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Abstract

This paper documents and theoretically explains a nexus between globalization and wage inequality within
plants through internal labor market organization. We document that the dominant component of overall and
residual wage inequality is within plant-occupations and, combining within-occupation task information from
labor force surveys with linked plant–worker data for Germany, establish three interrelated facts: (1) larger
plants and exporters organize production into more occupations, (2) workers at larger plants and exporters per-
form fewer tasks within occupations, and (3) overall and residual wages are more dispersed at larger plants.
To explain these facts, we build a model in which the plant endogenously bundles tasks into occupations and
workers match to occupations. By splitting the task range into more occupations, the plant assigns workers
to a narrower task range per occupation, reducing worker mismatch while typically raising the within-plant
dispersion of wages. Embedding this rationale into a Melitz model, where fixed span-of-control costs increase
with occupation counts, we show that inherently more productive plants exhibit higher worker efficiency and
wider wage dispersion and that economy-wide wage inequality is higher in the open economy for an empiri-
cally confirmed parametrization. Reduced-form tests confirm main predictions of the model, and simulations
based on structural estimation suggest that trade induces a stricter division of labor at globalized plants with
an associated change in wage inequality.
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“It is the great multiplication of the productions of all the different arts, in
consequence of the division of labour, which occasions, in a well-governed society,
that universal opulence which extends itself to the lowest ranks of the people.”

— Adam Smith (1776): The Wealth Of Nations, Book I, Chapter I

1 Introduction

Recent theories of international trade at the firm level have opened new insights into a nexus between globaliza-

tion and wage inequality within sectors and occupations. Much of the emphasis to date has been on the wage

dispersion between firms, given the wage premia that exporters pay to otherwise similar workers within sectors

and occupations (Helpman, Itskhoki and Redding 2010, Egger and Kreickemeier 2009, Davis and Harrigan 2011,

Amiti and Davis 2012). The empirical importance of the between-firm or between-plant dispersion of wages for

changes in overall wage inequality has been documented for labor markets in general (Card, Heining and Kline

2013, Lopes de Melo 2013, Song et al. 2015) and for labor market outcomes in open economies in particular

(Egger, Egger and Kreickemeier 2013, Coşar, Guner and Tybout 2016, Helpman et al. 2017, Eaton, Kortum

and Kramarz 2015). In the cross section of workers, however, the commanding component of wage variation is

within firms: studies such as Abowd et al. (2001) and Menezes-Filho, Muendler and Ramey (2008), for instance,

control for worker and employer characteristics, as well as firm effects, in Mincer regressions and show a domi-

nance of the residual wage component; Lemieux (2006) documents the response of the residual wage component

to economic change. In this paper we relate back to the basic principle of the division of labor, within plants

and within occupations across workers as well as across countries in the global economy. We explore how the

large within-plant part of wage inequality responds to trade—through internal labor-market reorganization—and

show that the size of a plant’s global product market translates into its internal division of labor, so that global

specialization affects inequality across the “ranks of the people.”

In his foundational analysis of the division of labor, Adam Smith (1776, Book I, Chapter I) described tasks

that a single worker could perform cumulatively or that the employer could alternatively assign to several workers:

“[M]aking a pin is . . . divided into about eighteen distinct operations. . . . [T]en persons . . . could
make among them upwards of forty-eight thousand pins in a day. But if they had all wrought sep-
arately and independently . . . they certainly could not each of them have made twenty, perhaps not
one pin in a day.”

To elicit information on cumulative tasks in Adam Smith’s operational sense, and on the organization of the

workplace in today’s economy, we use the German Qualifications and Career Surveys (BIBB-BAuA surveys)

to build time-consistent measures of workplace operations and multitasking. Importantly for an understanding

of the evolving division of labor at employers, the BIBB-BAuA surveys also allow us to quantify in a time
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consistent manner how many tasks workers perform within their occupations. We combine the task information

by occupation, industry, location and plant size with German linked plant–worker data (LIAB).

Three striking facts emerge. First, larger plants adopt more occupations. Second, workers at larger plants

perform a narrower range of tasks within the same occupation. In other words, larger size in the product market

is associated with a stricter internal division of labor. Third, both overall and residual wages are more dispersed

within occupations at larger plants.1 Our hypothesis is that workers differ in their ability to carry out the tasks

of an occupation so that match quality determines labor efficiency within occupations. Ability mismatches gen-

erate wage inequality—in accordance with the empirical observation that the dominant share of residual wage

inequality is within plants, within layers of hierarchy, and within occupations.

To explain these facts, we propose a model of endogenous occupation choice and task assignments by the

employer. Employers can organize the full range of tasks required for production into fewer or into more occu-

pations. A smaller count of occupations at a plant implies that workers have to carry out a wider range of tasks

per occupation. Conversely, in plants with a larger count of occupations, each occupation comes with a narrower

range of tasks to be performed. We postulate that workers have a core ability that makes them most efficient at

one particular task in the full task range and monotonically less efficient at tasks that are more distant from their

core ability. Workers assortatively match to task ranges that include their core ability. As a consequence, when a

plant’s task ranges are narrower, then the degree of mismatch between a worker and the tasks is smaller because

all of an occupation’s tasks are closer to a worker’s core ability. Workers are therefore more efficient at plants

with more occupations and a finer division of labor. Plants incur a span-of-control fixed cost of operation that

increases with the count of occupations. In a Melitz (2003) model with heterogeneous producers, more produc-

tive plants can recover a larger span-of-control fixed cost with operating profits, so that in our framework more

productive plants adopt of a high occupation count. In particular, productive plants that select into exporting

choose more occupations with narrower task ranges compared to non-exporters. In our parameterized model,

and empirically, plants with a stricter internal division of labor exhibit higher wage inequality within occupations

because the plant–worker match quality affects surplus sensitively, and surplus is partly shared with workers

through the wages.

A main prediction of the model is that a plant’s count of occupations and the width of its average task

range per occupation are inversely related and respond to the plant’s product-market size. We document that

this inverse relationship between occupation counts and the task range per occupation holds empirically, using

an instrumental-variable approach in the spirit of Autor, Dorn and Hanson (2013) and Dauth, Findeisen and
1We use residual log daily wages from standard Mincer regressions, conditioning out demographic, education and tenure information

as well as time, industry and region effects.
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Suedekum (2014) to relate a plant’s revenues to exogenous foreign-market shocks from China and Eastern Eu-

rope. Similar regressions document that the within plant-occupation wage dispersion is higher at more globalized

plants.

To study inequality, we carefully specify the stochastic foundations of our model so we can separate the

inherent dispersion of outcomes on the one hand from policy-induced change on the other hand. We structurally

estimate our model with a maximum likelihood approach under the assumption that plant characteristics are

jointly log-normally distributed (on log normality also see Helpman et al. 2017, Fernandes et al. 2018). We

confront two challenges beyond previous implementations of structural heterogeneous-firm estimation, which is

largely based on the Chaney (2008) version of the Melitz (2003) model. First, we show that joint log-normality

imposes important restrictions on the possible frequency of endogenous switching (selection into export status)

for given patterns in the conditional higher moments (variances of outcomes at exporters and non-exporters). For

example, a higher variance of log revenues among exporters than among non-exporters implies that more than

half of the plants must be exporters, unless there is censoring (selection into activity). We therefore derive an

endogenous switching model with censoring for estimation, including the entry margin into activity as in the

original Melitz model. As a second challenge, censoring in the Melitz model does not conform to a conventional

Tobit approach such as in Carson and Sun (2007) because censoring occurs with respect to an unobserved plant

characteristic (productivity) not with respect to an observed outcome. We show that our estimation model is

point identified and derive an according two-step estimator that is widely implementable for versions of the

Melitz (2003) model. We simulate the structurally estimated model to quantify the importance of trade opening

for the intra-plant division of labor in Germany. We find that the simulated model predicts substantive changes

that reflect Germany’s economic globalization and its association with heightened wage inequality within plant-

occupations.

Opening up to trade leads to a selection of more productive plants into exporting, raising welfare directly and

indirectly through the stricter division of labor at larger plants. But trade opening results in an asymmetric re-

sponse of occupation-level wage inequality. The model predicts that the dispersion of wages within occupations

increases at exporting plants, if wage inequality was already high at these producers under autarky, while within-

occupation wage inequality declines at non-exporters. Given the asymmetry in plant-level implications, access to

foreign markets exerts counteracting effects on economy-wide wage inequality. However, we can show theoreti-

cally under plausible parameterizations and in simulations of the structurally estimated model that economy-wide

wage inequality is higher in the more open economy.

Workplace tasks are an important, employer-driven characteristic of the labor market, and have been docu-
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mented to relate closely to recent labor market changes including wage polarization (Autor, Katz and Kearney

2006, Goos, Manning and Salomons 2009) and the offshorability of jobs (Leamer and Storper 2001, Levy and

Murnane 2004, Blinder 2006). The assignment of tasks in an open economy, and the implications for welfare

and wage inequality, have been studied from a theoretical perspective in industry-level models, including the

Heckscher-Ohlin (Grossman and Rossi-Hansberg 2008, 2010) and the Ricardian framework (Rodríguez-Clare

2010, Acemoglu and Autor 2011). Our model complements the industry-level perspective with a plant-level

view. Beyond considerations of offshorability, our treatment of tasks emphasizes the quality of the worker-task

match as a key determinant of plant performance and in this regard relates closely to studies of internal labor

markets by Barron, Black and Loewenstein (1989), who show that the quality of worker-task matches reduces

on-the-job training costs, as well as Meyer (1994) and Burgess et al. (2010), who document that the quality of

worker-task matches raises team efficiency and the effectiveness of incentives.

Human resource management practices have been found to be an important determinant of the variation

in plant and firm productivity within and across countries (Bloom and Van Reenen 2011). Yet, aspects of the

internal labor market and residual wage inequality are difficult to observe directly. Recent studies of the firm’s

internal labor market have turned to the importance of observable hierarchies (Caliendo and Rossi-Hansberg

2012, Caliendo, Monte and Rossi-Hansberg 2015) and their response to firm-level trade. Our model complements

the hierarchical approach to a firm’s internal organization with a perspective on the horizontal differentiation of

worker abilities and their tasks within hierarchical layers. In fact, we find that most employer-level residual

wage inequality in the German data is also within hierarchies (and within occupation categories), suggesting that

an important horizontal wage differentiation component acts within hierarchies. The internal organization of

plants and firms also involves the motivation of workers to exert effort. Related studies analyze the response of

employers’ incentives for workers, and observable incentive pay in particular, when global competition changes

(Guadalupe 2007, Cunat and Guadalupe 2009). Our paper complements the view on incentives for worker effort

with a perspective on management responses to product-market opportunities, as employers adjust the observable

count of occupations they offer and coordinate the observable range of tasks they assign within jobs.

An alternative approach to modelling worker-level wage dispersion within and between employers consid-

ers the employer-worker matching process (see e.g. Legros and Newman 2002, Eeckhout and Kircher 2011).2

The potential efficiency gains from improved assortative matching have received according attention in the trade

literature (Costinot and Vogel 2010, Sampson 2014). Several studies highlight trade-induced changes in match

quality as a key aspect of trade in terms of welfare, employment and wage inequality (Amiti and Pissarides 2005,
2The literature estimating search models of the labor market more generally includes Burdett and Mortensen (1998), Cahuc, Postel-

Vinay and Robin (2006), Postel-Vinay and Robin (2002), and Postel-Vinay and Turon (2010).
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Davidson, Matusz and Shevchenko 2008, Davidson et al. 2014). More recent studies have started to comple-

ment the analysis of cross-industry and cross-firm matches with an analysis of within-firm matches.3 Larch and

Lechthaler (2011) study the assignment of workers across plants within multinational firms, and Bombardini,

Orefice and Tito (2019) investigate the permissible ability ranges of workers at firms when worker-firm matches

are formed.4 Our model highlights that an additional source of efficiency gains for employers is to improve

match quality by narrowly assigning tasks to workers with the best fit to those tasks (a core ability within the

occupation’s task range).5 Our worker-reported task frequencies within occupations characterize empirically the

assignment of workplace operations to workers at different plants.

In our model relatively more productive plants choose to augment their elemental productivity with a stricter

division of labor that raises labor efficiency, thus concentrating the firm size distribution beyond the inherent

productivity dispersion. While the principal selection of more productive firms into exporting remains a basic

force in the model (as documented empirically by Clerides, Lach and Tybout 1998, e.g., and others), the feedback

of exporting into worker efficiency through internal specialization at exporters is akin to a learning-by-exporting

effect (for direct evidence on learning-by-exporting see, e.g., Crespi, Criscuolo and Haskel 2008). The labor

market feedback effect in our model is similar to the outcome of screening in Helpman, Itskhoki and Redding

(2010), the effect of investment into innovations in Aw, Roberts and Xu (2011), and the effect on team production

in Chaney and Ossa (2013). In the Helpman, Itskhoki and Redding (2010) model, screening for higher ability

workers raises the returns to exporting and vice versa; in the Aw, Roberts and Xu (2011) model, R&D investments

raise the returns to exporting and vice versa; in the Chaney and Ossa (2013) model a larger number of more spe-

cialized teams increases the returns to exporting and vice versa; in our model, improving the worker-task match

quality raises the returns to exporting and vice versa. The Chaney and Ossa (2013) model incorporates important

features of the task model by Becker and Murphy (1992) and allows for the organization of production to depend

on firm size. Our model shares with Chaney and Ossa (2013) the mechanism by which market size translates into

a firm’s incentives to reduce worker-task mismatches, but employers in their task model, as in Becker and Mur-

phy (1992), are identical to each other and workers within a team are homogeneous. We introduce employer and
3In a review of the literature on the structure of wages within and across firms, Lazear and Shaw (2009) conclude that the wage

structure appears to be more dependent on firm- or within-plant sorting of workers to occupations than on sorting of workers to firms or
plants.

4Bombardini, Orefice and Tito (2019) isolate a permanent worker-specific and time invariant wage component (average lifetime
earnings or a worker-fixed wage effect) and find that the long-term wage component is less dispersed at larger French manufacturing
firms. In light of our model, the use of a permanent worker-specific and time invariant wage component to proxy worker efficiency is akin
to working with a negative parameter of sensitivity of worker performance to task mismatch, which gives rise to the same result. The lack
of full longitudinal worker data in the IAB-LIAB random sample of plants does not allow us to replicate the permanent wage component
measures from Bombardini, Orefice and Tito (2019).

5An interpretation related to the core ability of workers, most suitable for specific tasks, is that human capital is occupation specific.
Kambourov and Manovskii (2009) and Sullivan (2010) provide according empirical evidence.
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worker heterogeneity to establish a link between labor efficiency across employers and wage inequality within

their occupations.

The remainder of this paper proceeds as follows. In Section 2, we present our data and collect descriptive

evidence for three main facts that motivate our model. In Section 3, we build a model of production with task

assignment to occupations. We derive the equilibrium for a closed economy in Section 4 and for two symmetric

open economies in Section 5. In Section 6 we use reduced-form estimation to test key relationships of the model.

In Section 7 we present a structural estimation model, obtain parameter estimates, and use them to simulate the

consequences of Germany’s further opening to global trade between 1999 and 2012 for efficiency and inequality.

Section 8 concludes.

2 Data and Descriptives

The two main sources for our novel micro-level data on employer-level task assignments are (i) the German

Qualifications and Career Surveys (BIBB-BAuA surveys), and (ii) the Linked Plant–Worker Data provided by

IAB (LIAB). In this section, we elicit three empirical facts from these two datasets to motivate a theory that can

explain the division of labor at employers and the resulting wage dispersion within occupations. Additionally we

use sector-level bilateral merchandise trade data from the United Nations Commodity Trade Statistics Database

(Comtrade) and service trade from the trade in services database (TSD) from the World Bank to construct in-

strumental variables related to globalization shocks that are exogenous to the employers. We consolidate varying

sector definitions and construct 39 longitudinally consistent industries for all data sources. Our industry defini-

tion is based on an aggregation of NACE 1.1 for the European Communities, which is equivalent to the German

Klassifikation der Wirtschaftszweige WZ 2003 at the 2-digit level (see Becker and Muendler 2015).

2.1 Linked plant–worker data

To link workers to their employers, we use data at the German Federal Employment Office’s Institute for Em-

ployment Research (IAB): the matched plant–worker data LIAB. The LIAB data combine detailed administrative

records on workers from the German social security system with the IAB plant panel data.6 On the employer

side, LIAB provides detailed plant information from surveys on an annual basis since 1993. Information on

plants in East Germany is only available since 1996. We therefore restrict the sample period to the years 1996-

2014 to cover the German economy as a whole. At the plant level we use information on revenues, export status,
6See http://fdz.iab.de/en/Integrated_Establishment_and_Individual_Data/LIAB.aspx.
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Table 1: Decompositions of the log Residual Wage Inequality in Linked Plant–Worker Data

Subsamples
Contribution of component (%) Universe high w age ≥45 skilled manager
within industrya 88 97 88 88 88
within occupation 84 87 82 86 92
within plant 71 88 68 79 77
within plant-layer 65 71 60 72 73
within plant-occupationb 54 60 46 61 63

aMincer regression excludes industry effects (R2 = 0.42).
bThe within plant-occupation decomposition is identical to the within plant-layer-occupation decomposition because occupations at

the 3-digit KldB-88 level are nested strictly within layers of hierarchy.

Source: LIAB 1996-2014.
Notes: The economy-wide variance is decomposed into a within-group and a between-group component for worker groups g using

(1/L)
∑L
i=1

(
lnwi − lnw

)2
= (1/L)

∑
g∈G

∑Lg

i=1

(
lnwi − lnwg

)2
+
∑
g∈G(Lg/L)

(
lnwg − lnw

)2
.

The reported numbers show the former within components for varying worker groups. Residual log daily wage from standard Mincer
regression, conditioning out demographic, education and tenure information as well as time, industry and region effects (R2 = 53%).
Subsample (1): workers with above-median daily wage; (2): workers 45 years old and older; (3): high-skilled workers (Abitur or
equivalent); (4): supervisors and managers. 357 occupations at the 3-digit KldB-88 level. The variance of the log daily wage wi is
linearly decomposed into a within and a between part. The reported percentages are the contribution of the within component to the total.
Layers of hierarchy based on a mapping of the Caliendo, Monte and Rossi-Hansberg (2015) hierarchies to KldB-88 using ISCO-88.

export revenues and employment as well as region and industry categories. At the individual worker level, LIAB

offers a comprehensive set of characteristics. We use demographic, tenure and education indicators, occupation

characteristics, and data on daily wages.7 Larger plants are over-represented in the plant panel. We therefore use

the weighting factors provided by IAB and make our plant-level data representative for the German economy as

a whole.

LIAB allows us to quantify sources of wage variation in the German labor market. To assess the dispersion

in daily wages, we first remove observed demographic, education and tenure information together with time,

industry and region effects from log daily wages in a Mincer regression, and obtain residual log daily wages. We

remove observed worker characteristics because they are well explained by existing labor-market theories and

have been addressed with classic trade theory and its extension to offshoring (see, e.g., Katz and Murphy 1992,

Feenstra and Hanson 1999). Observed worker characteristics explain about 53 percent of the log wage variation

(42 percent if we omit industry effects). Similar to other studies for both industrialized and developing countries

(see e.g. Abowd et al. 2001, Menezes-Filho, Muendler and Ramey 2008), this finding implies that almost half of

the wage dispersion remains unexplained at this level of analysis.
7Wage information in the social security records is right-censored, so we replace censored wages by imputed wages, following the

procedure proposed by Baumgarten (2013). Hourly wages cannot be constructed. We therefore use daily wages as the most precise
measure of earnings.
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Table 1 follows up with further decompositions of the variance of the log daily wage residual.8 Variation

between industries and between occupations explains 12 and 16 percent of the variation in residual daily wages

in 1996-2014 (first column). The remaining within-industry (88 percent) and within-occupation variation (84

percent) suggests that classic trade theory, which predicts cross industry-occupation differences in wages, is not

a strong candidate to explain the part of wage variation that is unrelated to worker characteristics. Variation

between plants is more successful and explains 29 percent of residual wage variation, but still leaves 71 percent

of residual wage variability unexplained. Recent trade theories such as Helpman, Itskhoki and Redding (2010),

Egger and Kreickemeier (2009), Davis and Harrigan (2011) and Amiti and Davis (2012) address ways in which

globalization can affect the between-employer variation in wages, and Egger, Egger and Kreickemeier (2013),

Coşar, Guner and Tybout (2016), Helpman et al. (2017) and Eaton, Kortum and Kramarz (2015) provide ac-

cording empirical evidence. Looking at the variation between plants and between their managerial hierarchies

brings the unexplained part of residual wage dispersion down by another 6 percentage points in 1996-2014 (to

65 percent). Recent models of the firm’s internal labor market have elaborated the importance of hierarchies.

Caliendo and Rossi-Hansberg (2012) and Caliendo, Monte and Rossi-Hansberg (2015) provide evidence on

earnings responses across hierarchies to firm-level trade. Considering the residual daily wage variation between

plants and between their occupations (357 occupations at the 3-digit KldB-88 level) pushes the unexplained part

further down by another 11 percentage points. Occupations are perfectly nested within hierarchies (using the

occupation-to-hierarchy mapping from Caliendo, Monte and Rossi-Hansberg 2015). We are not aware of theory

or empirical work on within-employer reallocations across occupations in response to globalization shocks.

Table 1 also documents that for subsamples of more qualified workers, such as highly paid or skilled workers,

the within-variation inside plants and their occupations is typically even more dominant. For example, workers

with an above-median daily wage, supervisors and managers, and high-skilled workers with a college-qualifying

secondary-education diploma (Abitur or equivalent) exhibit higher residual wage variability within plants and

their occupations than the overall worker population. In contrast, more experienced workers at an age of 45 years

or older face a lower residual wage dispersion than the overall population, perhaps because collective bargaining

contracts become more binding at longer tenure. However, even for the subgroup with the lowest within-plant-

occupation wage variation, the within components still accounts for almost half of residual log wage variation

(46 percent compared to 54 percent in the first column).

In summary, for the worker population and within subsamples of relatively qualified workers about half or

more of the residual daily wage variation remains unexplained even at the plant-occupation level. In other words,
8When using the exponentiated log daily wage residual, we find variance decompositions to be closely similar.
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Figure 1: Count of Occupations by Plant Employment
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Source: LIAB 1996-2014.
Notes: Prediction of occupation count n by plant employment category, controlling for sector, region, occupation and worker character-
istics. Results are differences to smallest plant-size category (1 to 4 workers). Thick, medium, and thin lines represent the 99, 95, and 90
percent confidence intervals.
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the dominant part of residual wage variation, not accounted for with worker characteristics, occurs within plant-

occupations. This is the wage variation that we take on in this paper. The finding also suggests that the wage gaps

between senior management and the median worker at an employer are less relevant for overall wage inequality

than is the wage dispersion within (mainly horizontally differentiated) occupations.

In addition to the detailed decomposition of residual wage variation, the LIAB data allow us to establish

Fact 1. The count of occupations at a plant increases with plant employment.

