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Abstract

We propose an integrated preferred-habitat model of term premia and exchange rates, build-

ing on Vayanos and Vila (2019). Our model generates deviations from UIP and also a decreasing

term structure of currency risk premia. Using our framework we explore the transmission of

monetary policy to domestic and currency markets, as well as the spillovers to the foreign term

premia; the effect of non-conventional monetary policy on the domestic and foreign economies;

and the effect of shifts in the ‘specialness’ of one country’s bonds or currency.
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1 Introduction

The literature on exchange rate determination has had limited success so far in explaining how

exchange rate movements connect with other financial prices and returns, as well as with macroe-

conomics determinants. On the financial side, it is well-known that the uncovered interest parity

condition (UIP), linking expected movements in exchange rates to the short-term interest rate dif-

ferential, is strongly rejected by the data (Fama, 1984). On the macroeconomic side, it is equally

well-known that exchange rate movements appear disconnected from traditional macroeconomic

fundamentals such as growth, external imbalances, monetary policy etc... (see Meese and Rogoff

(1983) and the literature on the ‘exchange rate disconnect puzzle’).

In standard models, the determination of the exchange rate results from the confrontation of

two equilibrium conditions: one is the standard asset pricing/Euler equation condition that char-

acterizes the intertemporal saving and portfolio decisions of agents. The other is an intertemporal

budget constraint that requires that consumption/saving/portfolio choices be consistent with the

present value of available resources.

To simplify, the latter condition pins down the long-run ‘’level’ of equilibrium exchange rates

that ensures choices remain within the relevant budget sets. The former determines the ‘slope’ of

the exchange rate, i.e. how they respond to changes in the economic environment by equating the

marginal expected utility across available investment strategies. In the leading representative no-

arbitrage models of international finance, this equilibrium condition imposes a tremendous amount

of structure. These models typically have a difficult time reproducing observed empirical patterns.

For instance, Lustig, Stathopoulos, and Verdelhan (2019) observe that no-arbitrage models can-

not replicate both the strong evidence of deviations from UIP and the evidence that the term

structure of currency risk-premia is decreasing, i.e. that the expected fixed-horizon return on a

generalized carry trade strategy that invests in domestic and foreign bond of maturity τ decreases

as τ increases. Similarly, Engel (2016) observes that standard representative agent models cannot

explain simultaneously the UIP puzzle -which through the lens of these models implies that the

high interest rate currency is more risky- and the fact that high interest rate currency tend to have

a stronger currency -which through the lens of these models suggests that the high interest rate

currency is less risky.

A recent promising avenue of research consists in introducing some level of international market

segmentation. At the theoretical level, this relaxes the arbitrage condition by focusing instead on

the risk-return tradeoff of the relevant global investors. Gabaix and Maggiori (2015) present a
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stylized model along those lines, reviving an important older literature on portfolio balance models

(Kouri, 1982). These models naturally generate deviations from UIP as financial arbitrageurs need

to be compensated for their external exposure. Itskhoki and Mukhin (2017) present such a model

where financial arbitrageurs also need to absorb liquidity demand arising from noise traders, as in

Jeanne and Rose (2002). These liquidity demand shocks translate, in equilibrium, into ‘UIP shocks’,

i.e. deviations from the UIP condition. Quantitatively, Itskhoki and Mukhin (2017) conclude that

these UIP shocks account for more than 90% of the fluctuations in the nominal and real exchange

rate, but very little of the fluctuations in output (thus explaining the disconnect).

At the institutional level, market segmentation seems a very plausible assumption: the marginal

investor in currency markets is much more likely to be a specialized investor such as a large macro

global hedge fund, the trading desk of a multinational corporation, a sovereign wealth fund, or

the fixed-income desk of a global broker-dealer, rather than the representative household trying to

diversify the risks to the marginal utility of its consumption stream.

In these models, the segmentation hypothesis is extreme: currency market are segmented, but

domestic rate markets are not. This is too extreme. In particular, it implies that, while deviations

from UIP may occur, the rational expectation hypothesis (EH) would still be a good guide to

understanding the term structure. Yet, a body of evidence indicates that risk premia on currency

markets and term premia on bond markets are related. One such piece of evidence was already

mentioned: we know from Lustig, Stathopoulos, and Verdelhan (2019) that the term structure

of currency risk premia, which one can understand as a combination of UIP deviations and term

premia on domestic and foreign bond markets, is downward sloping, declining to zero. This strongly

suggests that segmentation matters both for bond and currency markets.

In this paper, we propose such an integrated analysis of global rates markets. Our approach

builds on the work of Vayanos and Vila (2019) as well as Ray (2019), on preferred-habitat models.

These earlier papers focused on a closed economy model and analyzed segmentation along the

term structure. In these models, there are two types of investors: local investors specialized in

specific maturity segments, and term-structure arbitrageurs. Because the arbitrageurs are risk-

averse and have finite resources, deviations from the expectation hypothesis of the term structure

persist. These models are particularly useful to investigate how ‘local shocks’ to the supply of or

demand for specific maturities can propagate along the term structure. Ray (2019) embeds such a

segmented asset market structure into a New Keynesian model and explores how non-conventional

policies, such as QE or forward guidance can be deployed effectively.
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The current paper considers an extension of this framework to two countries. In each country,

a monetary authority sets short term policy rate exogenously. Further, local investors are situated

along the domestic and foreign term structure. These investors are specialized in a given currency

and maturity segment. In addition, as in Itskhoki and Mukhin (2017), there are specialized (noise)

investors in the currency market. Lastly ‘global rates market’ risk averse arbitrageurs can invest

limited capital in all fixed income instruments, foreign and domestic. Because these global arbi-

trageurs operate both on the term structure in each country, and in currency markets, term premia

and currency risk premia will be linked in equilibria.

Our framework allows us to answer a number of specific questions. First, we can characterize

the time series behavior of term-premia and currency risk-premia, given the underlying policy

and demand shocks. Our model recovers deviations from UIP and also very naturally the Lustig,

Stathopoulos, and Verdelhan (2019) term structure of currency risk premia: In our model, as the

maturity of the bond increases, the short term excess return decreases to zero. The reason is

precisely that long term bond and currency risk premia are linked: as arbitrageurs become more

exposed to domestic policy shocks, domestic long term bonds and foreign currency are equally

undesirable: their premia increase by similar amounts, which account for the decline in the term

structure of currency risk premia. Second, our framework allows us to explore how shocks to the

policy rate in one country transmit to the domestic term structure, the currency, and the foreign

term structure. Under UIP and the EH, a change in the domestic policy rate would leave the

domestic and foreign term structures unchanged: all the adjustment would be in the expected

rate of depreciation of the exchange rate. This is no longer the case when global rates market

investors can arbitrage across these markets. A domestic policy shock, for instance a decrease

in the domestic policy rate, will transmit to the domestic term structure: as long bond become

more desirable, global rates investor increase their exposure. Because their exposure increases, they

need to be compensated, hence the expected return from holding these long term bonds needs to

increase. By the same token, however, foreign bonds also become more desirable and global rates

investors shift their portfolios towards foreign bonds. This leads to a depreciation of the domestic

currency. However, the increased exposure to foreign bonds also needs to be compensated, hence a

deviation from UIP arises. Lastly, as this also increases the global rates investors for foreign long

bonds, a positive term premium arises also in the foreign term structure. This suggests that the

transmission of domestic monetary policy to the domestic economy is impaired, as in Ray (2019),

and that domestic monetary policy has spillovers to foreign long real rates, even under a regime of

flexible exchange rates. To the extent that long rates matter for economic activity, this is another

instance where the Friedman-Obstfeld-Taylor trilemma fails.
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Third, the model allows us to investigate how non-conventional policies such as Quantitative

Easing or Forward Guidance transmit, both domestically and abroad.

Fourth, if we interpret the Home country as the United States, the model also lets us investigate

how shifts in the demand for US Treasuries (i.e. a generalized shift in the demand for domestic

bonds) differs from a shift in the demand for dollars (i.e. a shift in the demand on the currency

markets). This allows us to better understand whether the current environment is one characterized

by the specialness of the U.S. dollar, or the specialness of U.S. Treasuries (Jiang, Krishnamurthy,

and Lustig, 2018, 2019).

Greenwood, Hanson, Stein, and Sunderam (2019) develop independently a model similar to

ours, with arbitrageurs trading bonds and currency across two countries. They find, as we do, that

bond and currency carry trades are profitable, and that an increase in bond demand in one country

causes the currency of that country to depreciate and bond prices in both countries to rise. They

also introduce segmented arbitrage, e.g., some arbitrageurs can only trade bonds in one country,

and some can trade only currency. Their model is set up in discrete time and assumes only a

short and a long bond. By contrast, ours is set up in continuous time and derives the entire term

structure of interest rates in each country. This allows us to compare the predictability of bond

and currency movements across different horizons, and to perform a quantitative exercise in which

we can compare model-generated moments to those in the data.
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2 Model

Time is continuous and goes from zero to infinity. There are two countries, Home (H) and Foreign

(F ). We define the exchange rate as the units of home currency that one unit of foreign currency can

buy, and denote it by et at time t. An increase in et corresponds to a home currency depreciation.

In each country j = H,F , a continuum of zero-coupon government bonds can be traded. The

bonds’ maturities lie in the interval (0, T ), where T can be finite or infinite. The country-j bond

with maturity τ at time t pays off one unit of country j’s currency at time t+τ . We denote by P
(τ)
jt

the time-t price of that bond, expressed in units of country j’s currency, and by y
(τ)
jt the bond’s

yield. The yield is the spot rate for maturity τ , and is related to the price through

y
(τ)
jt = −

log
(
P

(τ)
jt

)
τ

. (2.1)

The country-j and time-t short rate rjt is the limit of the yield y
(τ)
jt when τ goes to zero. We take

rjt as exogenous, and describe its dynamics later in this section (Equation 2.9). An exogenous rjt

can be interpreted as the result of actions that the central bank in country j takes when targeting

the short rate by elastically supplying liquidity.

There are three types of agents: arbitrageurs, bond investors and currency traders. Arbi-

trageurs are competitive and maximize a mean-variance objective over instantaneous changes in

wealth. We express their wealth in units of the home currency, thus assuming that the home cur-

rency is the riskless asset for them. We allow arbitrage to be global or segmented. When arbitrage

is global, arbitrageurs can invest in the currencies and bonds of both countries. When instead

arbitrage is segmented, arbitrageurs can invest in the currency of the home country (the riskless

asset), and in a single additional asset class: foreign currency for some arbitrageurs, home bonds for

others, and foreign bonds for the remainder. We assume that the arbitrageurs investing in foreign

bonds have a zero net position in foreign-currency instruments: they hedge their bond position

with an equally sized position in the foreign short rate. Segmented arbitrage is a useful benchmark,

as the interactions between bond and currency markets that global arbitrage generates are not

present.

In the case of global arbitrage, we denote by Wt the arbitrageurs’ time-t wealth, by WHt and

WFt their net position in home and foreign-currency instruments, respectively, and by X
(τ)
Ht and
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X
(τ)
Ft their position in the home and foreign bond with maturity τ , respectively, all expressed in

units of the home currency. The arbitrageurs’ budget constraint is

Wt+dt =

(
WHt −

∫ T

0
X

(τ)
Ht dτ

)
(1 + rHtdt) +

∫ T

0
X

(τ)
Ht

P
(τ−dt)
H,t+dt

P
(τ)
Ht

dτ

+

(
WFt −

∫ T

0
X

(τ)
Ft dτ

)
(1 + rFtdt)

et+dt
et

+

∫ T

0
X

(τ)
Ft

P
(τ−dt)
F,t+dt et+dt

P
(τ)
Ft et

dτ. (2.2)

The first term in the right-hand side of (2.2) corresponds to a position in the home short rate, the

second term to a position in home bonds, the third term to a position in the foreign short rate,

and the fourth term to a position in foreign bonds. In the third term, WFt −
∫ T
0 X

(τ)
Ft dτ units of

the home currency are converted at time t to units of the foreign currency by dividing by et. They

earn the foreign short rate between time t and t+dt, and are converted back at time t+dt to units

of the home currency by multiplying by et+dt. In the fourth term, X
(τ)
Ft units of the home currency

are converted at time t to units of the foreign currency by dividing by et, and then to units of the

foreign bond with maturity τ by dividing by P
(τ)
Ft , the price of the bond in foreign currency. They

are converted back at time t+ dt to units of the home currency by multiplying by P
(τ−dt)
F,t+dt et+dt.

Subtracting Wt = WHt +WFt from both sides of (2.2) and rearranging, we find

dWt =WtrHtdt+WFt

(
det
et

+ (rFt − rHt)dt
)

+

∫ T

0
X

(τ)
Ht

(
dP

(τ)
Ht

P
(τ)
Ht

− rHtdt

)
dτ +

∫ T

0
X

(τ)
Ft

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et
− rFtdt

)
dτ. (2.3)

If arbitrageurs invest all their wealth in the home short rate, then the instantaneous change dWt

in their wealth is WtrHtdt, the first term in the right-hand side of (2.3). Relative to that case,

arbitrageurs can earn an additional return from investing in three sets of assets: foreign currency,

home bonds, and foreign bonds. The returns from these investments correspond to the second,

third and fourth term, respectively, in the right-hand side of (2.3).

