“Foreign Shocks as Granular Fluctuations”
di Giovanni, Levchenko, Mejean

Discussion by Ariel Burstein

UCLA

July 2020
Summary

- How are foreign shocks transmitted to the domestic economy?

- Empirical fact: in response to increase in foreign GDP, value added rises by more in larger firms
 - how does response vary with openness, given size?

- Tractable quantitative model to evaluate role of firm heterogeneity for aggregate impact of foreign shocks
Summary

- How are foreign shocks transmitted to the domestic economy?

- Empirical fact: in response to increase in foreign GDP, value added rises by more in larger firms
 - how does response vary with openness, given size?

- Tractable quantitative model to evaluate role of firm heterogeneity for aggregate impact of foreign shocks

- My discussion:
 - what does granular residual capture?
 - why does firm heterogeneity dampen aggregate response of measured TFP?
 - additional dampening from variable markups and heterogeneous firms
Granular residual

\[dy = \sum_{f} \omega_f dy_f\]

\[dy = d\bar{y}_f + \sum_{f} \omega_f (dy_f - d\bar{y}_f) = \varepsilon + \Gamma\]
Granular residual

\[dy = \sum_{f} \omega_f dy_f \]

\[dy = d\bar{y}_f + \sum_{f} \omega_f (dy_f - d\bar{y}_f) = \varepsilon + \Gamma \]

\[\uparrow \quad dy_f = \frac{dy_f}{\varepsilon_f} \times \varepsilon_f \equiv \eta_f \times \varepsilon_f \]
Granular residual

\[dy = \sum_{f} \omega_f dy_f \]

\[dy = d\bar{y}_f + \sum_{f} \omega_f (dy_f - d\bar{y}_f) = \mathcal{E} + \Gamma \]

- \(dy_f = \frac{dy_f}{\varepsilon_f} \times \varepsilon_f \equiv \eta_f \times \varepsilon_f \)

- \(\eta_f = \eta \) and \(\varepsilon_f \) i.i.d (Gabaix 2011)
 - \(N \rightarrow \infty \) (continuum of firms) \(\Rightarrow \) \(\Gamma = 0 \)
 - \(N \) large and \(\omega_f \) fat tailed \(\Rightarrow \) \(\Gamma \neq 0 \)
Granular residual

\[dy = \sum_f \omega_f dy_f \]

\[dy = d\bar{y}_f + \sum_f \omega_f (dy_f - d\bar{y}_f) = \varepsilon + \Gamma \]

- \(dy_f = \frac{dy_f}{\varepsilon_f} \times \varepsilon_f \equiv \eta_f \times \varepsilon_f \)

- \(\eta_f = \eta \) and \(\varepsilon_f \) i.i.d (Gabaix 2011)
 - \(N \rightarrow \infty \) (continuum of firms) \(\implies \Gamma = 0 \)
 - \(N \) large and \(\omega_f \) fat tailed \(\implies \Gamma \neq 0 \)

- \(\eta_f \) varies with \(f \) size and \(\varepsilon_f \) correl. across \(f \) (aggreg. shocks)
 - \(\Gamma \neq 0 \) even if \(N \rightarrow \infty \)
 - \(\Gamma \) combines heterogeneity and finite sample
Granular residual

\[dy = \sum_f \omega_f dy_f \]

\[dy = d\bar{y}_f + \sum_f \omega_f (dy_f - d\bar{y}_f) = \varepsilon + \Gamma \]

- \(dy_f = \frac{dy_f}{\varepsilon_f} \times \varepsilon_f \equiv \eta_f \times \varepsilon_f \)

- \(\eta_f = \eta \) and \(\varepsilon_f \) i.i.d (Gabaix 2011)
 - \(N \rightarrow \infty \) (continuum of firms) \(\implies \Gamma = 0 \)
 - \(N \) large and \(\omega_f \) fat tailed \(\implies \Gamma \neq 0 \)

- \(\eta_f \) varies with \(f \) size and \(\varepsilon_f \) correl. across \(f \) (aggreg. shocks)
 - \(\Gamma \neq 0 \) even if \(N \rightarrow \infty \)
 - \(\Gamma \) combines heterogeneity and finite sample

- Gaubert-Itskhoki (2020) granular residual
 - wght. small sample mean - wght. population mean
Foreign productivity shocks and measured TFP

- Δ real GDP = Δ labor supply + Δ measured TFP
 - suggestion: report separately

- If no distortions, ΔTFP ≈ 0 (Kehoe-Ruhl, Burstein-Cravino)
 - changes in inputs have no first-order effects on measured TFP
Foreign productivity shocks and measured TFP

- \(\Delta \) real GDP = \(\Delta \) labor supply + \(\Delta \) measured TFP
 - suggestion: report separately
- If no distortions, \(\Delta \text{TFP} \approx 0 \) (Kehoe-Ruhl, Burstein-Cravino)
 - changes in inputs have no first-order effects on measured TFP
- With distortions (e.g. mkups), \(\Delta \text{TFP} \neq 0 \)
 - “mismeasurement”: contribution of imports to production measured by cost share, but netted-out by GDP share
Foreign productivity shocks and measured TFP

\[\Delta \text{real GDP} = \Delta \text{labor supply} + \Delta \text{measured TFP} \]

- suggestion: report separately

- If no distortions, \(\Delta \text{TFP} \approx 0 \) (Kehoe-Ruhl, Burstein-Cravino)
 - changes in inputs have no first-order effects on measured TFP

- With distortions (e.g. mkups), \(\Delta \text{TFP} \neq 0 \)
 - "mismeasurement": contribution of imports to production measured by cost share, but netted-out by GDP share