We project the observed count of occupations n in worker i’s plant on sector, region, occupation and worker

characteristics. We then plot, in Figure 1, the so normalized count of occupations n (on the horizontal axis)

against the plant’s employment by size category (on the vertical axis). We normalize the occupation count (on

the horizontal axis) by subtracting the count at the smallest plants (with 1 to 4 workers). We choose the depicted

size categories (on the vertical axis) because they are the ones reported in our other data source. The figure

shows that the occupations count n increases monotonically with plant size. Around the average occupation

count per plant-size category, the figure draws thick, medium, and thin lines that represent the 99, 95, and 90

percent confidence intervals, but those lines are largely invisible given only minor dispersions of the normalized
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occupation counts within size categories. Of course, the monotonic increase of the occupation count in plant

size is not necessarily evidence in favor of a finer division of labor in larger plants. Trivially, the simple fact

that bigger plant have more workers to a assign to a larger count of occupations is also consistent with Fact 1.9

To establish relevant facts about the varying division of labor across plants of different sizes we therefore need

to look within occupations and into the tasks per occupation. German labor force survey data allow us just that

look.

2.2 Labor force survey data

A meaningful analysis of the within-plant-occupation component requires measurable properties of occupations.

We take information on the organization of the workplace from three German Qualifications and Career Surveys

conducted over the years 1999 through 2012 by Germany’s Federal Institute for Vocational Education and Train-

ing BIBB (most recently in collaboration with the think tank BAuA). Each wave is based on a frame that selects

a random sample of around one-tenth of a percent of the German labor force with more than 20 hours of work

during the survey week. The BIBB-BAuA data report detailed information on workplace properties, worker char-

acteristics, the industry, occupation and earnings, as well as rudimentary information on the employer, such as

the size of a worker’s plant in seven size categories (as on the vertical axis of Figure 1). Most importantly, we ob-

serve workers’ responses to survey questions that regard the tasks they perform in their occupation. Following the

time consistent definitions in Becker and Muendler (2015), who used German Qualifications and Career Surveys

conducted over the years 1979 through 2006, we append the 2012 survey data and make use of the questions that

elicit what operations (tasks) a worker carries out on the job. A worker may report these operations as performed

or not. We can discern 15 such workplace operations, surveyed in a time consistent manner throughout the three

BIBB-BAuA waves: 1. Manufacture, Produce Goods; 2. Repair, Maintain; 3. Entertain, Accommodate, Prepare

Foods; 4. Transport, Store, Dispatch; 5. Measure, Inspect, Control Quality; 6. Gather Information, Develop, Re-

search, Construct; 7. Purchase, Procure, Sell; 8. Program a Computer; 9. Apply Legal Knowledge; 10. Consult

and Inform; 11. Train, Teach, Instruct, Educate; 12. Nurse, Look After, Cure; 13. Advertise, Promote, Conduct

Marketing and PR; 14. Organize, Plan, Prepare Others’ Work; 15. Control Machinery and Technical Processes.

These workplace operations are cumulative and exhibit a pronounced change towards more multitasking over

time until the early 2000s (Becker and Muendler 2015), with a relatively stable level of multitasking from then

on.10

9This caveat only applies to small and medium-sized plants, but not to the larger firm sizes where the number of workers exceeds the
total number of occupations (357).

10Research into wage polarization (e.g. Autor, Katz and Kearney 2006, Goos, Manning and Salomons 2009) and offshorability (e.g.
Leamer and Storper 2001, Levy and Murnane 2004, Blinder 2006) frequently considers a different dimension of “tasks,” including the
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Table 2: Multitasking in Simultaneous Workplace Operations

Subsamples
Number of Workplace Operations (Tasks) Universe high w age ≥45 manager skilled
up to 3 0.158 0.117 0.151 0.079 0.077
4 to 7 0.447 0.452 0.445 0.433 0.463
8 or more 0.396 0.432 0.405 0.488 0.460

Total Number of Tasks 6.667 7.010 6.750 7.442 7.286

Source: BIBB-BAuA 1999, 2006 and 2012 (inverse sampling weights).
Notes: Shares of performed workplace operations per worker, out of 15 possible workplace operations. Subsample (1): workers with
above-median daily wage; (2): workers 45 years old and older; (3): supervisors and managers; (4): high-skilled workers (Abitur or
equivalent). For a list of the 15 workplace operations see Appendix Table A1.

Table 2 shows that German workers perform on average 6.7 workplace operations (tasks), out of 15 possible

such tasks. We report frequencies by individual task in Appendix Table A1. The most frequent number of tasks

is 4 to 7, performed by almost half of the workers in the sample. Interestingly, the number of tasks performed

is relatively stable across subsamples of workers. For example, workers with an above-median daily wage, more

experienced workers at an age of 45 years or older, and high-skilled workers with a college-qualifying secondary-

education diploma (Abitur or equivalent) all share the characteristic with the overall population that their most

frequent number of tasks performed is between 4 and 7 tasks. The comparably more noticeable differences in

multitasking occur for supervisors and managers, and partly for high-skilled workers (with Abitur or equivalent),

who perform few tasks (up to 3 tasks) more rarely than the overall population. On average, supervisors and

managers perform 7.4 tasks, 0.7 tasks more than the overall population of workers, and high-skilled workers 7.3

tasks. Multitasking occurs, with some variation, for all income groups, age groups, layers of hierarchy, and skill

groups.

The BIBB-BAuA data allow us to revisit evidence on the division of labor and establish

Fact 2. The number of tasks within an occupation at a plant decreases with plant employment.

We compute the number of tasks that workers in their respective occupations report in the BIBB-BAuA data.

We then project the reported number of tasks per occupations b on the same sector, region, occupation and worker

characteristics as before. Figure 2 plots the so normalized number of tasks b per occupation (on the horizontal

routineness of work steps and codifiability of job descriptions, which are also reported in the BIBB-BAuA surveys. Becker and Muendler
(2015) call those tasks, which are related to how workers conduct their work, performance requirements and document that those tasks
exhibit little time variation even though they are not mutually exclusive tasks. In contrast to the (what) operations here, which increase
from an average of 5.25 workplace operations (tasks) performed per worker in 1999 to 7.24 operations in 2006, German workers do not
report clearly more simultaneous performance requirements over time (Becker and Muendler 2015, Tables 1 and 2). In the spirit of Adam
Smith’s division of labor, and for the purposes of our model of a plants’ internal labor markets, we are most interested in operations that
are empirically found to be cumulated at the workplace into multitasking. We therefore restrict our attention to the 15 (what) operations
in the BIBB-BAuA data.
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Figure 2: Number of Tasks per Occupation by Plant Employment
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Source: BIBB-BAuA 1999, 2006 and 2012.
Notes: Prediction of number of tasks b within plant-occupation by plant employment category, controlling for sector, region, occupation
and worker characteristics. Results are differences to smallest plant-size category (1 to 4 workers). Thick, medium, and thin lines
represent the 99, 95, and 90 percent confidence intervals.
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axis) against the plant’s employment by size category (on the vertical axis). We normalize the occupation count

(on the horizontal axis) by subtracting the count at the smallest plants (with 1 to 4 workers). The depicted size

categories (on the vertical axis) are the ones reported in the BIBB-BAuA data. The figure shows that the number

of tasks b strictly decreases with plant size, relative to the smallest plants, up to a plant employment of 500

workers and then remains constant. In other words, larger plants choose a finer division of labor and assign

narrower task ranges to their workers (who fill more occupations by Fact 1). In magnitude, the reduction in the

number of tasks from small plants, with 1 to 4 workers, to large plants, with 100 or more workers, is 0.4 tasks

per worker out of 15 possible tasks.

Similar to Adam Smith’s tenet, workers engage in less multitasking at more pin-factory like large plants. The

differences in the numbers of tasks are statistically significant up to a plant size of about 500 workers. Around

the average number of tasks per occupation in a plant-size category, the figure shows thick, medium, and thin

lines that represent the 99, 95, and 90 percent confidence intervals. For plants with employment between 5 to 9

and 100 to 599 workers, the confidence bands do not overlap. From the threshold of about 500 workers on, plants

assign roughly similar task ranges to their workers.
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2.3 Data combination

Task information is not available in the linked plant–worker data LIAB. To conduct an employer-level analysis,

we therefore need to combine the BIBB-BAuA labor force survey information with the LIAB linked plant–

worker records through imputation. A large set of worker characteristics and plant attributes overlaps between

the BIBB-BAuA survey and the LIAB records. We use these common variables to conduct imputations in both

possible directions: task information from the BIBB-BAuA survey into LIAB in one direction, and plant-level

information from LIAB into BIBB-BAuA in the alternate reverse direction.

For our plant-level analysis, the imputation of BIBB-BAuA task information into LIAB is most important.

To combine BIBB-BAuA task information with the LIAB plant-worker data and preserve within-occupation and

time variation with possibly much precision, we opt for regression-based imputation. Note that the imputation

is based on the empirical covariation between common worker variables in both data sets and the tasks that the

workers report in BIBB-BAuA, and this covariation preserves the statistically relevant task-related information

from BIBB-BAuA in the LIAB data. We first run a linear (OLS) model on the BIBB-BAuA data, regressing the

number of tasks (the sum over the 15 activity task indicators) on a set of worker, occupation and plant attributes

that are jointly observed in the BIBB-BAuA and in the LIAB data.11 With the estimated coefficients at hand we

perform an out-of-sample linear prediction in the LIAB data using all common variables. Under this procedure

we obtain, for 76% of the LIAB observations, an individual-specific number of tasks. Finally, by computing the

mean over all individuals within a plant, we end up with a measure of the (mean) number of tasks b that workers

perform per occupation within a plant.

As reported in Appendix Table A4, the average number of tasks per occupation at the plant level varies

between 0.32 and 8.87, with a mean of 3.96 and a standard deviation of 0.01.12 The LIAB data also allow us to

compute the coefficient of variation CV of the daily wages within plant-occupations. This coefficient of variation

disregards the dispersion of wages across occupations, across plants, and across sectors. It instead isolates the

within plant-occupation component in the wage variance, which was shown to be the dominant component of the

residual wage in Table 1. The coefficient of variation is 0.3 at the mean (and the median) but is more than 4 at

the plants with the most unequal wage distribution in the combined sample.

In addition to mapping information on the number of tasks from BIBB-BAuA to LIAB, we can also estimate
11The independent variables used in the regression are log daily wage, job experience, squared job experience together with indicators

for (i) gender, (ii) 7 schooling and vocational training indicators, (iii) 16 regions, (iv) 34 sectors, (v) 7 plant-size categories, and (vi) 335
occupations. In the baseline regression we pool over the years 1992, 1999, 2006 and 2012. In an alternative specification we estimate the
number of tasks separately for these four years and compute year-specific predictions from a moving average.

12In the BIBB-BAuA data the average number of tasks for 7 different plant-size categories varies between 4.77 and 5.32, with a mean
of 4.92 and standard deviation 0.2. The differences in the task number intervals are mainly due to differences in the wage levels and
perhaps the fact the BIBB-BAuA only covers workers with more than 20 hours of work per week.
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Figure 3: Residual Wage Inequality per Plant-Occupation by Number of Tasks
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Sources: LIAB 1996-2014, with imputed task information per plant-occupation from BIBB-BAuA 1999, 2006 and 2012.
Notes: Prediction of coefficient of variation of daily wage residual (exponentiated Mincer residual) CV within plant-occupation by task
number, controlling for sector, region, occupation and worker characteristics. Results are differences to smallest task-number category (0
to 1 tasks). Thick, medium, and thin lines represent the 99, 95, and 90 percent confidence intervals.
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the probability of performing a specific task in BIBB-BAuA and make an out-of-sample prediction regarding

the probability that an individual worker perform this specific task in the LIAB data. For this purpose, we run

15 probit regressions (one for each task) with the same set of explanatory variables as in the regression for the

number of tasks outlined above. With these out-of-sample predictions at hand, we can then construct a measure

for the overall number of distinct tasks performed at a plant in LIAB. Due to the chosen estimation approach, the

total number of distinct tasks must be smaller than 15 and it is larger than zero if our mapping was successful for

at least one worker at the plant.13 We then divide the average number of tasks (b) by the full number of distinct

tasks observed (denoted with z̃ in the model below), to obtain a normalized measure of the number of tasks—a

real number on the unit interval: b/z̃ ∈ (0, 1]. As shown in Appendix Table A4, the normalized number of tasks

b/z̃ varies between 0.03 and 0.70 with a mean of 0.36 and a tight standard deviation.

The imputation of BIBB-BAuA task information into the LIAB linked plant–worker data allows us to estab-

lish

Fact 3. The coefficient of variation CV of daily wages within a plant-occupation decreases with the number of
13The total number of distinct tasks varies between a minimum of 3.58 and a maximum of 15, with a mean of 11.2 and standard

deviation 0.02.

14



tasks within a plant-occupation.

We project the coefficient of variation CV of the (exponentiated) residual daily wages within a plant-occu-

pation on sector, region, occupation and worker characteristics, as before. Figure 3 plots the so normalized CV

of daily wages within a plant-occupation (on the horizontal axis after subtracting the coefficient of daily wage

variation in the range of less than one imputed task) against numbers of tasks (on the vertical axis), for plants

with at least two workers. There is a clear inverse relationship with an S-like shape: wage variability drops

strongly as the number of tasks per plant-occupation increases from one task to about six tasks, then it drops

less pronounced, and drops again more sensitively in the upper ranges of more than nine tasks. Workers within

the same occupation are subject to more wage inequality within their occupation at the same employer if they

are assigned narrower task ranges. We can also relate the normalized coefficient of variation CV of daily wages

within a plant-occupation to plant size, similar to Figures 1 and 2. As Appendix Figure A2 shows, using LIAB

1996-2014 only, wage variability within plant-occupations increases strongly with plant employment. Workers

within the same occupation are subject to more wage inequality within their occupation at larger employers.

One consistent hypothesis is that workers who perform only a few tasks have a strong impact on the surplus

that they generate at the employer. If workers who specialize in a narrow task range make mistakes, those mis-

takes weigh down surplus heavily, and their wages are lower. Conversely, workers who specialize in a narrow task

range and perform strongly generate large surplus and receive high wage compensation. Under this hypothesis,

surplus and wage payments will be particularly sensitive to worker mismatches in occupations with narrow task

ranges. In other words, plants that behave more like Adam Smith’s pin factory also exhibit more wage dispersion

within plant-occupations. Our theory is devised to relate the more pronounced within plant-occupation wage

dispersion back to the plant’s internal division of labor, that is the plant’s internal labor market organization.

2.4 Trade data

To link the plant-internal division of labor, and wage inequality, back to the plant’s globalization status and

predicted export sales, we need trade data. Our information on Germany’s sector-level imports and exports with

China and Eastern Europe comes from the United Nations Commodity Trade Statistics Database (Comtrade)

and the trade in services database (TSD) at the World Bank. To construct instruments for German exports and

imports we follow Autor, Dorn and Hanson (2013) and Dauth, Findeisen and Suedekum (2014) and use shipments

between Australia, Canada, Japan, Norway, New Zealand, Sweden, Singapore, and the United Kingdom on the

one hand and China and Eastern Europe on the other hand as the instrument group. Trade flows are converted

into Euros (using annual exchange rates from Bundesbank). We map the SITC Rev. 2 sector information to a
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common sector definition across all waves of the German data. To create a concordance from SITC Rev. 2 to the

39 longitudinally consistent industries, we rely on existing mappings from SITC Rev. 2 to ISIC Rev. 3.1 and from

ISIC Rev. 3.1 to WZ 2003.

3 A Model of Production with Task Assignment

3.1 Consumers

We consider an economy with a population of L individuals, who are risk neutral. As consumers, the individuals

have homothetic preferences over a continuum of differentiated goods labelled ω ∈ Ω. The representative

consumer maximizes utility

U =

[�
ω∈Ω

c(ω)
σ−1
σ dω

] σ
σ−1

subject to the economy-wide budget constraint
�
ω∈Ω p(ω)c(ω) dω = Y , where p(ω) is the price of variety ω, Y

is aggregate income, and σ > 1 is the elasticity of substitution between varieties. The resulting economy-wide

demand for variety ω of the consumption good is:

c(ω) =

(
p(ω)

P

)−σ Y

P
, (1)

where P ≡
[�
ω∈Ω p(ω)1−σ dω

]1/(1−σ) is the CES price index. A producer of variety ω faces total demand c(ω)

for its product. We introduce heterogeneity in individual consumers’ budget sets given differentiated individual

wages below.

3.2 Production

A plant ω is fully characterized with a tupel of three stochastic characteristics in our baseline model. We assume

that the plant receives an elemental productivity draw ϕ̃(ω) from a lottery, as in Melitz (2003). To participate in

the lottery, plants hire fe workers at the going wage rate w. After the lottery, the cost is sunk. Depending on its

elemental productivity draw and other characteristics in its tupel, a plant decides on whether to start production.

Production requires the additional fixed employment of f(ω) workers for overhead services in operation; f(ω)

is a function of the plant’s choice of the number of occupations and reflects span-of-control costs.

The plant also receives from the lottery a draw of its required full task range z̃(ω), which the plant needs to

cover in order to produce its output. All conceivable tasks are lined up around a circle, but plants need to cover

different segments z̃(ω) of the circle. We consider the plant-specific full task range z̃(ω) to be the product of two
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parts

z̃(ω) = ζ̃(ω) · z(ω),

where ζ̃(ω) > 0 is a plant’s unobserved task range variability and z(ω) < 1 is the observed total number of tasks

at the plant—a fraction of the 15 possibly observable tasks. From imputation of the BIBB-BAuA task data into

the LIAB plant–worker data, we can measure a plant’s total number of tasks z(ω). However, it is unobserved

what range of tasks a plant outsources to domestic suppliers and what range it offshores to foreign suppliers, in-

house or at arm’s length. A plant may need to cover only a fraction of our 15 benchmark tasks, then ζ̃(ω)t < 1.

Or the plant may need to cover a task range that exceeds our 15 observed benchmark tasks, then ζ̃(ω)t > 1. We

treat ζ̃(ω) as a stochastic characteristic of the plant and allow ζ̃(ω) to covary with the other characteristics in the

plant’s tupel in structural estimation, including with its elemental productivity ϕ̃(ω).

In addition, the plant receives a draw of its sensitivity of worker performance to task mismatch η̃(ω), which

regulates how strongly a worker’s surplus responds to the worker’s average mismatch to her or his tasks at the

plant. By allowing the sensitivity of performance to vary across plants, we can accommodate heterogeneity in

the link between a plant’s average number of tasks per occupation and its wage variability within occupations.

For short, we will refer to the sensitivity of worker performance to task mismatch as sensitivity of performance.

The sensitivity of performance η̃(ω) is not known but, under the structural relationships that we will derive, it

can be recovered from observed variables.

Instead of carrying around the plant identifier ω, we will soon describe a plant’s decisions given this tupel

of three characteristics (ϕ̃, z̃, η̃). For empirics and estimation in Section 6, we will also allow plants to differ

in one additional characteristic: plants will draw a stochastic fixed cost of exporting f̃x(ω) as in Helpman et al.

(2017) to break the deterministic link between elemental productivity and export-market participation, which

exhibits variation in the data. In that extension, a plant’s decisions will depend on its tupel of four stochastic

characteristics (ϕ̃, z̃, η̃, f̃x). (To derive intuitive general-equilibrium relationships in closed form for the closed

and open economy and to simplify exposition, however, in Sections 4 and 5 we will restrict the plant’s tupel

of characteristics to just the two stochastic components (ϕ̃, z̃) and comment on generalizations under current

elaboration.) For now, consider the plant to be a tupel of three characteristics in the baseline model (ϕ̃, z̃, η̃).

Each variety of the consumption good is produced by a unique plant ω. When it comes to market structure, we

assume that plants are monopolistic competitors. Labor is the only input. As workers, individuals are endowed

with one unit of labor, which they supply inelastically to plants. Individual individuals differ in their core ability

as workers.

Production requires that workers perform tasks in their respective occupations. A plant ω decides about
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three types of employment outcomes. First, the plant chooses the total number of occupations n(ω) + 1 that

it wants to offer (a plant’s count of occupations in the data). We consider the possible count of occupations

[n(ω) + 1] = 1, 2, . . . to be countable and require a plant to offer at least one occupation—when n(ω) = 0.

Second, the plant assigns an occupation-invariant measure of tasks b(ω) that need to be performed within each

occupation at the plant. For tractability, we make the total measure of tasks b(ω) a real number. By the technology

we propose, the first choice of the total count of occupations n(ω) + 1 will inversely determine the measure of

tasks b(ω) as an outcome at the plant level. And third, the plant chooses a measure of workers `(ω) to hire into

the occupations that it offers.

A plant ω with elemental productivity ϕ̃(ω) produces quantity q(ω) of its variety by combining the individual

outputs qj(ω) of its occupations j = 1, . . . , n(ω) + 1 into a Cobb-Douglas production function:

q(ω) = ϕ̃(ω) z̃(ω) [n(ω) + 1] exp

 1

n(ω) + 1

n(ω)+1∑
j=1

ln qj(ω)

 , (2)

where qj(ω) is the output of occupation j and n(ω) + 1 is the count of distinct occupations at the plant.14 The

plant-specific draw z̃(ω) < 1 is the plant ω’s full task range required to produce its outputs qj(ω). The way in

which the term n(ω)+1 enters the production function implies that, in the case of symmetric occupations, plants

can raise their output by creating additional occupations, with an elasticity of one. Therefore, worker efficiency

does not change in our model just because a plant adds new occupations. Only if workers get to specialize on

a smaller range of tasks when new occupations are added, then worker efficiency increases with the addition of

these occupations (see below).15 To simplify notation for now, we suppress the variety label ω and consider a

single plant.

3.3 Task assignments to occupations and labor efficiency

Workers have innate abilities to carry out tasks more or less efficiently. Complementing the knowledge view

of the firm, there are no organizational hierarchies in our model. Instead, the worker abilities are horizontally

differentiated and uniformly distributed over a circle with circumference 1. This ability circle simultaneously

represents the technology space and characterizes the set of distinct possible tasks, which are also uniformly

distributed with measure one. The location of a worker on the circle indicates the task that corresponds to his or
14Output in eq. (2) corresponds to to a Cobb-Douglas production function of the form q = ϕ̃z̃

∏
j(qj/αj)

αj , with
∑
j αj = 1 and

αj = 1/(n+ 1) under symmetry.
15A generalization to a non-unitary elasticity does not result in substantively different model predictions but would make the model

more complicated and would require an additional parameter to discipline with data.
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her core ability.

Plants cannot use the full circle of tasks for production. Instead they are restricted to select tasks from a

subinterval with maximal length z̃. We do not observe a plant that is predicted to conduct all 15 tasks in our data

(see Appendix Table A4). The length of the maximally feasible task range z̃ is plant-specific and exogenously

given to the plant. However, plants have a choice to bundle adjacent tasks into occupations, which are then

executed by the workers hired for these occupations. Plants must choose a common number (measure) of tasks

b < z̃ for all occupations that they offer. In other words, we impose that plants choose symmetric divisions of the

segment of the task circle on which they operate. We choose this restriction to reduce the number of parameters

to estimate, so our focus in this paper rests on the average number tasks performed per occupation within a plant.

We leave potential plant-and-occupation-specific task range choices for future work and start our analysis with

only plant-specific task range choices. The measure of tasks b that a plant adopts is thus the same across all of

the plant’s occupations.

