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Motivation

I Predictability patterns in currencies and bonds.
I Currency risk premia depend on interest-rate differential. Violations of Uncovered Interest

Parity (UIP) (Fama 1984...)
I Bond risk premia depend on term-structure slope. Violations of Expectation Hypothesis

(EH) (Fama & Bliss 1987, Campbell & Shiller 1991...)
I Currency and bond risk premia are deeply connected (Lloyd & Marin 2019, Lustig et al 2019,

Chernov and Creal 2020...)

I Effect of central bank actions.
I How does monetary policy transmit domestically, along the yield curve? How does it

transmit internationally, to exchange rates and foreign yield curves?
I How does QE affect the domestic yield curve? What are its effects on exchange rates and

foreign yield curves?
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This Paper

I Approach:
I Introduce risk-averse ‘global rate arbitrageur’ able to invest in bonds and currencies (global

hedge fund, fixed income desk of broker-dealer, multinational corporation...)
I Two-country version of Vayanos & Vila’s (2019) preferred-habitat model.
I Contamporaneous paper by Greenwood et al (2020) in discrete time with two bonds

I Findings:
I Can reproduce qualitative facts about bond and currency risk premia.
I Rich transmission of monetary policy (conventional and unconventional) via exchange rate

and term premia.
I General message: floating exchange rates provide limited insulation.

Failure of Friedman-Obtsfeld-Taylor Trilemma.
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Set-Up: Two-country Vayanos & Vila (2019)

I Continuous time t ∈ (0,∞), 2 countries j = H,F

I Nominal exchange rate et : H price of F (increase ≡ depreciation of H’s currency)

I In each country j , continuum of zero coupon bonds in zero net supply with maturity
0 ≤ τ ≤ T , and T ≤ ∞

I Bond price (in local currency) P
(τ)
jt , with yield to maturity y

(τ)
jt = − logP

(τ)
jt /τ

I Exogenous nominal short rate (monetary policy) rjt = limτ→0 y
(τ)
jt :

drjt = κrj(r̄j − rjr )dt + σrjdBrjt
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Arbitrageurs and Preferred-Habitat Investors

Three types of investors:

I Home and foreign preferred-habitat bond investors
[demand bonds of a specific country and maturity]

I Currency traders
[demand currency at spot or forward market]

I Global rate arbitrageurs
[trade both currencies, and bonds of both countries and all maturities]
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Arbitrageurs

I Wealth Wt

I WFt invested in country F (in Home currency)

I X
(τ)
jt invested in bond of country j and maturity τ (in Home currency)

I Instantaneous mean-variance optimization (limit of OLG model)

max
{X (τ)

Ht ,X
(τ)
Ft }τ∈(0,T )

Et(dWt)−
a

2
Vart(dWt)

I Budget constraint

dWt =WtrHtdt + WFt

(
det
et

+ (rFt − rHt)dt

)
+

∫ T

0

X
(τ)
Ht

(
dP

(τ)
Ht

P
(τ)
Ht

− rHtdt

)
dτ +

∫ T

0

X
(τ)
Ft

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et
− rFtdt

)
dτ

Risk averse arbitrageurs’ holdings increase with expected return.
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Preferred-Habitat Bond Investors and Currency Traders

I Demand for bonds in currency j , of maturity τ (in Home currency):

Z
(τ)
jt = −αj(τ) logP

(τ)
jt − θj(τ)βjt

I θj(τ) ≥ 0, βjt > 0 ⇐⇒ decrease in net demand for bonds of maturity τ .

I Demand for foreign currency (spot) (in Home currency):

Zet = −αe log(et)− θeγt ,
I Can accommodate forward demand. Under CIP, equivalent to spot + H and F bond trades.

I Exogenous bond and FX demand risk factors:

dβjt = −κβjβjtdt + σβjdBβjt ; dγt = −κγγtdt + σγdBγt

Price-elastic habitat traders change their positions in response to price changes.
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Market Clearing

I Home bonds
X

(τ)
Ht + Z

(τ)
Ht = 0

I Foreign bonds

X
(τ)
Ft + Z

(τ)
Ft = 0

I Currency Market
WFt + Zet = 0

I 5 risk factors: short rates (dBrjt), bond demands (dBβjt) and currency demand (dBγt)
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1. Benchmark: Risk Neutral Arbitrageurs

Suppose that arbitrageurs are risk-neutral: a = 0.

