Foreign Shocks as Granular Fluctuations¹

Julian di Giovanni¹ Andrei A. Levchenko² Isabelle Mejean³

¹FRBNY, ICREA-UPF, BGSE, CREI and CEPR ²University of Michigan, NBER, CEPR ³CREST-Ecole Polytechnique and CEPR

July, 2020

¹The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of New York.

International business cycle shock propagation

- Textbook: cross-country propagation through relative prices, representative firm
 - e.g. BKK (1992), Kose and Yi (2006), Johnson (2014), ...
- Data: importing and exporting i) relatively rare; ii) strongly concentrated among largest firms
 - e.g. Freund and Pierola (2015), di Giovanni et al. (2017, 2018), ...
- "Micro of Macro": role of large firms, idiosyncratic shocks in aggregate fluctuations
 - Gabaix (2011), di Giovanni et al. (2014), Carvalho an Grassi (2015), ...

This paper

- A firm-level view of international shock propagation
- Foreign shocks (even purely aggregate) affect firms differentially depending on the extent and nature of their international linkages
- Census of French firms, 1993-2007
 - Value added/sales, bilateral imports and exports
 - Appended with WIOD: 40 countries, 32 sectors
- Quantitative model with heterogeneous firms, multiple countries, multiple sectors
 - Implemented directly on firm-level data
 - Simulate hypothetical and actual foreign shocks

Main results

- 1. Data: Larger French firms are significantly more sensitive to foreign GDP growth
- 2. Quantitative model, micro: Foreign shocks are mostly granular fluctuations

$$d \ln Y^F = \mathcal{E}^F + \Gamma^F$$

 Γ^{F} is 40 - 85% of the total effect of a foreign shock

- 3. Quantitative model, macro: Firm heterogeneity in importing dampens the GDP impact of foreign shocks
 - Shock reallocates market shares towards larger firms...
 - ... That have a lower influence on domestic GDP, conditional on their size
 - \Rightarrow Heterogeneity reduces the propagation by 15%

Literature

- Micro origins of macro fluctuations
 - Input-output networks: Carvalho (2010), Acemoglu et al. (2012), Foerster et al. (2011) Acemoglu et al. (2016) Atalay (2017) Grassi (2017), Baqaee (2018) Baqaee and Farhi (2019a,b) Bigio and La'O (2019), Foerster et al. (2019)
 - Large firms: Gabaix (2011), di Giovanni et al. (2014), Carvalho and Grassi (2018), Gaubert and Itskhoki (2020)
 - Firms + networks: Barrot and Sauvagnat (2016), Carvalho et al. (2016), Huneeus (2018), Lim (2018), Taschereau-Dumouchel (2019), Dhyne et al. (2020).
- International
 - Input linkages: Hummels et al. (2001), Yi (2003), Johnson and Noguera (2012, 2017), Burstein et al. (2008), Bems et al. (2010), Johnson (2014), Eaton et al. (2016a,b)
 - Network analytics: Baqaee and Farhi (2019c), Huo et al. (2020)
 - Firms: di Giovanni and Levchenko (2012), Kleinert et al. (2015), Cravino and Levchenko (2017), Blaum et al. (2016), Blaum (2018), Boehm et al. (2019), di Giovanni et al. (2018); Ghironi and Melitz (2005), Alessandria and Choi (2007)

Data sources

- France (firm level):
 - Fiscal administration: firm tax forms from INSEE-Ficus: value added, sales, intermediate usage, industry Statistics by sector
 - Customs: partner-country exports and imports (Trade in goods)
- World (sector level):
 - WIOD: global input-output matrix, 40 countries, 32 sectors
- Firm-level coefficients normalized to match WIOD at the sector level

Larger firms more sensitive to foreign GDP

	(1)	(2)	(3)	(4)
	D	ep. Var.: Lo	g change in firm	ı VA
Firm's size×World GDP growth	0.139°	0.160°	0.078ª	0.077 ^a
0	(0.020)	(0.020)	(0.021)	(0.022)
Firm's size	-0.015	-0.015	-0.015	-0.015
	(0.001)	(0.001)	(0.001)	(0.001)
World GDP growth	-0.962 ^a			
	(0.121)			
Firm's size×French GDP growth				0.003 ^b
				(0.017)
Observations	1,345,729	1,345,729	1,345,729	1,345,729
# years	11	11	11	11
# firms	122,339	122,339	122,339	122,339
Adjusted R ²	0.004	0.012	0.019	0.019
Fixed Effects	-	Year	Sector imes Year	Sector imes Year