Suppose for a moment that tasks on the plant’s segment of the unit circle are mutually exclusively assigned

to n separate occupations with no overlap. The plant’s chosen count of occupations n and its chosen measure of

tasks b would then be linked to each other according to

b =
z̃

n+ 1
.

However, in practice and in our data, the same operations (what tasks) are typically performed across multiple

occupations. We therefore introduce an exogenous degree of overlap ν—a common parameter beyond a plant’s

control. With a common degree of overlap, a plant’s measure of tasks per occupation becomes

b =
z̃

νn+ 1
for ν ∈ (0, 1]. (3)

If ν = 1, eq. (3) collapses to the simple case above with no overlap. If ν < 1, the mapping of tasks to occupations

is not unique and the task intervals overlap. In the limiting case of ν = 0, each occupation uses the whole range

of tasks of the plant, irrespective of n.

Workers must allocate the same amount of time to all tasks specified by the occupation, and worker efficiency

falls in the distance of their core ability to a given task. The idea that workers spend equal time on the performance

of all tasks is a common feature of task models, going back to at least Becker and Murphy (1992). We can

therefore interpret the average distance of a worker at location i to the various tasks in interval [0, b] within each

occupation as a measure of mismatch. Provided that labor is not systematically misallocated so that workers have

19



their core ability within their occupation’s task range (see below), one convenient measure of mismatch m(i, b)

of a worker i with the b tasks in her occupation is

m(i, b) =
1

b

{� i

0
(i− t) dt+

� b

i
(t− i) dt

}
=
b2 − 2i(b− i)

2b
, (4)

where t is the running index of the task location. The mismatch depends linearly on the worker’s position in

the interval and is lowest if the worker is located in the middle of the task interval. Mismatch is highest at the

boundaries of the task interval. The results of our analysis are valid for more flexible functional forms.16

There needs to be an inverse link between mismatch m(i, b) and a worker i’s efficiency λ(i, b), which we

define as

λ(i, b) ≡ η̃

z̃
+

1

m(i, b)
=
η̃

z̃
+

2b

b2 − 2i(b− i)
. (5)

For worker efficiency to be well defined, we impose that the sensitivity of performance satisfies η̃ > −2, so

that all workers from interval [0, b] have positive efficiency for all possible outcomes b ≤ z̃. The sensitivity of

performance η̃ will play an important role below when it comes to the intra-plant dispersion of wages and how

that wage dispersion varies between plants with different productivities. Note that we do not restrict η̃ to be

positive.

The plant can choose to hire a measure `j(i, b) of workers with core ability i into occupation j given a task

range b per occupation. Average worker efficiency in occupation j is then

λj(b) =
1

`j(b)

� b

0
λ(i, b)`j(i, b) di, where `j(b) ≡

� b

0
`j(i, b) di (6)

denotes the total amount of labor hired for occupation j at a plant with task range b per occupation. Occupation-

level output is then

qj = λj(b)`j(b). (7)

Note that, if `j(i, b) is the same for all workers i in occupation j then `j(b) =
� b

0 `j(i, b) di is the same across

16An important standardization in (4) is by the width of the task range 1/b to generate efficiency gains from specialization. We could
alternatively specify

m̂(i, b) ≡
(
1

b

)β {� i

0

(i− t) dt+
� b

i

(t− i) dt
}

=
b2 − 2i(b− i)

2bβ
and λ̂(i, b) ≡

(
η̃

z̃

)2−β

+
1

m̂(i, b)
,

with β = 1 our special case. Our results generalize to β ∈ (0, 2). For instance, the coefficient of variation of a plant’s wages, shown in
eq. (10) below, would become

ĈV w(b) =
√

4− π(π − 2)
[z̃/b]2−β

η̃2−β + π[z̃/b]β
.
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occupations j because b is occupation invariant and λj(b) is the same across all occupations j. Then qj is the

same at all occupations j of a plant by (7). (We will show in Subsection 4.1 below that it is optimal for the plant

to make employment `j(i, b) constant across worker types i in occupation j.)

3.4 Hiring, production, and wage setting

Labor is employed in three different roles: for the sunk cost to make the productivity draw fe, for the fixed input

into overhead services f(ω) to manage and coordinate the occupations, and for the variable input into production.

In the first two roles, workers have an efficiency of one, whereas in the third role their efficiency is given by λ(i, b)

and thus match specific. To hire workers for production, plants post occupations in a competitive labor market

at the going wage w. The occupation posting provides a binary signal that informs workers about whether their

core ability is within the occupations’s task interval, or not, but not on their specific location within this interval.

One way to think about this is that the location of the occupation’s task interval on the unit circle is not part of the

occupation description but that workers can receive a costless test report that reveals with certainty whether or not

their ability is within the occupation’s task range. The occupation posting does specify what the wage schedule

will be for the worker upon accepting the occupation offer. Given their risk neutrality, workers will accept any

wage schedule that pays an expected wage rate w.

In Appendix C, we show how Stole and Zwiebel (1996) wage bargaining in the presence of equilibrium

unemployment can be embedded into our production model. For our baseline framework and its equilibrium

relationships, we want to set aside unemployment and introduce an equivalent wage schedule to the one that

would arise under Stole-Zwiebel wage bargaining by allowing for workers’ endogenous effort choice. Production

workers can choose an effort level e from interval [0, 1] and thus choose the time productively used in their

occupation, so the output of worker i in occupation j is given by

qj(i) = e(i)λ(i, b) in every occupation j = 1, . . . , n(ω) + 1.

Suppose for a moment that full effort were enforceable through monitoring. Then a plant could not do better than

offering a constant wage w to all workers that equals the going wage in the economy.

Now suppose the utility of workers is reduced by a constant factor ε > 0 per unit of effort. Then plants will

link wage payments to the ex post output if the effort is unobservable for outsiders and hence not contractible.

The lacking contractibility of effort rules out a uniform wage for all production workers. In fact, plants cannot
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do better than setting

w(i, b) = w
λ(i, b)

λ(b)
(8)

for a constant going wage w, prompting workers to provide full effort e = 1 if ε is sufficiently small. To see

that the going wage is occupation independent, note that all occupations inside a plant are symmetric in that they

require the same task range b, so w(i, b)/λ(i, b) = wj/λj(b) for all occupations j, hence wj/λj(b) = w/λ(b)

because workers of type i and of type i+b have an equivalent degree of mismatch in their respective occupations.

Following this reasoning, plants pay a constant wage per efficiency unit of w/λ(b) to all of their production

workers (and w to workers providing fixed inputs), implying that the efficiency differences of workers in the

occupation translate one-to-one into wage differences between workers.17

Plants pay the same wage per efficiency unit of labor. Plants are therefore indifferent between all applicants.

Furthermore, workers are ex ante indifferent between all occupations that correspond to their qualification, that

is all occupations for which their core ability lies within the covered task interval. Plants therefore end up hiring

workers whose abilities are uniformly distributed over the task intervals covered by their occupations, and `j(i, b)

is the same for all workers i in occupation j. As a result, average worker efficiency is the same for all occupations

in the plant and given by

λ(b) =
1

b

� b

0
λ(i, b) di =

1

b

[
η̃

z̃
i+ 2 arctan

(
2i− b
b

)]b
0

=
η̃

z̃
+
π

b
or, equivalently, by (9a)

λ(ω) =
1

z̃
[η̃ + π(νn(ω) + 1)] , (9b)

where the final equality follows when substituting z̃/b(ω) = νn(ω) + 1 from eq. (3). It is a consequence of

constant λj(b) = λ(b), as noted before, that qj is the same at all occupations j of a plant by eqs. (6) and (7).

A crucial implication of eq. (9a) is Adam Smith’s tenet that more specialized plants, with a narrower range of

tasks and therefore a higher count of occupations in their internal labor market, exhibit higher worker efficiency:

λ′(b) < 0.

It follows from these insights that the wage dispersion is the same in all occupations of a plant and linked to

the plant ω’s chosen task range per occupation. We measure the wage dispersion with the coefficient of variation
17Under the wage schedule (8), there are workers who earn less than the going wage rate w. These workers would benefit from quitting

and searching for a new occupation elsewhere because, in expectation, a new occupation that covers their core ability would offer a
payment w. By design, endogenous quits are not a problem in a static setting. However, if worker efficiency is revealed ex post, one
can extend the model to a variant with involuntary unemployment under search frictions to ensure that quitting remains unattractive for
workers even after their efficiency has been revealed. In Appendix C, we provide such an extension and consider Stole-Zwiebel bargaining
instead of efficiency wages as a modelling strategy for worker-specific wages. There we show that the main results on wage dispersion
within occupations remain unaffected by this modification, and that the extended model leads to a setting with involuntary unemployment
in equilibrium.
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Figure 4: Within-occupation Wage Schedule and Plant Choice of the Task Range

(4A) Wide Task Range (4B) Narrow Task Range
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Notes: A plant receives a stochastic draw of its full task range z̃, which is required to produce its outputs. The index i denotes the core
ability of a worker (the worker type) and designates the ideal task to which the worker is matched without any mismatch. The plant
chooses its task range b. A worker with a core ability in the interior of a given task range b has a lower degree of mismatch the narrower
the task range (mismatch is the average distance of a worker i from all the tasks that fall within the range b). It depends on the plant’s
sensitivity of performance η̃ how responsive its surplus is to the mismatch of workers to tasks: w(i, b) = w · λ(i, b)/λ(b) by eq. (8) and
λ(i, b)/λ(b) is a function of η̃ and given by the ratio of eqs. (5) and (9a).

(the standard deviation relative to the mean) of the wage at a plant ω:

CVw(ω) =

√
V(w(i, ω)|ω)

E[w(i, ω)]
=

1

w

√
w2

b

� b

0

(
λ(i, b)

λ(b)

)2

di− w2 =
√

4− π(π − 2)
νn(ω) + 1

η̃ + π[νn(ω) + 1]
. (10)

Graph A of Figure 4 illustrates the wage dispersion within a plant-occupation that spans a task range b0,

where a worker i’s wage w(i, b) = w · λ(i, b)/λ(b) under eqs. (5) and (6). Now suppose the plant optimally

adopts a narrower task range b1 < b0 as depicted in Graph B of Figure 4. The wage schedule will still vary

around the unchanged economy-wide wage w, but it depends on the plant’s sensitivity of worker performance to

task mismatch η̃ whether the worker efficiency dispersion, and hence the wage dispersion around the economy-

wide mean, stays constant, rises, or falls at the plant. For a positive sensitivity parameter η̃ > 0, a narrower

task range b1 < b0 magnifies the worker efficiency dispersion in that it induces more variation in any worker i’s

wage (hence our term sensitivity of performance for η̃). Larger plants with narrower task ranges will exhibit a
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wider wage dispersion within plant-occupation for η̃ > 0. We consider it an empirical matter how task ranges

should relate to wage outcomes across workers within a plant-occupation and therefore introduce the parameter

η̃ for estimation. In practice, workers with badly matched abilities near the boundary of a narrow task range

might exhibit a more than proportionally diminished efficiency, if their mistakes on the job can result in heavier

losses to the employer than in wider task ranges. A priori, it is equally conceivable that badly matched workers

in narrow task ranges suffer only a less than proportional reduction in efficiency, compared to their efficiency in

wide task ranges, if their mistakes matter little to the employer, because narrower task ranges may have a lesser

impact on overall production.

We will return to plant-level optimality conditions in our outline for structural estimation in Section 7 below,

where we also recover the sensitivity of worker performance to mismatch η̃(ω) from the model’s structural

relationships.

4 Division of Labor in the Closed Economy

To derive equilibrium relationship in closed from, we now simplify our model and impose that the sensitivity of

worker performance to task mismatch is constant across plants: η̃(ω) = η. We maintain the mild condition that

η > −2 from above, but do not require η to have a specific sign so that the adoption of narrower task ranges by

larger plants may result in reduced or heightened within-occupation wage variability. In this section, a plant ω is

a tupel of two characteristics (ϕ̃, z̃). We discuss extensions in Section 5.3.

To derive equilibrium in an intuitive form, we assume that the distribution of elemental productivity ϕ̃ is

Pareto G(ϕ̃) = 1 − ϕ̃−θ with shape parameter θ as in Helpman, Melitz and Yeaple (2004) and Chaney (2008).

Plants draw their ϕ̃(ω) from a common Pareto distribution, where θ > 1 to ensure a finite mean of productivity.

We discuss an alternative parametrization with log normally distributed productivity in Section 5.3.

4.1 Profit maximization in the closed economy

Plants decide about entry and production in three stages. On stage one, a plant ω decides on paying the sunk

cost of fe units of labor for entering the elemental productivity draw. On stage two, the plant decides on starting

production conditional on its productivity draw. Prior to production on stage three, the plant must also determine

on stage two the count of occupations n(ω) and pay a fixed cost of f(ω) units of labor to operate. We set the

plant’s fixed cost of operation to

f(ω) = f0 + {η + π([νn(ω) + 1]}γ
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with a semi-elasticity of the fixed cost with respect to occupation counts γ > 0, so that the overhead costs are

positively linked to the count of occupations n(ω) at the plant. It is costly to the plants to create additional

occupations (and have a narrower task range per occupations). This span-of-control cost for a plant is more

convex for larger γ. Figure 2 (Fact 2) above documents that the number of tasks within an occupation at a plant

decreases with plant employment, and the number of tasks becomes largely insensitive to further size increases

of the plant above a threshold of about 500 workers. Our model can capture the invariance of task ranges to plant

size beyond a threshold with highly convex fixed costs. To keep the model parsimonious, we choose a constant

semi-elasticity γ of the span-of-control cost with respect to occupation counts.

On stage three, plants hire production workers `(ω), manufacture output q(ω) and sell this output to con-

sumers. We solve the three-stage decision problem by backward induction. On stage three, a plant sets `j(ω) to

maximize its profits

ψ(ω) = p(ω)q(ω)− w
n(ω)+1∑
j=1

`j(b(ω))− w {η + π[νn(ω) + 1]}γ − wf0, (11)

subject to aggregate consumer demand for their variety (1), the market clearing condition c(ω) = q(ω) for their

variety, the plant’s production function (2)

q(ω) = ϕ̃(ω)[n(ω) + 1] {η + π[νn(ω) + 1]} exp

 1

n(ω) + 1

n(ω)+1∑
j=1

ln `j(b(ω))

 , (12)

and common non-negativity constraints. Profit maximization on stage three results in the first-order condition for

revenues and employment

r(ω)[(σ − 1)/σ] = [n(ω) + 1]w`j(b(ω)),

with r(ω) ≡ p(ω)q(ω). This first-order condition establishes the intuitive result that plant ω chooses the same

employment level for all occupations j:

`j(b(ω)) = ˆ̀(ω).

Furthermore, the profit-maximizing price can be expressed as a constant markup over the plant’s marginal cost

p(ω) = [σ/(σ− 1)]mc(ω), given CES demand, for the endogenous (occupation-count dependent) marginal cost

mc(ω) ≡ w

ϕ̃(ω) {η + π[νn(ω) + 1]}
. (13)
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We now turn to stage two. Plants rationally anticipate the profit value on stage three as a function of their

entry decisions and choice of the count of occupations. Substituting eq. (13) into eq. (11) and using eq. (1) yields

profits of plant ω as a function of the count of occupations chosen by the plant n(ω):

ψ(ω) =
Y

P 1−σ
1

σ

[
σ

σ − 1

w

ϕ̃(ω) {η + π[νn(ω) + 1]}

]1−σ
− w {η + π[νn(ω) + 1]}γ − wf0. (14)

Plants face the trade-off that increasing the count of occupations lowers marginal costs with a positive effect on

profits, but at the same time raises the overhead costs with a negative effect on profits. This trade-off is similar to

the one in Eckel (2009) and Bustos (2011), where producers can pay a fixed cost to reduce variable production

costs.

Treating n(ω) as a continuous variable for purposes of exposition, the first-order condition for the profit-

maximization problem at stage two is given by

r(ω)
σ − 1

σ
= γw {η + π[νn(ω) + 1]}γ . (15)

We assume that γ > σ − 1, a necessary condition for an interior solution to be a maximum. In addition, we

assume that parameters are such that every plant benefits from specifying more than one occupation, i.e. from

setting n(ω) > 0. Think of plants with at least one worker in a more organizational (senior) role and another

worker in a more operational (junior) role. The plant that gains least from increasing n(ω) is the plant with the

lowest ϕ̃(ω). This is the plant that makes zero profits from production ψ̂(ω) = 0, provided that not all plants find

it attractive to start production (see below). In an interior maximum, this zero-profit condition can be expressed

as
σ − 1

γ − σ + 1
f0 = {η + π[νn(ω) + 1]}γ , (16)

and hence we can safely conclude that the maximization problem has an interior solution if eq. (16) holds for a

strictly positive n(ω), that is for [(σ − 1)/(γ − σ + 1)]f0 > (η + π)γ . This latter inequality characterizes the

parameter domain to which we restrict ourselves because, in combination with γ > σ − 1, it is sufficient for a

unique maximum at stage two, with n(ω) > 0 for all plants.

Eqs. (1) and (13) together with market clearing condition c(ω) = q(ω) establish a first relationship between

relative revenues of two plants and the relative count of distinct occupations in these plants, while eq. (15)
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establishes a second relationship between these variables. We have:

r(ω1)

r(ω2)
=

(
ϕ̃(ω1){η + π[νn(ω1) + 1]}
ϕ̃(ω2){η + π[νn(ω2) + 1]}

)σ−1

,
r(ω1)

r(ω2)
=

(
η + π[νn(ω1) + 1]

η + π[νn(ω2) + 1]

)γ
(17)

respectively. These expressions allow us to express relative revenues and the relative count of occupations of two

plants as a function of these plants’ relative differences in their elemental productivity parameter ϕ̃:

r(ω1)

r(ω2)
=

(
ϕ̃(ω1)

ϕ̃(ω2)

)ξ
,

η + π[νn(ω1) + 1]

η + π[νn(ω2) + 1]
=

(
ϕ̃(ω1)

ϕ̃(ω2)

)ξ/γ
, (18)

where

ξ ≡ γ(σ − 1)/(γ − σ + 1) > 0

denotes the elasticity of revenues with respect to productivity parameter ϕ̃. Using eqs. (1) and (12), we can

also determine relative output and relative plant-level employment of production workers as a function of the

productivity differential between these plants:

q(ω1)

q(ω2)
=

(
ϕ̃(ω1)

ϕ̃(ω2)

) σ
σ−1

ξ

,
`(ω1)

`(ω2)
=

(
ϕ̃(ω1)

ϕ̃(ω2)

)ξ
, (19)

where `(ω) ≡ [n(ω) + 1]ˆ̀(ω) is the employment of production workers at plant ω. Our framework shares

with other models of heterogeneous employers the empirically well-documented property that workers in larger

firms are more productive (see Idson and Oi 1999). However, in contrast to other contributions, the productivity

differences are further scaled up under the plants’ profit maximizing choice of the count of occupations, which

raises worker efficiency.

It is an important insight from eqs. (18) and (19) that plant outcomes are fully characterized by exogenous

differences in ϕ̃. Hence, we can drop ω and index plants by their elemental productivity parameter from now on.

Denoting productivity of the marginal plant by ϕ∗, revenues and the count of occupations at the marginal plant

are given by

r(ϕ∗) =
σξf0

σ − 1
w νn(ϕ∗) + 1 =

1

π

[(
ξf0

γ

) 1
γ

− η

]
(20)

by eqs. (15) and (16). Furthermore, the coefficient of variation of wages within an occupation at the marginal

producer can be expressed as

CVw(ϕ∗) =

√
4− π(π − 2)

π

(ξf0/γ)1/γ − η
(ξf0/γ)1/γ

(21)
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by eqs. (10), (16) and (20). The coefficient of variation of wages in a plant with ϕ̃ > ϕ∗ is then given by

CVw(ϕ̃) = CVw(ϕ∗)
(ϕ̃/ϕ∗)ξ/γ(ξf0/γ)1/γ − η

(ϕ̃/ϕ∗)ξ/γ [(ξf0/γ)1/γ − η]
(22)

by eqs. (15), (18) and (21). For η = 0, the coefficient of variation of wages is the same at all plants. Otherwise,

for any two plants with ϕ̃1 > ϕ̃2 we have CVw(ϕ̃1) > CVw(ϕ̃2) iff η > 0. More productive plants have higher

within-plant-occupation wage inequality iff η > 0.

To solve for the plants’ problem at stage one of participation in the productivity lottery, we note that free entry

is consistent with profit maximization if and only if the expected profit from participating in the productivity draw

just compensates a plant for the sunk costs of economic activity. Using the superscript a to denote equilibrium

outcomes in autarky, the zero-profit condition is

� ∞
ϕ∗,a

ψ(ϕ̃) dG(ϕ̃) = wfe.

We show in Appendix B.1 that
�∞
ϕ∗,a ψ(ϕ̃) dG(ϕ̃) = [1−G(ϕ∗,a)]wf0ξ/(θ− ξ), which allows us to solve for the

productivity of the marginal plant:

ϕ∗,a =

(
f0

fe

ξ

θ − ξ

) 1
θ

(23)

that participates in the productivity draw, where we assume θ > ξ to ensure a positive and finite value of aggregate

revenues and profits, and we assume f0/fe > θ/ξ − 1 to ensure ϕ∗,a > 1 and hence an outcome by which only

relatively more productive plants start production at stage two.

4.2 The autarky equilibrium

To solve for general equilibrium, we choose labor as the numéraire and setw = 1. We keep using the superscript a

to denote equilibrium outcomes in autarky. Since profit income is used to pay for participation in the productivity

lottery, the mass of producers is determined by the condition that economy-wide labor income, L, equals total

consumption expenditures, Y , and thus aggregate revenuesRa = Mar(ϕ∗,a)θ/(θ−ξ). Using eq. (20), we obtain

Ma =
L(σ − 1)

σξf0

θ − ξ
θ

. (24)

Welfare of the representative agent is (proportional to the) real wage and thus given by the inverse of the CES

price index: W a = 1/P a. The price index can be expressed as P a = [θMa/(θ − ξ)]1/(1−σ)p(ϕ∗,a) and it
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therefore follows from eqs. (13), (23), (24) and constant markup pricing that welfare is given by

W a =

(
L

γ

) 1
σ−1

(
γ

f0ξ

) 1
ξ
(
σ − 1

σ

) σ
σ−1

(
f0

fe

ξ

θ − ξ

) 1
θ

. (25)

To complete the characterization of the closed economy, we compute economy-wide wage inequality as the

employment-share weighted average of the variances of wages at the plant level (equivalent to the computation

of the within-plant-occupation component on the final line of Table 1 but for the wage and not its log):

Vaw =
θ − ξ
θ`(ϕ∗,a)

� ∞
ϕ∗,a

CVw(ϕ̃)2 `(ϕ̃) dG(ϕ̃), (26)

where the plant-level wage variance is equal to the squared coefficient of variation V(w(i, ϕ̃)|ϕ̃) = CVw(ϕ̃)2 by

eq. (10) for w = 1 and average employment of production workers per plant is `(ϕ∗,a)θ/(θ − ξ). Solving the

integral yields

Vaw = CVw(ϕ∗,a)2

{
1 +

2ξ/γ

θ − ξ + 2ξ/γ

η

(f0ξ/γ)1/γ − η

[
1 +

(f0ξ/γ)1/γ

(f0ξ/γ)1/γ − η
ξ/γ

θ − ξ + 2ξ/γ

]}
, (27)

using eq. (22). The result implies that Vaw > CVw(ϕ∗,a)2 if and only if η > 0.