I EH holds:
EtdP

(τ)
Ht /P

(τ)
Ht = rHt ; EtdP

(τ)
Ft /P

(τ)
Ft = rFt

I No effect of QE on yield curve, at Home or Foreign
I Yield curve independent from foreign short-rate shocks.

I UIP holds:
log et =

rFt
κrF
− rHt
κrH
− Ce ; Etdet/et = rHt − rFt

I ‘Mundellian’ insulation: shock to short rates ‘absorbed’ into the exchange rate.
I Classical Trilemma: capital flows and floating exchange rates deliver monetary autonomy.
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2. Segmented Arbitrage and No Demand Shocks (βjt = γt = 0)

Assume foreign currency and bonds traded by three disjoint sets of arbitrageurs.

rHt

y
(T )
Ht

y
(τ)
Ht

rFt

y
(T )
Ft

y
(τ)
Ft

et

Home Bond
Arbitrageurs

Foreign Bond
Arbitrageurs

FX Arbitrageurs

Assume rHt and rFt are independent.
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2. Segmented Arbitrage and No Demand Shocks (βjt = γt = 0)

Postulate: logP
(τ)
jt = −Arj(τ)rjt − Cj(τ) ; log et = ArFerFt − ArHerHt − Ce

Proposition (Segmented Arbitrage, Currency Carry Trade CCT and UIP
Deviations)

When arbitrage is segmented, risk aversion a > 0 and FX price elasticity αe > 0

I Attenuation: 0 < Arej < 1/κrej
I CCT expected return Etdet/et + rFt − rHt decreases in rHt and increases in rFt

(UIP deviation)

Intuition: Similar to Kouri (1982), Gabaix and Maggiori (2015)

I when rFt ↑, demand for CCT increases.
I Foreign currency appreciates (et ↑)
I As et ↑, price elastic FX traders reduce holdings (αe > 0): Zet ↓
I FX arbitrageurs increase their holdings WFt ↑, which requires a higher CCT return.
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2. Segmented Arbitrage and No Demand Shocks (βjt = γt = 0)

Proposition (Segmented Arbitrage and Bond Carry Trade BCT)

When arbitrage is segmented, a > 0 and α(τ) > 0 in a positive-measure subset of (0,T ) :

I Attenuation: Arj(τ) < (1− e−κrjτ )/κrj .

I Bond prices in country j only respond to country j short rates (no spillover).

I BCTj expected return EtdP
(τ)
jt /P

(τ)
jt − rjt decreases in rjt

Intuition: Similar to Vayanos & Vila (2019)

I When rjt ↓ arbitrageurs want to invest more in the BCT

I Bond prices: P
(τ)
jt ↑

I As P
(τ)
jt ↑, price-elastic habitat bond investors (αj(τ) > 0) reduce their holdings: Z

(τ)
jt ↓

I Bond arbitrageurs increase their holdings, which requires a higher BCT return.
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Effect of (Unexpected) Demand Shocks in Segmented Arbitrage Model

Assume a > 0, θj(τ) > 0 and θe > 0.

I An unexpected increase in bond demand in country j (e.g. QEj) reduces yields in country
j . It has no effect on bond yields in the other country or on the exchange rate.

I An unexpected increase in demand for foreign currency (e.g. sterilized intervention) causes
the foreign currency to appreciate. It has no effect on bond yields in either country.
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3. Global Arbitrage and No Demand Shocks (βjt = γt = 0)

Assume now global rate arbitrageur can invest in bonds (H and F) and FX.

rHt

y
(T )
Ht

y
(τ)
Ht

rFt

y
(T )
Ft

y
(τ)
Ft

et

Global Rate
Arbitrageurs

Assume rHt and rFt are independent.
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3. Global Rate Arbitrageur and No Demand Shocks (βjt = γt = 0)

Postulate logP
(τ)
jt = −Arjj(τ)rjt−Arjj′(τ)rj′t−CH(τ) ; log et = ArFerFt − ArHerHt − Ce

Proposition (Global Arbitrage and Carry Trades CCT, BCT)

when arbitrage is global, risk aversion a > 0 and price elasticities αe , αj(τ) > 0:

I The results of the previous propositions obtain: both CCT and BCTH return decrease
with rHt , and attenuation is stronger than with segmented markets.

