the multiplier in the driver’s location and nearby
locations. I include location and hour of the week fixed effects in every regression.

Figure 29 plots the main coefficient from these regressions. The effect is larger
for the three closest hexagon rings than only for the local multiplier, suggesting
that the local multiplier does not capture all information. But the difference is very
small if one also includes two additional rings, suggesting that the three closest
rings capture most of the information.

For all three series, the effect increases quickly as the time horizon increases, but
it starts to level off after one hour.

G.5 Short-run entry and exit

In this section I show that there is no empirical evidence that drivers respond to
unexpected changes in multipliers by entering or leaving the market. I first run
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Figure 29: Effect of multipliers on expected earnings

Note: This figure shows the main coefficient for regressions of hourly earnings for the next h hours
(the horizon) on current multipliers. When rings=1, the covariate is the local multiplier. For other
values of rings, the covariate is the average multiplier among locations within a certain number
of hexagon rings. All regressions include location by hour of the week fixed effects, and standard
errors are computed with two-way clustering by location and hour of the week.

a regression for whether open drivers decide to leave or keep on working as a
function of the multiplier in his location. I also run similar regressions, where
instead of the multiplier in the driver’s location, the main covariate is the average
multiplier in all locations within three or five hexagons. The averages give higher
weights to the nearest locations. In order to measure a causal effect, I control for the
recommended multipliers and for the unrounded multipliers in nearby locations.
Table 7 shows that there is no evidence of a causal effect. For reference, the fraction
of available drivers who leave in the whole data is 10.6%.

G.6 Additional results from elasticity experiments

Table 8 reports the result of regressions of trips per rider on treatment dummies.
The estimates are consistent for the average treatment effect given that drivers were
assigned randomly to their groups. As we can see, there is some heterogeneity
across cities. We can also see that Mexico city shows an unexpected positive elastic-
ity for the 10% treatment group. I thus exclude it from the main Poisson regression
used to calibrate the long run demand elasticity parameter ρ.

Table 9 reports the result of regressions of a dummy for working and hours
worked on treatment dummies. Columns (1)-(5) report results for each city. The
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Table 7: Effect of multipliers on probability of driver exit

Dependent variable:
Left

(1) (2) (3)

Multiplier 0.018
(0.028)

3-ring avg. mult. −0.010
(0.036)

5-ring avg. mult. 0.003
(0.036)

Loc. × week hour FE X X X
Rec. mult. controls X X X
Unrounded mult. controls X X X

Observations 1,218,286 1,218,286 1,218,286

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered by

location and hour of the week

Note: Linear regressions of an indicator for whether available drivers decide to leave as a function
of multipliers. I control for recommended and unrounded multipliers, so that the main coefficient
is identified from variation due to rounding in the surge pricing algorithm. The main covariate in
column (1) is the multiplier at the driver’s location. In columns (2) and (3), the main covariate is an
average of the multipliers within 3 and 5 hexagon rings surrounding the driver’s location. Standard
errors are clustered by location and hour of the week.

Table 8: Average treatment effects in demand experiment

Dependent variable:
Trips per rider

Mexico City Guadalajara Rio Sao Paulo Belo Horizonte
(1) (2) (3) (4) (5)

Constant 1.0470∗∗∗ 1.2558∗∗∗ 0.9200∗∗∗ 0.7142∗∗∗ 0.8179∗∗∗

(0.0125) (0.0138) (0.0110) (0.0098) (0.0104)

10% discount −0.0666∗∗ 0.0795∗∗ 0.0624∗∗ 0.0247 0.0534∗∗

(0.0264) (0.0331) (0.0255) (0.0228) (0.0244)

20% discount 0.0459 0.1616∗∗∗ 0.1883∗∗∗ 0.0422∗ 0.1800∗∗∗

(0.0282) (0.0341) (0.0280) (0.0226) (0.0265)

Observations 44,070 44,228 44,359 44,382 44,380

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Regressions of the number of trips taken by each rider on dummies for treatment group.

results are only significant for Rio de Janeiro. However, they are significant once I
pool al cities.