5 Division of Labor in the Open Economy

To derive global equilibrium relationship in closed from under free trade, we maintain the simplifying assumption

that the sensitivity of performance is plant-invariant η̃(ω) = η > −2 and that a plant ω is a tupel of two

characteristics (ϕ̃, z̃), as in the preceding section. We discuss variations in Subsection 5.3 below. We consider

the case of two symmetric countries for the numéraire w = w∗ = 1, with consumption and production as in the

preceding section.

5.1 Fundamentals

There are two types of trade costs: fixed costs fx > 0 (in units of labor) for setting up a foreign distribution

network; and variable iceberg transport costs τ > 1 with the usual interpretation that τ units of the consumption

good must be shipped in order for one unit to arrive in the foreign economy. Both of these costs are also present

in the Melitz (2003) framework and—in combination with plant heterogeneity in elemental productivity ϕ̃—

they generate self-selection of the more productive producers into exporting, provided that the trade costs are
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finite and sufficiently high. Beyond the Melitz (2003) model, the decision to start exporting in our model also

influences a plant’s optimal choice of n(ϕ̃), raising plant productivity beyond its elemental level, and thus exerts

a feedback effect on profits attainable in the domestic market. Due to this feedback effect, we have to distinguish

between variables referring to exporters (denoted by superscript e) and non-exporters (denoted by superscript

d). Furthermore, we use the subscript T in this section to refer to variables associated with total (domestic and

foreign) market activities.

Holding economy-wide variables constant, access to exporting does not affect the profit maximization prob-

lem of a non-exporter. For an exporter, in contrast, export revenues in the foreign market alter the choice of

specialization in the internal labor market. Denote an exporter’s revenues in the domestic market with re(ϕ̃).

For symmetric countries, an exporter’s revenues in the foreign market are then τ1−σre(ϕ̃). An exporting plant’s

profit-maximizing choice of ne(ϕ̃) is given by

(
1 + τ1−σ) re(ϕ̃)

σ − 1

σ
= γ {η + π[νne(ϕ̃) + 1]}γ (28)

instead of eq. (15). Eq. (28) is the same for all exporters, so the ratios in eqs. (18) and (19) carry over from

the close to the open economy for any two plants with the same export status. However, when hypothetically

comparing two plants with the same elemental productivity parameter ϕ̃ but differing export status, we obtain

re(ϕ̃)

rd(ϕ̃)
=
(
1 + τ1−σ) ξγ , η + π[νne(ϕ̃) + 1]

η + π[νnd(ϕ̃) + 1]
=
(
1 + τ1−σ) ξ

γ(σ−1) , (29)

and
qe(ϕ̃)

qd(ϕ̃)
=
(
1 + τ1−σ) σξ

γ(σ−1) ,
`eT (ϕ̃)

`dT (ϕ̃)
=
(
1 + τ1−σ) ξ

σ−1 , (30)

where `eT (ϕ̃) and `dT (ϕ̃) denote total labor input of plant ϕ̃ for export and non-export status. The plant adopts one

degree of specialization on its internal labor market regardless of the destinations of its products, so ne(ϕ̃) and

nd(ϕ̃) carry no T subscript. From the closed economy case we know that larger plants choose more occupations.

Exporting generates additional revenues and therefore induces a plant to adopt more occupations: ne(ϕ̃) >

nd(ϕ̃). The resulting finer division of labor makes exporters more efficient and lowers their unit production

costs by eq. (13). The added efficiency raises an exporter’s sales in both the domestic and the foreign market,

establishing re(ϕ̃) > rd(ϕ̃) and qe(ϕ̃) > qd(ϕ̃) in eqs. (29) and (30). In summary, there is a positive feedback of

exporting into domestic revenues and this effect raises a plant’s incentives to export beyond the benchmark Melitz

(2003) model. It follows from eq. (30) that exporting raises employment. While exporters raise their productivity
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by adopting more occupations, the associated increase in efficiency units of labor does not fully accommodate

the added labor demand from higher overall sales so that an exporting plant expands employment.

Despite the feedback from exporting into domestic sales our model preserves key properties of the Melitz

(2003) model for selection into export status. We use eqs. (15), (18), (20), (28) and (29) and state a plant ϕ̃’s

added profit from exporting ∆ψT (ϕ̃) ≡ ψeT (ϕ̃)− ψdT (ϕ̃), including the feedback effect, as follows:

∆ψT (ϕ̃) =

[(
1 + τ1−σ) ξ

σ−1 − 1

](
ϕ̃

ϕ∗

)ξ
f0 − fx. (31)

The added profit increases in the elemental productivity parameter ϕ̃, so there is selection of innately produc-

tive plants into exporting as in the benchmark Melitz model as long as the two trade costs fx and τ are finite and

sufficiently high. We can then identify the elemental productivity of a plant that is indifferent between exporting

and non-exporting from ∆ψT (ϕ̃) = 0. We denote the elemental cutoff productivity of this indifferent plant by

ϕ̃∗x, implying that a plant ϕ̃ is an exporter if ϕ̃ ≥ ϕ̃∗x and a non-exporter otherwise. Solving ∆ψT (ϕ̃∗x) = 0 for the

ratio of the two elemental productivity cutoffs—ϕ̃∗x for exporting and ϕ∗ for entry—and noting that the share of

exporters is given by χ ≡ [1 −G(ϕ∗x)]/[1 − G(ϕ∗)] under Pareto distributed elemental productivity with shape

parameter θ, we can compute

χ =

{
f0

fx

[(
1 + τ1−σ) ξ

σ−1 − 1

]} θ
ξ

< 1. (32)

Fixed trade costs fx and variable trade costs τ raise the elemental productivity cutoff ϕ̃∗x, thereby lowering the

share χ of exporters among active plants.

5.2 The open economy equilibrium

We turn to the open economy equilibrium. Profit maximization in the open economy is described by a four-stage

decision problem that is similar to the closed economy, but additionally involves the decision to export or be a

non-exporter that exclusively sells to domestic consumers (in stage 2). Access to the export market raises profits

of the most productive plants, and thus the expected profit prior to entry into the productivity lottery, which is

given by � ∞
ϕ∗

ψT (ϕ̃) dG(ϕ̃) = [1−G(ϕ∗)]
ξf0

θ − ξ

(
1 +

χfx
f0

)
(33)

in the open economy (see Appendix B.3). Free entry into the productivity lottery implies
�∞
ϕ∗ ψT (ϕ̃) dG(ϕ̃) = fe

and thus

ϕ∗/ϕ∗,a = (1 + χfx/f0)1/θ ,
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where we use the superscript a to denote an autarky variable. Access to exporting increases expected profits from

production, and hence the probability to be active 1−G(ϕ∗) must decrease in order to restore zero-profit condition

for entry, so the elemental productivity cutoff for entry must increase. This mechanism is well understood from

Melitz (2003) and points to asymmetric effects of openness at the plant level. Whereas highly productive plants

see their profits increase with foreign-market access, low-productivity plants experience a profit loss due to

stronger competition (for scarce labor), with the least productive plants being forced to cease activity.

To shed further light on the asymmetry in plant-level responses to trade, we can study how producers adjust

their assignment of workers to tasks in the open economy. We start with non-exporting plants. The fixed overhead

costs of the marginal producer f(ϕ∗) remain to be determined by eq. (16). The marginally active plant in the open

economy must have higher elemental productivity than the marginally active plant in the closed economy, and the

marginally active plant’s fixed costs are therefore lower with trade than in autarky. In view of eq. (18) fixed costs

are lower for all non-exporting plants, implying that these plants reduce their count of occupations in response to

trade. The intuition is that non-exporting plants command smaller market shares in the open economy and incur

lower span-of-control overhead costs, adopting a smaller number of occupations. To compare span-of-control

overhead costs in the open and closed economy for non-exporting plants, we compute the proportion

η + π[νnd(ϕ̃) + 1]

η + π[νna(ϕ̃) + 1]
=

(
1

1 + χfx/f0

) ξ
θγ

≡ ρd(ϕ̃) < 1 (34)

given eq. (18) and using ϕ∗/ϕ∗,a = (1 + χfx/f0)1/θ from above. Similarly, for the comparison for exporting

plants we compute the proportion

η + π[νne(ϕ̃) + 1]

η + π[νna(ϕ̃) + 1]
=

(1 + τ1−σ) θ
σ−1

1 + χfx/f0


ξ
γθ

=

(1 + χξ/θfx/f0

) θ
ξ

1 + χfx/f0


ξ
γθ

≡ ρe(ϕ̃) > 1, (35)

where the first equality follows from eqs. (29) and (34) and the second equality from eq. (32). By θ > ξ it follows

that ne(ϕ̃) > na(ϕ̃) and thus ρe(ϕ̃) > 1. An exporting plant in the open economy generates higher revenues

and thus raises its occupation count in the internal labor market. The asymmetric response of plants in their

internal division of labor is the consequence of an asymmetric exposure to exporting. If all plants were to export

(χ = 1), the marginal plant would be the same as in the closed economy, ϕ∗ = ϕ∗,a, implying ne(ϕ̃) = na(ϕ̃)

for all active producers. It is therefore the asymmetric exposure to exporting rather than the market size increase

per se that is responsible for plant-level adjustments on the internal labor market. The following proposition

summarizes these insights.
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Proposition 1. In the open economy, compared to autarky, exporting plants raise the count of occupations and

narrow the task range per occupation in the internal labor market, resulting in lower mismatch and higher worker

efficiency, whereas non-exporters reduce the count of occupations and widen the task range per occupation in

the internal labor market, resulting in higher mismatch and lower worker efficiency.

In the open economy, exporters become more like to Adam Smith’s pin factory, whereas non-exporters become

less like that. The asymmetric response of plants to trade in their internal labor markets has consequences for

wage differences in the plant-occupations. Following the derivations for the closed economy, we can express the

coefficient of variation of wages at non-exporters CV d
w(ϕ̃) as a function of the coefficient of variation of wages

at the marginally active plant CV d
w(ϕ∗) by eq. (22). The functional relationship in the marginally active plant

is the same as in the closed economy. However, in the open economy marginally active plant is a plant with

higher elemental productivity. Given ϕ∗/ϕ∗,a = (1 + χfx/f0)1/θ, the effect of openness on wage inequality at

the plant-level for non-exporters is therefore

CV d
w(ϕ̃) = CV a

w (ϕ̃)
(ϕ̃/ϕ∗,a)ξ/θ(ξf0/γ)1/γ − η/ρd(ϕ̃)

(ϕ̃/ϕ∗,a)ξ/θ(ξf0/γ)1/γ − η
(36)

by eq. (34). Given rd(ϕ̃) < 1, it follows from eq. (36) that CV d
w(ϕ̃) < CV a

w (ϕ̃) iff η > 0. For exporters, the

relationship is

CV e
w(ϕ̃) = CV a

w (ϕ̃)
(ϕ̃/ϕ∗,a)ξ/θ(ξf0/γ)1/γ − η/ρe(ϕ̃)

(ϕ̃/ϕ∗,a)ξ/θ(ξf0/γ)1/γ − η
(37)

by eqs. (22) and (34). Given re(ϕ̃) > 1, it follows that CV e
w(ϕ̃) > CV a

w (ϕ̃) iff η > 0. Recall from the

closed-economy derivations (Subsection 4.1) that more productive plants have higher wage inequality within

plant-occupations iff η > 0. The following proposition summarizes the effects of trade on plant-level wage

inequality.

Proposition 2. In the open economy, compared to autarky, exporting plants raise within-plant-occupation wage

inequality iff more productive plants used to have higher wage inequality in autarky (iff η > 0), whereas non-

exporting plants lower within-plant-occupation wage inequality iff more productive plants used to have higher

wage inequality in autarky (iff η > 0).

Given the asymmetry in the plant-level implications, access to trade exerts counteracting effects on the general

equilibrium variables of interest: welfare W and economy-wide wage inequality Vw. Similar to autarky, welfare

in the open economy is given by the real wage and hence inversely related to the CES price index P = [gM(1 +
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χfx/f0)/(θ−ξ)]1/(1−σ)pd(ϕ∗). The mass of producers in the open economy is given byM = Ma/(1+χfx/f0)

and thus smaller than in the closed economy. Noting further that p(ϕ∗) = p(ϕ∗,a)(1+χfx/f0)−1/θ, we can relate

welfare in the open economy to welfare in the closed economy, according to

W = W a

(
1 +

χfx
f0

) 1
θ

. (38)

For plant entry in our model is allocationally efficient (similar to the case in Dhingra and Morrow 2016), a

movement from autarky to trade is akin to lifting a technology barrier, which must be welfare enhancing.

We show in Appendix B.4 that economy-wide wage inequality in the open economy is given by

Vw = Vaw +
η CV d

w(ϕ∗)2

[(ξf0/γ)1/γ − η]2
θ − ξ

θ − ξ + 2ξ/γ

χ1− ξ
θ

1 + χfx/f0
V (χ), (39)

with

V (χ) ≡ 2

(
ξf0

γ

)1/γ θ − ξ + 2ξ/γ

θ − ξ + ξ/γ

{
χ

ξ
θγ − 1 +

(
1 + χ

ξ
θ
fx
f0

)[
1−

(
1 + χ

ξ
θ
fx
f0

)− 1
γ

χ
ξ
θγ

]}

− η

{
χ

2ξ
θγ − 1 +

(
1 + χ

ξ
θ
fx
f0

)[
1−

(
1 + χ

ξ
θ
fx
f0

)− 2
γ

χ
2ξ
θγ

]}
> 0. (40)

Economy-wide wage inequality is therefore higher (lower) in the open than the closed economy iff η > 0. Iff

η > 0 wage inequality within high-productivity plants increases while wage inequality within low-productivity

plants falls. As a consequence, there are counteracting effects on economy-wide wage inequality. However, the

combined effect is unambiguous for two reasons. On the one hand, aggregate overhead expenditures associ-

ated with the division of tasks into occupations increase, which raises wage inequality iff η > 0. On the other

hand, exporters expand production and employment, whereas non-exporters contract production and employ-

ment. Hence, plants with higher wage inequality carry more weight in the computation of Vw, which contributes

to an increase in economy-wide wage inequality. We summarize the effects of trade on welfare and economy-

wide wage inequality in the following proposition.

Proposition 3. In the open economy, compared to autarky, welfare increases with the selection of more productive

plants into exporting. Economy-wide wage inequality widens iff wage inequality widens at exporting plants in

the open economy compared to their wage inequality in autarky.
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5.3 Variations and extensions

To derive clear and intuitive equilibrium relationship in Sections 4 and 5, we consider plants to be tupels of only

two random characteristics—elemental productivity ϕ̃ and a required task range z̃ for production. In general

equilibrium, the stochastic required task range z̃ plays no relevant role, and for elemental productivity ϕ̃ we as-

sumed a Pareto distribution. In varying variations and extensions of our model, we have accounted for additional

sources of plant heterogeneity, with the main purpose of achieving a better fit between the theoretical model and

its quantitative implementation in Section 7, where we consider a plant to be tupel of four stochastic character-

istics: elemental productivity ϕ̃, a required full task range z̃, fixed cost for exporting f̃x, and the sensitivity of

worker performance to task mismatch η̃.

Considering firm-specific realizations of performance sensitivity to mismatch η̃ does not affect the firm-level

effects of trade but it weakens the relationship between plant-level revenues and wage dispersion. The reason

is that two plants with the same elemental productivity ϕ can now exhibit different degrees of wage dispersion

within plant-occupations. As a consequence of the dependence of wage dispersion on η̃ beyond ϕ, the distribution

of η̃ severs the clear nexus between trade and economy-wide wage dispersion under a constant η and the sign of

the mean of η̃ is no longer a sufficient condition for the nexus.

Accounting for plant heterogeneity in the fixed costs of exporting makes export selection less sharp as it no

longer depends on a single cutoff for elemental productivity. As a consequence, the intensive margin takes on a

more important role as a channel for trade effects in general equilibrium (see Armenter and Koren 2015). In our

model, heterogeneity in fixed export costs heightens the labor efficiency gain from the plant-internal division of

labor. The main qualitative insights from our analysis remain unchanged with the exception that heterogeneity in

fixed export costs also weakens the conclusiveness of trade effects on economy wide wage dispersion.

Specifying productivity to be log-normally distributed, as in our structural estimation and simulation in Sec-

tion 7, makes the analysis of general equilibrium considerably more intricate than under a Pareto distribution.

However, the modification leaves most insights from our model unchanged, again with the exception that the

impact of trade on economy-wide wage dispersion becomes weaker under log-normally distributed productivity

than in a comparable model with a Pareto distribution. Our theoretical exercises compare the open economy to

autarky. We leave it to a structural and simulation of the German economy between 1999 and 2012 in Section 7

to assess the effects of gradual trade opening within our model.
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6 Empirics

6.1 Empirical characterization of the sensitivity of performance

A crucial plant-level parameter in our model is the plant characteristic η̃(ω)t that regulates a plant ω’s sensitivity

of worker performance to task mismatch at time t. Similar to elemental plant productivity, the characteristic

η̃(ω)t is not directly observed in data. However, the plant’s profit-maximizing conditions yield optimal worker

efficiency, which translates into wage dispersion within plant-occupations through η̃(ω)t by eq. (10). Combining

eq. (10) with the definition of a plant’s number of tasks per occupation in eq. (3), and using z̃(ω) = ζ̃(ω) · z(ω),

we can recover a proxy to the plant-level sensitivity of performance from the data without estimation:

η̃(ω)t/ζ̃(ω)t =
[√

4− π(π − 2)
/
CV (ω)t − π

]/
[b(ω)t/z(ω)t]. (41)

A plant’s coefficient of residual wage variationCV (ω)t within its occupations and the plant’s normalized number

of tasks per occupation b(ω)t/z(ω)t are observed in our combined data. We acknowledge that this proxy itself

captures both a plant’s wage sensitivity to performance and its susceptibility to outsourcing and offshoring. We

therefore condition on plant size categories and industry effects as well as detailed occupational categories to

isolate a worker’s performance-related variation within industry-occupation boundaries, whereas outsourcing or

offshoring arguably occur by industry and occupation, not the individual job holder.

The BIBB-BAuA survey includes the question whether a worker’s small mistakes in his or her occupation

cause the employer financial losses (“Financial losses by small mistake,” see Becker and Muendler 2015). By

construction in eq. (41), the η̃(ω)t proxy captures a plant’s wage variability CV (ω)t and its degree of special-

ization b(ω)t/z(ω)t. In the model, the higher η̃, the more wage variability is induced when the plant shrinks

the task range. Consider two pin-making plants. Each plant turns from a simple workshop with little division

of labor into a highly specialized pin factory, but one plant has an innately lower η̃ than the other plant and will

experience a lesser increase in wage dispersion as it specializes internally. Our model explains this link between

wage variability and internal specialization with the tenet that an employer’s surplus (“financial losses”) is more

responsive to (bad) match quality when the division of labor is more specialized. If this tenet is correct then we

should observe workers at the plant with high innate η̃—a high sensitivity of surplus to specialization—report that

bad match quality (causing “mistakes”) results in large swings in surplus (even “small mistakes” cause “financial

losses”).

Answers to the question “Financial losses by small mistake” in the BIBB-BAuA survey come in four degrees:

“never,” “seldom,” “occasionally,” and “frequently or almost always.” We run a worker-level regression of the
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Table 3: Sensitivity of Performance and Financial Losses from Small Mistakes

for Wages for Residual wages
Dependent variable: η̃ proxy (1) (2) (3) (4) (5) (6)

Financial losses from small mistakes
seldom .164 .143 .012 .166 .145 .021

(.034)∗∗∗ (.030)∗∗∗ (.020) (.032)∗∗∗ (.029)∗∗∗ (.014)

occasionally .151 .120 .002 .173 .142 .022
(.044)∗∗∗ (.041)∗∗∗ (.025) (.040)∗∗∗ (.036)∗∗∗ (.018)

frequently .376 .318 .117 .358 .302 .104
(.043)∗∗∗ (.044)∗∗∗ (.034)∗∗∗ (.039)∗∗∗ (.038)∗∗∗ (.025)∗∗∗

Occupation area (KldB-88 1-dgt) FE yes yes
Occupation class (KldB-88 4-dgt) FE yes yes
Adj. R2 .574 .603 .799 .660 .687 .860
Observations 44,733 44,610 32,895 44,733 44,610 32,895

Source: BIBB-BAuA 1999, 2006 and 2012, and LIAB 1996-2014. Plants with more than 2 full-time workers.
Notes: Plant-level performance sensitivity to task mismatch: η̃(ω)/ζ̃(ω) =

[√
4− π(π − 2)/CVw(ω)− π

]
z(ω)/b(ω). Worker-

reported financial losses from small mistakes in four categories, omitted category: never or almost never. All regressions conditional on
34 industry effects and 7 plant size categories. There are 6 occupation areas (KldB-88 1-dgt) and 1,144 occupation classes (KldB-88
4-dgt) in the sample. Standard errors clustered at the industry level in parentheses. Significance levels: * p < 0.10, ** p < 0.05, ***
p < 0.01.

employing plant’s η̃(ω)t on the three worker-reported categories of loss frequencies after mistakes, relative to the

omitted category “never.” In the regression, we control for plant size categories and industries and find the results

reported in Table 3.

The results suggest that a worker’s plant exhibits a significantly higher surplus sensitivity to mismatches η̃ if

the worker reports more frequent financial losses to the employer when he or she makes a small mistake on the

job. Moreover, the ranking of effects is as we would expect under our tenet: when a worker reports that their

mistake seldom or only occasionally causes losses to the plant, then the plant’s measured surplus sensitivity to

mismatches η̃ is strictly higher than for the omitted category (when workers report that there is never a financial

loss from their mistakes). The categories “seldom” and “occasionally” are statistically indistinguishable from

each other; only once we condition on 1,144 occupation classes (in Columns 3 and 6) do those two categories

also become statistically indistinguishable from the “never a loss” category that is omitted. However, workers

who report that their small mistakes “frequently cause” financial losses to the employer are employed at plants

that have strictly higher surplus sensitivity to mismatches than in any of the other three categories, and this effect

remains statistically significant even within 1,144 narrowly defined occupation classes. The implication is that, at

plants whose workers report more frequent financial losses to the employer from their mistakes, our measure of

surplus sensitivity to worker performance is higher, and worker mismatches tend to translate task specialization
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Table 4: Predictors of the Number of Tasks

Dependent variable: log Normalized number of tasks ln b/z
(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS IV IV IV IV
log Revenues -0.091∗∗∗ -0.057∗∗∗ -0.051∗∗∗ -0.021 -0.021∗ -0.259∗∗∗ -0.257∗∗∗

(0.003) (0.007) (0.009) (0.013) (0.013) (0.077) (0.076)

log Count of occupations -0.257∗∗∗ -0.328∗∗∗ 4.363∗∗ 4.428∗∗
(0.037) (0.075) (1.975) (2.010)

log Revenues 0.009∗∗∗ 0.013∗∗ -0.226∗∗ -0.230∗∗

× log Count of occupations (0.003) (0.005) (0.110) (0.112)

Plant FE no no yes no no no no
R2 0.234 0.244 0.845
Adj. R2 0.234 0.243 0.793
Hansen J (p-val.) 0.288 0.872
Observations 126,488 126,488 126,488 64,907 64,616 64,777 64,563

Sources: LIAB 1996-2014 and BIBB-BAuA 1999, 2006 and 2012, all sectors. Plants with more than 2 full-time workers, 1996-2014.
Notes: Specifications include time, region, and sector fixed effects. IV estimation is based on GMM. Standard errors clustered at the plant
level in parentheses. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

into higher wage dispersion through a higher η̃.