I B In addition, BCTF increases with rHt .

I The effect of rjt on bond yields is smaller in the other country: Ajj′(τ) < Ajj(τ).

Intuition: Bond and FX Premia Cross-Linkages

I When rHt ↓ global arbitrageurs want to invest more in CCT and BCTH .
I e and WFt ↑: increased FX exposure (risk of rFt ↓).
I Hedge by investing more in BCTF since price of foreign bonds increases when rFt drops:

foreign yields decline and BCTF decreases.
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Effect of (Unexpected) Demand Shocks in Global Arbitrage Model

Assume a > 0 and αe , αj(τ) > 0.

I Unexpected QEj reduces yields in country j , as before.
B Also reduces yields in the other country, and depreciates the currency.

Intuition: Bond and FX Premia Cross-Linkages
I To accommodate QEj , arbitrageurs go short bonds in country j .
I Hedge by investing more in the other country’s currency since it appreciates when rjt drops.
I Hence currency position by investing more in the other country’s bonds.

I Unexpected sterilized intervention at Home causes the foreign currency to appreciate.
B Also lowers bonds yields at Home and increases them in Foreign.

Imperfect insulation even with floating rates.

Failure of the Classical Trilemma
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The Full Model: Adding Demand Shocks βjt 6= 0 , γt 6= 0

I Can allow for rich demand structure embodied in VCV of risk factors. DGP:

qt =
[
rHt rFt βHt βFt γt

]>
dqt = −Γ (qt − q)dt + σ dBt

I In general: dynamics matrix Γ and correlation matrix σ completely unrestricted.

I Today: we assume that short rates (rHt , rFt) may be correlated, and that demand factors
may respond to short rates (but not vice versa).

I =⇒ block-lower-triangular Γ, block diagonal σ.
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Numerical Calibration

Data: Zero coupon monthly data from Wright (2011); H: US, F: UK.

Targets

I Short rates: variance of short rates (detrended levels y
(1)
j and annual differences ∆y

(1)
j ),

short rate differentials (y
(1)
H − y

(1)
F ) and covariance of differentials and short rate changes

I Exchange rates: variance of exchange rate changes (∆e), covariance of exchange rate
changes and short rate differentials, and covariance of 1-year and 2-year changes in
exchange rates (Covt(et+12 − et , et+24 − et))

I Long rates (across maturities τ = 3-month to 15-year): variance of changes in long rates

(∆y
(τ)
j ), slopes (y

(τ)
j − y

(1)
j ), long rate differentials (y

(τ)
H − y

(τ)
F ); and covariances with

changes in short rates

Key estimates:

I α̂H(τ) > α̂F (τ), θ̂H(τ) > θ̂F (τ), reflecting the size and depth of the US Treasury market.

I Demand factors respond to short rates (similar to King 2019).
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Model Fit
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Policy Spillovers

Conduct policy experiments:

I Monetary policy shock: unanticipated 25bp decrease in policy rate (H and F)

I QE shock: unanticipated positive demand shock (H and F), such that yields respond on
average ≈ the same as to the given country’s monetary shock

Examine spillovers:

I Across the yield curves (short and long rates; and across countries)

I To the exchange rate
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Monetary Shock Spillovers
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Implications: Small cross-country yield response, spillovers confined to exchange rates
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QE Shock Spillovers
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Implications: Large spillovers of US LSAPs, both to F yields and exchange rate
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Regression Coefficients: Term Structure
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Implications: Positive slope-premia relationship.
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Regression Coefficients: UIP
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Implications: CCT is profitable, but profitability goes to zero if CCT is done with long-term
bonds or over long horizon. Slope differential predicts CCT return.
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Conclusion

I Present an integrated framework to understand term premia and currency risk

I Extend Vayanos & Vila (2019) to a two-country environment

I Resulting model ties together
I Violations of UIP.
I Violations of EH.

I Allow rich demand specification.

I Break the ‘Friedman-Obstfeld-Taylor’ Trilemma: monetary policy transmits to other
countries via exchange rates and term premia.

I Extensions: (a) endogenize policy rates as in Ray (2019); (b) consider deviations from LOP
as in Hebert Du & Wang (2019); (c) embed into New Keynesian open-economy model.
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APPENDIX

26 / 25



Reduced Form Monetary Shock (H)
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Reduced Form Monetary Shock (F)
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