• A doubling of firm size increases the elasticity of firm growth to world GDP by about 0.08

• Model's explanation: Large firms' exposure to foreign shocks through trade • More

Main ingredients

- Heterogeneous-firm, multi-country, multi-sector model of trade
 - Countries m, n, k, sectors i, j, firms f, g
- Rest of the world: no firm-level data \Rightarrow no heterogeneity within a sector
- France: heterogeneity in i) productivity, ii) input linkages, iii) export patterns, and iv) labor shares
- General structure: Armington + Melitz + IO linkages

Preferences of the representative household

- Increasing in consumption and leisure (Greenwood et al, 1988)
- Cobb-Douglas across sectors
- CES across countries within a sector (elasticity σ)
- CES across firms within a sector×country (elasticity ρ)
- \Rightarrow Demand addressed to firm f by market n:

$$X_{f,mn,j} = \pi_{f,mn,j} X_{mn,j}$$

Firms

- Monopolistically competitive
- Productivity: *a*_f
- Taste shocks: $\{\xi_{f,mn,j}\}_n$
- Firm-specific input bundle cost:

$$b_{f,m,j} = \left[\alpha_{f,m,j} w_m^{1-\phi} + (1 - \alpha_{f,m,j}) \left(P_{f,m,j}^M \right)^{1-\phi} \right]^{\frac{1}{1-\phi}}$$
$$P_{f,m,j}^M = \left[\sum_i \sum_k \gamma_{f,km,ij} P_{km,i}^{1-\eta} \right]^{\frac{1}{1-\eta}}$$

Firms

- Monopolistically competitive
- Productivity: *a*_f
- Taste shocks: $\{\xi_{f,mn,j}\}_n$
- Firm-specific input bundle cost:

$$b_{f,m,j} = \left[\alpha_{f,m,j} w_m^{1-\phi} + (1-\alpha_{f,m,j}) \left(P_{f,m,j}^M \right)^{1-\phi} \right]^{\frac{1}{1-\phi}}$$
$$P_{f,m,j}^M = \left[\sum_i \sum_k \gamma_{f,km,ij} P_{km,i}^{1-\eta} \right]^{\frac{1}{1-\eta}}$$

• Heterogeneity:

$$\pi_{f,mn,j} = \frac{\xi_{f,mn,j} a_f^{\rho-1} b_{f,m,j}^{1-\rho}}{\sum_{g \in \Omega_{mn,j}} \xi_{g,mn,j} a_g^{\rho-1} b_{g,m,j}^{1-\rho}}$$

The role of heterogeneity

• Aggregate and firm-level value added:

$$Y_{m} = \sum_{f} Y_{f,m} \rightarrow d \ln Y_{m}^{F} = \sum_{f} \omega_{f,m,-1} d \ln Y_{f,m}^{F}$$
$$d \ln Y_{m}^{F} = \underbrace{\frac{1}{N} \sum_{f} d \ln Y_{f,m}^{F}}_{\mathcal{E}^{F}} + \underbrace{\sum_{f} \omega_{f,m,-1} d \ln Y_{f,m}^{F} - \frac{1}{N} \sum_{f} d \ln Y_{f,m}^{F}}_{\Gamma^{F} \propto \text{Cov}(\omega_{f,m,-1}, d \ln Y_{f,m}^{F})}$$

The role of heterogeneity

• Aggregate and firm-level value added:

$$Y_{m} = \sum_{f} Y_{f,m} \rightarrow d \ln Y_{m}^{F} = \sum_{f} \omega_{f,m,-1} d \ln Y_{f,m}^{F}$$
$$d \ln Y_{m}^{F} = \underbrace{\frac{1}{N} \sum_{f} d \ln Y_{f,m}^{F}}_{\mathcal{E}^{F}} + \underbrace{\sum_{f} \omega_{f,m,-1} d \ln Y_{f,m}^{F} - \frac{1}{N} \sum_{f} d \ln Y_{f,m}^{F}}_{\Gamma^{F} \propto \text{Cov}(\omega_{f,m,-1}, d \ln Y_{f,m}^{F})}$$