6.2 Empirical tests of the model

The model of plant-level optimization presented in Sections 4 and 5 takes a plant as a tupel of two characteristics:

its elemental productivity ϕ̃(ω)t and its innate task range z̃(ω)t required to produce output, holding the perfor-

mance sensitivity to mismatch constant η̃(ω) = η. The model gives rise to two testable hypotheses at the plant

level:

Hypothesis 1. The number of tasks and revenues are inversely related.

Hypothesis 2. The within-plant wage dispersion is positively related to plant revenues iff the sensi-

tivity of worker performance to task mismatch is positive, η ≥ 0.

To test the hypotheses and see whether their patterns are robust, we run a series of regressions, in which we

vary the set of explanatory variables and instrument those regressors, whose endogeneity is suggested by our

theoretical model. We control in all specification for time, region and sector fixed effects. Standard errors are

clustered at the plant level.

Test of hypothesis 1: Table 4 reports the results from estimating the plant-level link between the normalized

number of tasks b(ω)t/z(ω)t and revenues. The first three columns of the table present the outcome of OLS
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regressions, which support our theoretical hypothesis of a negative link between plant-level revenues and the

number of tasks: larger plants are internally more specialized. The baseline specification in Column 1 suggests

that a ten percent increase in plant-level revenues is associated with a one percent decline in the (normalized)

number of tasks b(ω)t/z(ω)t. This effect gets smaller when we add the log count of distinct occupations in a

plant and the interaction term of the log count of occupations and log revenues as further explanatory variables. A

negative impact of the count of distinct occupations on the number of tasks is in line with our theoretical model.

However, from our model one may expect that the count of occupations and revenues are perfectly correlated,

which is not the case.18 But this should not be interpreted as evidence against the formal structure of our model

because the model does not predict a linear relationship between log revenues (or the log count of occupations)

and the log normalized number of tasks b(ω)t/z(ω)t, and hence the fact that we are able to estimate significant

effects of all three explanatory variables in Column 2 could simply reflect non-linearities in the relationship

between these variables and the log normalized number of tasks. Overall, the marginal effect of an increase in

log revenues on the log normalized number of tasks is still negative and amounts to -0.042, when evaluated at

the mean of the log count of occupations, 1.648. The negative relationship between revenues and the count of

occupations is robust to adding plant fixed effects (Column 3).

Our model implies that plant-level revenues, the count of occupations, and the number of tasks carried out

by workers, are jointly endogenous to the plant’s market conditions. The OLS estimates in Columns 1 through 3

therefore do not have a causal interpretation. We use an instrumental variable (IV) approach and estimate the

relationship between revenues and the number of tasks, using GMM. The second-stage results of the respective

regressions are reported in Columns 4 through 7 of Table 4, with the related first-stage results collected in Table 5.

Our choice of instruments is guided by insights from our model, which predicts that globalization as mea-

sured by additional industry exports and heightened import competition affects plant-level revenues, the count

of distinct occupations, and thus the number of tasks carried out by workers. This suggests using exports and

imports at the industry level as instruments. However, these industry aggregates themselves depend on the plants’

common decisions. Therefore, we follow the reasoning of Autor, Dorn and Hanson (2013) and use other high-

income countries’ exports to and imports from China (CHN) as instruments for German exports and imports at

the industry level. In the selection of other high-income countries, we follow Dauth, Findeisen and Suedekum

(2014) and use Australia, Canada, Japan, Norway, New Zealand, Sweden, Singapore, and the United Kingdom as

peer group. Since shipments to China affect exporters differently from non-exporters, we interact the log exports

to China with a dummy capturing the export status of a plant in the preceding year. With three potentially en-
18The correlation coefficient of these two variables is 0.671.
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dogenous regressors in Columns 2 and 3, it is not sufficient to specify just two instruments. We therefore add log

exports to Eastern Europe (EE) interacted with a plant’s export status in the preceding year and the log of imports

from Eastern Europe interacted with a plant’s millentile position in the revenue distribution from the preceding

year as additional instruments. Accounting for exports to and imports from Eastern Europe as an additional set

of instruments is motivated by the work of Dauth, Findeisen and Suedekum (2014) who show that trade exposure

to China and Eastern Europe tend to have opposite consequences for the German economy.19

Column 4 reports the IV results when considering only log revenues as an explanatory variable (in addition

to time, region, and industry fixed effects). In this case, we only need one instrument, for which we choose the

interaction of log exports to China and the lagged exporter dummy. The first stage regression in Table 5 suggests

that this interaction term has a positive and statistically significant effect on log revenues indeed, and the F-test

statistic shows no evidence of weak instruments. However, for this specification we do not find a statistically

significant impact of log revenues on the log normalized number of tasks on the second stage at conventional

levels of significance. In an additional specification we add log imports from China as a second instrument. As

findings in Column 2 of Table 5 suggest, this second instrument itself does not exert a significant impact on log

revenues. Again, the F-statistic does not indicate the presence of weak instruments and Hansen’s J overidentifica-

tion test fails to reject validity of our instruments. More importantly, with the additional instrument, the estimated

impact of log revenues on the log of normalized tasks on the second stage becomes statistically significant. In a

further regression, we add the log count of distinct occupations and its interaction with log revenues as additional

explanatory variables and instrument the now three endogenous regressors with the interaction of log exports to

CHN with the lagged exporter dummy, the interaction of log exports to EE with the lagged exporter dummy,

and log imports from EE with the lagged millentile position of a plant in the revenue distribution. Columns 3

through 5 of Table 5 indicate that the three instruments are statistically significant predictors in all three regres-

sions, and the F -tests of excluded instruments pass conventional levels in all three first-stage regressions.20 On

the second stage we find a (now larger) negative and statistically significant effect of log revenues on the log

normalized number of tasks, whereas the coefficients of the log count of distinct occupations and its interaction

with log revenues change their signs when using an IV approach. In a final specification, we add the log of

imports as additional instrument. This allows us to test for overidentification and the high p-value reported in

the Table 4 indicates that we fail to reject validity of our instruments. Adding the additional instrument has only
19As in their study, we associate Eastern Europe with Bulgaria, the Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia,

the former USSR and its successor Russian Federation, Belarus, Estonia, Latvia, Lithuania, Moldova, Ukraine, Azerbaijan, Georgia,
Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan.

20With multiple endogenous regressors the F -tests on the first stage are not sufficient for rejecting the null that instruments are weak.
Unfortunately, clustered standard errors do not offer a straightforward alternative to testing for weak instruments. The Kleibergen-Paap
LM test rejects the null of underidentification.
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minor effects on the parameter estimates on the second stage (Column 7).

Overall, our findings strongly support that both globalization-induced increases to revenues and globalization-

induced division of labor in the internal labor market through additional occupations lead plants to adopt narrower

task ranges. In other words, favorable global product-market conditions contribute to the internal division of labor

at plants—generating production sites akin to Adam Smith’s pin factory as plants expand.

Test of hypothesis 2: To test the novel link from plant performance to wage inequality within plant-occupations,

we aim to test the sign of the correlation between wage dispersion inside a plant and its occupation count, con-

ditional on η̃(ω)t = η > 0 in the model. We first establish that the performance sensitivity proxy η̃(ω)t/ζ̃(ω)t

from (41) is overwhelmingly positive in our plant data. Note that ζ̃(ω)t is strictly positive by definition, so a

positive sensitivity proxy η̃(ω)t/ζ̃(ω)t must imply a positive underlying sensitivity η̃(ω)t > 0. In our sample,

57.8 percent of plants have a strictly positive η̃(ω)t0, and the sample mean η̃(ω)t/ζ̃(ω)t is positive. We proceed

to evaluate the link between within-plant-occupation wage inequality and the internal division of labor at the

sample mean.

We estimate the relationship between the within-plant-occupation standard deviation of the residual wage

dispersion and the occupation count as a measure of the intra-plant division of labor, conditional on revenues,

and test whether the relationship is positive. As a measure of wage dispersion we use the standard deviation

of residual daily wages within plant-occupations. Results are reported in Table 6. (In Appendix Table A5 we

repeat the exercises for the dispersion of the total daily wage.) We use similar empirical specifications and

the same instruments as before. We do not report the first-stage results for the IV specifications since they are

closely similar to those reported in Table 5—except for minor changes in the number of observations. The

results in Table 6 indicate a clear positive relationship between revenues and residual wage dispersion within

plant-occupations for OLS, as well as a clearly positive relationship between residual wage dispersion within

plant-occupations and the occupation count. In the long specification of Column 2, a 10 percent increase in the

occupation count predicts a more than ten percentage-point increase in the standard deviation of residual wages

within plant-occupations. After controlling for plant fixed effects, this positive association is further strengthened;

in Column 3, a 10 percent increase in the occupation count predicts a more than twelve percentage-point increase

in the standard deviation of residual wages within plant-occupations.

In Columns 4 and 5 of Table 6 we report estimates when instrumenting log revenues as the single endogenous

regressor. Test statistics are consistent with the hypothesis that the interaction of log exports to China with the

plant’s lagged exporter indicator and the log of imports from China provide strong instruments, and the positive

effect of revenues on wage variation within plant-occupations remains robust to the change in estimation strategy.
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Table 6: Predictors of Within-Plant Residual Daily Wage Dispersion

Dependent variable: log StDev Residual daily wage
(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS IV IV IV IV
log Count of occupations 1.042∗∗∗ 1.232∗∗∗ 5.783∗∗∗ 6.006∗∗

(0.078) (0.173) (2.429) (2.458)

log Revenues 0.185∗∗∗ 0.174∗∗∗ 0.104∗∗∗ 0.295∗∗∗ 0.293∗∗∗ 0.065 0.059
(0.005) (0.013) (0.019) (0.025) (0.025) (0.093) (0.093)

log Revenues -0.055∗∗∗ -0.067∗∗∗ -0.309∗∗∗ -0.321∗∗

× log Count of occupations (0.006) (0.012) (0.135) (0.137)

Plant FE no no yes no no no no
Hansen J (p-val.) 0.165 0.685
R2 0.293 0.345 0.836
Adj. R2 0.292 0.345 0.781
Observations 126,483 126,483 126,483 64,905 64,614 64,775 64,561

Sources: LIAB 1996-2014, all sectors. Plants with more than 2 full-time workers.
Notes: Specifications include time, region, and sector fixed effects. IV estimation is based on GMM. Standard errors clustered at the plant
level in parentheses. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

In Columns 6 and 7 we treat all three regressors—log revenues, the log count of occupations and the interaction

term of these two variables—as endogenous variables and instrument them with the variables reported in Table 5.

Log revenues lose statistical significance at conventional levels, whereas the association between the occupation

count and residual wage dispersion within plant-occupations becomes stronger than under OLS.

We interpret the overall evidence as suggestive of a direct reorganization channel in the plant’s internal labor

market, by which product-market expansions in the wake of globalization trigger a more specialized division of

labor, which in turn leads to more residual wage inequality within plant-occupations.

7 Structural Estimation and Simulation

We turn to a structural estimation model for plant-level outcomes grounded in our theory of trade and internal

labor-market organization. Given our interest in inequality, we adopt a maximum likelihood (ML) approach

because it disciplines the distributional foundations. Specifying a distribution of plant characteristics alongside

the theory model is an important part of the overall framework when we consider not just predictions of aggregate

variables (such as employment or the economy-wide wage bill) but the dispersion of outcomes. To specify the

distribution of plant characteristics is to establish the stochastic fundamentals of the economy so that we can

study inequality in addition to per-capita welfare.

We specify joint normality of the plant’s four stochastic characteristics that may change over the course of the
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sample period:21 the (log of scaled) elemental productivity ξ ln ϕ̃(ω)t, the (log of) the plant’s required full task

range ln z̃(ω)t = ln[ζ̃(ω)tz(ω)t], the (log of) fixed cost for exporting ln f̃x(ω)t, and the sensitivity of worker

performance to task mismatch η̃(ω)t, which relates the plant’s number of tasks per occupation to its within-

occupation wage inequality. The resulting log normality of revenues and other plant characteristics is plausible

(see e.g. Helpman et al. 2017, Fernandes et al. 2018).

There are two challenges to structural estimation in our context, beyond previous implementations such as by

Helpman et al. (2017). First, we cannot use the partial estimation model for observed outcomes only. We show

below for such a conventional system with no censoring that, under joint normality, the variance of a variable such

as log revenues among exporters must be less than the variance among non-exporters iff the share of exporters is

less than one-half. In our German data as in data for other countries that we have explored, less than one-third of

plants export in any given year but the log revenue variance among exporters exceeds that among non-exporters

(log employment and the log wage bill exhibit a similar variance ranking between exporters and non-exporters).

A participation equation for selection into existence, similar to the Melitz (2003) model, is necessary under

joint normality to reconcile the variance ranking between exporters and non-exporters with an exporter share

of less than one-half. Second, the entry threshold consistent with our model does not conform to conventional

Tobit estimation such as in Carson and Sun (2007) because the censoring threshold is defined with respect to

the unobserved productivity in a Melitz (2003) model, not with respect to an observed outcome. We establish

that our model is nevertheless point identified and derive an according two-step ML estimator for endogenous

switching and censoring. Once estimated, we simulate the model and quantify the importance of globalization

for the intra-plant division of labor and economy-wide inequality.

7.1 Estimation model

We revisit the general model specification in Sections 3 and 4 when a plant is a tupel of four stochastic char-

acteristics (ξ ln ϕ̃(ω)t, ln ζ̃(ω)t, ln f̃x(ω)t, η̃(ω)t). The plant’s profit-maximizing conditions from the four-stage

optimization problem in Section 4.1 imply a set of estimable equations. One characterization is a four-equation

system that involves plant revenues r(ω)t, the plant’s within-occupation coefficient of variation of the daily wage

residual CVw(ω)t combined with its normalized number of tasks per occupation b(ω)t/z(ω)t, and an export

21We do not formally consider f̃x and η̃ to be plant specific in Subsection 4.1, so as to characterize general-equilibrium subsequently
in closed form. However, the plant-level optimality conditions in Section 4.1 for stages 2 through 4 of the plant’s decision problem also
hold for the tupel of four stochastic characteristics under any distributional assumption.
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indicator 1x(ω)t as the observed variables x(ω)t ≡ [r(ω)t, CVw(ω)t, b(ω)t/z(ω)t,1x(ω)t]
T :

ln r(ω)t = α0,t + α1,t1x(ω)t + ξt ln ϕ̃(ω)t, (42a)

lnCVw(ω)tb(ω)t/z(ω)t = β0,t − (1/γt) ln r(ω)t + ln ζ̃(ω)t, (42b)

1x(ω)t = 1 ⇔ δ0,t ≥ ln f̃x(ω)t − ξt ln ϕ̃(ω)t, (42c)

x(ω)t missing ⇔ ξt ln ϕ̃(ω)t < at. (42d)

Eq. (42a) follows from eqs. (18) and (29) and the symmetry of the domestic and foreign economies for α0,t ≡

ln rd(ϕ∗t ) − ξt lnϕ∗t and α1,t ≡ (1 + ξt/γt) ln(1 + τ1−σt
t ). Eq. (42b) follows from eqs. (10) and (15) under

z̃(ω) = ζ̃(ω)z(ω) and for β0,t ≡ (1/2) ln[4 − π(π − 2)] + (1/γt) ln γt + (1/γt) ln[(σt − 1)/σt]. Eq. (42c)

follows from eq. (31) for δ0,t ≡ ln[(1 + τ1−σt
t )ξt/(σt−1) − 1] + ln f0 − ξt lnϕ∗t . Eq. (42d) is a plant’s presence

condition in the sample for at ≡ ξt lnϕ∗t .

The estimation parameter γt is the elasticity of the span-of-control fixed cost and it is time varying for

consistency with time varying α0,t, α1,t and β0,t in the estimation model that we implement. The parameters

α0,t, α1,t, β0,t and δ0,t are composites of model fundamentals including time-varying trade costs τt, the time-

varying fixed cost of operation f0,t, and the elasticity of substitution σt. Domestic and foreign market sizes

do not enter under our assumption of symmetric domestic and foreign countries in Section 5 for the numéraire

w = w∗ = 1 but we could alternatively specify a small open economy and the model parameters would reflect

the relative country sizes in addition to τt.

This equation system involves only three of the four stochastic terms that characterize a plant: ln ϕ̃(ω)t,

ln ζ̃(ω)t and ln f̃x(ω)t. The plant’s log performance sensitivity to task mismatch η̃(ω)t is known conditional

on ln ζ̃(ω)t: from observed residual wage variation CVw(ω)t and the normalized number of tasks per occupa-

tion b(ω)t/z(ω)t at the plant we know η̃(ω)t/ exp{ln ζ̃(ω)t} by eq. (41) and can infer η̃(ω)t after scaling with

exp{ln ζ̃(ω)t}.

To simplify notation, we drop time subscripts and the plant identifier ω now. We show in Appendix D that

the equation system (42) can be rewritten into a multi-variate endogenous switching model with censoring for

the observed variables y = ln r(ω), w = lnCVw(ω)b(ω)/z(ω) and I = 1x(ω) as well as the jointly normally

distributed disturbances u = ξ ln ϕ̃(ω), v = ln ζ̃(ω), e = u − ln f̃x(ω), where u is truncated from below at a.
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The estimation system can be recast as

y =


µeY + u if I = 1

µdY + u if I = 0

, (42a′)

w =


µeW − (1/γ)u+ v if I = 1

µdW − (1/γ)u+ v if I = 0

, (42b′)

I =


1 if µX + e ≥ 0

0 if µX + e < 0

, (42c′)

y, w, I = missing if u < a, (42d′)

where µeY ≡ α0 + α1, µdY ≡ α0, µeW ≡ β0 − (1/γ)α0 − (1/γ)α1, µdW ≡ β0 − (1/γ)α0, µX ≡ δ0, and

γ = −(µeY − µdY )(µeW − µdW ) is not an independent parameter.

The joint distribution of the unobserved plant characteristics (disturbances) can then be stated as

(u, v, e)T ∼ NT (0, Σ̃) with Σ̃ =


σ2
u ρuvσuσv ρueσu

ρuvσuσv σ2
v ρveσv

ρueσu ρveσv 1


for accordingly defined standard deviations σu, σv and σe = 1 as well as correlation coefficients ρuv, ρue and ρve

as shown in Appendix D.

An important property of this multivariate normal model of plants and their market entry is that conditional

higher moments relate back to selection into domestic and foreign markets (endogenous switching and censor-

ing). Concretely, censoring in a Melitz (2003) model is exclusively based on elemental productivity (u), so in our

case the relationships between higher moments and selection (endogenous switching and censoring) applies also

to just the bivariate normal model of plants with elemental productivity and a stochastic fixed cost of exporting.

Relevant higher moments are the observed variances of log revenues among exporters V(y|I = 1) and among

non-exporters V(y|I = 0) as well as moments of the distribution of underlying plant characteristics (σu, ρue).

The following proposition summarizes the relevant implication for our case.

Proposition 4. If elemental productivity u is not truncated and the variance of log revenues among exporters

V(y|I = 1) exceeds the variance of log revenues among non-exporters V(y|I = 0), then an outcome with a
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well defined joint normal distribution (with σu > 0, ρue 6= 0) exists if and only if the share of exporters exceeds

one-half.

Proof. See Appendix E.

In our data less than one-third of plants export but the variance of log revenues y among exporters exceeds the

variance among non-exporters (whereas the variance of the second composite outcome variable w is smaller

among exporters than among non-exporters). As a consequence, we need to allow elemental productivity to

be truncated, or in other words we have to consider the full Melitz (2003) model with selection into activity

(censoring), not merely the Chaney (2008) model of selection into exporting (endogenous switching).

Allowing for truncation by elemental productivity (censoring) requires that we use the observed minimum

log revenues in ML estimation to recover the truncation point for elemental productivity. Given the parameter

estimates for first and second moments related to log revenues and elemental productivity, we can infer from the

observed minimum log revenues the internally consistent cutoff of elemental productivity. This ML procedure

in turn requires that we express the likelihood functions in a conditional manner: once conditioning on the case

that the observed minimum of log revenues in the data occurs at a non-exporter and once conditioning on the

alternative case that the observed minimum occurs at an exporter. The alternative case is possible if a plant draws

a low elemental productivity but also draws an extremely favorable fixed export cost so that the plant sells (little)

domestically and exports (little), resulting in the minimum of total log revenues in the sample. We derive and

state the conditional likelihood functions in Appendix F.1.

7.2 Implementation of estimation model

To implement ML estimation under censoring on just one unobserved plant characteristic u, we can segment the

full equation system in eq. (42) into two subsystems. Following an approach proposed by Murphy and Topel

(1985) and also outlined in Greene (2012, ch. 14.7), we can estimate in a first step the subsystem related to

revenues and selection (endogenous switching and censoring)—eqs. (42a), (42c), (42d)—, and then insert the

parameter estimates from the first step into the second step. In the second step, we estimate the subsystem related

to internal specialization and selection (endogenous switching and censoring)—eqs. (42b), (42c), (42d). This

split into two steps is possible because the parameter vector θv = (µeW , µ
d
W , σv, ρve, ρuv) only appears in step 2

(step 1 lacks the error term v). In contrast, the parameter vector θu = (µeY , µ
d
Y , µX , σu, ρue) appears not only in

step 1 but also in step 2. The reasons are that γ is a composite of µeY , µ
d
Y and selection involves µX , σu and ρue

in step 2. While we cannot estimate the subsystems separately, we can estimate θu on a first step and then use
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the parameter estimates from model 1 in model 2 and estimate parameter vector θv in a second step. We derive

and state the conditional likelihood functions in Appendix F.2.

We strive to isolate the distributional foundations of plant characteristics from equilibrium outcomes under

a changing trade environment over time. We therefore restrict the higher moments related to the stochastic and

unobserved plant characteristics to be constant over time. But we allow the equilibrium related parameters that

are functions of trade policy variables such as trade costs and mean fixed export costs to vary over time.

Table 7 shows the results of ML estimation. After estimating parameters µdY , µeY , µX by year and σu and ρue

as constants across years in the first step (on the pooled sample of 20,161 plants over the three years 1999, 2006,

2012), we compute the composite parameters a for censoring into missing using eq. (F.8) and χ for endogenous

switching into export status evaluating eq. (D.10) in the Appendix. In the second step, we estimate µdW and µeW

for each year and σv, ρve and ρuv as time invariant constants, conditional on the estimates from the first step.

After estimation of both steps, we compute γ using γ = −(µeY − µdY )(µeW − µdW ) . In estimation, we restrict

standard deviations to be strictly positive and correlation coefficients to fall in the range -1 and 1, and obtain

standard errors for all constrained and composite parameters using the Delta method.