The optimization problem of a global arbitrageur is

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

[
Et(dWt)−

a

2
Vart(dWt)

]
, (2.4)

where a ≥ 0 is a coefficient that characterizes the trade-off between mean and variance. The

coefficient a can capture innate risk aversion or, in reduced form, constraints such as Value at Risk.
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By possibly redefining a, we assume that global arbitrageurs are in measure one. Arbitrageurs with

the objective (2.4) can be interpreted as overlapping generations living over infinitesimal periods.

In the case of segmented arbitrage, the budget constraint of any given arbitrageur is derived

from (2.3) by setting two of the terms to zero. For an arbitrageur who can invest only in foreign

currency, the third and fourth terms are zero (X
(τ)
Ht = X

(τ)
Ft = 0); for an arbitrageur who can invest

only in home bonds, the second and fourth terms are zero (WFt = X
(τ)
Ft = 0); and for an arbitrageur

who can invest only in foreign bonds, with a zero net position in foreign-currency instruments, the

second and third terms are zero (WFt = X
(τ)
Ht = 0). The optimization problem is derived from

(2.4) by restricting the choice variables accordingly. We denote by ae, aH and aF , respectively,

the risk-aversion coefficient of an arbitrageur who can invest in foreign currency, home bonds and

foreign bonds. By possibly redefining (ae, aH , aF ), we assume that each type of arbitrageur is in

measure one.

Bond investors have preferences (“habitats”) for specific countries and maturities. For example,

pension funds in the home country prefer long-maturity home bonds because these match their

pension liabilities, which are long-term and denominated in home currency. For tractability, we

assume that preferences take an extreme form, whereby investors demand only the bond closest to

their preferred characteristics. That is, investors with preferences for country j and maturity τ at

time t hold a position Z
(τ)
jt in the country-j bond with maturity τ and hold no other bond. We

express the position Z
(τ)
jt in units of the home currency, and assume that it is affine and decreasing

in the logarithm of the bond price:

Z
(τ)
jt = −αj(τ) log

(
P

(τ)
jt

)
− β(τ)jt . (2.5)

The slope coefficient αj(τ) ≥ 0 is constant over time but can depend on country j and maturity τ .

The intercept coefficient β
(τ)
jt can depend on t, τ and j. For simplicity, we refer to αj(τ) and β

(τ)
jt

as demand slope and demand intercept, respectively. The actual intercept is −β(τ)jt .

The demand intercept β
(τ)
jt takes the form

β
(τ)
jt = ζj(τ) + θj(τ)βjt, (2.6)

where {ζj(τ), θj(τ)}j=H,F are constant over time but can depend on country j and maturity τ , and

{βjt}j=H,F are independent of τ but can depend on time j and country t. We refer to {βjt}j=H,F as
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demand risk factors, and describe their dynamics later in this section (Equation 2.9). Vayanos and

Vila (2019) provide an optimizing foundation for the demand specification (2.5)-(2.6) in a setting

where investors form overlapping generations consuming at the end of their life, are infinitely risk-

averse, and can invest in bonds and in a private opportunity with exogenous return.

Currency traders generate a downward-sloping demand for foreign currency as a function of the

exchange rate et. These agents can be interpreted as exporters and importers. Suppose, following

Gabaix and Maggiori (2015), that when et is low, i.e., the foreign currency is cheap relative to the

home currency, the value of imports of the home country rises relative to the value of its exports.

This increases the demand for foreign currency. For tractability, we assume that the demand of

currency traders, expressed in units of the home currency, is affine and decreasing in the logarithm

of the exchange rate:

Zet = −αe log(et)− (ζe + θeγt), (2.7)

where αe ≥ 0 is a slope coefficient, (ζe, θe) are constants, and γt is a demand risk factor, whose

dynamics we describe later in this section (Equation 2.9).

The demand (2.7) for foreign currency is expressed in the spot market. We can alternatively

assume that some of the demand is expressed in the forward market. Indeed, according to BIS

(2019), spot transactions accounted for only one-third of total trading volume in the currency

market over recent years, with forward and swap transactions accounting for most of the remainder.

We assume that currency traders’ demand, expressed in units of the home currency, for the foreign-

currency forward contract with maturity τ is

Z
(τ)
et = −(ζe(τ) + θe(τ)γt), (2.8)

where (ζe(τ), θe(τ)) are functions of τ , and γt is defined in (2.7).

Under Covered Interest Parity (CIP), the demand Z
(τ)
et for the foreign-currency forward contract

with maturity τ is equivalent to the combination of (i) a demand Z
(τ)
et for foreign currency in the

spot market, (ii) a demand Z
(τ)
et for the foreign bond with maturity τ , and (iii) a demand −Z(τ)

et

for the home bond with maturity τ . Hence, the equilibrium with the forward market is equivalent

to one without it but with the demands (i)-(iii) added to (2.5) and (2.7). Adding these demands

amounts to redefining the intercepts (β
(τ)
jt , ζe, θe). We introduce forward-market demand in Sections

4 and 5, where we assume global arbitrage. Under global arbitrage, CIP holds because the same

agents can trade all the instruments involved in CIP arbitrage.
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The 5× 1 vector qt ≡ (rHt, rFt, βHt, βFt, γt)
> follows the process

dqt = −Γ(qt − q̄)dt+ ΣdBt, (2.9)

where q̄ is a constant 5 × 1 vector, (Γ,Σ) are constant 5 × 5 matrices, dBt is a 5 × 1 vector

(dBrHt, dBrF t, dBβHt, dBβFt, dBγt)
> of independent Brownian motions, and > denotes transpose.

Equation (2.9) nests the case where the factors (rHt, rFt, βHt, βFt, γt) are mutually independent,

and the case where they are correlated. Independence arises when the matrices (Γ,Σ) are diagonal.

When instead Σ is non-diagonal, shocks to the factors are correlated, and when Γ is non-diagonal,

the drift (instantaneous expected change) of each factor depends on all other factors. We assume

that the eigenvalues of Γ have negative real parts so that qt is stationary. Equation (2.9) implies

that the long-run mean of a stationary qt is q̄. We set the long-run means of the demand factors

to zero (q̄3 = q̄4 = q̄5 = 0). This is without loss of generality since we can redefine {ζj(τ)}j=H,F
and ζe to include a non-zero long-run mean. Using the same redefinitions, we can set the supply of

each bond and of foreign currency to zero.

The combination of mean-variance preferences for arbitrageurs and log-affine demand functions

for the remaining agents yields a tractable equilibrium in which bond prices and the exchange rate

are log-affine functions of the risk factors. Key to the tractability is that all demand functions

are expressed in terms of the same numeraire, which is also the riskless asset for arbitrageurs.

The numeraire can be the currency of one of the two countries, and we take it to be the home

currency. Note that by expressing demand for foreign bonds in the home currency, we preclude

that a foreign-currency depreciation, holding foreign bond yields constant, lowers foreign-bond

demand in home-currency terms. This also preclude that the foreign currency is the riskless asset

for at least some arbitrageurs (e.g., foreign ones).

3 Segmented Arbitrage

In this section we study the case of segmented arbitrage, whereby foreign currency, home bonds, and

foreign bonds are traded by three disjoint sets of arbitrageurs. We allow for currency demand only

in the spot market and not in the forward market. For simplicity, we assume that there is no demand

risk for bonds and foreign currency (βHt = βFt = γt = 0) and that the home and foreign short rates

(rHt, rFt) are independent. This amounts to taking the matrices (Γ,Σ) in (2.9) to be diagonal and

setting Σ3,3 = Σ4,4 = Σ5,5 = 0. Setting (Γ1,1,Γ2,2, q̄1, q̄2,Σ1,1,Σ2,2) ≡ (κrH , κrF , rH , rF , σrH , σrF ),
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we can write the dynamics of the country-j short rate as

drjt = κrj(rj − rjt)dt+ σrjdBrjt. (3.1)

3.1 Equilibrium

We conjecture that the equilibrium exchange rate is a log-affine function of the home and the

foreign short rate, and that equilibrium bond yields in country j = H,F are affine functions of

that country’s short rate. That is, there exist three scalars ({Arje}j=H,F , Ce) and four functions

{Arj(τ), Cj(τ)}j=H,F that depend only on τ , such that

et = e−[ArHerHt−ArFerFt+Ce], (3.2)

P
(τ)
jt = e−[Arj(τ)rjt+Cj(τ)]. (3.3)

When arbitrage is segmented, the exchange rate, the yields of home bonds, and the yields of

foreign bonds are determined independently, and they reflect the risk aversion of the corresponding

arbitrageurs.

3.1.1 Exchange Rate

We determine the exchange rate by deriving the arbitrageurs’ first-order condition and combining

it with market clearing. Applying Ito’s Lemma to (3.2), and using the dynamics (3.1) of rjt, we

find that the instantaneous return on foreign currency is

det
et

= µetdt−ArHeσrHdBrHt +ArFeσrFdBrF t, (3.4)

where

µet ≡ −ArHeκrH(rH − rHt) +ArFeκrF (rF − rFt) +
1

2
A2
rHeσ

2
rH +

1

2
A2
rFeσ

2
rF (3.5)

is the expected return. Substituting the return (3.4) into the budget constraint of the subset of

arbitrageurs who can invest in foreign currency (and whose budget constraint is derived from (2.3)

by setting X
(τ)
Ht = X

(τ)
Ft = 0), we find

dWt = [WtrHt +WFt (µet + rFt − rHt)] dt−WFt (ArHeσrHdBrHt −ArFeσrFdBrF t) .
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The optimization problem of these arbitrageurs is

max
WFt

[
WFt (µet + rFt − rHt)−

ae
2
W 2
Ft

(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)]
,

and their first-order condition is

µet + rFt − rHt = aeWFt

(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)
. (3.6)

Equation (3.6) describes the arbitrageurs’ risk-return trade-off when investing in the currency carry

trade (CCT). We term CCT the trade of borrowing short-term in the home country, exchanging

the borrowed amount in the foreign currency, investing it short-term in the foreign country, and

exchanging it back in the home currency.1 The CCT’s return is det
et

+ (rFt − rHt)dt, equal to the

return on foreign currency plus that on the foreign-home short-rate differential.

If arbitrageurs invest an extra unit of home currency in the CCT, then their expected return

increases by the CCT’s expected return µet + rFt − rHt. This is the left-hand side of (3.6). The

right-hand side is the increase in the the arbitrageurs’ portfolio risk, times their risk-aversion

coefficient ae. The increase in portfolio risk is equal to the variance of the CCT’s return, times the

arbitrageurs’ wealth WFt invested in foreign currency.

We next combine the arbitrageurs’ first-order condition (3.6) with market clearing in foreign

currency. Market clearing requires that the time-t positions of arbitrageurs and currency traders

sum to zero:

WFt + Zet = 0. (3.7)

Using (3.7), we can write (3.6) as

µet + rFt − rHt = −aeZet
(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)
= ae [αe log(et) + ζe]

(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)
= ae [ζe − αe (ArHerHt −ArFerFt + Ce)]

(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)
, (3.8)

where the second step follows from (2.7) and γt = 0, and the third step follows from (3.2). Substi-

tuting µet from (3.5) into (3.8), we can write the latter equation as

−ArHeκrH(rH − rHt) +ArFeκrF (rF − rFt) +
1

2
A2
rHeσ

2
rH +

1

2
A2
rFeσ

2
rF + rFt − rHt

= ae [ζe − αe (ArHerHt −ArFerFt + Ce)]
(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)
. (3.9)

1For simplicity, we deviate from market terminology, according to which the CCT borrows in the currency with
the low interest rate.
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Equation (3.9) is affine in (rHt, rFt). Identifying the linear terms in (rHt, rFt) and the constant

terms yields three equations for the three scalars ({Arje}j=H,F , Ce).

Proposition 3.1. When arbitrage is segmented, the exchange rate et is given by (3.2), with

({Arje}j=H,F , Ce) equal to the unique solution of the system

κrjArje − 1 = −aeαeArje
(
σ2rHA

2
rHe + σ2rFA

2
rFe

)
, (3.10)

− κrHrHArHe + κrF rFArFe +
1

2
σ2rHA

2
rHe +

1

2
σ2rFA

2
rFe = ae (ζe − αeCe)

(
σ2rHA

2
rHe + σ2rFA

2
rFe

)
.

(3.11)

In the special case where arbitrageurs are risk-neutral, Uncovered Interest Parity (UIP) holds.

Corollary 3.1. When arbitrage is segmented and currency arbitrageurs are risk-neutral (ae = 0),

UIP holds. The expected return on foreign currency is µUIPet ≡ rHt − rFt, and the sensitivity of the

exchange rate to short-rate shocks is AUIPrje ≡ 1
κrj

.