• Firm value added growth:

$$d \ln Y_{f,m}^{F} \approx (1-\rho) \underbrace{ \left[\pi_{f,m,j,-1}^{\prime} d \ln w_{m} + \sum_{i} \sum_{k} (1-\pi_{f,m,j,-1}^{\prime}) \pi_{f,km,ij,-1}^{x} d \ln P_{km,i} \right]}_{\Delta \text{unit cost}} + \sum_{n} s_{f,mn,j,-1} \underbrace{ d \ln \left[\xi_{f,mn,j} \left(\frac{\tau_{mn,j}}{P_{mn,j}} \right)^{1-\rho} X_{mn,j} \right]}_{\Delta \text{demand}}$$

Calibration

- Solve the model in GE, transform to growth rates, use sales shares data directly (Dekle, Eaton, and Kortum, 2008) DEK
- Use GDP deflator to express results in real terms GDP deflator

Param.	Value	Source	Related to
	2	Prodo and Wainstein (2006)	subst electicity by firms
ho	5	Broda and Weinstein (2000)	subst. elasticity btw. firms
σ	1.5	Feenstra et al. (2018)	Armington elasticity
η	1	standard	subst. elasticity btw. inputs
ϕ	1	standard	subst. elasticity btw. inputs and labor
$\overline{\psi}$	3	Chetty et al. (2012)	Frisch elasticity
$ \begin{array}{l} \pi_{f,n,i}^{l}, \ \pi_{f,mn,ji}^{x} \\ \vartheta_{j} \\ \pi_{mn,i}^{c} \end{array} $	}	Our calculations based on French data and	labor and intermediate shares final consumption shares final trade shares
$\pi_{f,nk,j}$	-	WIOD	intermediate use trade shares

World shocks

	$d \ln Y^F$	\mathcal{E}^{F}	Γ^F	$d \ln Y^F$	\mathcal{E}^{F}	Γ ^F
Shock:	P	roductivit	y		Demand	
Baseline <i>Share:</i>	2.66	0.39 <i>0.148</i>	2.27 <i>0.852</i>	0.35	0.20 <i>0.572</i>	0.15 <i>0.428</i>
		S	ector-Level	Decompositio	on	
	$d \ln Y^F$	${\cal E}_J^F$	Γ_J^F	$d \ln Y^F$	${\cal E}_J^F$	Гſ
Baseline <i>Share:</i>	2.66	2.05 <i>0.773</i>	0.60 <i>0.227</i>	0.35	0.60 1.699	-0.25 <i>-0.699</i>

 \bullet d ln Y_{f,m} distribution \bullet d ln Y_{f,m} and firm size \bullet d ln Y_{f,m} and imported input share \bullet d ln Y_{f,m} and export intensity

Larger firms and foreign shocks: data vs model

	(1)	(2)	(3)
	Dep. Var.	: $d \ln Y_{m,j,t}$	$_{+1}(f)$
	Data	Mo	del
		World	World
		Prod.	Pref.
		Shock	Shock
$\ln Y_{m,j,t}(f) \times d \ln Y_{W,t}$	0.077 ^a	0.020 ^a	0.333 ^a
	(0.022)	(0.0001)	(0.001)
$\ln Y_{m,j,t}(f)$	-0.015 ^a		
	(0.001)		
Observations	1,345,729	385,928	385,928
# years	11	1	1
# firms	122,339	385,928	385,928
Adjusted R^2	0.019	0.444	0.432
Fixed Effects	Sector imes Year	Sector	Sector

Macro: dampening effect of heterogeneity

	$d \ln Y^F$	\mathcal{E}^{F}	۲ ^F	$d \ln Y^F$	\mathcal{E}^{F}	Γ^F
Shock:	Р	roductivity	y		Demand	
Baseline Share:	2.66	0.39 <i>0.148</i>	2.27 <i>0.852</i>	0.35	0.20 <i>0.572</i>	0.15 <i>0.428</i>
Homogeneous firms <i>Share:</i>	3.13	3.07 <i>0.982</i>	0.06 <i>0.018</i>	0.37	0.38 <i>1.025</i>	-0.01 <i>-0.025</i>

Intuition for the dampening effect

- Source of the dampening is heterogeneity in firms' production functions
 - Under homogeneity in input and labor shares across firms within a sector, $d \ln Y^F$ is invariant to the distribution of sales shares $\pi_{f,nk,j}$
- Firms importing inputs
 - 1. Are more sensitive to foreign shocks
 - 2. Have a lower influence on the domestic GDP, conditional on their size
- \Rightarrow In the fully heterogeneous model, foreign shocks reallocate market shares towards large, low-influence firms. This pushes the elasticity down

• Example in a $2 \times 2 \times 2$ model • Details

16/18

- A firm-level view of international shock propagation
- Reduced-form: large firms are more sensitive to foreign GDP growth
- Micro: Propagation of foreign shocks largely granular
- Macro: Heterogeneity dampens the GDP response to aggregate foreign shocks

Thank you!