Parameter estimates are statistically significantly different from zero at conventional confidence levels. The

parameter estimates most relevant for log revenues and export selection are not in all cases statistically different

from each other over time, whereas the parameters on step 2 most closely related to inequality outcomes are

statistically different from each other. The estimated censoring cutoff is low and implies that only a tiny fraction

of plants fails to enter; the threshold estimate reflects the fact that the smallest plant in our sample has only minor

revenues. The presence of a finite lower threshold ensures nevertheless that our estimator is internally consistent

with the variance ranking of outcomes between exporters and non-exporters. Beyond its statistical properties,

we aim to evaluate the economic importance of our model in predicting observed export-market outcomes and

changes to the internal division of labor at German plants over the period 1999–2012. To do so, we need to infer

each plant’s unobserved performance sensitivity to task mismatch η̃ from our structural model and estimation.

As a theory-implied variable in the data we can infer the composite η̃(ω)t/ζ̃t from the (estimation independent)

relationship η̃(ω)t/ζ̃t =
[√

4− π(π − 2)/CVw(ω)t − π
]
· z(ω)t/b(ω)t.

Post estimation, we can infer ζ̃(ω)t = exp{v(ω)t} from eq. (42c′) and therefore

η̃(ω)t =
[√

4− π(π − 2)/CVw(ω)t − π
]
· (z(ω)t/b(ω)t) · exp{v(ω)t}.

We obtain the standard deviation ση. From eqs. (42a′) and (42c′) we recover u(ω)t and v(ω)t and correlate

both with the constructed η̃(ω) to obtain ρuη and ρvη. We compute the standard errors of ση, ρuη and ρvη using
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Table 7: Maximum Likelihood Parameter Estimates

1999 2006 2012 Time invariant

Maximum Likelihood Step 1
µdY 12.969 12.916 12.939 σu 1.606

(.055) (.059) (.043) (.046)

µeY 16.376 16.504 16.353 ρue .233
(.154) (.123) (.131) (.028)

µX -.981 -.950 -.937
(.048) (.040) (.032)

a -8.155 -6.428 -8.319

χ .163 .171 .174

Maximum Likelihood Step 2
µdW -2.679 -2.255 -2.256 σv 1.090

(.013) (.011) (.011) (.009)

µeW -3.912 -3.514 -3.477 ρve .790
(.016) (.015) (.015) (.003)

ρuv .628
(.003)

Post Estimation
γ 2.763 2.849 2.795 ση 14.509

(.140) (.117) (.120) (.072)

ρuη -.080
(.007)

ρvη -.452
(.006)

ρeη 0

log Pseudo-Likelihood Step 1 -4,980,867
log Likelihood Step 2 -82,034.33
Observations 20,161

Source: LIAB and BIBB-BAuA, 1999, 2006 and 2012. Plants with more than 2 full-time workers, weighted by sampling frequencies.
Notes: Parameters a from eq. (F.8) and χ from eq. (D.10) in the Appendix. Standard errors in parentheses (using the Delta method for
constrained and composite parameters).
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the formulae for jointly normally distributed variables. The disturbance e(ω)t cannot be recovered directly post

estimation, so we assume that η(ω)t and e(ω)t are uncorrelated. As a result, we obtain the quadrivariate joint

normal distribution22

(u, v, e, η̃)T ∼ NT (0, Σ̃) with Σ̃ =


σ2
u ρuvσuσv ρueσu ρuησuση

ρuvσuσv σ2
v ρveσv ρvησvση

ρueσu ρveσv 1 0

ρuησuση ρvησvση 0 σ2
η

 .

7.3 Simulation

Using the estimated quadrivariate joint normal distribution of (u, v, e, η̃)T , we simulate a fixed population of

20,000 plants by generating the following four stochastic characteristics of plants: adjusted elemental pro-

ductivity ξ ln ϕ̃(ω) = u, the plant’s task range variability ln ζ̃(ω) = v, the plant’s fixed cost of exporting

ln f̃x(ω) = u− e and the plant’s performance sensitivity to task mismatch ln η̃(ω). These stochastic plant char-

acteristics are held constant over time so that we can subject the same fundamental plant population to economic

change in the time varying parameters. To measure economic change between 1999 and 2012, we transform the

estimation parameters from the estimation model (42′) back into those of the baseline model (42) and obtain α0,t,

α1,t, β0,t, γt, δ0,t and at for t = 1999, 2012. With those parameters at hand, we simulate the main economic

outcomes: plant revenues r(ω)t, a plant’s within-occupation coefficient of variation of the daily wage residual

CVw(ω)t combined with its normalized number of tasks per occupation b(ω)t/z(ω)t, and an export indicator

1x(ω)t.

The export indicator reflects the extensive margin of export entry. To capture the intensive margin of exports,

we compute the share of exports in total revenues at exporters on average in the data and obtain the corresponding

measure from our estimates using

reT (ω)t − re(ω)t
reT (ω)t

=
τ1−σ
t

1 + τ1−σ
t

= exp{α1,t}−
γt−σ+1

σ ,

where the first equality follows from symmetry of the foreign and domestic economy and the second equality by

eq. (42a) and ξt/γt = (σ − 1)/(γt − σ + 1). The measure depends on the unobserved elasticity of substitution

22Under the restriction ρeη = and the other parameter estimates, we find that Σ̃ has no valid Cholesky decomposition. To perform
simulations, we choose the minimally admissible ρeη = .011.
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Table 8: Simulation Results

Data Simulation
1999 2012 1999 2012

Exporter share .133 .152 .157 .169
Export share in revenues at exporters .228 .240 .228a .252
Changes in

mean Normalized number of tasks per occupation -17.1%
mean Coefficient of variation of wages within plant-occupations 43.3%

aCalibriation of the elasticity of substitution to σ = 3.50 matches the observed export share in revenues at exporters in 1999.

Source: LIAB and BIBB-BAuA, 1999 and 2012. Plants with more than 2 full-time workers, weighted by sampling frequencies.
Notes: Simulation for population of 20,000 plants with constant stochastic characteristics but exposed to time-varying parameter changes.

σ. We calibrate σ so that we match the export share in revenues at exporters in the data.23 This choice serves a

dual purpose. First, we can simulate the intensive margin of exports in 2012 for a constant σ and check whether

the change matches that in the data. Second, we can reuse the calibrated σ to decompose the combined variable

CVw(ω) · b(ω)t/z(ω)t into its parts.

To separate a plant’s normalized number of tasks per occupation b(ω)t/z(ω)t from the coefficient of variation

of the plant’s wages CVw(ω) we use (3) in (10) and rearrange terms to find

b(ω)t
z(ω)t

=
π exp{ln ζ̃(ω)}[

1
γt
σ−1
σ exp{ln r(ω)t}

]1/γt
+ η̃(ω)

,

keeping the stochastic fundamentals ln ζ̃(ω) and η̃(ω) constant over time.

Table 8 shows the results of our simulations and contrasts them with available moments in the data. The

share of exporting plants in the data (weighted by sampling frequencies) rose from 13 to 15 percent between

1999 and 2012, and our simulations find an increase from 16 to 17 percent. In the data, the share of exports

in exporter revenues rose from 23 to 24 percent and to 25 percent in our simulation. Our simulations suggest

that this increasing export-market participation was related to internal labor-market adjustments at the plants,

which reduced the number of tasks per occupation by 17 percent from 1999 to 2012, choosing a stricter division

of labor. Our simulation also suggests that wage inequality within plant-occupations increased markedly at the
23Post estimation, we could also attempt to recover an estimate of the elasticity of substitution σt from eq. (42b) using

σt =
1

1−X with X = γt

[√
4− π(π − 2)

exp{β0,t}

]γt
.

The crucial constant term β0,t for that inference, however, is likely affected by additional changes in the economy beyond our model, so
we do not choose that approach.
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plants.24 We conclude that the estimated and simulated model for Germany can account for substantive changes

that reflect economic globalization and its association with the advancing division of labor at employers and

heightened within-plant inequality.

8 Concluding Remarks

We document empirically that workers in larger plants perform fewer tasks and that a dominant part of residual

wage inequality materializes within plant-occupations. Based on these observations, we build a model of the

internal labor market, where the employer chooses the division of labor by assigning task ranges to occupations,

workers of different ability match to occupations and the match quality determines the wage dispersion within

plant-occupations. We embed this rationale into a heterogeneous-firm model of trade to relate global product-

market conditions to the employer’s optimal choice of the internal division of labor. A plant that commands a

larger market share can achieve a labor efficiency gain by narrowing the range of tasks performed per occupation

and simultaneously raising the count of occupations to which it assigns tasks. In equilibrium, inherently more

productive plants and exporters adopt a stricter division of labor and thus boost their elemental productivity.

We use German plant–worker data, combined with detailed German survey information on time-varying tasks

performed by workers within their occupations, to document the impact of Germany’s further globalization during

the 2000s on the plant-internal division of labor and wage inequality within plant-occupations. Reduced form-

evidence and results from simulating the structurally estimated model suggest that the internal division of labor

and the associated wage inequality have played an important part in the rising wage inequality in Germany.

Our framework isolates the within-plant and within-occupation changes that globalization induces. While a

dominant part of residual wage inequality materializes within plant-occupations, other forces are simultaneously

at work. The employer-size wage premium contributes to wage dispersion (Helpman et al. 2017), and Card,

Heining and Kline (2013) document the importance of that component for Germany’s rise in wage inequality.

Beyond residual wage inequality, Trottner (2019) considers the differential demand for high-skilled labor at large

and globalized plants with non-homothetic production and the consequence for skill-related wage payments.

While further globalization can reduce inequality under the employer-size wage premium channel (Helpman

et al. 2017), the skill-demand effect under non-homothetic production (Trottner 2019) and our residual-wage

effect under internal specialization predict higher inequality from globalization. A joint consideration of those

alternative mechanisms remains for future research.
24Card, Heining and Kline (2013, Table 1b of the working paper version) report an increase of the standard deviation of the log real

daily wage for German male workers by about 17 percent over 10 year (from .458 in 1999 to .535 in 2009). Our simulation would suggest
an increase of the within-plant-occupation component for wages (not log wages) by about 40 percent over 13 years.
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Appendix

A Empirical Appendix

A.1 Workplace operations

Using the BIBB-BAuA labor force survey data for the three waves 1999, 2006 and 2012, Table A1 shows the fre-

quency of workplace operations (tasks) for the universe of workers and for subsamples of workers: high-earning

workers with an above-median daily wage; experienced workers with an age of 45 years and older; supervi-

sors and managers; and high-skilled workers with a college-qualifying secondary-education diploma (Abitur or

equivalent). We inversely weight the frequency of worker observations by their sampling frequency to achieve

representativeness. A comparison across the columns suggests that German workers engage in multitasking to a

relatively similar extent across skill groups and layers of hierarchy, performing 6.7 tasks on average in any occu-

pation and about 7.4 tasks in managerial occupations. Salient differences in task frequencies between skills and

layers of hierarchy are observed for tasks such as “Train, Teach, Instruct, Educate” or “Apply Legal Knowledge”

and “Gather Information, Develop, Research, Construct.” Supervisors and managers perform those operations

with a higher frequency of 12 additional percentage points or more compared to the worker population. Man-

agers exhibit higher frequencies in a majority of tasks, with the notable exception of typically more manual-work

intensive operations such as “Manufacture, Produce Goods” as well as “Repair, Maintain” and “Transport, Store,

Dispatch.”

A.2 Comparison to GSOEP data

To gauge the plausibility of our multi-tasking measures, we seek a comparison to an alternative German data

source. In 2013, the German Socioeconomic Panel (GSOEP), a longitudinal survey similar to the U.S. Panel

Study of Income Dynamics (PSID), included questions on a total of 23 workplace operations: 1. Making, pro-

cessing or assembling things; 2. Building, installing, or fitting things/objects; 3. Operating, controlling, setting

up or maintaining; 4. Repairing or maintaining things/objects, renovating or modernizing buildings; 5. Selling;

6. Buying, purchasing; 7. Advertising, marketing, public relations; 8. Consulting and informing; 9. Organizing,

planning, coordinating, managing and preparation of work processes; 10. Collecting information, researching,

documenting, analyzing; 11. Measuring, checking, testing, quality control; 12. Designing, developing, research-

ing, constructing, shaping; 13. Educating, teaching, nurturing; 14. Entertaining, accommodating, preparing

food; 15. Nursing, caring, coaching, healing; 16. Securing, protecting, monitoring, directing traffic; 17. Clean-
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Table A1: Frequency of Workplace Operations

Subsamples
Workplace Operations (Tasks) Universe high w age ≥45 skilled manager
1. Manufacture, Produce Goods 0.185 0.182 0.171 0.138 0.139
2. Repair, Maintain 0.360 0.350 0.344 0.286 0.310
3. Entertain, Accommodate, Prepare Foods 0.281 0.247 0.256 0.231 0.297
4. Transport, Store, Dispatch 0.451 0.435 0.452 0.361 0.391
5. Measure, Inspect, Control Quality 0.602 0.624 0.599 0.631 0.638
6. Gather Information, Develop, Research, Construct 0.748 0.819 0.785 0.907 0.900
7. Purchase, Procure, Sell 0.462 0.476 0.462 0.475 0.509
8. Program a Computer 0.102 0.123 0.091 0.163 0.149
9. Apply Legal Knowledge 0.526 0.591 0.596 0.681 0.654
10. Consult and Inform 0.844 0.883 0.856 0.938 0.938
11. Train, Teach, Instruct, Educate 0.509 0.566 0.520 0.646 0.643
12. Nurse, Look After, Cure 0.265 0.263 0.268 0.285 0.342
13. Advertise, Promote, Conduct Marketing and PR 0.397 0.454 0.417 0.541 0.516
14. Organize, Plan, Prepare Others’ Work 0.655 0.705 0.645 0.765 0.766
15. Control Machinery and Technical Processes 0.352 0.347 0.331 0.283 0.313

Total Number of Tasks 6.667 7.010 6.750 7.286 7.442

Source: BIBB-BAuA 1999, 2006 and 2012 (inverse sampling weights).
Note: Frequencies of performing a workplace operation (task) at the worker level. Subsample (1): workers with above-median daily
wage; (2): workers 45 years old and older; (3): high-skilled workers (Abitur or equivalent); (4): supervisors and managers.

ing, clearing, recycling; 18. Working with computers; 19. Packing, transporting, storing, shipping, delivering;

20. Writing/reading texts/documents/e-mails, editing forms; 21. Calculating, booking; 22. Reporting, publish-

ing, entertaining, presenting; 23. Sorting, stocking, ticketing. We do not attempt to map those tasks into the 15

tasks from the BIBB-BAuA data; instead we proceed as before and simply count up the tasks per worker under

the assumption that they form an exhaustive set of observable tasks within the survey. We consider a task as

being performed in the GSOEP data 2013 if the worker reports that he or she conducts the workplace operation

more than half of the time or almost always.

We select three predictors that are observed in both the GSOEP survey in 2013 and the BIBB-BAuA data in

2012 in a similar way: years of schooling (which we transform in BIBB-BAuA to become similar to the GSOEP

convention), gross monthly income in Euros (observed in intervals in the BIBB-BAuA data), and the reported

weekly work hours. Table A2 shows the results. In both data sets, educational attainment, income and work hours

are individually positively associated with multi-tasking and statistically significantly so at the one-percent con-

fidence level. Workers whose assignments require more multi-tasking are more educated, earn more, and work

longer hours. The regression coefficients are of similar magnitude in both dat; even the measures of goodness of
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Table A2: Worker-level Predictors of the Number of Tasks

Dependent variable: Number of tasks
(1) (2) (3) (4) (5)

GSOEP (up to 23 tasks)
Years of education 0.104∗∗∗ 0.0583∗ -0.0622

(0.0304) (0.0345) (0.0440)

Gross monthly income 0.000232∗∗∗ 0.0000505 0.0000276
(0.0000477) (0.0000640) (0.0000756)

Weekly work hours 0.0413∗∗∗ 0.0348∗∗∗ 0.0310∗∗∗
(0.00605) (0.00763) (0.00835)

FE yes
R2 0.013 0.029 0.052 0.057 0.221
Observations 864 801 848 788 788

BIBB-BAuA (up to 15 tasks)
Years of education 0.162∗∗∗ 0.139∗∗∗ 0.0518∗∗∗

(0.00791) (0.0103) (0.0113)

Gross monthly income 0.000236∗∗∗ 0.0000998∗∗∗ 0.000128∗∗∗
(0.0000477) (0.0000148) (0.0000148)

Weekly work hours 0.0447∗∗∗ 0.0382∗∗∗ 0.0465∗∗∗
(0.00240) (0.00287) (0.00279)

FE yes
R2 0.021 0.024 0.020 0.046 0.232
Observations 20,012 13,936 17,104 13,928 13,928

Sources: GSOEP 2013 and BIBB-BAuA 2012.
Notes: Number of tasks from count of reported individual tasks out of 23 in GSOEP 2013, out of 15 in BIBB-BAuA 2012. Years of
education in BIBB-BAuA data transformed into GSOEP definition; gross monthly income in BIBB-BAuA reported in intervals; weekly
work hours are reported actual hours in BIBB-BAuA. Occupations at the two-digit ISCO level in GSOEP and at the two-digit KldB-88
occupation group level in BIBB-BAuA. The fixed-effects (FE) specification conditions on Bundesland, industry and respective two-digit
occupation. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

fit are closely similar. However, when including all regressors simultaneously and especially when conditioning

on region (Bundesland), sector (39 longitudinally consistent industries) and occupation group effects (two-digit

ISCO level in GSOEP and two-digit KldB-88 occupation group level in BIBB-BAuA), then the small number of

only about 800 observations in GSOEP does not allow for statistically significant predictions except for the work

hours predictor. In the BIBB-BAuA data in contrast, with roughly 14,000 valid observations in 2012, all three

predictors remain statistically significant at the one-percent confidence level even after controlling for region,

sector and occupation group effects.

Our empirical analysis and model emphasize the relationship between plant size and multi-tasking. To as-

sess the similarity between GSOEP and BIBB-BAuA with respect to plant size, we use the same worker-level

predictors as in Table A2 above to check the association with employment. In the GSOEOP, size categories of
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Table A3: Worker-level Predictors of Plant Size

Dependent variable: Plant size (midpoint of respective employment category)
(1) (2) (3) (4) (5)

GSOEP (up to 23 tasks)
Years of education 205.1∗∗∗ 25.62 -139.2

(58.59) (67.45) (85.63)

Gross monthly income 0.591∗∗∗ 0.693∗∗∗ 0.545∗∗∗
(0.0918) (0.125) (0.147)

Weekly work hours 30.47∗∗ -22.27 -8.038
(11.96) (14.93) (16.26)

FE yes
R2 0.014 0.049 0.008 0.056 0.228
Observations 864 801 848 788 788

BIBB-BAuA (up to 15 tasks)
Years of education 59.35∗∗∗ -4.478 37.69∗∗∗

(7.573) (10.05) (11.80)

Gross monthly income 0.354∗∗∗ 0.350∗∗∗ 0.245∗∗∗
(0.0124) (0.0146) (0.0155)

Weekly work hours 33.66∗∗∗ 2.632 0.748
(0.00150) (0.00174) (2.974)

FE yes
R2 0.003 0.057 0.011 0.057 0.142
Observations 18,881 13,246 16,185 13,238 13,238

Sources: GSOEP 2013 and BIBB-BAuA 2012, using LIAB 2013 and 2012 to compute the respective employment category midpoints.
Notes: Dependent variable are the LIAB employment averages per size category in 2012 (for BIBB-BAuA) and 2013 (for GSOEP).
Years of education in BIBB-BAuA data transformed into GSOEP definition; gross monthly income in BIBB-BAuA reported in intervals;
weekly work hours are reported actual hours in BIBB-BAuA. Occupations at the two-digit ISCO level in GSOEP and at the two-digit
KldB-88 occupation group level in BIBB-BAuA. The fixed-effects (FE) specification conditions on Bundesland, industry and respective
two-digit occupation. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

plants are 1-4, 5-9, 10-19, 20-99, 100-199, 200-1999, and more than 2000 workers. In the BIBB-BAuA data,

the size categories are 1-4, 5-9, 10-49, 50-99, 100-499, 500-999, and more than 1000 workers. To make the

categories comparable, we compute the average employment midpoints within each range from the representa-

tive sample of plants in LIAB 2012 (for BIBB-BAuA) and 2013 (for GSOEP), and use those midpoints as the

dependent variable in our descriptive regressions. Table A3 reports the results. All three predictors are positive

and statistically significantly associated with plant size (at the one-percent confidence level) in both data, when

used as individual predictors. More educated workers, higher-paid workers and workers with longer work weeks

are employed at larger plants. Coefficients on educational attainment and income remain robustly positive in the

BIBB-BAuA data also within region (Bundesland), sector and two-digit occupation group in a joint prediction,

but not work hours. In the GSOEP data, the small observation numbers preserve only the positive association
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between a worker’s income and the size of the worker’s employer, while the other two predictors are no longer

separately statistically significant when conditioning on region, sector and occupation group.

In summary, the GSOEP data for 2013 exhibit closely similar covariation patterns between main character-

istics of workers and their jobs (educational attainment, pay, work hours) on the one-hand side and multitasking

or employer size on the other hand. Importantly, the worker and job characteristics are positively associated with

both multitasking and employer size.

In the BIBB-BAuA data we find, however, that multitasking and employer size are negatively associated

(Fact 2 and Figure 2) after conditioning on sector, region, occupation and worker characteristics. We construct a

similar plot for the GSOEP 2013 data, now with the according GSOEP categories. Figure A1 depicts the graph.

We broadly find an indication of a negative association between the number of tasks and plant employment up

to a size of about 200 workers, but point estimates become inconclusive above for workforces above that size.

Moreover, confidence bands are so wide that we cannot reject equal task numbers for any pair of size categories.

Given the evidence from sample comparisons in Tables A2 and A3, a consistent interpretation is that the small

sample size of only about 800 workers in GSOEP 2013 with reported tasks, compared to 13,000 in the BIBB-

BAuA data, make confidence bands too wide for conclusive statistical inference. The wide confidence bands in

the GSOEP sample nevertheless fail to reject the BIBB-BAuA evidence.

Other GSOEP-specific variables are statistically significantly associated with multitasking. For example,

we find in the GSOEP 2013 data that an occupation’s prestige (according to the KLAS scale magnitude) is

stiatically significantly higher (at conventional confidence levels) for occupations in which workers report more

multitasking and that Treiman’s standard international occupation prestige score is also higher in occupations

with more frequently reported multitasking. Similarly, the Erikson and Goldthorpe class category is lower in

occupations, for which workers report more multitasking, again consistent with more prestigious jobs being

multitasking jobs. Finally, workers who report more multitasking also report that they have more autonomy in

their occupational activity. All these additional variables in the GSOEP 2013 data suggest that occupations with

multitasking are more demanding, resulting in more worker autonomy and higher prestige.