3.1.2 Bond Yields

The determination of bond yields parallels that of the exchange rate. Applying Ito’s Lemma to

(3.3) for j = H, using the dynamics (3.1) of rjt for j = H, and noting that t + τ stays constant

when taking the derivative, we find that the time-t instantaneous return on the home bond with

maturity τ is

dP
(τ)
Ht

P
(τ)
Ht

= µ
(τ)
Htdt−ArH(τ)σrHdBrHt, (3.12)

where

µ
(τ)
Ht ≡ A

′
rH(τ)rHt + C ′H(τ)−ArH(τ)κrH(rH − rHt) +

1

2
ArH(τ)2σ2rH (3.13)

is the expected return. Likewise, (3.1) and (3.3) for j = F , combined with (3.2), imply that the

time-t instantaneous return on the foreign bond with maturity τ , expressed in home-currency terms,

minus the instantaneous return on foreign currency, is

d(P
(τ)
Ft et)

P
(τ)
Ft et

− det
et

= µ
(τ)
Ft dt−ArF (τ)σrFdBrF t, (3.14)

12



where

µ
(τ)
Ft ≡ A

′
rF (τ)rFt + C ′F (τ)−ArF (τ)κrF (rF − rFt) +

1

2
ArF (τ) (ArF (τ)− 2ArFe)σ

2
rF (3.15)

and ArFe is solved for in Proposition 3.1. We next substitute the return (3.12) into the budget

constraint of the subset of arbitrageurs who can invest in home bonds (and whose budget constraint

is derived from (2.3) by setting WFt = X
(τ)
Ft = 0). We do the same for (3.14) and the subset of

arbitrageurs who can invest in foreign bonds and have a zero net exposure in foreign-currency

instruments (and whose budget constraint is derived from (2.3) by setting WFt = X
(τ)
Ht = 0). For

the arbitrageurs investing in the bonds of country j = H,F , we find

dWt =

[
WtrHt +

∫ T

0
X

(τ)
jt

(
µ
(τ)
jt − rjt

)
dτ

]
dt−

∫ T

0
X

(τ)
jt Arj(τ)σrjdBrjt.

The optimization problem of these arbitrageurs is

max
{X(τ)

jt }τ∈(0,T )

[∫ T

0
X

(τ)
jt

(
µ
(τ)
jt − rjt

)
dτ − aj

2

(∫ T

0
X

(τ)
jt Arj(τ)dτ

)2

σ2rj

]
,

and their first-order condition, which follows from point-wise differentiation, is

µ
(τ)
jt − rjt = ajArj(τ)

(∫ T

0
X

(τ)
jt Arj(τ)dτ

)
σ2rj . (3.16)

Equation (3.16) describes the arbitrageurs’ risk-return trade-off when investing in the bond

carry trade (BCT) in country j. We term BCT in country j the trade of borrowing short-term in

that country and investing the borrowed amount in that country’s bonds.2 The return on the BCT

in the home country and for maturity τ is
dP

(τ)
Ht

P
(τ)
Ht

− rHtdt, equal to the return on the home bond

with maturity τ minus that on the home short rate. The return on the BCT in the foreign country,

expressed in home-currency terms, is
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et
− rFtdt. This is equal to the return on the

foreign bond with maturity τ , expressed in home-currency terms, minus that on foreign currency,

minus that on the foreign short rate.

2For simplicity, we deviate from market terminology, according to which the BCT borrows at maturities with a
low interest rate.
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If arbitrageurs invest an extra unit of home currency in the BCT for country j and maturity τ ,

then their expected return increases by the BCT’s expected return µ
(τ)
jt − rjt. This is the left-hand

side of (3.16). The right-hand side is the increase in the arbitrageurs’ portfolio risk, times their risk-

aversion coefficient aj . The increase in portfolio risk is equal to the covariance between the return

on the BCT in country j and for maturity τ , and the return on the BCT portfolio of arbitrageurs

in country j and across all maturities. Since these returns depend only on the country j short

rate rjt, their covariance is the product of their sensitivities to rjt times the instantaneous variance

σ2rj of rjt. Equations (3.12) and (3.14) imply that the return sensitivities to rjt are −Arj(τ) and

−
∫ T
0 X

(τ)
jt Arj(τ), respectively.

We next combine the arbitrageurs’ first-order condition (3.16) with market clearing for country

j bonds. Market clearing requires that the time-t positions of arbitrageurs and bond investors sum

to zero:

X
(τ)
jt + Z

(τ)
jt = 0. (3.17)

Using (3.17), we can write (3.16) as

µ
(τ)
jt − rjt = −ajArj(τ)

(∫ T

0
Z

(τ)
jt Arj(τ)dτ

)
σ2rj

= ajArj(τ)

(∫ T

0

[
αj(τ) log

(
P

(τ)
jt

)
+ ζj(τ)

]
Arj(τ)dτ

)
σ2rj

= ajArj(τ)

(∫ T

0
[ζj(τ)− αj(τ) (Arj(τ)rjt + Cj(τ))]Arj(τ)dτ

)
σ2rj (3.18)

where the second step follows from (2.5) and βjt = 0, and the third step follows from (3.3).

Substituting µ
(τ)
Ht from (3.13) into (3.18) for j = H, we find an equation affine in rHt. Identifying

the linear terms in rHt and the constant terms yields two ordinary differential equations (ODEs) for

the two functions (ArH(τ), CrH(τ)). Repeating this process for the foreign bond, yields two ODEs

for (ArF (τ), CrF (τ)). These ODEs are linear, with the complication that the linear coefficients

depend on integrals involving these functions.

Proposition 3.2. When arbitrage is segmented, bond prices P
(τ)
jt in country j = H,F are given
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by (3.3), with (Arj(τ), Crj(τ)) equal to the unique solution of the system

A′rj(τ) + κrjArj(τ)− 1 = −ajσ2rjArj(τ)

∫ T

0
αj(τ)Arj(τ)2dτ, (3.19)

C ′j(τ)− κrjrjArj(τ) +
1

2
σ2rjArj(τ)

(
Arj(τ)− 2ArFe1{j=F}

)
= ajσ

2
rjArj(τ)

∫ T

0
[ζj(τ)− αj(τ)Cj(τ)]Arj(τ)dτ, (3.20)

with the initial conditions Arj(0) = Cj(0) = 0.

In the special case where arbitrageurs are risk-neutral, the Expectations Hypothesis (EH) holds.

Corollary 3.2. When arbitrage is segmented and bond arbitrageurs in country j are risk-neutral

(aj = 0), the EH holds in country j. The expected return on country-j bonds is µ
EH(τ)
jt ≡ rjt, and

the sensitivity of these bonds to shocks to the country-j short rate is AEHrj (τ) ≡ 1−e−κrjτ
κrj

.

3.2 Short-Rate Shocks, Carry Trades and Risk Premia

We next determine how bond yields and the exchange rate respond to short-rate shocks, and what

the implications are for the profitability of carry trades and risk premia.

3.2.1 Bonds

Proposition 3.3. Suppose that arbitrage is segmented. Following a drop in the short rate in

country j, bond yields drop in that country (Arj(τ) > 0) and do not change in the other country.

When additionally bond arbitrageurs in country j are risk-averse (aj > 0) and the demand of bond

investors in that country is price-elastic (αj(τ) > 0 in a positive-measure set of (0, T )):

• Bond yields do not drop all the way to the value implied by the EH: Arj(τ) < AEHrj (τ).

• The expected return of the BCT rises:
∂
(
µ
(τ)
jt −rjt

)
∂rjt

< 0.

When the short rate in country j drops, bond prices in that country rise (and bond yields drop)

because of a standard discounting effect. Prices do not rise all the way to the value implied by the

EH, however. Indeed, if prices remain the same as before the shock, then the drop in the short rate

15



renders the BCT in country j more profitable, raising its expected return µ
(τ)
jt − rjt. Hence, bond

arbitrageurs in country j seek to invest in the BCT, increasing their bond holdings X
(τ)
jt . This

puts upward pressure on bond prices P
(τ)
jt . When the demand by bond investors in country j is

price-elastic, their holdings Z
(τ)
jt decreases as bond prices rise and that of bond arbitrageurs X

(τ)
jt

increases in equilibrium. But according to (3.16), bond arbitrageurs need to be compensated for

their larger bond position with a higher risk premium. Hence, as in Vayanos and Vila (2019) for

the case of a closed economy, the BCT’s expected return µ
(τ)
jt − rjt remains higher than before the

shock. Bond prices adjust all the way to their EH value when bond arbitrageurs in country j are

risk neutral, since they do not require such compensation. They also adjust to their EH value when

the demand by bond investors in country j is price-elastic, because arbitrageurs’ activity causes

prices to rise until there is no change in X
(τ)
jt .

Proposition 3.3 implies a positive relationship between the expected return of the BCT in coun-

try j and the slope of the term structure in that country. Indeed, when the short rate is country j is

low, both BCT expected return and term-structure slope are high. A positive relationship between

the two variables has been documented by Fama and Bliss (FB 1987). We explore quantitatively

the link between our model and the empirical findings in FB and other papers mentioned in this

section and Section 4, in Section 5.

3.2.2 Foreign Currency

Proposition 3.4. Suppose that arbitrage is segmented. Following a drop in the home short rate

or a rise in the foreign short rate, the foreign currency appreciates (ArHe > 0, ArFe > 0). When

additionally currency arbitrageurs are risk-averse (ae > 0) and the demand of currency traders is

price-elastic (αe > 0),

• The foreign currency does not appreciate all the way to the level implied by UIP: ArHe < AUIPrHe ,

ArFe < AUIPrFe .

• The expected return of the CCT rises: ∂(µet+rFt−rHt)
∂rHt

< 0 and ∂(µet+rFt−rHt)
∂rFt

> 0.

When the home short rate drops or the foreign short rate rises, the foreign currency appreciates.

These movements are in the direction implied by UIP. The foreign currency does not appreciate

all the way to the value implied by UIP, however. Indeed, if the exchange rate remains the same
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as before the shock, then the drop in rHt or rise in rFt render the CCT more profitable, raising

its expected return µet + rFt − rHt. Hence, currency arbitrageurs seek to increase their holdings

WFt of the foreign currency. When the demand by currency traders is price-elastic, both the

exchange rate et and arbitrageurs’ foreign-currency holdings WFt increase in equilibrium. Risk-

averse arbitrageurs, however, do not trade all the way to the point where et reaches its UIP value.

Instead, in a spirit similar to Gabaix and Maggiori (2015), the CCT’s expected return µet+rFt−rHt
remains higher than before the shock to compensate arbitrageurs for the risk generated by their

larger foreign-currency position. The exchange rate adjusts all the way to its UIP value when

currency arbitrageurs are risk-neutral or when the demand by currency traders is price-inelastic.

Proposition 3.3 implies a positive relationship between the expected return of the CCT and

the difference between the foreign and the home short rate. Such a relationship holds in the data.

Bilson (1981) and Fama (1984) document that following an increase in the foreign-minus-home

short-rate differential, the expected return on the foreign currency typically increases. Moreover,

even in samples where it decreases, it does so less than implied by UIP. Hence, the CCT becomes

more profitable.

3.3 Demand Shocks

We next determine how bond yields and the exchange rate respond to changes in the demand

for bonds and foreign currency. Since we assume no demand risk in this section, we take the

demand changes to be unanticipated and one-off. Demand changes by bond investors in country j

correspond to shocks to the demand factor βjt. Demand changes by currency traders correspond to

shocks to the demand factor γt. Following the shocks, the demand factors revert deterministically

to their mean of zero. The effects of unanticipated and one-off shocks are the limit of those under

anticipated and recurring shocks (Section 5) when the shocks’ variance goes to zero.

Without loss of generality, we take θe to be positive, which means that an increase in γe

corresponds to a drop in demand for foreign currency. We take θj(τ) to be positive for all τ , which

means that an increase in βjt corresponds to a drop in demand for the bonds of country j.

Proposition 3.5. Suppose that arbitrage is segmented, θe > 0 and θj(τ) > 0 for all τ .

• An unanticipated one-off drop in investor demand for the bonds of country j (increase in βjt)

raises bond yields in country j if bond arbitrageurs in that country are risk-averse (aj > 0).

It has no effect on bond yields in the other country and on the exchange rate.
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• An unanticipated one-off drop in currency traders’ demand for foreign currency (increase in

γe) causes the foreign currency to depreciate if currency traders are risk-averse (ae > 0). It

has no effect on bond yields.

When arbitrage is segmented, changes to the demand for an asset class—foreign currency, home

bonds, foreign bonds—affect that asset class only. When, for example, the demand for bonds in

country j drops, these bonds become cheaper and their yields increase, while foreign currency and

bonds in the other country are unaffected.