Fact 2a: Larger firms more likely to export

Sources: French customs and balance-sheet data, for 2005. Restricted to T sectors. Foreign sales share is the share of exports in total sales

Fact 2b: Larger firms more likely to import

Sources: French customs and balance-sheet data, for 2005. Foreign inputs share is the share of foreign inputs in firms' total input expenditure

Price level and input shares

$$P_{mn,j} = \left[\sum_{f \in \Omega_{mn,j}} \xi_{f,mn,j} \left(\frac{\rho}{\rho-1} \frac{\tau_{mn,j} b_{f,m,j}}{a_f}\right)^{1-\rho}\right]^{\frac{1}{1-\rho}}$$
$$\pi_{f,m,j}^{l} = \frac{\alpha_{f,m,j} w_m^{1-\phi}}{\alpha_{f,m,j} w_m^{1-\phi} + (1-\alpha_{f,m,j}) \left(P_{f,m,j}^{M}\right)^{1-\phi}}$$
$$\pi_{f,km,ij}^{M} = \frac{\gamma_{f,km,ij} P_{km,i}^{1-\eta}}{\sum_i \sum_n \gamma_{f,nm,ij} P_{nm,i}^{1-\eta}}$$

▲ Back

GDP accounting in the model Real GDP:

$$Y_m = \sum_{j=1}^{J} \left(P_{m,j,-1} Q_{m,j} - P_{m,j,-1}^M M_{m,j} \right),$$

GDP change:

$$\widehat{Y}_{m} = \sum_{j=1}^{J} \omega_{m,j,-1}^{D} \left(\widehat{Q}_{m,j} - \pi_{m,j,-1}^{M} \widehat{M}_{m,j} \right)$$

Where:

$$\begin{aligned} \widehat{Q}_{m,j} &= \frac{1}{\widehat{P}_{m,j}} \times \frac{P_{m,j}Q_{m,j}}{P_{m,j,-1}Q_{m,j,-1}} \\ \widehat{M}_{m,j} &= \frac{1}{\widehat{P}_{m,j}^{M}} \times \frac{P_{m,j}^{M}M_{m,j}}{P_{m,j,-1}^{M}M_{m,j,-1}} \end{aligned}$$

GDP deflator:

$$\widehat{P}_m^{GDP} = \frac{\widehat{Y}_m^{NOM}}{\widehat{Y}_m}.$$

DEK (2008) formulation

$$\begin{split} \hat{X}_{mn,j} X_{mn,j,-1} &= \pi_{mn,j}^{c} \pi_{n,j}^{c} \left[\widehat{w}_{n} \left(\frac{\widehat{w}_{n}}{\widehat{\rho}_{n}} \right)^{\frac{1}{\psi-1}} s_{n,-1}^{L} + \widehat{\Pi}_{n} s_{n,-1}^{\Pi} + \widehat{D}_{n} s_{n,-1}^{D} \right] P_{n,-1} C_{n,-1} \\ &+ \sum_{i} \frac{\rho - 1}{\rho} \sum_{f \in i} (1 - \pi_{f,n,i}^{l}) \pi_{f,mn,ji}^{M} \sum_{k} \pi_{f,nk,i} \widehat{X}_{nk,i} X_{nk,i,-1} \\ &\pi_{mn,j}^{c} = \frac{\widehat{P}_{mn,j}^{1-\sigma} \pi_{mn,j,-1}^{c}}{\sum_{k} \widehat{P}_{kn,j}^{1-\sigma} \pi_{k,j,-1}^{c}} \\ &\pi_{f,nk,j}^{c} = \frac{\widehat{\xi}_{f,nk,j} \left(\widehat{b}_{f,n,j} \widehat{a}_{f}^{-1} \right)^{1-\rho} \pi_{f,nk,j,-1}}{\sum_{g \in \Omega_{nk,j}} \widehat{\xi}_{g,nk,j} \left(\widehat{b}_{g,n,j} \widehat{a}_{g}^{-1} \right)^{1-\rho} \pi_{g,nk,j,-1}} \\ &\widehat{b}_{f,m,j} = \left[\pi_{f,m,j,-1}^{l} \widehat{w}_{m}^{1-\phi} + (1 - \pi_{f,m,j,-1}^{l}) \left(\widehat{P}_{f,m,j}^{M} \right)^{1-\phi} \right]^{\frac{1}{1-\phi}} \\ &\widehat{P}_{f,m,j}^{M} = \left[\sum_{i} \sum_{k} \pi_{f,km,ij,-1}^{M} \widehat{P}_{km,ij}^{1-\phi} \right]^{\frac{1}{1-\phi}} \\ &\pi_{f,m,j,-1}^{l} \widehat{w}_{m}^{1-\phi} + (1 - \pi_{f,m,j,-1}^{l}) \left(\widehat{P}_{f,m,j}^{M} \right)^{1-\phi} ; \quad \pi_{f,km,ij}^{M} = \frac{\pi_{f,km,ij,-1}^{M} \widehat{P}_{km,i}^{1-\eta}}{\sum_{i} \sum_{n} \pi_{f,nm,ij,-1}^{m} \pi_{f,nk,j,-1}^{l} \pi_{n,k,i,-1}^{l} \left[\widehat{\pi}_{f,n,j,-1}^{l} \widehat{w}_{n,j}^{1-\phi} \right]^{1-\phi} \right] = 0 \end{split}$$