A.3 Summary statistics

As described in Section 2.3, we combine the BIBB-BAuA labor force survey information with the LIAB linked

plant–worker records. To include task information from BIBB-BAuA alongside the LIAB linked plant–worker

data, we use the within occupation variance of log daily wage by plant, job experience, squared job experience,

indicators for (i) gender, (ii) 7 schooling and vocational training indicators, (iii) 16 regions, (iv) 34 sectors, (v)
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Figure A1: Number of Tasks per Occupation by Plant Employment in GSOEP 2013
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Source: GSOEP 2013.
Notes: Prediction of number of tasks b within plant-occupation by plant employment category, controlling for sector, region, occupation
and worker characteristics. Results are differences to smallest plant-size category (1 to 4 workers). Thick, medium, and thin lines
represent the 99, 95, and 90 percent confidence intervals.
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7 plant-size categories, and (vi) 335 occupations over the years 1992, 1999, 2006 and 2012. We predict using a

probit estimation the probability that a worker reports performing a given task in the BIBB-BAuA sample and,

using the same regressors, the probability that a worker in the LIAB linked plant–worker sample performs the

task. Table A4 shows the raw data from LIAB as well as the imputed task information.

Table A4 also reports summary statistics on revenues and other relevant plant attributes from the combined

LIAB and BIBB-BAuA data. Excluding plants for which we lack relevant information as well as plants with

employment of two or fewer workers (for which we cannot compute meaningful measures of wage dispersion),

our sample covers 116,931 plant-year observations, with 36,473 of these observations referring to exporters.

A.4 Residual wage inequality per plant-occupation by plant employment

We project the coefficient of variation CV of the (exponentiated) residual daily wages within a plant-occupation

on sector, region, occupation and worker characteristics. Figure A2 plots the so normalized CV of daily wages

within a plant-occupation in logs (on the horizontal axis after subtracting the coefficient of daily wage variation

at plants with up to four workers) against numbers of tasks (on the vertical axis). We use the logarithm on the

horizontal axis to treat idiosyncratic variability and to align the graph with structural estimation of eq. (42b).

65



Table A4: Descriptive Statistics for Combined Data

Obs. Mean Median StDev. Min. Max.
log Revenues 116,931 13.98 13.76 0.01 8.88 24.63
log Export revenues 36,473 17.48 17.33 0.03 10.92 29.01
Export indicator 116,933 0.17 0 . 0 1
Employment 116,933 18.48 6 0.12 3 44,419
log Daily wage 116,933 4.13 4.14 . 1.96 5.76
StDev Residual daily wage 116,933 23.07 19.82 0.19 . 1,167.85
CV Daily wage 116,933 0.32 0.31 . . 4.02
Count 2-digit occupations n 116,933 3.5 2 0.01 1 63
Average number of tasks b 116,933 3.96 3.91 0.01 0.32 8.87
Normalized number of tasks b/z̃ 116,933 0.36 0.36 . 0.03 0.70

Sources: LIAB 1996-2014 and BIBB-BAuA 1992-2012. Sample restricted to plants with more than 2 full-time workers.
Notes: Descriptive statistics based on annual plant observations, using inverse probability weights to make plant sample representative
of Germany economy, as suggested by the Research Data Centre at the IAB. CV is coefficient of variation of daily wage within a plant-
occupation. StDev Residual daily wage measures the standard deviation of the (exponentiated) daily (log) wage residual from a Mincer
regression (in logs), including demographic, education and tenure information as well as time, sector and region fixed effects and plant
revenues.

There is a clearly positive relationship: wage variability within plant-occupations increases strongly with plant

employment. Workers within the same occupation are subject to more wage inequality within their occupation at

larger employers.

A.5 Predictors of within-plant daily wage dispersion

In Table A5, we repeat the empirical exercises from Table 6 in the text but now consider total rather than residual

wages and specify as the dependent variable the coefficient of variation of wages as a measure of within-plant-

occupation wage dispersion. OLS estimates in Columns 1 and 3 are closely comparable to those in Table 6

in the text. In Column 3, a 10 percent increase in the occupation count predicts a more than 14 percentage-

point increase in the coefficient of variation of wages within plants. In Columns 4 and 5 of Table A5 we report

estimates when instrumenting log revenues as the single endogenous regressor. Similar to Table 6 in the text, test

statistics are consistent with the hypothesis that the interaction of log exports to China with the plant’s lagged

exporter dummy and the log of imports from China provide valid instruments, and the positive effect of revenues

on wage variation within plant-occupations remains robust to the change in estimation strategy. In Columns 6

and 7 we treat all three regressors—log revenues, the log count of occupations and the interaction term of these

two variables—as endogenous variables and instrument them with the variables reported in Table 5. In contrast

with Table 6 in the text, all regressors now lose statistical significance.
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Figure A2: Residual Wage Inequality per Plant-Occupation by Plant Employment
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Source: LIAB 1996-2014.
Notes: Prediction of (log) coefficient of variation of daily wage residual (exponentiated Mincer residual) CV within plant-occupation
by plant employment category, controlling for sector, region, occupation and worker characteristics. Results are differences to smallest
plant-size category (1 to 4 workers). Thick, medium, and thin lines represent the 99, 95, and 90 percent confidence intervals.
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B Mathematical Appendix

B.1 Derivation of expected profits in the closed economy

Using eqs. (14), (15), and (20) we can write profits in the closed economy as follows

ψ(ϕ̃) =
r(ϕ̃)

σ

γ − σ + 1

γ
− wf0 =

r(ϕ̃)− r(ϕ∗)
r(ϕ∗)

wf0.

Suppose elemental productivity ϕ̃ is Pareto distributed with shape parameter θ > ξ. Substituting r(ϕ̃)/r(ϕ∗) =

(ϕ̃/ϕ∗)ξ from eq. (18), we can then compute

� ∞
ϕ∗

ψ(ϕ̃) dG(ϕ̃) = wf0(ϕ∗)ξθ

� ∞
ϕ∗

ϕ̃ξ−θ−1 dϕ̃− wf0θ

� ∞
ϕ∗

ϕ̃−θ−1 dϕ̃ = (ϕ∗)−θwf0
ξ

θ − ξ
.

Accounting for 1−G(ϕ∗) = (ϕ∗)−θ then gives the respective expression (23) in the main text.
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Table A5: Predictors of Within-Plant Daily Wage Dispersion

Dependent variable: log CV Daily wage
(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS IV IV IV IV
log Count of occupations -0.827∗∗∗ 1.425∗∗∗ 0.118 0.221

(0.083) (0.208) (2.111) (2.148)

log Revenues 0.086∗∗∗ 0.056∗∗∗ 0.067∗∗∗ 0.129∗∗∗ 0.127∗∗∗ 0.038 0.026
(0.005) (0.013) (0.021) (0.027) (0.027) (0.067) (0.067)

log Revenues -0.040∗∗∗ -0.075∗∗ 0.003 -0.001
× log Count of occupations (0.006) (0.014) (0.121) (0.123)

Plant FE no no yes no no no no
Hansen J (p-val.) 0.172 0.196
R2 0.156 0.195 0.767
Adj. R2 0.156 0.195 0.688
Observations 126,483 126,483 126,483 64,905 64,614 64,775 64,561

Sources: LIAB 1996-2014, all sectors. Plants with more than 2 full-time workers.
Notes: Specifications include time, region, and sector fixed effects. IV estimation is based on GMM. Standard errors clustered at the plant
level in parentheses. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

B.2 Derivation of eqs. (26) and (27)

Suppose elemental productivity ϕ̃ is Pareto distributed with shape parameter θ > ξ. In autarky equilibrium

(denoted with superscript a), the average employment of production workers at a plant is

� ∞
ϕ∗,a

`(ϕ̃)
dG(ϕ̃)

1−G(ϕ∗,a)
= `(ϕ∗,a)(ϕ∗,a)θ−ξθ

� ∞
ϕ∗,a

ϕ̃ξ−θ−1 dϕ̃ = `(ϕ∗,a)
θ

θ − ξ

by eq. (19). The employment-share weighted average of the coefficient of variation of wages at the plant is then

given by eq. (26). Using CVw(ϕ̃) from eq. (22) and `(ϕ̃) = (ϕ̃/ϕ∗,a)ξ`(ϕ∗,a) from eq. (19) then establishes

Vaw = CVw(ϕ∗,a)2 θ − ξ
(β − η)2

{
β2(ϕ∗,a)θ−ξ

� ∞
ϕ̃

ϕ̃ξ−θ−1 dϕ̃− 2βη(ϕ∗,a)
θ+ ξ

γ
−ξ

� ∞
ϕ∗,a

ϕ̃
ξ− ξ

γ
−θ−1 dϕ̃

+η2(ϕ̃∗)θ+
2ξ
γ
−ξ

� ∞
ϕ∗,a

ϕ̃
ξ− 2ξ

γ
−θ−1 dϕ̃

}
,

where β ≡ (ξf0/γ)1/γ . Solving for the integral gives

Vaw =
CVw(ϕ∗,a)2

[(ξf0/γ)1/γ − η]2

[(
ξf0

γ

) 2
γ

− 2η

(
ξf0

γ

) 1
γ θ − ξ
θ − ξ + ξ/γ

+ η2 θ − ξ
θ − ξ + 2ξ/γ

]

and eq. (27) in the text follows.

68



B.3 Derivation of expected profits in the open economy

Using eqs. (14), (15) and (20), we can write profits of non-exporters as ψdT (ϕ̃) = [rd(ϕ̃)/rd(ϕ∗)]f0 − f0, where

w = 1 is the numéraire. Total profits of exporters are therefore given by

ψeT (ϕ̃) =
(
1 + τ1−σ) ξ

σ−1 rd(ϕ̃)

σ

γ − σ + 1

γ
− f0 − fx =

(
1 + τ1−σ) ξ

σ−1 rd(ϕ̃)

rd(ϕ∗)
f0 − f0 − fx

by eqs. (14), (20), (28), and (29). Suppose elemental productivity ϕ̃ is Pareto distributed with shape parameter

θ > ξ. Plugging in for rd(ϕ̃)/rd(ϕ∗) = (ϕ̃/ϕ∗)ξ from eq. (18) then allows us to compute

� ∞
ϕ∗

ψT (ϕ̃) dG(ϕ̃) =

� ϕ̃∗x

ϕ∗
ψdT (ϕ̃) dG(ϕ̃) +

� ∞
ϕ̃∗x

ψeT (ϕ̃) dG(ϕ̃)

= (ϕ∗)−ξf0θ

� ϕ̃∗x

ϕ∗
ϕ̃ξ−θ−1 dϕ̃+

(
1 + τ1−σ) ξ

σ−1

(ϕ∗)−ξf0θ

� ∞
ϕ̃∗x

ϕ̃ξ−θ−1 dϕ̃

− f0θ

� ∞
ϕ∗

ϕ̃−θ−1 dϕ̃− fxθ
� ∞
ϕ̃∗x

ϕ̃−θ−1 dϕ̃

Solving the integrals yields

� ∞
ϕ∗

ψT (ϕ̃) dG(ϕ̃) = f0(ϕ∗)−θ
θ

θ − ξ

{
1 +

(
ϕ̃∗x
ϕ∗

)ξ−θ [(
1 + τ1−σ) ξ

σ−1 − 1

]}

− (ϕ∗)−θf0

[
1 +

(
ϕ̃∗x
ϕ∗

)−θ fx
f0

]
,

and eq. (33) in the text after using 1−G(ϕ∗) = (ϕ∗)−θ, χ = (ϕ̃∗x/ϕ
∗)−θ and eq. (32).

B.4 Derivation of eqs. (39) and (40)

Suppose elemental productivity ϕ̃ is Pareto distributed with shape parameter θ > ξ. Average employment of

production workers per plant in the open economy can then be computed as

� ∞
ϕ∗

`T (ϕ̃)
dG(ϕ̃)

1−G(ϕ∗)
=

� ϕ̃∗x

ϕ∗
`dT (ϕ̃)

dG(ϕ̃)

1−G(ϕ∗)
+

� ∞
ϕ̃∗x

`eT (ϕ̃)
dG(ϕ̃)

1−G(ϕ∗)

= `dT (ϕ∗)(ϕ∗)θ−ξθ

[� ϕ̃∗x

ϕ∗
ϕ̃ξ−θ−1 dϕ̃+ (1 + τ1−σ)

ξ
σ−1

� ∞
ϕ̃∗x

ϕ̃ξ−θ−1 dϕ̃

]

= `dT (ϕ∗)
θ

θ − ξ

(
1 +

χfx
f0

)
, (B.1)
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where the second equality follows from eq. (30) and the third equality from eq. (32). The economy-wide variance

of wages can then be computed in analogy to the closed economy:

Vw =
θ − ξ
θ`dT (ϕ∗)

(
1 +

χfx
f0

)−1
[� ϕ̃∗x

ϕ∗
CV d

w(ϕ̃)2`dT (ϕ̃)
dG(ϕ̃)

1−G(ϕ∗)
+

� ∞
ϕ̃∗x

CV e
w(ϕ̃)2`eT (ϕ̃)

dG(ϕ̃)

1−G(ϕ∗)

]
.

We look at the integrals on the right-side separately. Following the derivation steps of the closed economy and

defining β ≡ (ξf0/γ)1/γ , we compute

� ϕ̃∗x

ϕ∗
CV d

w(ϕ̃)2`dT (ϕ̃)
dG(ϕ̃)

1−G(ϕ∗)
= `dT (ϕ∗)

CV d
w(ϕ∗)2

(β − η)2
θ

{
β2(ϕ∗)θ−ξ

� ϕ̃∗x

ϕ∗
ϕ̃ξ−θ−1 dϕ̃

−2βη(ϕ∗)
θ+ ξ

γ
−ξ

� ϕ̃∗x

ϕ∗
ϕ̃
ξ−θ− ξ

γ
−1 dϕ̃+ η2(ϕ∗)

θ−ξ− 2ξ
γ

� ϕ̃∗x

ϕ∗
ϕ̃
ξ−θ− 2ξ

γ
−1 dϕ̃

}

= `dT (ϕ∗)
CV d

w(ϕ∗)2

(β − η)2

θ

θ − ξ

{[
β2 + 2βη

θ − ξ
θ − ξ + ξ/γ

+ η2 θ − ξ
θ − ξ + 2ξ/γ

][
1−

(
ϕ̃∗x
ϕ∗

)ξ−θ]

+2βη
θ − ξ

θ − ξ + ξ/γ

(
ϕ̃∗x
ϕ∗

)ξ−θ [( ϕ̃∗x
ϕ∗

)− ξ
γ

− 1

]

−η2 θ − ξ
θ − ξ + 2ξ/γ

(
ϕ̃∗x
ϕ∗

)ξ−θ [( ϕ̃∗x
ϕ∗

)− 2ξ
γ

− 1

]}
. (B.2)

For the second integral, we obtain

� ∞
ϕ̃∗x

CV e
w(ϕ̃)2`eT (ϕ̃)

dG(ϕ̃)

1−G(ϕ∗)
= `dT (ϕ∗)

CV d
w(ϕ∗)2

(β − η)2

(
1 + τ1−σ) ξ

σ−1 θ

{
β2(ϕ∗)θ−ξ

� ∞
ϕ̃∗x

ϕ̃ξ−θ−1 dϕ̃

−2βη(ϕ∗)
θ+ ξ

γ
−ξ

� ∞
ϕ̃∗x

ϕ̃
ξ−θ− ξ

γ
−1 dϕ̃+ η2(ϕ∗)

θ−ξ− 2ξ
γ

� ∞
ϕ̃∗x

ϕ̃
ξ−θ− 2ξ

γ
−1 dϕ̃

}

= `dT (ϕ∗)
CV d

w(ϕ∗)2

(β − η)2

θ

θ − ξ
(
1 + τ1−σ) ξ

σ−1

{[
β2 + 2βη

θ − ξ
θ − ξ + ξ/γ

+ η2 θ − ξ
θ − ξ + 2ξ/γ

](
ϕ̃∗x
ϕ∗

)ξ−θ
+2βη

θ − ξ
θ − ξ + ξ/γ

(
ϕ̃∗x
ϕ∗

)ξ−θ [(
1 + τ1−σ)− ξ

γ(σ−1)

(
ϕ̃∗x
ϕ∗

)− ξ
γ

− 1

]

−η2 θ − ξ
θ − ξ + 2ξ/γ

(
ϕ̃∗x
ϕ∗

)ξ−θ [(
1 + τ1−σ)− 2ξ

γ(σ−1)

(
ϕ̃∗x
ϕ∗

)− 2ξ
γ

− 1

]}
. (B.3)

Substituting eqs. (B.2) and (B.3) into (B.1) and accounting for ϕ̃∗x/ϕ
∗ = χ−1/θ and eqs. (27) and (32), we

arrive at eq. (39) in the text with V (χ) given by eq. (40). From χ < 1 it follows that χ
ξ
θγ − 1 > χ

2ξ
θγ − 1. Noting
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further that
(
ξf0
γ

)1/γ
> η, it follows from eq. (40) that

2

[
1−

(
1 + χ

ξ
θ
fx
f0

)− 1
γ

χ
ξ
θγ

]
>

[
1−

(
1 + χ

ξ
θ
fx
f0

)− 2
γ

χ
2ξ
θγ

]
(B.4)

or, equivalently,

2 >

[
1 +

(
1 + χ

ξ
θ
fx
f0

)− 1
γ

χ
ξ
θγ

]
(B.5)

is sufficient for V (χ) > 0 because [1 + χξ/θfx/f0]−1/γχξ/(θγ) < 1.

C Extension to Stole-Zwiebel Bargaining

A plant ω’s revenues are

r(ω) = A
1
σ

ϕ̃(ω)z̃(ω)[n(ω) + 1] exp

 1

n(ω) + 1

n(ω)+1∑
j=1

ln

(� b(ω)

0
`j(i, b(ω))λ(i, b(ω)) di

)
1− 1

σ

(C.1)

where n(ω) + 1 is the plant’s occupation count, b(ω) is its task range per occupation, z̃(ω) is its full task range

required for production, `j(i, b(ω)) is employment of workers of type (core ability) i in the task interval of job j,

λ(i, b) is the labor efficiency of type-i workers in a task interval with range b(ω), ϕ̃(ω) is plant-specific elemental

productivity, andA is a constant that captures demand shifters. We assume that hiring is subject to search frictions

and wage setting is the result of individual bargaining of the employer with a continuum of workers as derived by

Stole and Zwiebel (1996). We can distinguish n(ω) + 1 groups of workers by their occupation j and characterize

the bargaining outcome at the employer with two equations of the following form:25

ψ(ω) =
1

`(ω)

� `(ω)

0
r [k s(ω)] dk, (C.2)

∂ψ(ω)

∂`j(i, b)
= wj(i, b), (C.3)

where ψ(ω) is the plant’s operating profit (and equal to each worker’s share in revenues under Stole and Zwiebel

(1996) bargaining), k denotes a proportional increase in employment symmetrically over all the plant’s occupa-

tions n(ω) + 1, r[·] are the plant’s revenues as a function of its occupational employment-shares vector s(ω),

`j(ω) ≡
� b

0 `j(k, b)dk is employment in a task interval with range b, `(ω) ≡
∑n(ω)+1

j=1 `j(ω) is the plant’s total

25Existence and uniqueness of this solution follow from Theorem 9 in Stole and Zwiebel (1996).
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employment, wj(i, b) is type-i worker’s wage in an occupation j with task range b, and each occupation j’s

employment share at the plant sj(ω) ≡ `j(ω)/`(ω) enters the occupational employment-share vector

s(ω) ≡ (s1(ω), ..., sn(ω)+1(ω))T .

The first eq. (C.2) links the result of the employer-worker bargaining outcome to the Aumann-Shapley value

(Aumann and Shapley 1974).26 Intuitively, eq. (C.2) assures that the employer’s entire revenues are fully ex-

hausted through bargaining. By eq. (C.3), the employer and every worker split the surplus equally so that rev-

enues are divided by the mass of all workers and the employer but, since the employer is non-atomic, it does not

affect the mass `(ω) and revenues are divided by `(ω). The plant’s operating profit is therefore ψ(ω).

Employers allocate workers symmetrically over the task range of jobs, so `j(i, b(ω)) = `j(0, b(ω)) =

`j(b(ω), b(ω)) for all i ∈ (0, b(ω)), we obtain

ψ(ω) =
σ

2σ − 1
r(ω), (C.4)

where revenues r(ω) are restated in the notation from (C.1). Substitution into eq. (C.3) yields

wj(i, b) =
σ − 1

2σ − 1

r(ω)λ(i, b)

λj(ω)`j(ω)

1

n(ω) + 1
, (C.5)

where occupation-level labor efficiency is

λj(ω) ≡ 1

`j(ω)

� b

0
`j(k, b)λ(k, b) dk.

Combining eqs. (C.4) and (C.5) establishes

wj(i, b)

λj(i, b)
λj(ω)`j(ω) =

σ − 1

σ

ψ(ω)

n(ω) + 1
. (C.6)

26Brugemann, Gautier and Menzio (2015) point to a conceptual problem with Stole and Zwiebel bargaining because, unlike the
argument in the original paper, the order in which workers bargain with the employer does matter for the payoff they receive. As a result,
the outcome of the Stole and Zwiebel game differs from the equilibrium prescribed by Aumann-Shapley values. As a remedy, Brugemann,
Gautier and Menzio (2015) propose to replace the Stole and Zwiebel game with by a Rolodex game, by which workers are randomly
picked to bargain from a Rolodex shuffle, so as to anchor the bargaining outcome of Stole and Zwiebel (1996) in non-cooperative game
theory. The outcome of the Rolodex game remains the same as the one posited in Stole and Zwiebel (1996), so we acknowledge the
correction but refer to Stole and Zwiebel (1996) when discussing the solution concept.
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Every worker in occupation j therefore receives the same wage per efficiency unit of labor:

wej (ω) ≡ wj(i, b)/λj(i, b),

and this condition is sufficient to guarantee a symmetric allocation of workers over their task range, if worker

types are uniformly distributed over the employer’s full task range z̃(ω) and an employer gets a random draw of

the workers.

With the bargaining solution at hand, we can turn to hiring. We assume that hiring takes place prior to the

wage negotiation and involves the costs of advertising jobs for employers. Risk-neutral workers apply for those

jobs that promise the highest expected return given the imperfect signal they receive regarding their suitability

for executing the tasks required in an occupation, according to a posted vacancy. We assume that the signal

the workers receive through a vacancy posting only informs them about whether their core ability i falls within

the respective task range, but does not provide further details regarding their core ability’s exact position within

the task interval. Vacancy posting costs are given by sb, where s is a service fee equal to the return on labor

used for providing services. Following Helpman, Itskhoki and Redding (2010), we propose that vacancy posting

costs are positively related to labor market tightness, and decrease in the unemployment rate u. The ex ante

probability of workers to be matched with an employer is (1 − u). Vacancy posting costs are specified to equal

sb = sB(1− u)ε, where B > 1 is a constant parameter and ε > 0 is the elasticity of vacancy posting costs with

respect to the employment rate. The hiring problem of the employer can therefore be stated as follows:

max
`j(ω)

ψ(ω)−
n(ω)+1∑
j=1

sB(1− u)ε`j(ω)− sλ(ω)γ − sf0. (C.7)

The first-order condition of this optimization problem is equivalent to

[n(ω) + 1]`j(ω) =
σ − 1

σ

ψ̃(ω)

sB(1− u)ε
= `(ω), (C.8)

so that employers hire the same number of workers for all of their (symmetric) jobs. Combining the results yields

r(ω) = A [mc(ω)]1−σ , mc(ω) ≡ w

ϕ̃(ω) {η + π[νn(ω) + 1]}
, (C.9)

λ(ω) =
1

b(ω)

� b(ω)

0
λ(k, b(ω))dk =

η

z̃
+

π

b(ω)
=

1

z̃
{η + π[νn(ω) + 1]} , (C.10)
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ψ(ω) =
r(ω)

2σ − 1
− s {η + π[νn(ω) + 1]}γ − sf0, and λ(ω)we(ω) = sB(1− u)ε =

σ − 1

2σ − 1

r(ω)

l(ω)
≡ w.