3.4 International Transmission and the Trilemma with Segmented Arbitrage

We next summarize the main implications of the model with segmented arbitrage for the domestic

and international transmission of monetary policy. Consider a conventional monetary policy eas-

ing at home, such as a drop in the home short rate rHt. That drop propagates along the home

term structure, although less than implied by EH (Proposition 3.3). Moreover, the home currency

depreciates, although less than implied by UIP (Proposition 3.4). Propagation is imperfect (com-

pared to EH and UIP) because bond and foreign-currency arbitrageurs must be compensated for

the change in their portfolio holdings. The drop in the home short rate does not affect the foreign

term structure (Proposition 3.3), and hence has no effect on foreign monetary conditions. In that

sense, the model with segmented arbitrage features full insulation.

Consider next a quantitative easing at home, whereby the Central Bank unexpectedly increases

its holdings of home bonds of some maturities τ > 0. Through the lens of the model, this corre-

sponds to an increase in the demand for home bonds, i.e. βjt < 0. This policy decreases home

bond yields (Proposition 3.5). It does not effect the foreign term structure, and hence has no

effect on foreign monetary conditions. Once again, the model with segmented arbitrage features

full insulation.

To understand why insulation arises, it is useful to frame the discussion in terms of the classic

Friedman-Obstfeld-Taylor open-economy Trilemma. According to the Trilemma, a country that

wants to maintain domestic monetary autonomy must either let its currency float, or impose cap-

ital controls. From that perspective, our finding that foreign monetary policy is insulated from

home monetary policy may appear unsurprising at first glance. After all, we are assuming that

the exchange rate is floating and that there are restrictions on capital flows since home-bond arbi-

trageurs cannot hold foreign bonds and vice-versa. According to the Trilemma, each one of these
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assumptions in isolation would be sufficient to ensure monetary policy insulation. As the next

section will demonstrate, however, this is not the case in our framework. When arbitrageurs are

global, they transmit monetary impulses from one country’s term structure to the other, even when

exchange rates are floating. In other words, while floating exchange rates keep short rates insulated,

insulation of the term structure arises entirely from the assumption that the home and foreign bond

markets are segmented.

In the model with segmented arbitrage, foreign-currency arbitrageurs can invest only in the

home and the foreign short rate, which are pinned down, respectively, by the home and foreign

central bank. Hence, unanticipated shocks to the demand for home bonds affect home bond yields

but not the exchange rate (Proposition 3.5). One relevant implication is that unanticipated QE has

no effect on the exchange rate. Hence in the segmented model, conventional monetary policy and

QE transmit differently to the domestic economy: in the case of conventional policy, a monetary

easing lowers bond yields and depreciates the currency, while in the case of unanticipated QE, a

monetary easing lowers bond yields but leaves the exchange rate unchanged. This result no longer

holds in Section 5, where shocks to bond demand affect both the term structure and the exchange

rate.

4 Global Arbitrage

In the remainder of this paper we study the case of global arbitrage. In this section we maintain the

other assumptions of Section 3, i.e., no demand risk for bonds and foreign currency, and independent

short rates. We relax these assumptions in Section 5. In both this section and Section 5, we allow

for currency demand in the forward market, by redefining the intercepts (β
(τ)
jt , ζe, θe).

4.1 Equilibrium

We conjecture that the equilibrium exchange rate takes the same form (3.2) as in Section 3. In

contrast to Section 3, we allow bond yields in each country j = H,F to also depend on the other

country’s short rate because of potential spillovers, which we show occur in equilibrium. Thus, we

replace (3.3) by

P
(τ)
jt = e−[Arjj(τ)rjt+Arjj′ (τ)rj′t+Cj(τ)] (4.1)

for j′ 6= j and six functions ({Arjj′(τ)}j,j′=H,F , {Cj(τ)}j=H,F ) that depend only on τ .
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Proceeding as in Section 3, we find that the first-order condition of global arbitrageurs is

µet + rFt − rHt = ArHeλrHt −ArFeλrF t, (4.2)

µ
(τ)
jt − rjt = Arjj(τ)λrjt +Arjj′(τ)λrj′t, (4.3)

where j, j′ = H,F , j 6= j′ and

λrjt ≡ aσ2rj

WFtArje(−1)1{j=F} +
∑

j′=H,F

∫ T

0
X

(τ)
j′t Arj′j(τ)dτ

 . (4.4)

The left-hand side of (4.2) and (4.3) is the increase in the arbitrageurs’ expected return if they

invest one unit of home currency in the CCT and in the country j BCT, respectively. The right-

hand side is the increase in the arbitrageurs’ portfolio risk, times their risk-aversion coefficient

a. Portfolio risk increases by the covariance between the corresponding trade (CCT or country j

BCT) and the arbitrageurs’ portfolio. To compute the covariance, we multiply the sensitivity of the

trade’s return to the short rate in country j, times the sensitivity λrjt of the arbitrageurs’ portfolio

return to the same factor, times the factor’s variance σ2rj . We then sum over j = H,F . In the

terminology of no-arbitrage models, the sensitivity λrjt is the price of the risk factor rjt. The key

difference between (4.2) and (4.3), and their counterparts (3.6) and (3.16) is that the same factor

prices λrjt apply to all trades (CCT, home BCT, foreign BCT). It is through the equalization of

factor prices that global arbitrage connects bond and currency markets. Proceeding as in Section

3, we characterize the exchange rate and bond prices by a system of scalar equations and ODEs.

Proposition 4.1. When arbitrage is global, the exchange rate et is given by (3.2) and bond prices

P
(τ)
jt in country j = H,F are given by (4.1), with ({Arje}j=H,F , Ce) solving

κrjArje − 1 = aσ2rjλ̄rjjArje − aσ2rj′ λ̄rjj′Arj′e, (4.5)

− κrHrHArHe + κrF rFArFe +
1

2
σ2rHA

2
rHe +

1

2
σ2rFA

2
rFe = aσ2rHλrHCArHe − aσ2rFλrFCArFe,

(4.6)

and (Arjj(τ), Arjj′(τ), Cj(τ)) solving

A′rjj(τ) + κrjArjj(τ)− 1 = aσ2rjλ̄rjjArjj(τ) + aσ2rj′ λ̄rjj′Arjj′(τ), (4.7)

A′rjj′(τ) + κrj′Arjj′(τ) = aσ2rj λ̄rj′jArjj(τ) + aσ2rj′ λ̄rj′j′Arjj′(τ), (4.8)

C ′j(τ)− κrjrjArjj(τ)− κrj′rj′Arjj′(τ) +
1

2
σ2rjArjj(τ)

(
Arjj(τ)− 2ArFe1{j=F}

)
+

1

2
σ2rj′Arjj′(τ)

(
Arjj′(τ) + 2ArHe1{j=F}

)
= aσ2rj λ̄rjCArjj(τ) + aσ2rj′ λ̄rj′CArjj′(τ), (4.9)
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with the initial conditions Arjj(0) = Arjj′(0) = Cj(0) = 0, where j′ 6= j and

λ̄rjj ≡ −

 ∑
k=H,F

∫ T

0
αk(τ)Arkj(τ)2dτ + αeA

2
rje

 ,

λ̄rjj′ ≡ −

 ∑
k=H,F

∫ T

0
αk(τ)Arkj(τ)Arkj′(τ)dτ − αeArjeArj′e

 ,

λ̄rjC ≡
∑

k=H,F

∫ T

0
(ζk(τ)− αk(τ)Ck(τ))Arkj(τ)dτ + (ζe − αeCe)Arje(−1)1{j=F} .

Equations (4.7) and (4.8) form a system of two linear ODEs in (Arjj(τ), Arjj′(τ)), with the

complication that the coefficients of (Arjj(τ), Arjj′(τ)) depend on integrals involving these functions

as well as the functions obtained by inverting j and j′ 6= j. We solve the system taking λ̄rjj ,

λ̄rjj′ = λ̄rj′j and λ̄rj′j′ as given. We do the same for the system obtained by inverting j and

j′, and for the scalar system (4.5) in the unknowns (ArHe, ArFe). We then substitute back into

the definitions of λ̄rjj , λ̄rjj′ = λ̄rj′j and λ̄rj′j′ to derive a non-linear system of three equations in

these three unknowns. The properties that we show in the remainder of this section hold for any

solution of this system. In the special case where arbitrageurs are risk-neutral, UIP and EH hold

simultaneously.

Corollary 4.1. When arbitrage is global and arbitrageurs are risk-neutral (a = 0), UIP and EH

hold simultaneously. The expected return on foreign currency and bonds, and their sensitivities to

short-rate shocks, are as in Corollaries 3.1 and 3.2.

4.2 Short-Rate Shocks, Carry Trades and Risk Premia

Proposition 4.2. Suppose that arbitrage is global.

• The effects of short-rate shocks on the exchange rate and on the CCT’s expected return have

the same properties as in Proposition 3.4.

• The effects of shocks to the country-j short rate rjt on bond yields in country j and on the

BCT’s expected return have the same properties as in Proposition 3.1, except that the price-

elasticity condition can hold for currency traders or bond investors (αe > 0 or αj(τ) > 0).

• When arbitrageurs are risk-averse (a > 0) and the demand by currency traders is price-elastic
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(αe > 0), a drop in rjt causes bond yields in country j′ 6= j to drop (Aj′j(τ) > 0) and the

BCT’s expected return to drop (
∂
(
µ
(τ)

j′t−rj′t
)

∂rjt
> 0).

• The effect of rjt on bond yields is smaller in country j′ than in country j (Ajj(τ) > Aj′j(τ)).

The response of the exchange rate to short-rate shocks is similar under global and segmented

arbitrage: the exchange rate moves in the direction implied by UIP, and there is under-reaction

when arbitrageurs are risk-averse (a > 0) and the demand by currency traders is price-elastic

(αe > 0). Global and segmented arbitrage differ in how bond yields respond to shocks. Under

segmented arbitrage, a shock to the short rate rjt in country j affects bond yields in that country

only. By contrast, under global arbitrage, and provided that aαe > 0, the shock affects bond yields

in both countries, even though the short rate rj′t in country j′ 6= j does not change. When rjt

drops, bond yields in both countries drop.

Since short-rate shocks are transmitted across countries, monetary policy in one country has a

direct effect on the other country’s interest rates. When the central bank in country j lowers the

short rate rjt, interest rates for longer maturities in country j′ drop. This is so even though the

central bank in country j′ leaves the short rate rj′t unchanged.

Short-rate shocks are transmitted across countries because global arbitrageurs engage in the

CCT and use the bond market to hedge. Recall that under both segmented and global arbitrage,

a drop in the home short rate rHt raises the profitability of the CCT, making it more attractive to

arbitrageurs. When the demand by currency traders is price-elastic, the arbitrageurs’ equilibrium

investment in the CCT increases. Because arbitrageurs hold more foreign-currency instruments

(higher WFt), they become more exposed to the risk that the foreign short rate rFt drops and the

foreign currency depreciates. Global arbitrageurs hedge that risk by buying foreign bonds because

their price rises when rFt drops. The arbitrageurs’ activity pushes the prices of foreign bonds up

and their yields down.

An additional consequence of hedging by global arbitrageurs is greater under-reaction of home

bonds to the home short rate. When rHt drops, arbitrageurs invest more in the CCT, and hence

become more exposed to a rise in rHt. Investing in home bonds, whose prices drop when rHt rises,

adds to that risk. Hence, global arbitrageurs are less eager than segmented arbitrageurs to buy

home bonds following a drop in rHt, and the expected return of the home BCT increases more

than under segmented arbitrage. In particular, when the demand by home bond investors is price-

inelastic (and that by currency traders is elastic), a drop in rHt raises the home BCT’s expected
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return under global arbitrage but leaves it unaffected under segmented arbitrage.

We next turn to variants of the CCT studied in the empirical literature. We show that these

trades can be viewed as combinations of the BCT and the (basic) CCT, and that Proposition 4.2

can shed light on empirical findings concerning these trades.

One variant is a hybrid CCT in which the trading horizon is short but the trading instruments

are long-term. Borrowing in the home country and investing in the foreign country is done with

the respective τ -year bonds, and the positions are held for a short horizon dt. The return of the

hybrid CCT in home-currency units is

d(P
(τ)
Ft et)

P
(τ)
Ft et

−
dP

(τ)
Ht

P
(τ)
Ht

=

(
det
et

+ (rFt − rHt)dt
)

+

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et
− rFtdt

)
−

(
dP

(τ)
Ht

P
(τ)
Ht

− rHtdt

)
.

(4.10)

Hence, the hybrid CCT can be viewed as a combination of (i) the basic CCT, (ii) a long position

in the foreign BCT, and (iii) a short position in the home BCT.

A second variant is a long-horizon CCT, in which borrowing in the home country and investing

in the foreign country is done with the respective τ -year bonds, and the positions are held until

the bonds’ maturity. The return of the long-horizon CCT in home-currency units and log terms is

log

(
et+τ

P
(τ)
Ft et

)
− log

(
1

P
(τ)
Ht

)
=

∫ t+τ

t

(
log

(
es+ds
es

)
+ rFsds− rHsds

)

+

(
τy

(τ)
Ft −

∫ t+τ

t
rFsds

)
−
(
τy

(τ)
Ht −

∫ t+τ

t
rHsds

)
, (4.11)

where the equality follows from (2.1). Hence, the long-horizon CCT can be viewed as the combi-

nation of (i) a sequence of basic CCTs, (ii) a long position in a long-horizon foreign BCT, and (iii)

a short position in a long-horizon home BCT. The long-horizon BCT in country j involves buying

bonds in country j and financing that position by borrowing short-term and rolling over.