Summary statistics by sector (2005 data)

WIOD sector	# firms	Share VA	Traded/
			non-traded
Agriculture, Hunting, Forestry, Fishing	7,718	.0067	Т
Mining, Quarrying	1,022	.0041	Т
Food, Beverages, Tobacco	10,883	.0354	Т
Textile Products	1,684	.0039	Т
Leather, Footwear	2,501	.0058	Т
Wood Products	3,045	.0044	Т
Pulp, Paper, Publishing	7,721	.0202	Т
Coke, Refined Petroleum, Nuclear Fuel	50	.0056	т
Chemical Products	2,051	.0358	Т
Rubber and Plastics	2,992	.0155	Т
Other Non-Metallic Minerals	2,607	.0127	Т
Basic and Fabricated Metals	14,561	.0373	Т
Machinery n.e.c.	6,442	.0243	Т
Electrical, Optical Equipment	6,599	.0288	Т
Transport Equipment	1,804	.0315	Т
Manufacturing n.e.c.	4,946	.0086	Т
Electricity, Gas, Water Supply	321	.0364	NT
Construction	54,428	.0664	NT
Wholesale and Retail Motor Vehicles and Fuel	25,975	.0218	NT
Wholesale Trade	49,166	.0867	NT
Retail Trade	76,069	.0739	NT
Hotels and restaurants	29,135	.0259	NT
Inland Transport	9,244	.0401	NT
Water Transport	171	.0017	NT
Air Transport	66	.0085	NT
Other Transport Activities	2,068	.0256	NT
Post and Telecommunications	276	.0488	NT
Real Estate	7,726	.0425	NT
Business Activities	31,605	.1849	NT
Education	1,569	.0037	NT
Health and Social Work	6,200	.0200	NT

Distribution of labor shares across French firms

◀ Back

Distribution of $\boldsymbol{\epsilon}^{\mathrm{f}}$

$\boldsymbol{\epsilon}^{f}$ and firm size

Note: red horizontal line indicates baseline value of ϵ^{Y} ; x-axis is log-scale \checkmark Back

$\boldsymbol{\epsilon^{f}}$ and imported input share

Notes: red horizontal line indicates baseline value of ϵ^{Y}

 ϵ^{f} and export intensity

11/20

Feeding actual foreign shocks

• Firm value added following a foreign shock:

$$d\ln Y_{f,m}^F = \sum_n \epsilon_{f,n} d\ln a_n$$

• GDP change:

$$d\ln Y_m^F = \sum_f \omega_{f,m,-1} d\ln Y_{f,m}^F$$

Period	Data	Data Foreign TFP Foreign GDF			Foreign TFP			P		
	$d \ln Y_m$	Г	d	$\ln Y_m^F$	Γ^F	$\mathcal{E}^{\textit{F}}$		$d \ln Y_m^F$	Γ ^{<i>F</i>}	\mathcal{E}^{F}
1975–2014	1.54			0.28	0.26	0.05		0.11	0.10	0.01
1991–2007	1.11	0.96		0.27	0.25	0.06		0.07	0.06	0.02