- Suppose single sector, single imported intermediate input (generalization in Baqae-Farhi 2020)
 \[d\text{TFP} = \omega^m (\mu - 1) (dm - d\omega^m) \]
 - \(\omega^m = \)share of imported intermediate inputs in GDP
 - \(\mu = \)constant markup
 - \(dm > 0, \ d\text{TFP} > 0 \)
Heterogeneity and measured TFP

- In response to change in foreign technologies:

\[dTFP = \omega^m (\mu - 1) (dm - d\omega^m) \]

- \(\omega^m \) = share of imported inputs in GDP

- Suppose \(Y_f = Z_f M_f^{\gamma_f} L_f^{1-\gamma_f} \)
Heterogeneity and measured TFP

- In response to change in foreign technologies:
 \[dTFP = \omega^m (\mu - 1) (dm - d\omega^m) \]

- \(\omega^m \) = share of imported inputs in GDP

- Suppose \(Y_f = Z_f M_f^{\gamma_f} L_f^{1 - \gamma_f} \)

- If single \(\gamma_f \), then \(d\omega^m = 0 \)
Heterogeneity and measured TFP

- In response to change in foreign technologies:

\[dTFP = \omega^m (\mu - 1)(dm - d\omega^m) \]

- \(\omega^m \) = share of imported inputs in GDP

- Suppose \(Y_f = Z_f M_f^{\gamma_f} L_f^{1-\gamma_f} \)

- If single \(\gamma_f \), then \(d\omega^m = 0 \)

- If heterogeneous \(\gamma_f \), then reallocation of production toward high \(\gamma_f \) producers, \(d\omega^m > 0 \)

- dampens increase in measured TFP
Heterogeneity and measured TFP

- In response to change in foreign technologies:

\[dTFP = \omega^m (\mu - 1) (dm - d\omega^m) \]

- \(\omega^m = \) share of imported inputs in GDP

- Suppose \(Y_f = Z_f M_f^\gamma_f L_f^{1-\gamma_f} \)

- If single \(\gamma_f \), then \(d\omega^m = 0 \)

- If heterogeneous \(\gamma_f \), then reallocation of production toward high \(\gamma_f \) producers, \(d\omega^m > 0 \)

 - dampens increase in measured TFP

- What is the interaction between heterogeneity and
 - \(\Delta \) factor supply?
 - welfare?
Dampening due to incomplete pass-through

- Suppose markup μ_f increasing in market share within sector s_f

- If all firms within a sector are subject to same cost change, then market shares and markups are constant, $dp_f = dc_f$
Dampening due to incomplete pass-through

- Suppose markup μ_f increasing in market share within sector s_f

- If all firms within a sector are subject to same cost change, then market shares and markups are constant, $dp_f = dc_f$

- If heterogeneous changes in cost changes:

 $$dp_f = \alpha_f dc_f + (1 - \alpha_f) dp$$
Dampening due to incomplete pass-through

- Suppose markup μ_f increasing in market share within sector s_f

- If all firms within a sector are subject to same cost change, then market shares and markups are constant, $dp_f = dc_f$

- If heterogeneous changes in cost changes:

 $$dp_f = \alpha_f dc_f + (1 - \alpha_f) dp$$

- Change in sectoral price, dp (determines sectoral output):

 $$dp = \frac{\sum_f s_f \alpha_f dc_f}{\sum_f s_f \alpha_f}$$
Dampening due to incomplete pass-through

- Suppose markup μ_f increasing in market share within sector s_f

- If all firms within a sector are subject to same cost change, then market shares and markups are constant, $dp_f = dc_f$

- If heterogeneous changes in cost changes:
 \[dp_f = \alpha_f dc_f + (1 - \alpha_f) dp \]

- Change in sectoral price, dp (determines sectoral output):
 \[dp = \frac{\sum_f s_f \alpha_f dc_f}{\sum_f s_f \alpha_f} \]

- If $\alpha_f = \alpha$: dp same as under constant markups
 - as α falls, larger markup change by a firm to own shock exactly offset by larger change in markup, in the opposite direction, of its competitors
Dampening due to incomplete pass-through

- Suppose markup μ_f increasing in market share within sector s_f

- If all firms within a sector are subject to same cost change, then market shares and markups are constant, $dp_f = dc_f$

- If heterogeneous changes in cost changes:
 \[dp_f = \alpha_f dc_f + (1 - \alpha_f) dp \]

- Change in sectoral price, dp (determines sectoral output):
 \[dp = \frac{\sum_f s_f \alpha_f dc_f}{\sum_f s_f \alpha_f} \]

- If $\alpha_f = \alpha$: dp same as under constant mkups

 - as α falls, larger markup change by a firm to own shock exactly offset by larger change in markup, in the opposite direction, of its competitors

- If $\alpha_f \searrow$ size, dp smaller than under constant mkups iff $s_f > \bar{s}_f$
Dampening due to incomplete pass-through

- Variance of sectoral price assuming iid shocks with variance σ^2

- Constant markups (Gabaix 2011)
 \[
 \text{Var} [dp] = \sigma^2 \sum_f (s_f)^2 = \sigma^2 \text{HHI}
 \]

- Variable markups (Burstein-Carvalho-Grassi 2020)
 \[
 \text{Var} [dp] = \sigma^2 \sum_f \left(\frac{\alpha_f s_f}{\sum_{f'} \alpha_{f'} s_{f'}} \right)^2
 \]

- If $\alpha_f \downarrow$ in s_f, variance is lower under variable markups

- Intuition: pass-through rates are lower for larger firms, effectively reducing weight of large firms in the price index