Proposition 4.3. Suppose that arbitrage is global.

• The expected returns of the hybrid CCT and the long-horizon CCT rise following a drop in

the home short rate rHt or a rise in the foreign short rate rFt.

• When the maturity τ of the bonds involved in the hybrid CCT and the long-horizon CCT goes

to infinity, these trades’ expected returns and their sensitivity to (rHt, rFt) go to zero.
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Short rate shocks move the expected return of the hybrid and the long-horizon CCT in the

same direction as for the basic CCT. The effect goes to zero, however, when the maturity τ of the

bonds in these trades goes to infinity. Our results are consistent with Lustig, Stathopoulos, and

Verdelhan (2019), who document that short rates lose their predictive power for the return of the

hybrid CCT, while they predict strongly the return of the basic CCT. They are also consistent with

Chinn and Meredith (2004), who document that UIP cannot be rejected over long horizons.

Short rate shocks lose their predictive power for the hybrid and the long-horizon CCT because

the risk of these trades arises from long-horizon exchange-rate movements, which are unrelated

to current short-rate shocks. Indeed, an arbitrageur entering in the long-horizon CCT at time t

receives a fixed amount of foreign currency and pays a fixed amount of home currency at time

t + τ . Mean-reverting short-rate shocks do not affect the risk borne by the arbitrageur when τ is

large. The same is true for the hybrid CCT because that trade is identical to the long-horizon CCT

except that it is unwound at time t+ dt.

Under segmented arbitrage, the hybrid and long-horizon CCT cannot be performed by any

agent in the model as they require trading bonds and foreign currency simultaneously. Yet, we can

compute these trades’ expected returns, and show a weaker version of Proposition 4.2. Short-rate

shocks have a smaller effect on the expected return of the hybrid CCT than of the basic CCT.

Likewise, the effect is smaller for the long-horizon CCT than for the sequence of basic CCTs.

This is because the shocks’ effect through the BCTs work in the opposite direction. Consider, for

example, a drop in the home short rate. Propositions 3.3 and 3.4 imply that the expected return

of the basic CCT increases, but so does the expected return of the home BCT, which enters as a

short position in the hybrid and the long-horizon CCT. Under segmented arbitrage, the effects of

short-rate shocks on the CCT and BCT are disconnected because they driven by the risk aversion

of different arbitrageurs. In particular, the expected return of the hybrid CCT can drop when the

home short rate drops, while it always rises under global arbitrage.

4.3 Demand Shocks

Under global arbitrage, shocks to the demand for an asset class—foreign currency, home bonds,

foreign bonds—affect all three asset classes. This is in contrast to segmented arbitrage, where only

the asset class for which demand changes is affected (Proposition 3.5).

Proposition 4.4. Suppose that arbitrage is global and arbitrageurs are risk-averse (a > 0), and

θj(τ) > 0 for all τ . A drop in investor demand for the bonds of country j (increase in βjt):
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• Raises bond yields in country j.

• Raises bond yields in country j′ 6= j when the demand by currency traders is price-elastic

(αe > 0).

• Causes the foreign currency to depreciate if j = H, and to appreciate if j = F .

A drop in investor demand for home bonds depresses their prices, as in Proposition 3.5. Ad-

ditionally, prices for foreign bonds drop and the foreign currency depreciates. The latter (cross)

effects are driven by hedging of global arbitrageurs. Indeed, arbitrageurs accommodate the drop

in demand for home bonds by holding more such bonds. Hence, they become more exposed to

a rise in the home short rate rHt and less willing to hold assets that lose value when rHt rises.

Foreign currency is such an asset, and hence it depreciates. Foreign bonds is another such asset

(Proposition 4.2 shows that a rise in rHt drives foreign bond prices down when the demand by

currency traders is price-elastic), and hence their prices drop. A drop in demand for foreign bonds

has symmetric effects.

Proposition 4.5. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0), and θe > 0.

A drop in currency traders’ demand for foreign currency (increase in γt):

• Causes the foreign currency to depreciate.

• Raises bond yields in the home country.

• Lowers bond yields in the foreign country.

A drop in currency traders’ demand for foreign currency causes it to depreciate, as in Proposi-

tion 3.5. Additionally, hedging by global arbitrageurs causes home bond prices to drop and foreign

bond prices to rise. Indeed, arbitrageurs accommodate the drop in demand for foreign currency by

holding more of it. Hence, they become more exposed to a rise in the home short rate rHt and to a

decline in the foreign short rate rFt. This makes them less willing to hold home bonds, which lose

value when rHt rises, and more willing to hold foreign bonds, which gain value when rFt drops.

4.4 International Transmission and the Trilemma with Global Arbitrage

We next summarize the main implications of the model with global arbitrage for the domestic and

international transmission of monetary policy. Consider a conventional monetary policy easing at

home, such as a drop in the home short rate rHt. That drop propagates imperfectly along the home

term structure and depreciates the home currency (Proposition 4.2). These effects are as in the
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case of segmented arbitrage. Unlike in that case, yields on foreign bonds decrease, even though the

foreign short rate remains unchanged. Hence, foreign monetary conditions are affected by domestic

monetary conditions. In that sense, the model with global arbitrage and floating exchange rates

features imperfect insulation.

Consider next a quantitative easing at home, whereby the Central Bank increases its holdings

of domestic bonds of some maturities τ > 0. Through the lens of the model, this corresponds to an

increase in the demand for domestic bonds, i.e. βjt < 0. This policy decreases home bond yields

(Proposition 4.4). This effect is as in the case of segmented arbitrage. Unlike that case, yields on

foreign bonds decrease and the home currency depreciates. Hence, foreign monetary conditions are

affected by domestic monetary conditions. Once again, the model with global arbitrage features

imperfect insulation. For both types of policies, monetary conditions co-move positively: easing at

home eases abroad and vice versa.

To understand why insulation fails, we can go back to our Trilemma analysis. According to the

Trilemma, a country without restrictions on capital mobility should be able to maintain domestic

monetary autonomy—interpreted as controlling the yield curve—by letting the exchange rate float.

This is no longer the case under global arbitrage. The reason is that global rate arbitrageurs

rebalance their entire portfolio in response to shocks. When global arbitrageurs are risk-averse,

portfolio rebalancing requires adjustments in expected returns. In turn, this triggers movements in

bond prices and the exchange rate.

For example, a lower home short rate induces global arbitrageurs to increase their holdings

of domestic bonds (BCT) and of foreign currency (CCT). It also induces them to increase their

holdings of foreign long term bonds (BCT), to hedge their larger holdings of foreign currency. This

pushes down bond yields everywhere and depreciates the home currency.

The global arbitrage model implies additionally that sterilized foreign exchange interventions

affect not only the exchange rate but also the home and foreign yield curves. A sterilized foreign

exchange intervention designed to support the home currency can be interpreted as a drop in the

demand for foreign currency (an increase in γt), while holding the short rate unchanged. This

depreciates the foreign currency while tightening domestic monetary conditions and easing foreign

monetary conditions (Proposition 4.5).

Insulation of monetary policy is restored if global investors are risk-neutral. In that case,

expected returns satisfy both EH and UIP. Under EH, all bonds in a given country have the same

instantaneous expected return, equal to that country’s short rate. Under UIP, the foreign currency
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has instantaneous expected return equal to the difference between the home and the foreign short

rate. Hence, the exchange rate adjusts so that bonds of all maturities in both countries have the

same expected return: insulation is restored.

5 Global Arbitrage and Demand Risk

In this section we allow the demand by bond investors and currency traders to be stochastic. There

are five risk factors: the home and foreign short rates (rHt, rFt), the demand factors (βHt, βFt) for

home and foreign bonds, and the demand factor γt for currency.

5.1 Equilibrium

We conjecture that the equilibrium exchange rate is a log-affine function of qt = (rHt, rFt, βHt, βFt, γt)
>,

and that equilibrium bond yields are affine functions of qt, That is, there exist six scalars ({(Arje,

Aβje}j=H,F , Aγe, Ce) and twelve functions ({Arjj′(τ), Aβjj′(τ)}j,j′=H,F , {Aγj(τ)}j=H,F , {Cj(τ)}j=H,F )

that depend only on τ , such that

et = e−[ArHerHt−ArFerFt+AβHeβHt−AβFeβFt+Aγeγt+Ce], (5.1)

P
(τ)
jt = e−[Arjj(τ)rjt+Arjj′ (τ)rj′t+Aβjj(τ)βjt+Aβjj′ (τ)βj′t+Aγj(τ)γt+Cj(τ)]. (5.2)

WRITE FOC OF ARBITRAGEURS

5.2 Carry Trades and Risk Premia

Sections 3 and 4 show a positive relationship between the expected return of the CCT and the

difference between the foreign and the home short rate. When demand is stochastic, we can

examine how the CCT’s expected return depends on the difference between the foreign and the

home term-structure slope, holding constant the difference in short rates. This is because the slope

of the term structure in each country exhibits variation additional to that driven by short rates.

Our model implies that holding constant the difference between the foreign and the home short

rate, the CCT is less profitable when the difference between the foreign and the home term-structure

slope is larger. Indeed, suppose that the demand for foreign bonds by preferred-habitat investors

is low (βFt is high). This pushes down bond yields, especially in the foreign country, and raises
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the foreign-minus-home slope differential. It also causes the foreign currency to appreciate, for the

reasons explained in Section 4.3. Hence, the future expected return on the foreign currency is low,

and so is the expected return on the CCT.

The negative relationship between the expected return on the CCT and the difference between

the foreign and the home term-sturucture slope holds in the data. Lloyd and Marin (2019) document

that currencies with steeper term structures tend to depreciate.

5.3 Calibration

In order to solve the model numerically, we need to calibrate the model parameters as well as take

a stand on the functional form of the elasticity and demand functions αj(τ), θj(τ).

Our calibration assumes the two countries are symmetric, except that demand shocks are larger

in the Home country. This is captured by the demand functions θH(τ) and θF (τ), shown in the

bottom two panels of Figure 1. Additionally, we set κrj = 0.2 and κβ,j = 0.35, so that the shocks

to the Home and Foreign short rate mean-revert more slowly than the Home bond, Foreign bond,

and currency risk factors. The factors are all independent with standard deviation σ = 0.02.

Finally, we solve the model for different levels of risk aversion parameter, in order to explore

how the model behaves as arbitrageur risk aversion increases. We set a = {0, 1.0, 8.0, 24.0}, which

we call the “zero”, “low,” “medium,” and “high” equilibria.

We first explore how the model performs with respect to two common bond risk premia regres-

sions: the Fama-Bliss (FB) regressions (measuring the relationship between the slope of the term

structure and bond risk premia across maturities); and Campbell-Shiller (CS) regressions (mea-

suring the relationship between the slope of the term structure and changes in bond yields across

maturities). Figure 2 shows the model-implied regression coefficients of the two regressions across

maturities, for the Home and Foreign countries.

When arbitrageurs are close to risk-neutral, the slope coefficients are constant across maturities

and equal to 0 in the FB regression and 1 in the CS regression. As risk aversion increases, these

coefficients deviate from the risk-neutral baseline. The FB coefficients in both countries becomes

larger, and for high levels of risk aversion is increasing in maturity τ . For the CS regression

coefficient, higher risk aversion pushes the coefficients below 1; when risk aversion is very high, the

Home country CS coefficients drop below 0. Because the demand factor in the Foreign country
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Figure 1: Habitat Elasticity and Demand Functions

Notes: Plots of the habitat elasticity and demand functions αj(τ), θj(τ) across ma-
turities τ .

is smaller than the Home country, the Foreign CS regression coefficient is slightly larger than the

Home country.

5.4 Shocks to Risk Factors

We now explore how the model reacts to shocks to the five different risk factors.

Figure 3 plots the change in the yield curve in the Home and Foreign countries, in response

to changes in the risk factors. The dashed, dotted, and solid lines correspond to low, medium,

and high levels of risk aversion, respectively. It is clear that both the quantitative and qualitative

predictions of the model depend on the level of risk aversion. Figure 4 plots the corresponding

change in arbitrageur portfolio allocations.