Intuition for the dampening effect

• By definition, GDP change:

$$d \ln Y^F = \sum_f \lambda_f d \ln \widetilde{a}_f$$

where λ_f is firm *f*'s "influence:"

$$\lambda_f \equiv \frac{d \ln Y_m}{d \ln a_f}$$

and $d \ln \tilde{a}_f$ is a synthetic TFP shock that leads to the same change in value added as the foreign shock

$$d\ln\widetilde{a}_f = rac{1}{(1-
ho)}d\ln Y_{f,m,j}$$

• In comparison with the homogeneous model, influence of high $d \ln \tilde{a}_f$ firms is reduced due to the production involving less domestic value added

Aggregate impact • GDP change:

$$d\ln Y_m = \sum_f \lambda_f d\ln a_f$$

where λ_f is firm *f*'s "influence:"

$$\lambda_f \equiv \frac{d \ln Y_m}{d \ln a_f}$$

• Following a foreign productivity shock:

$$d \ln Y_{f,m,j} = (1-
ho) d \ln \widetilde{a}_f$$

where \tilde{a}_f is a "synthetic" shock to firms that leads to the same change in value added as the foreign shock

• Ex.: reduction in input prices:

$$d \ln Y_{f,m,j} = (1-\rho) \sum_{i} \sum_{k} (1-\pi_{f,m,j,-1}^{i}) \pi_{f,km,ij,-1}^{x} d \ln P_{km,i} = (1-\rho) d \ln \widetilde{a}_{f}$$

$2 \times 2 \times 2$ example

• Experiment: start with 2 symmetric firms in each sector, and then give more and more imported inputs to one of the firms

Input	Trad	eable	Non-tradeable		
share	Firm 1	irm 1 Firm 2		Firm 2	
France	0.76	0.76	0.92	0.92	
ROW	0.24	0.24	0.08	0.08	

$2 \times 2 \times 2$ example

• Experiment: start with 2 symmetric firms in each sector, and then give more and more imported inputs to one of the firms

Input	Trad	eable	Non-tr	adeable
share	Firm 1	Firm 2	Firm 1	Firm 2
France	0.76	0.76	0.92	0.92
ROW	0.24	0.24	0.08	0.08
		\Downarrow		
France	0.53	0.99	0.86	0.99
ROW	0.47	0.01	0.14	0.01

$2 \times 2 \times 2$ example

- Experiment: start with 2 symmetric firms in each sector, and then give more and more imported inputs to one of the firms
- Isolate a negative covariance between a firm's influence λ_f and its elasticity to the shock $d\ln \tilde{a}_f$

Actual model: heterogeneity in firm size

Households

- *M* countries and *J* sectors
- \bar{L}_n households in country *n* (supply of primary factors)
- GHH preferences (Greenwood et al, 1988):

$$U(c_n, l_n) = \nu \left(c_n - \frac{\psi_0}{\bar{\psi}} l_n^{\bar{\psi}}\right)$$
$$c_n = \prod_j c_{n,j}^{\vartheta_j}$$
$$c_{n,j} = \left[\sum_m \mu_{mn,j}^{\frac{1}{\sigma}} c_{mn,j} \frac{\sigma^{-1}}{\sigma}\right]^{\frac{\sigma}{\sigma-1}}$$

Sectors and firms

• CES aggregate of firms from *m* selling to *n* in sector *j*:

$$Q_{mn,j} = \left[\sum_{f \in \Omega_{mn,j}} \xi_{f,mn,j}^{\frac{1}{\rho}} Q_{f,mn,j}^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}}$$

• Demand faced by firm *f*, expressed in expenditures:

$$X_{f,mn,j} = \underbrace{\xi_{f,mn,j} \frac{p_{f,mn,j}^{1-\rho}}{P_{mn,j}^{1-\rho}}}_{\text{Transform}} X_{mn,j}$$

 $\pi_{f,mn,j}$

Equilibrium

• Goods market clearing:

$$X_{mn,j} = \pi_{mn,j}^{c} \vartheta_{j} P_{n} C_{n} + \sum_{i} \sum_{f \in i} \frac{\rho - 1}{\rho} (1 - \pi_{f,n,i}^{l}) \pi_{f,mn,ji}^{M} \sum_{k} X_{f,nk,i}$$

▶ Price level and input shares

• Factor market clearing:

$$\left(\frac{1}{\psi_0} \frac{w_n}{P_n}\right)^{\frac{1}{\psi-1}} \overline{L}_n = \sum_j L_{n,j}$$
$$= \frac{\rho-1}{\rho} \frac{1}{w_n} \sum_j \sum_{f \in j} \pi_{f,n,i}^I \sum_k X_{f,nk,i}$$