Table 10 shows the main supply elasticity estimate, as well as a Poisson regres-
sion of the number of hours worked on the log earnings factor. As we can see, both
coefficients are almost identical, suggesting that drivers do not respond by working
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Table 9: Average treatment effects in supply experiment

City:
Mexico City Guadalajara Rio Sao Paulo Belo Horizonte All cities All cities

(1) (2) (3) (4) (5) (6) (7)

Panel A. Dependent variable: Worked dummy

Constant 0.4823∗∗∗ 0.4686∗∗∗ 0.4079∗∗∗ 0.3708∗∗∗ 0.4065∗∗∗

(0.0041) (0.0042) (0.0046) (0.0045) (0.0047)

Treated 0.0160∗ 0.0136 0.0173∗∗ −0.0051 0.0191∗∗ 0.0125∗∗∗ 0.0125∗∗∗

(0.0084) (0.0085) (0.0086) (0.0079) (0.0086) (0.0038) (0.0038)

City FEs X
City × day of week FEs X
Observations 73,500 73,500 59,500 52,500 59,500 318,500 318,500

Panel B. Dependent variable: Hours worked

Constant 3.2920∗∗∗ 2.6268∗∗∗ 2.2418∗∗∗ 2.0771∗∗∗ 2.4149∗∗∗

(0.0343) (0.0290) (0.0312) (0.0322) (0.0365)

Treated 0.0807 0.0835 0.1508∗∗ −0.0712 0.1030 0.0713∗∗ 0.0713∗∗

(0.0703) (0.0596) (0.0594) (0.0548) (0.0657) (0.0280) (0.0280)

City FEs X
City × day of week FEs X
Observations 73,500 73,500 59,500 52,500 59,500 318,500 318,500

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors clustered by driver

Note: Panel A shows estimates of regressions of a dummy for whether the driver worked during
a given day on indicators for the treatment group. Panel A shows estimates of regressions of the
number of hours worked during a given day on indicators for the treatment group.

more hours per day.

Table 10: Long run demand elasticities

Dependent variable:
Worked dummy Hours worked

(1) (2)

Log of earnings factor 0.383∗∗∗ 0.401∗∗∗

(0.099) (0.123)

City × day of week FE X X
Observations 266,000 266,000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust s.e. clustered by driver

Note: Poisson regressions of a dummy for whether the driver worked during a given day and of
the number of hours worked during a given day. The dependent variable is the log of the earnings
factor, i.e., log(0.9) for treated drivers and log(1) for control drivers.
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G.7 Flexible controls

Table 11 shows linear regressions for a dummy of requesting a trip as a function of
the surge multiplier and the ETA. I estimate equation (7), with the only difference
that the left hand side variable is a dummy for requesting a trip. It is clear that the
high dimensional spline in my main demand estimation and location by hour of
the week fixed effects result in very similar coefficients.

Table 11: Linear regressions for demand

Dependent variable:
Request

(1) (2) (3)

Base fare −0.0026∗∗∗ −0.0046∗∗∗ −0.0039∗∗∗

(0.0009) (0.0010) (0.0006)

Fare −0.0048∗∗∗ −0.0098∗∗ −0.0076∗∗

(0.0006) (0.0050) (0.0033)

Fare × base fare −0.00001 0.0002 0.0001
(0.00002) (0.0003) (0.0002)

ETA 0.0029∗∗ −0.0171∗∗∗ −0.0172∗∗∗

(0.0014) (0.0047) (0.0032)

ETA × base fare −0.00004 −0.0001 −0.0002
(0.0005) (0.0004) (0.0003)

Control function X X
Coord. and week hour spline X X
Loc. × week hour FE X

Observations 650,233 650,233 650,233

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Estimates of linear regressions of the form of 7. Column (1) omits the control function. Column
(2) uses the same form as in main demand estimation. Column (3) uses location by hour of the week
fixed effects instead of splines. Standard errors are computed by two-way clustering by location and
hour of the week.

Appendix H Surge pricing and app interface

H.1 Typical multiplier pattern

Figure 30 shows the progression of multipliers during one particular Tuesday after-
noon.

H.2 App interface

Figure 31 shows what riders and drivers observe in the version of the app that was
active in the period of analysis.
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Figure 30: Surge multipliers during the afternoon of March 21, 2017

(a) Driver interface (b) Driver interface - zoom in (c) Rider interface

Figure 31: Screenshots of the app interface

Note: Subfigure (a) shows what drivers observe when they are available. Subfigure (b) shows how it
looks when they zoom in. Subfigure (c) shows what riders see when they choose a destination.
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