In order to understand why this is the case, we first start with the simplest case when arbi-

trageurs are nearly risk-neutral. Suppose the Home short rate rHt increases (the first row of panels

in Figures 3 and 4). All else equal, expected returns on long-term bonds must also increase, and

so this downward pressure on bond prices induces the Home (price-elastic) habitat investors to

buy more long-term bonds. Arbitrageurs facilitate this by reducing their holdings of Home bonds;
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Figure 2: Model-Implied Term Structure Regression Coefficients

Notes: Plots of the model-implied regression coefficients across maturities τ . The top-
left and bottom-left panels plot the slope coefficients of the Fama-Bliss regressions
across maturities τ in the Home and Foreign country. The top-right and bottom-right
panels plot the slope coefficients of the Campbell-Shiller regressions across maturities
τ in the Home and Foreign country. The dashed, dotted, and solid lines correspond
to low, medium, and high levels of risk aversion, respectively.

because they are nearly risk-neutral, they are happy to fully offset the shift in demand from habitat

investors with little change in expected returns. Similarly, because the Foreign short rate rFt has

not changed, all else equal the expected return on Foreign currency must increase. This leads to

a depreciation of the Foreign currency. This induces (price-elastic) currency traders to hold more

Foreign currency, and once again arbitrageurs are happy to accommodate this shift in demand.

Hence, the change in the Home short rate leads to large changes in Home bond yields and the

exchange rate, but there is little to no spillover to the Foreign bond market.

When instead arbitrageurs are risk-averse, they are less inclined to fully accomodate the shifts

in demand from the price-elastic habitat investors. First, the fall in their holdings of Home bonds

decreases their exposure to Home short rate risk. Hence arbitrageurs wish to increase their holdings
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of Home bonds relative to the risk-neutral baseline. This pushes the yield curve down relative to

the risk-neutral baseline. For the same reason, decreased exposure to Home short rate risk also

implies that arbitrageurs are less inclined to hold Foreign bonds and Foreign currency. This implies

that the exchange rate falls by less than the risk-neutral baseline. It also implies that changes in the

Home short rate spill into the Foreign yield curve. However, the top-right panel of Figure 3 shows

that the shift in the Foreign yield curve changes shape when arbitrageurs move from moderately

to highly risk-averse. To better understand this, we first turn to a discussion of how bond yields

react to shifts in the demand factors.

The panels in the third rows of Figures 3 and 4 show the response to an decrease in the

Home demand factor βHt (equivalently, an increase in supply). Again, it is useful to start with a

baseline where arbitrageurs are close to risk-neutral. The immediate effect in an increase in the

arbitrageurs’ holdings of long-term bonds. Of course, when they are nearly risk neutral, they do

not require changes in expected returns to accomodate this change in allocations, and hence there

is no reaction in bond yields (in either country) or in the exchange rate. However, this shift in

allocation towards Home long-term bonds implies that they are more exposed to Home short-rate

risk. Hence, when they are risk averse they wish to hedge their exposure to this source of risk.

They accomplish this by reducing their holdings of Foreign currency as well as Foreign bonds.

Now we return to the reaction of the Foreign yield curve to the increase in Home short rates

when risk aversion is very high (the top-right panel of Figure 3). All else equal, arbitrageurs would

like to decrease their holdings of Foreign bonds, due to their increased exposure to Home short

rate risk. But from the above discussion of the demand factors, this decline in their allocation of

Foreign bonds also reduces their exposure to the demand factors, in particular the Foreign demand

factor. Hence, they are more willing to hold assets which are exposed to the demand factors, which

in turn puts downward pressure on expected Foreign bond returns and yields. On net, this more

complicated hedging behavior leads to a flattening of the Foreign yield curve in response to an

increase in the Home short rate.

Intuitively, as arbitrageurs become more and more risk averse, they seek to limit their exposure

to all sources of risk regardless of expected returns. The flattening of the Foreign yield curve arises

because of the interaction of price-elastic bond traders (so that shifts in bond yields induce shifts

in equilibrium portfolio allocations); price-elastic currency traders (so that shifts in the short rates

spill across countries); and stochastic demand factors (so that arbitrageurs must hedge against

shifts in their allocation of long-term bonds that arise for reasons unrelated to the short rate).
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Figure 3: Response of Yield Curves to Risk Factors

Notes: Plots of the yield curve response in the Home and Foreign countries (left and
right columns, respectively). The first row is in response to an increase in the Home
short rate rHt, while the second row plots the responses to an increase in the Foreign
short rate rFt. The third and fourth rows plot the response to an increase the Home
and Foreign demand factors βHt, βFt. Finally, the bottom row shows the response to
the currency risk factor βe. The dashed, dotted, and solid lines correspond to low,
medium, and high levels of risk aversion, respectively.
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Figure 4: Response of Arbitrageur Allocations to Risk Factors

Notes: Plots of the change in arbitrageur holdings of Home bonds (left column) and
Foreign bonds (middle column) across maturities τ . The final column plots the time
series behavior of the exchange rate across time t. The first row is in response to an
increase in the Home short rate rHt, while the second row plots the responses to an
increase in the Foreign short rate rFt. The third and fourth rows plot the response
to an increase the Home and Foreign demand factors βHt, βFt. Finally, the bottom
row shows the response to the currency risk factor βe. The dashed, dotted, and solid
lines correspond to low, medium, and high levels of risk aversion, respectively.
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Appendix

A Proofs

Proof of Proposition 3.1: Equation (3.10) follows by identifying the linear terms in (rHt, rFt)

in (3.9). Equation (3.11) follows by identifying the constant terms.

To show that the system of (3.10) and (3.11) has a unique solution for ({Arje}j=H,F , Ce), we

start with the system of two equations in {Arje}j=H,F obtained by writing (3.10) for j = H and

j = F . A solution to the latter system must be positive, as can be seen by writing (3.10) as[
κrj + aeαe

(
σ2rHA

2
rHe + σ2rFA

2
rFe

)]
Arje = 1. (A.1)

Since Arje > 0, the right-hand side of (3.10) is negative. Therefore, the left-hand side is negative

as well, which implies Arje <
1
κrj

. Dividing (3.10) written for j = H by (3.10) written for j = F ,

we find

1− κrHArHe
1− κrFArFe

=
ArHe
ArFe

⇔ ArHe =
ArFe

1 + (κrH − κrF )ArFe
. (A.2)

Equation (A.2) determines ArHe as an increasing function of ArFe ∈
[
0, 1

κrF

]
, equal to zero for

ArFe = 0, and equal to 1
κrH

for ArFe = 1
κrF

. Substituting ArHe as a function of ArFe in (A.1)

written for j = F , we find an equation in the single unknown ArFe. The left-hand side of that

equation is increasing in ArFe, is equal to zero for ArFe = 0, and is equal to a value larger than

one for ArFe = 1
κrF

. Hence, that equation has a unique solution ArFe. Given that solution, (A.2)

determines ArHe uniquely, and (3.11) determines Ce uniquely.

Proof of Corollary 3.1: When ae = 0, (3.6) implies µet = rHt−rFt, and (3.10) implies Arje = 1
κrj

.

Proof of Proposition 3.2: Substituting µHt and µFt from (3.13) and (3.15), respectively, into

(3.18), we find

A′rj(τ)rjt + C ′j(τ)−Arj(τ)κrj(rj − rjt) +
1

2
Arj(τ)

(
Arj(τ)− 2ArFe1{j=F}

)
σ2rj − rjt

= ajArj(τ)

(∫ T

0
[ζj(τ)− αj(τ) (Arj(τ)rjt + Cj(τ))]Arj(τ)dτ

)
σ2rj . (A.3)
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Equation (3.19) follows by identifying the linear terms in rjt in (A.3). Equation (3.20) follows by

identifying the constant terms. The initial conditions Arj(0) = Cj(0) = 0 follow because the price

of a bond with zero maturity is its face value, which is one.

Solving (3.19) with the initial condition Arj(0) = 0, we find

Arj(τ) =
1− e−κ

∗
rj

κ∗rj
, (A.4)

with

κ∗rj ≡ κrj + ajσ
2
rj

∫ T

0
αj(τ)Arj(τ)2dτ. (A.5)

Substituting Arj(τ) from (A.4) into (A.5), we find the equation

κ∗rj − κrj + ajσ
2
rj

∫ T

0
αj(τ)

(
1− e−κ

∗
rj

κ∗rj

)2

dτ = 0 (A.6)

in the single unknown κ∗rj . The left-hand side of (A.6) is increasing in κ∗rj , is negative for κ∗rj = κrj ,

and goes to infinity when κ∗rj goes to infinity. Hence, (A.6) has a unique solution κ∗rj > κrj . Given

κ∗rj , (A.4) determines Arj(τ) uniquely.

Solving (3.20) with the initial condition C(τ) = 0, we find

Cj(τ) = κ∗rjr
∗
j

∫ τ

0
Arj(τ)dτ − 1

2
σ2rj

∫ τ

0
Arj(τ)2dτ, (A.7)

with

κ∗rjr
∗
j ≡ κrjrj + ajσ

2
rj

∫ T

0
[ζj(τ)− αj(τ)Cj(τ)]Arj(τ)dτ + σ2rjArFe1{j=F}. (A.8)

Substituting Cj(τ) from (A.7) into (A.8), we find

r∗j =
κrjrj + ajσ

2
rj

∫ T
0 ζj(τ)Arj(τ)dτ + σ2rjArFe1{j=F} + 1

2ajσ
4
rj

∫ T
0 αj(τ)

(∫ τ
0 Arj(τ

′)2dτ ′
)
Arj(τ)dτ

κ∗rj

[
1 + ajσ2rj

∫ T
0 αj(τ)

(∫ τ
0 Arj(τ

′)dτ ′
)
Arj(τ)dτ

]
(A.9)

Given r∗j , (A.7) determines Cj(τ) uniquely.
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Proof of Corollary 3.2: When aj = 0, (3.16) implies µ
(τ)
jt = rjt, and (3.19) with the initial

condition Arj(0) = 0 implies Arj(τ) = 1−e−κrjτ
κrj

.

Proof of Proposition 3.3: Equations (A.4) and κ∗rj > κrj imply Arj(τ) < 1−e−κrjτ
κrj

. Differenti-

ating (3.18) with respect to rjt implies

∂
(
µ
(τ)
jt − rjt

)
∂rjt

= −ajσ2rjArj(τ)

∫ T

0
αj(τ)Arj(τ)2dτ < 0,

where the second step follows because (A.4) implies Arj(τ) > 0.

Proof of Proposition 3.4: The property Arje <
1
κrj

is shown in the proof of Proposition 3.1.

Differentiating (3.8) with respect to rHt and rFt, we find

∂(µet + rFt − rHt)
∂rHt

= −aeαeArHe
(
σ2rHA

2
rHe + σ2rFA

2
rFe

)
< 0,

∂(µet + rFt − rHt)
∂rFt

= aeαeArFe
(
σ2rHA

2
rHe + σ2rFA

2
rFe

)
> 0.

where the second step in each case follows because Arje > 0.

Proof of Proposition 3.5: Consider an one-off increase in βjt at time zero, and denote by κβj

the rate at which βjt reverts to its mean of zero. Bond prices in country j at time t are

P
(τ)
jt = e−[Arj(τ)rjt+Aβj(τ)βjt+Cj(τ)], (A.10)

where (Arj(τ), Aβj(τ), Cj(τ)) are functions of τ . The counterpart of (A.3) is

A′rj(τ)rjt +A′βj(τ)βjt + C ′j(τ)−Arj(τ)κrj(rj − rjt) +Aβj(τ)κβjβjt

+
1

2
Arj(τ)

(
Arj(τ)− 2ArFe1{j=F}

)
σ2rj − rjt

= ajArj(τ)

(∫ T

0
[ζj(τ) + θj(τ)βjt − αj(τ) (Arj(τ)rjt +Aβj(τ)βjt + Cj(τ))]Arj(τ)dτ

)
σ2rj .

(A.11)
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Identifying terms in rt and constant terms, we find (3.19) and (3.20), respectively. Identifying terms

in βjt, we find

A′βj(τ) + κβjAβj(τ) = ajσ
2
rjArj(τ)

∫ T

0
[θj(τ)− αj(τ)Aβj(τ)]Arj(τ)dτ. (A.12)

Solving (A.12) with the initial condition Aβj(τ) = 0, we find

Aβj(τ) = λβj

∫ τ

0
Arj(τ

′)e−κβj(τ−τ
′)dτ ′, (A.13)

with

λβj ≡ ajσ2rj
∫ T

0
[θj(τ)− αj(τ)Aβj(τ)]Arj(τ)dτ. (A.14)

Substituting Aβj(τ) from (A.13) into (A.14), we find

λβj =
ajσ

2
rj

∫ T
0 θj(τ)Arj(τ)dτ

1 + ajσ2rj
∫ T
0 αj(τ)

(∫ τ
0 Arj(τ

′)e−κβj(τ−τ
′)dτ ′

)
Arj(τ)dτ

. (A.15)

Since (θj(τ), Arj(τ)) are positive, so is λβj and Aβj(τ). Hence, (A.15) implies that an increase in

βjt raises bond yields in country j. Since the foreign currency and bonds in country j′ are traded

by different agents than those trading bonds in country j, their prices do not depend on βjt.

Consider next an one-off increase in γt at time zero, and denote by κγ the rate at which γt

reverts to its mean of zero. The exchange rate at time t is

et = e−[ArHerHt−ArFerFt+Aγeγt+Ce], (A.16)

where ({Arje}j=H,F , Aγe, Ce) are scalars. The counterpart of (3.8) is

−ArHeκrH(rH − rHt) +ArFeκrF (rF − rFt) +Aγeκγγt +
1

2
A2
rHeσ

2
rH +

1

2
A2
rFeσ

2
rF + rFt − rHt

= ae [ζe + θeγt − αe (ArHerHt −ArFerFt +Aγeγt + Ce)]
(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)
. (A.17)

Identifying terms in (rHt, rFt) and constant terms, we find (3.10) and (3.11), respectively. Identi-

fying terms in γt, we find

κγAγe = ae(θe − αeAγe)
(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)
⇒ Aγe =

aeθe
(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

)
κγ + aeαe

(
A2
rHeσ

2
rH +A2

rFeσ
2
rF

) . (A.18)
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Since θe is positive, so is Aγe. Hence, (A.18) implies that an increase in γt causes the foreign

currency to depreciate. Since bonds in each country are traded by a separate set of agents than

those trading foreign currency, their prices do not depend on γt.

Proof of Proposition 4.1: Applying Ito’s Lemma to (4.1) for j = H, we find the following

counterpart of (3.12):

dP
(τ)
Ht

P
(τ)
Ht

= µ
(τ)
Htdt−ArHH(τ)σrHdBrHt −ArHF (τ)σrFdBrF t, (A.19)

where

µ
(τ)
Ht ≡A

′
rHH(τ)rHt +A′rHF (τ)rFt + C ′H(τ)−ArHH(τ)κrH(rH − rHt)−ArHF (τ)κrF (rF − rFt)

+
1

2
ArHH(τ)2σ2rH +

1

2
ArHF (τ)2σ2rF . (A.20)

Likewise, (4.1) for j = F and (3.2) yield the following counterpart of (3.14):

d(P
(τ)
Ft et)

P
(τ)
Ft et

− det
et

= µ
(τ)
Ft dt−ArFH(τ)σrHdBrHt −ArFF (τ)σrFdBrF t, (A.21)

where

µ
(τ)
Ft ≡A

′
rFH(τ)rHt +A′rFF (τ)rFt + C ′F (τ)−ArFH(τ)κrH(rH − rHt)−ArFF (τ)κrF (rF − rFt)

+
1

2
ArFH(τ) (ArFH(τ) + 2ArHe)σ

2
rH +

1

2
ArFF (τ) (ArFF (τ)− 2ArFe)σ

2
rF . (A.22)

Substituting the returns (3.4), (A.19) and (A.21) into the arbitrageurs’ budget constraint (2.3), we

can write their optimization problem (2.4) as

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

WFt (µet + rFt − rHt) +
∑
j=H,F

∫ T

0
X

(τ)
jt

(
µ
(τ)
jt − rjt

)
dτ

−a
2

∑
j=H,F

WFtArje(−1)1{j=F} +
∑

j′=H,F

∫ T

0
X

(τ)
j′t Arj′j(τ)dτ

2

σ2rj

 . (A.23)

The first-order condition with respect to WFt is (4.2), and the first-order condition with respect to

X
(τ)
jt is (4.3).
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Using (3.7) and (3.17), we can write λrjt as

λrjt = aσ2rj

− ∑
j′=H,F

∫ T

0
Z

(τ)
j′t Arj′j(τ)dτ − ZetArje(−1)1{j=F}



= aσ2rj

 ∑
j′=H,F

∫ T

0

[
αj′(τ) log

(
P

(τ)
j′t

)
+ ζj′(τ)

]
Arj′j(τ)dτ + [αe log(et) + ζe]Arje(−1)1{j=F}



= aσ2rj

 ∑
j′=H,F

∫ T

0

[
ζj′(τ)− αj′(τ)

(
Arj′H(τ)rHt +Arj′F (τ)rFt + Cj′(τ)

)]
Arj′j(τ)dτ

+ [ζe − αe (ArHerHt −ArFerFt + Ce)]Arje(−1)1{j=F}

)

= aσ2rj
(
λ̄rjjrjt + λ̄rj′jrj′t + λ̄rjC

)
, (A.24)

where the second step follows from (2.5), (2.7) and βHt = βFt = γt = 0, the third step follows from

(3.2) and (4.1), and the fourth step follows from the definitions of (λ̄rjj , λ̄rjj′ , λ̄rjC) in the statement

of the proposition. We next substitute {µ(τ)jt , λrjt}j=H,F from (A.20), (A.22) and (A.24) into the

arbitrageurs’ first-order condition. Substituting into (4.2) and identifying terms in (rHt, rFt) and

constant terms, we find (4.5) and (4.6), respectively. Substituting into (4.3) and identifying terms

in rjt, terms in rj′t and constant terms, we find (4.7), (4.8) and (4.9), respectively.

Proof of Corollary 4.1: When a = 0, (4.4) implies λrHt = λrF t = 0. Hence, (4.2) implies

µet = rHt − rFt and (4.3) implies µ
(τ)
jt = rjt. Moreover, (4.5) implies Arje = 1

κrj
, (4.7) with

the initial condition Arjj(0) = 0 implies Arjj(τ) = 1−e−κrjτ
κrj

, and (4.8) with the initial condition

Arjj′(0) = 0 implies Arjj′(τ) = 0.

Proof of Proposition ??: We first determine the sign of (λrH , λrF ). Equation (??) implies

λrH ≤ 0. Suppose, proceeding by contradiction, λrF < 0. Equations (??), (??) and the initial

conditions ArH(0) = ArF (0) imply A′rH(0) = 1 > 0 and A′rF (0) = 0. Moreover, differentiating

(??), we find A′′rF (0) = A′rH(0)λrF < 0. Hence, ArH(τ) > 0 and ArF (τ) < 0 for τ close to zero.

We define τ0 by

τ0 ≡ sup
τ
{ArH(τ ′) > 0 and ArF (τ ′) < 0 for all τ ′ ∈ (0, τ)}.
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If τ0 is finite, then (i) ArH(τ0) = 0, A′rH(τ0) ≤ 0 and ArF (τ0) < 0, or (ii) ArH(τ0) > 0, ArF (τ0) = 0

and A′rF (τ0) ≥ 0, or (iii) ArH(τ0) = ArF (τ0) = 0, A′rH(τ0) ≤ 0 and A′rF (τ0) ≥ 0. Cases (i) and (iii)

yield a contradiction since (??), ArH(τ0) = 0, ArF (τ0) ≤ 0 and λrF < 0 imply A′rH(τ0) ≥ 1. Case

(ii) yields a contradiction since (??), ArH(τ0) > 0, ArF (τ0) = 0 and λrF < 0 imply A′rF (τ0) < 0.

Therefore, τ0 is infinite, which means ArH(τ) > 0 and ArF (τ) < 0 for all τ > 0. Equation (??)

then implies λrF ≥ 0, a contradiction. Hence, λrF ≥ 0. Equations (??), λrH ≤ 0 and λrF ≥ 0

imply Are > 0. To complete the proof, we distinguish the case a > 0 and αe > 0, and the case

a = 0 or αe = 0.

Case a > 0 and αe > 0: If λrF = 0, then (??) and the initial condition ArF (0) = 0 imply

ArF (τ) = 0 for all τ . Since Are > 0, (??) implies λrF > 0, a contradiction. Hence, λrF > 0.

We next show that (ArH(τ), ArF (τ), ArH(τ)−ArF (τ)) are positive. Since ArH(0) = ArF (0) =

A′rF (0) = 0, A′rH(0) = 1 and A′′rF (0) = A′rH(0)λrF > 0, (ArH(τ), ArF (τ)) are positive for τ close

to zero. We define τ0 by

τ0 ≡ sup
τ
{ArH(τ ′) > 0 and ArF (τ ′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) ArH(τ0) = 0, A′rH(τ0) ≤ 0 and ArF (τ0) > 0, or (ii) ArH(τ0) > 0, ArF (τ0) = 0

and A′rF (τ0) ≤ 0, or (iii) ArH(τ0) = ArF (τ0) = 0, A′rH(τ0) ≤ 0 and A′rF (τ0) ≤ 0. Cases (i) and (iii)

yield a contradiction since (??), ArH(τ0) = 0, ArF (τ0) ≥ 0 and λrF > 0 imply A′rH(τ0) ≥ 1. Case

(ii) yields a contradiction since (??), ArH(τ0) > 0, ArF (τ0) = 0 and λrF > 0 imply A′rF (τ0) > 0.

Therefore, τ0 is infinite, which means ArH(τ) > 0 and ArF (τ) > 0 for all τ > 0. Subtracting (??)

from (??), and setting ∆Ar(τ) ≡ ArH(τ)−ArF (τ), we find

∆A′r(τ) + κr∆Ar(τ)− 1 = ∆Ar(τ)(λrH − λrF ). (A.25)

Equation (A.25) and the initial condition ∆Ar(0) = ArH(0)−ArF (0) = 0 imply

∆Ar(τ) = ArH(τ)−ArF (τ) =
1− e−[κr−(λrH−λrF )]τ

κr − (λrH − λrF )
. (A.26)

Hence, ArH(τ)−ArF (τ) > 0 for all τ > 0.

We next show that (ArH(τ), ArF (τ), ArH(τ) − ArF (τ)) are increasing. Since A′rH(0) = 1,

A′rF (0) = 0 and A′′rF (0) > 0, (A′rH(τ), A′rF (τ)) are positive for τ close to zero. We define τ ′0 by

τ ′0 ≡ sup
τ
{A′rH(τ ′) > 0 and A′rF (τ ′) > 0 for all τ ′ ∈ (0, τ)}.
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If τ ′0 is finite, then (i) A′rH(τ ′0) = 0, A′′rH(τ ′0) ≤ 0 and A′rF (τ ′0) > 0, or (ii) A′rH(τ ′0) > 0, A′rF (τ ′0) = 0

and A′′rF (τ ′0) ≤ 0, or (iii) A′rH(τ ′0) = A′rF (τ ′0) = 0, A′′rH(τ ′0) ≤ 0 and A′′rF (τ ′0) ≤ 0. To show that

Case (i) yields a contradiction, we use

A′′rH(τ) + κrA
′
rH(τ) = A′rH(τ)λrH +A′rF (τ)λrF , (A.27)

which follows by differentiating (??). Since A′rH(τ ′0) = 0, A′rF (τ ′0) > 0 and λrF > 0, (A.27) implies

A′′rH(τ0) > 0. To show that Case (ii) yields a contradiction, we use

A′′rF (τ) + κrA
′
rF (τ) = A′rH(τ)λrF +A′rF (τ)λrH , (A.28)

which follows by differentiating (??). Since A′rH(τ ′0) > 0, A′rF (τ ′0) = 0 and λrF > 0, (A.28) implies

A′′rF (τ0) > 0. Case (iii) yields a contradiction because the system of ODEs (A.27) and (A.28) in the

functions (A′rH(τ), A′rF (τ)) with the initial condition A′rH(τ ′0) = A′rF (τ ′0) = 0 has a unique solution

which must coincide with the zero solution. Hence, (ArH(τ), ArF (τ)) must be constants, and equal

to (0,0) because ArH(0) = ArF (0) = 0. This is ruled out, however, from (??) and (??). Therefore,

τ ′0 is infinite, which means A′rH(τ) > 0 and A′rF (τ) > 0 for all τ > 0. Equation (A.26) implies

∆A′r(τ) = A′rH(τ)−A′rF (τ) > 0 for all τ > 0.

We next show that ArF (τ)
ArH(τ) is increasing. The argument in the proof of Lemma 3 in Vayanos

and Vila (2019) implies that the solution to the system of the two linear ODEs (??) and (??) with

the initial conditions ArH(0) = ArF (0) = 0 is

ArH(τ) =
1− e−ν1τ

ν1
+ φrH

(
1− e−ν2τ

ν2
− 1− e−ν1τ

ν1

)
, (A.29)

ArF (τ) = φrF

(
1− e−ν2τ

ν2
− 1− e−ν1τ

ν1

)
, (A.30)

where (ν1, ν2) are the eigenvalues of the matrix

M =

(
κr − λH −λF
−λF κr − λH

)
,

and (φrH , φrF ) are constant scalars. Since the matrix M is symmetric, the eigenvalues (ν1, ν2) are

real. Without loss of generality, we assume ν2 < ν1. Since the function (ν, τ) −→ 1−e−ντ
ν decreases

in ν, the term in parenthesis in (A.30) is positive. The scalar φrF is also positive since ArF (τ) > 0.

Since

ArH(τ)

ArF (τ)
=

1−e−ν1τ
ν1

φrF

(
1−e−ν2τ

ν2
− 1−e−ν1τ

ν1

) +
φrH
φrF

=
1

φrF

(
ν1
ν2

1−e−ν2τ
1−e−ν1τ − 1

) +
φrH
φrF

,
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and the function (ν1, ν2, τ) −→ 1−e−ν2τ
1−e−ν1τ increases in τ because its derivative has the same sign as

eν1τ−1
ν1
− eν2τ−1

ν2
, ArH(τ)
ArF (τ)

is decreasing, and hence ArF (τ)
ArH(τ) is increasing.

Case a = 0 or αe = 0: If λrF > 0, then the argument in the previous case implies ArH(τ) > 0

and ArF (τ) > 0 for all τ > 0. Since a = 0 or αe = 0, (??) implies λrF ≤ 0, a contradiction. Hence,

λrF = 0, which implies ArF (τ) = 0 for all τ . Equation (??) simplifies to

A′rH(τ) + κrArH(τ)− 1 = ArH(τ)λrH ,

whose solution with the initial condition ArH(0) = 0 is positive and increasing. Since ArF (τ) = 0,

ArH(τ)−ArF (τ) is also positive and increasing.

Proof of Corollary ??: The derivative of µ
(τ)
jt − rjt with respect to rjt is the left-hand (or right-

hand) side of (??). When a = 0 or α(τ) = αe = 0 for all τ , (??) and (??) imply λrH = λrF = 0.

Hence, the right-hand side of (??) is zero, and so is the left-hand side. To complete the proof of

the corollary, we need to show that when a > 0 and either α(τ) > 0 in a positive-measure subset of

(0, T ) or αe > 0, the right-hand side of (??) is negative. We can write the right-hand side of (??)

as

ArH(τ)λrH +ArF (τ)λrF

= ArH(τ)(λrH + λrF )− (ArH(τ)−ArF (τ))λrF

= −aσ2rArH(τ)

∫ T

0
α(τ) (ArH(τ) +ArF (τ))2 dτ − (ArH(τ)−ArF (τ))λrF , (A.31)

where the second step follows from (??) and (??). Since the function ArH(τ) is positive and the

function ArF (τ) is non-negative, the first term in (A.31) is negative when a > 0 and α(τ) > 0 in a

positive-measure subset of (0, T ). Since, in addition, the function ArH(τ)−ArF (τ) is positive, and

λrF > 0 when a > 0 and αe > 0 (proof of Proposition ??), the second term in (A.31) is negative

under that condition. Therefore, when a > 0 and either α(τ) > 0 in a positive-measure subset of

(0, T ) or αe > 0, (A.31) is negative, and so is the right-hand side of (??).

Proof of Corollary ??: The derivative of µ
(τ)
jt − rjt with respect to rj′t is the left-hand (or right-

hand) side of (??). When a > 0 and αe > 0, the left-hand side of (??) is positive because ArF (τ)

is positive and increasing in τ . When a = 0 or αe = 0, the left-hand side of (??) is zero because

ArF (τ) = 0 for all τ .
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Proof of Corollary ??: Using (??)-(??) and (4.10), we can write µ
(τ)
Ft − µ

(τ)
Ht as

[ArHe +ArFH(τ)−ArHH(τ)]λrHt − [ArHe +ArHF (τ)−ArFF (τ)]λrF t. (A.32)

With symmetric countries, (A.32) becomes

[Are +ArF (τ)−ArH(τ)] [(λrH − λrF )(rHt − rFt) + λrHC − λrFC ] . (A.33)

Equations (??) and (??) imply

λrH − λrF = −aσ2r
[∫ T

0
α(τ)

(
ArH(τ)2 −ArF (τ)2

)
dτ + 2αeA

2
re

]
. (A.34)

When a = 0 or α(τ) = αe = 0 for all τ , (A.34) implies λrH−λrF = 0, and hence (A.33) implies that

µ
(τ)
Ft − µ

(τ)
Ht is independent of {rjt}j=H,F . When a > 0 and either (i) α(τ) > 0 in a positive-measure

subset of (0, T ) or (ii) αe > 0, (A.34) implies λrH − λrF < 0. Equations (??) and (A.25) imply

Are +ArF (τ)−ArH(τ) =
e−[κr−(λrH−λrF )]τ

κr − (λrH − λrF )
. (A.35)

Since λrH − λrF < 0, Are + ArH(τ) − ArF (τ) is positive and decreases to zero when τ goes to

infinity. Hence, (A.33) implies that µ
(τ)
Ft −µ

(τ)
Ht +µet decreases in rHt and increases in rFt, and that

these effects decline with maturity and converge to zero when τ goes to infinity.

Proof of Proposition 4.4: We start by computing the functions (AβH(τ), AβF (τ)) and the scalar

Aβe defined in Section ??. For an unanticipated and one-off demand change, we set σβ = σβe = 0

in [[[INSERT REFERENCE]], and find

A′βH(τ) + κβAβH(τ) = ArH(τ)λβH +ArF (τ)λβF , (A.36)

A′βF (τ) + κβAβF (τ) = ArH(τ)λβF +ArF (τ)λβH , (A.37)

κβAβe = Are(λβH − λβF ), (A.38)

where

λβH = aσ2r

[∫ T

0
[θ(τ)− α(τ)AβH(τ)]ArH(τ)dτ −

∫ T

0
AβF (τ)ArF (τ)dτ − αeAβeAre

]
, (A.39)

λβF = aσ2r

[∫ T

0
[θ(τ)− α(τ)AβH(τ)]ArF (τ)dτ −

∫ T

0
AβF (τ)ArH(τ)dτ + αeAβeAre

]
. (A.40)
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Integrating (A.36) and (A.37) with the initial conditions AβH(τ) = AβF (τ) = 0, we find

AβH(τ) = λβH

∫ τ

0
ArH(τ ′)e−κβ(τ−τ

′)dτ ′ + λβF

∫ τ

0
ArF (τ ′)e−κβ(τ−τ

′)dτ ′, (A.41)

AβF (τ) = λβF

∫ τ

0
ArH(τ ′)e−κβ(τ−τ

′)dτ ′ + λβH

∫ τ

0
ArF (τ ′)e−κβ(τ−τ

′)dτ ′. (A.42)

Substituting {Aβj(τ)}j=H,F from (A.41) and (A.42) into (A.39) and (A.40), we find

λβH = aσ2r

∫ T

0
θ(τ)ArH(τ)dτ − λβH

∑
j=H,F

∫ T

0
α(τ)

(∫ τ

0
Arj(τ

′)e−κβ(τ−τ
′)dτ ′

)
Arj(τ)dτ

−λβF
∑

j,j′=H,F
j′ 6=j

∫ T

0
α(τ)

(∫ τ

0
Arj′(τ

′)e−κβ(τ−τ
′)dτ ′

)
Arj(τ)dτ − αeAβeAre

 , (A.43)

and

λβF = aσ2r

∫ T

0
θ(τ)ArH(τ)dτ − λβH

∑
j,j′=H,F
j′ 6=j

∫ T

0
α(τ)

(∫ τ

0
Arj′(τ

′)e−κβ(τ−τ
′)dτ ′

)
Arj(τ)dτ

−λβF
∑
j=H,F

∫ T

0
α(τ)

(∫ τ

0
Arj(τ

′)e−κβ(τ−τ
′)dτ ′

)
Arj(τ)dτ + αeAβeAre

 , (A.44)

respectively. Equations (A.38), (A.43) and (A.44) form a system of three linear equations in the

three unknown scalars (λβH , λβF , Aβe).

Adding (A.43) and (A.44) yields an equation that involves λβH + λβF as the only unknown.

Solving that equation yields

λβH+λβF =
aσ2r

∫ T
0 θ(τ)(ArH(τ) +ArF (τ))dτ

1 + aσ2r
∫ T
0 α(τ)

(∫ τ
0 (ArH(τ ′) +ArF (τ ′))e−κβ(τ−τ

′)dτ ′
)

(ArH(τ) +ArF (τ))dτ
. (A.45)

Subtracting (A.44) from (A.43), and using (A.38) to eliminate Aβe, yields an equation that involves

λβH − λβF as the only unknown. Solving that equation yields

λβH−λβF =
aσ2r

∫ T
0 θ(τ)(ArH(τ)−ArF (τ))dτ

1 + aσ2r

[∫ T
0 α(τ)

(∫ τ
0 (ArH(τ ′)−ArF (τ ′))e−κβ(τ−τ

′)dτ ′
)

(ArH(τ)−ArF (τ))dτ + 2αeA2
re

κβ

] .
(A.46)
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Since (θ(τ), ArH(τ), ArH(τ) − ArF (τ)) are positive and ArF (τ) is non-negative, (A.45) and

(A.46) imply that (λβH +λβF , λβH−λβF ) are positive. Equation (A.38) implies Aβe > 0. Equation

(A.41), written as

AβH(τ) = λβH

∫ τ

0
(ArH(τ ′)−ArF (τ ′))e−κβ(τ−τ

′)dτ ′ + (λβH + λβF )

∫ τ

0
ArF (τ ′)e−κβ(τ−τ

′)dτ ′,

implies AβH(τ) > 0 for all τ provided that λβH > 0. The latter inequality holds since (λβH +

λβF , λβH − λβF ) are positive. Equation (A.42), written as

AβF (τ) = λβF

∫ τ

0
(ArH(τ ′)−ArF (τ ′))e−κβ(τ−τ

′)dτ ′ + (λβH + λβF )

∫ τ

0
ArF (τ ′)e−κβ(τ−τ

′)dτ ′,

implies AβF (τ) > 0 for all τ provided that λβF > 0. The latter inequality holds when α(τ) for all

τ since (A.45) and (A.45) then imply λβH + λβF > λβH − λβF .

Since AβH(τ) > 0 for all τ , an increase in βjt lowers P
(τ)
jt . Since the derivative of µ

(τ)
jt − rjt

with respect to βjt is the right-hand (or left-hand) side of (A.36), which we can write as

ArH(τ)λβH +ArF (τ)λβF = [ArH(τ)−ArF (τ)]λβH +ArF (τ)(λβH + λβF ) > 0,

an increase in βjt raises µ
(τ)
jt − rjt.

Since Aβe > 0, an increase in βjt lowers et. Since the derivative of µet+µ
(τ)
Ft −µ

(τ)
Ht with respect

to βjt is

[Are +ArF (τ)−ArH(τ)](λβH − λβF )I(j),

where I(j) = 1 if j = H and I(j) = −1 if j = F , an increase in βjt raises µet + µ
(τ)
Ft − µ

(τ)
Ht when

j = H and lowers it when j = F . Since, in addition, Are+ArH(τ)−ArF (τ) is positive and decreases

to zero when τ goes to infinity, the effects of βjt on µet + µ
(τ)
Ft − µ

(τ)
Ht decline with maturity and

converge to zero when τ goes to infinity.

Suppose finally that α(τ) = 0 for all τ . Since AβF (τ) > 0 for all τ , an increase in βjt lowers

P
(τ)
j′t . Since the derivative of µ

(τ)
j′t − rj′t with respect to βjt is the right-hand (or left-hand) side of

(A.37), which we can write as

ArH(τ)λβF +ArF (τ)λβH = [ArH(τ)−ArF (τ)]λβF +ArF (τ)(λβH + λβF ),

an increase in βjt raises µ
(τ)
j′t − rj′t.
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B Numerical Solution Method

Define the following matrix

M = ΓT − a
{∫ T

0
[−αH(τ)AH(τ) + ΘH(τ)] AH(τ)T dτ

+

∫ T

0
[−αF (τ)AF (τ) + ΘF (τ)] AF (τ)T dτ

+ [−αeAe + Θe] A
T
e

}
Σ

(B.1)

the following set of equations characterizing the solution to the affine functions Aj(τ),Ae:

A′j(τ) + MAj(τ)− ej = 0 (B.2)

MAe − (eH − eF ) = 0 (B.3)

with initial conditions Aj(0) = 0.

Note that in general M depends on the solution to the affine functions. But treating M as

fixed: if M is invertible and diagonalizable, with M = GDG−1, then

Ae = GD−1G−1(eH − eF ) (B.4)

Aj(τ) =

∫ τ

0
exp(−Ms) ds ej

= G

∫ τ

0
exp(−Ds) dsG−1ej

= GD−1 [I− exp(−Dτ)] G−1ej

(B.5)
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Hence we have

M = ΓT − a
{

∫ T

0

[
−αH(τ)

[
GD−1 [I− exp(−Dτ)] G−1eH

]
+ ΘH(τ)

]
[
GD−1 [I− exp(−Dτ)] G−1eH

]T
dτ

+

∫ T

0

[
−αF (τ)

[
GD−1 [I− exp(−Dτ)] G−1eF

]
+ ΘF (τ)

]
[
GD−1 [I− exp(−Dτ)] G−1eF

]T
dτ

+
[
−αe

[
GD−1G−1(eF − eH)

]
+ Θe

] [
GD−1G−1(eF − eH)

]T
}

Σ

(B.6)

Hence, if yt ∈ Rk, then this is a fixed point problem in the k× k matrix M, with k2 equations

and k2 unknowns.

The solution depends on integrals of the functions αj(τ) and θj(τ). In the numerical sections,

we use the following parameterizations:

α(τ ;α0, α1) ≡ α0 exp(−α1τ)

θ(τ ; θ0, θ1) ≡ θ0θ1τ exp(−θ1τ)
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