(C.11)

The optimal count of occupations is then determined by maximizing ψ(ω) with respect to n(ω), which yields

r(ω)
σ − 1

γ(2σ − 1)
= s {η + π[νn(ω) + 1]}γ . (C.12)

The zero-cutoff profit condition then establishes

r(ω) = sf0
γ(2σ − 1)

γ − σ + 1
⇐⇒ f0(σ − 1)

γ − σ + 1
= {η + π[νn(ω) + 1]}γ . (C.13)

The rest of the analysis follows as in the main text in Section 3.

However, the derivations of equilibrium in the closed (Section 4) and open economy (Section 5) differ be-

cause, under Stole-Zwiebel bargaining, there is unemployment in equilibrium. Risk-neutral workers must be

indifferent between applying for jobs in the production sector (with an ex-ante expected wage w) or providing

service inputs at a pay s (which is associated with self-employment so that production workers do not switch to

the service sector ex post). The unemployment rate (of production workers) is then given by the requirement that

s = (1− u)w, establishing B(1− u)1+ε from eq. (C.11). This equal-pay condition implies for the employment

rate 1 − u = B−1/(1−ε) < 1, which is a constant in our model because labor is used for production as well as

services provision.27 Finally, we need to check that the wages paid to production workers are (weakly) higher

than their expected income outside the job (1 − u)w. The wage of the least productive worker at employer ω is

given by

w(0, b(ω)) =
wλ(0, b(ω))

λ(ω)
= w

η + 2[νn(ω) + 1]

η + π[νn(ω) + 1]
≡ w(n(ω)). (C.14)

Note that w′(n(ω)) < 0 and that limn(ω)→∞w((n(ω)) = 2w/π. It follows that w(n(ω)) > (1−u)w is satisfied

for all employers if B < (π/2)1+ε. In this case, no workers who is matched to a production job will quit ex post.

Therefore, we can maintain the parameter constraint B ∈ (1, (π/2)1+ε) throughout our extended analysis.

27Alternatively, we could use final output as a services input. However, in that case, we would need to constrain the external economies
of scale in order to ensure a stable interior solution (see Felbermayr and Prat 2011).
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D Structural Estimation Model

D.1 From theory to structural estimation

Starting point is the equation system (42) in the main text, from which we drop time subscripts for clarity:

ln r(ω) = α0 + α11x(ω) + ξ ln ϕ̃(ω),

lnCV (ω) + ln b(ω)/x(ω) = β0 − (1/γ) ln r(ω) + ln ζ̃(ω),

1x(ω) = 1⇔ δ0 ≥ ln f̃x(ω)− ξ ln ϕ̃(ω),

ln r(ω) = .⇔ ξ ln ϕ̃(ω) < a.

The estimation model in (42) captures an endogenous switching model, with two outcomes—log revenues

y(ω) = ln r(ω) in (42a) and the composite coefficient of wage variation plus the normalized task number per

occupation w(ω) = lnCV (ω) + ln b(ω)/x(ω) in (42b)—and a selection equation (42c) for endogenous switch-

ing. Equation (42d) represents a further selection equation for presence in the sample and captures the important

insight from the Melitz model that only sufficiently productive plants start production. The maintained assump-

tion is that we do not observe plants with productivity below a truncation threshold in our data. This refers to a

problem that can be addressed in the spirit of a Tobit model. However, our selection into sample presence differs

from the conventional Tobit model because the censoring of our data is due to a threshold for the unobservable

disturbance and not a threshold for an observable variable.

The structure of our model can be simplified to:

y(ω) =


µeY + u(ω) if I(ω) = 1

µdY + u(ω) if I(ω) = 0

, (D.2a)

w(ω) =


µeW − (1/γ)u(ω) + v(ω) if I(ω) = 1

µdW − (1/γ)u(ω) + v(ω) if I(ω) = 0

, (D.2b)

I(ω) =


1 if µX + u(ω)− x(ω) ≥ 0

0 if µX + u(ω)− x(ω) < 0

, (D.2c)

where µeY ≡ α0 + α1, µdY ≡ α0, u(ω) ≡ ξ ln ϕ̃(ω), I(ω) ≡ 1x(ω), µeW ≡ β0 − (1/γ)α0 − (1/γ)α1,
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µdW ≡ β0 − (1/γ)α0, v(ω) ≡ ln ζ̃(ω), µX ≡ δ0, and x(ω) ≡ ln f̃X(ω). We then compute

γ = −
µeY − µdY
µeW − µdW

, (D.3)

which needs to be time variant as long as we allow one of the parameters µeY , µ
d
Y , µ

e
W .µ

d
W to vary over time.

Regarding the distribution of stochastic parameters, we impose the common assumption of normality:

(u, v, x)T ∼ NT (0,Σ) and Σ =


σ2
u ρuvσuσv ρuxσuσx

ρuvσuσv σ2
v ρvxσvσx

ρuxσuσx ρvxσvσx σ2
x

 , (D.4)

where, in contrast to other applications, u is truncated from below at a: u ≥ a. The density function ofNT (0,Σ)

is then given by

fu,v,x ≡
1

P (u ≥ a)
√

(2π)3 det(Σ)
exp

[
−1

2
zTΣ−1z

]
,

where z =
(
u
v
x

)
,

Σ−1 =
1

det(Σ)


σ2
vσ

2
x(1− ρ2vx) −σuσvσ2

x(ρuv − ρuxρvx) −σuσ2
vσx(ρux − ρuvρvx)

−σuσvσ2
x(ρuv − ρuxρvx) σ2

uσ
2
x(1− ρ2ux) −σ2

uσvσx(ρvx − ρuvρux)

−σuσ2
vσx(ρux − ρuvρvx) −σ2

uσvσx(ρvx − ρuvρux) σ2
uσ

2
v(1− ρ2uv)


and

P (u ≥ a) =

� ∞
a

� ∞
−∞

� ∞
−∞

1√
(2π)3 det(Σ)

exp

[
−1

2
zTΣ−1z

]
dvdxdu.

76



D.2 Transformation into simpler estimation problem

To simplify our estimation problem, we can define the auxiliary stochastic variable e(ω) ≡ u(ω) − x(ω) and

reformulate equation system (D.2) as follows

y(ω) =


µeY + u(ω) if I(ω) = 1

µdY + u(ω) if I(ω) = 0

, (D.2a′)

w(ω) =


µeW − (1/γ)u(ω) + v(ω) if I(ω) = 1

µdW − (1/γ)u(ω) + v(ω) if I(ω) = 0

, (D.2b′)

I(ω) =


1 if µX + e(ω) ≥ 0

0 if µX + e(ω) < 0

, (D.2c′)

The joint distribution of the stochastic parameters can then be derived from equation (D.4) and is given by

(u, v, e)T ∼ NT (0, Σ̃) and Σ̃ =


σ2
u ρuvσuσv ρueσuσe

ρuvσuσv σ2
v ρveσvσe

ρueσuσe ρveσvσe σ2
e

 (D.4′)

with σe ≡ σu

√
1− 2ρux

σx
σu

+
(
σx
σu

)2
, ρue ≡ σu

σe
− ρuxσx

σe
, ρve ≡ ρuv

σv
σe
− ρvxσx

σe
, and u being truncated from

below at a: u ≥ a. The density function of NT (0, Σ̃) can be expressed as

fu,v,e ≡
1

P (u ≥ a)
√

(2π)3 det(Σ̃)
exp

[
−1

2
z̃T Σ̃−1z̃

]
, (D.5)

with z̃ ≡
(
u
v
e

)
.

For use in later derivations we note that the marginal distribution of NT (0, Σ̃) for the parameter tupel (u, e)

is truncated bivariate normal and given by NT (0, Σ̃ue) with

Σ̃ue =

 σ2
u ρueσuσe

ρueσuσe σ2
e

 .
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The density function of the truncated bivariate normal distribution is

fu,e =
1

2πσuσe
√

1− ρ2
ueP (u ≥ a)

exp

{
− 1

2(1− ρ2
ue)

[(
u

σu

)2

− 2
ueρue
σuσe

+

(
e

σe

)2
]}

. (D.6)

To derive the marginal distribution, note that

det(Σ̃) = σ2
uσ

2
vσ

2
e

(
1− ρ2

uv − ρ2
ue − ρ2

ve + 2ρuvρueρve
)

and

z̃T Σ̃−1z̃ =
1

det(Σ̃)

{
u2σ2

vσ
2
e(1− ρ2

ve)− 2uvσuσvσ
2
e(ρuv − ρueρve)− 2ueσuσ

2
vσe(ρue − ρuvρve)

− 2veσ2
uσvσe(ρve − ρuvρue) + v2σ2

uσ
2
e(1− ρ2

ue) + e2σ2
uσ

2
v(1− ρ2

uv)
}
, (D.7)

whereas det(Σ̃ue) = σ2
uσ

2
e(1− ρ2

ue) and

z̃TueΣ̃
−1
ue z̃ue =

1

det(Σ̃ue)

{
u2σ2

e − 2ueρueσuσe + e2σ2
u

}

for z̃ue ≡ ( ue ). Defining ∆ ≡ z̃T Σ̃−1z̃− z̃TuxΣ̃
−1
ux z̃ux for convenience, we compute

∆ =
1

det(Σ̃)(1− ρ2
ue)

{
uσvσe(ρuv − ρueρve) + eσuσv(ρve − ρuvρue)− vσuσe(1− ρ2

ue)
}2

and thus ∆ = [(v − µv)/σ̃v]2, with

µv ≡ u
σv
σu

ρuv − ρueρve
1− ρ2

ue

+ e
σv
σx

ρve − ρuvρue
1− ρ2

ue

, σ̃v ≡ σv

√
1− ρ2

uv − ρ2
ue − ρ2

ve + 2ρuvρueρve
1− ρ2

ue

.

Using eq. (D.5), we can then write

fu,e =

� ∞
−∞

fu,v,edv

=
1

2πσuσe
√

1− ρ2
ueP (u ≥ a)

exp

{
− 1

2(1− ρ2
ue)

[(
u

σu

)2

− 2
ueρue
σuσe

+

(
e

σe

)2
]}

×
� ∞
−∞

1√
2πσ̃2

v

exp

[
−1

2

(
v − µv
σ̃v

)2
]

dv,

78



which simplifies to (D.6). With this result at hand, we can also compute

P (u ≥ a) =

� ∞
a

� ∞
−∞

1

2πσuσe
√

1− ρ2
ue

exp

{
− 1

2(1− ρ2
ue)

[(
u

σu

)2

− 2
ueρue
σuσe

+

(
e

σe

)2
]}

dedu

=

� ∞
a

1√
2πσ2

u

exp

[
−1

2

(
u

σu

)2
] � ∞
−∞

1√
2πσ2

x(1− ρ2
ue)

exp

−1

2

(
e− ρueσe

σu
u

σe
√

1− ρ2
ue

)2
 de

︸ ︷︷ ︸
=1

du

=

� ∞
a

1

σu
φ

(
u

σu

)
du = 1− Φ

(
a

σu

)
. (D.8)

As a final result, we can determine the share of exporters among active producers. This share is the conditional

probability P (e ≥ −µX , u ≥ a)/P (u ≥ a) ≡ χ and can be computed as

χ =

� ∞
a

� ∞
−µX

fu,ededu. (D.9)

To simplify the problem, we define the auxiliary variable g ≡ 1√
1−ρ2ue

(
e
σe
− ρueu

σu

)
and make use of de =

σe
√

1− ρ2
uedx (for given u),

(
u

σu

)2

− 2
uxρux
σuσx

+

(
x

σx

)2

= (1− ρ2
ue)

[
g2 +

(
u

σu

)2
]

and

e ≡ −µX =⇒ −µX
σe
− ρueu

σu
= g
√

1− ρ2
ue ⇐⇒ g = −

µX + uρueσeσu

σu
√

1− ρ2
ue

≡ h(u).

Then, making use of eqs. (D.6) and (D.9), we obtain

χ =
1

1− Φ
(
a
σu

) � ∞
a

� ∞
h(u)

1

2πσu
exp

{
−1

2

[
g2 +

(
u

σu

)2
]}

dgdu

=
1

1− Φ
(
a
σu

) � ∞
a

1

σu
φ

(
u

σu

)
Φ

(
uρueσeσu

+ µX

σe
√

1− ρ2
ue

)
du. (D.10)

In the limiting case of an untruncated u, we obtain lima→−∞ P (u ≥ a) = 1 and

lim
a→−∞

χ =

� ∞
−∞

1

σu
φ

(
u

σu

)
Φ

(
uρueσeσu

+ µX

σe
√

1− ρ2
ue

)
du ≡ I(µX)
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Differentiation gives

I ′(µX) = − 1√
2πσ2

e

exp

[
−1

2

(
µX
σe

)2
] � ∞
−∞

1√
2πσ2

u(1− ρ2
ue)

exp

−1

2

(
u+ µX

ρueσu
σe

σu
√

1− ρ2
ue

)2
 du

= − 1√
2πσ2

e

exp

[
−1

2

(
µX
σe

)2
]

and allows us to compute

I(µX) = −
� ∞
µX

1√
2πσ2

e

exp

[
−1

2

(
g

σe

)2
]

dg =

� µX

−∞

1√
2πσ2

e

exp

[
−1

2

(
g

σe

)2
]

dg.

This establishes lima→−∞ χ = Φ
(
µX
σe

)
.

E Proof of Proposition 4

The specification of normally distributed disturbances imposes a constraint on data moments, which can be overly

restrictive unless one allows for censoring (such as through the truncation of u due to positive selection of high-

productivity plants into activity). To illustrate this, we consider the conditional variance of log revenues y by

export status I , which for exporters and non-exporters can be expressed as

V[y|e ≥ −µX ] = E[u2|e ≥ −µX , u ≥ a]− {E[u|e ≥ −µX , u ≥ a]}2 ,

V[y|e < −µX ] = E[u2|e < −µX , u ≥ a]− {E[u|e < −µX , u ≥ a]}2 ,

respectively. These variances are complicated expressions under truncation but simplify to

V[y|e ≥ −µX ] = σ2
u

1− ρ2
ue

φ
(
µX
σe

)
Φ
(
µX
σe

)
φ

(
µX
σe

)
Φ
(
µX
σe

) +
µX
σe

 and (E.1a)

V[y|e < −µX ] = σ2
u

1− ρ2
ue

φ
(
µX
σe

)
1− Φ

(
µX
σe

)
 φ

(
µX
σe

)
1− Φ

(
µX
σe

) − µX
σe

 (E.1b)
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if the distribution of u is not truncated (in the limiting case of a→ −∞). Eqs. (E.1) can be used to solve for σ2
u

and ρ2
ue. Setting x ≡ µX

σe
, λ1 ≡ φ(x)

Φ(x) , and λ2 ≡ φ(x)
1−Φ(x) , we compute

σ2
u =

V[y|e ≥ −µX ]λ2(λ2 − x)− V[y|e < −µX ]λ1(λ1 + x)

λ2(λ2 − x)− λ1(λ1 + x)

ρ2
ue =

V[y|e ≥ −µX ]− V[y|e < −µX ]

V[y|e ≥ −µX ]λ2(λ2 − x)− V[y|e < −µX ]λ1(λ1 + x)

In our data, for instance, we observe V[y|e ≥ −µX ]− V[y|e < −µX ] > 0 in every sample year—implying that

λ2(λ2 − x) − λ1(λ1 + x) > 0 is necessary and sufficient for σ2
u, ρ

2
ue > 0. This insight motivates the following

result. Proposition 4 states: If u is not truncated and V[y|e ≥ −µX ] − V[y|e < −µX ] > 0, an outcome with

σ2
u, ρ

2
ue > 0 exists iff χ = Φ(µXσe ) ≥ 0.5.

We begin the proof of Proposition 4 with the observation that

λ2(λ2 − x)− λ1(λ1 + x) =
φ(x)

Φ(x)2[1− Φ(x)]2
{−[1− 2Φ(x)]φ(x)− xΦ(x)[1− Φ(x)]} .

Hence

λ2(λ2 − x)− λ1(λ1 + x) > 0⇔ A(x) ≡ −[1− 2Φ(x)]φ(x)− xΦ(x)[1− Φ(x)] > 0.

Moreover, we have limx→−∞A(x) = limx→∞A(x) = A(0) = 0 and

A′(x) = 2φ(x)2 − Φ(x)[1− Φ(x)], A′′(x) = φ(x)a(x),

with a(x) ≡ −4xφ(x) + 2Φ(x)− 1 and a′(x) = 2φ(x)(2x2 − 1). We have a′(x) < 0 if x ∈ (−
√

1/2,
√

1/2),

a′(x) = 0 if x = −
√

1/2 or x =
√

1/2, and a′(x) > 0 otherwise.

Note that limx→−∞ a(x) = −1, limx→∞ a(x) = 1 and a(0) = 0, so we can define a threshold x < −
√

1/2,

such that a(x) < 0 holds for all x < x, whereas a(x) > 0 holds for all x ∈ (x, 0). Similarly, we can define

a second threshold x >
√

1/2, such that a(x) < 0 holds for all x ∈ (0, x), whereas a(x) > 0 holds for all

x > x. Note that limx→−∞A
′(x) = limx→∞A

′(x) = 0 and A′(0) = π−1 − 4−1 > 0. It therefore follows from

the properties discussed above that A(x) has a unique minimum xmin < 0 and a unique maximum xmax > 0.

Accordingly, A(x) > 0 iff x > 0. Since Φ(0) = 1/2 and Φ′(x) > 0, we can conclude that χ = Φ
(
µX
σe

)
is

necessary and sufficient for σ2
u, ρ

2
ue > 0 if V[y|e ≥ −µX ] > V[y|e < −µX ].

This restrictive property of our model can be alleviated if we allow u to be truncated.
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F Implementation of Estimation Model

F.1 Conditional likelihood functions

We want to estimate system (D.2′), using a maximum likelihood (ML) estimator. Substituting eq. (D.7) into

eq. (D.5) and following the derivation steps from Appendix D.2, we can rewrite the density function in eq. (D.5)

as follows:

fu,v,e =
1

2πσuσv
√

1− ρ2
uvP (u ≥ a)

exp

{
− 1

2(1− ρ2
uv)

[(
u

σu

)2

− 2
uvρuv
σuσv

+

(
v

σv

)2
]}

× 1√
2πσ̃2

e

exp

[
−1

2

(
e− µe
σ̃e

)2
]

with

µe ≡ u
σe
σu

ρue − ρuvρve
1− ρ2

uv

+ v
σe
σv

ρve − ρueρuv
1− ρ2

uv

, σ̃e ≡ σe

√
1− ρ2

ue − ρ2
uv − ρ2

ve + 2ρueρuvρve
1− ρ2

uv

. (F.1)

The density of u for exporters (Ii = 1) can then be computed according to

feu,v =

� ∞
−µX

fu,v,ede =
1

2πσuσv
√

1− ρ2
uvP (u ≥ a)

exp

{
− 1

2(1− ρ2
uv)

[(
u

σu

)2

− 2
uvρuv
σuσv

+

(
v

σv

)2
]}

×
� ∞
−µX

1√
2πσ̃2

e

exp

[
−1

2

(
e− µe
σ̃e

)2
]
de

=
1

2πσuσv
√

1− ρ2
uvP (u ≥ a)

exp

{
− 1

2(1− ρ2
uv)

[(
u

σu

)2

− 2
uvρuv
σuσv

+

(
v

σv

)2
]}

Φ

(
µX + µe
σ̃e

)
.

(F.2)

Similarly for non-exporters (Ii = 0), we can compute

fdu,v =

� −µX
−∞

fu,v,ede =
1

2πσuσv
√

1− ρ2
uvP (u ≥ a)

exp

{
− 1

2(1− ρ2
uv)

[(
u

σu

)2

− 2
uvρuv
σuσv

+

(
v

σv

)2
]}

×
� −µX
−∞

1√
2πσ̃2

e

exp

[
−1

2

(
e− µe
σ̃e

)2
]
de

=
1

2πσuσv
√

1− ρ2
uvP (u ≥ a)

exp

{
− 1

2(1− ρ2
uv)

[(
u

σu

)2

− 2
uvρuv
σuσv

+

(
v

σv

)2
]}

Φ

(
−µX + µe

σ̃e

)
.

(F.3)
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Lemma 1. Denote the observed data with the vectors (y,w, I) whose characteristic elements are (yi, wi, Ii),

denote the minimum observable yi with ymin ≡ min{yi}, let N be the number of observations, and set σe = 1.

We replace the truncation point a by min{ydi }−µdY if ymin is observed for a non-exporter and by min{yei }−µeY
otherwise. Then, the conditional likelihood function for system (42) is denoted

L̂j
(
·
∣∣y, w, I) = L̂j

(
µeY , µ

d
Y , µ

e
W , µ

d
W , µX , σu, σv, ρue, ρuv, ρve

∣∣y, w, I), j ∈ {e, d}.

If ymin = min ydi (minimum revenues at non-exporter), the conditional likelihood function is given by

L̂d
(
·
∣∣y, w, I) =

N∏
i=1

 1√
2πσuσv

√
1− ρ2

uv

1

1− Φ
(

min{ydi }−µdY
σu

)φ (xei )

[
1− Φ

(
−µX + µ1

i

σ̃e

)]
Ii

×

 1√
2πσuσv

√
1− ρ2

uv

1

1− Φ
(

min{ydi }−µdY
σu

)φ(xdi )Φ

(
−µX + µ2

i

σ̃e

)
1−Ii

,

(F.4)

If ymin = min yei (minimum revenues at exporter), the conditional likelihood function is given by

L̂e
(
·
∣∣y, w, I) =

N∏
i=1

 1√
2πσuσv

√
1− ρ2

uv

1

1− Φ
(

min{yei }−µeY
σu

)φ (xei )

[
1− Φ

(
−µX + µ1

i

σ̃e

)]
Ii

×

 1√
2πσuσv

√
1− ρ2

uv

1

1− Φ
(

min{yei }−µeY
σu

)φ(xdi )Φ

(
−µX + µ2

i

σ̃e

)
1−Ii

. (F.5)

We have used

xji ≡
1√

1− ρ2uv

√√√√(yi − µjY
σu

)2

− 2
(yi − µjY )[wi − µ

j
W + 1

γ
(yi − µjY )]ρuv

σuσv
+

(
wi − µjW + 1

γ
(yi − µjY )

σv

)2

=
1√

1− ρ2uv

√√√√(yi − µjY
σu

)2

− 2ρuv

(
yi − µjY
σu

)[(
wi − µjW

σv

)
+

σu
γσv

(
yi − µjY
σu

)]
+

[(
wi − µjW

σv

)
+

σu
γσv

(
yi − µjY
σu

)]2

=
1√

1− ρ2uv

√√√√[(yi − µjY
σu

)(
1− σu

γσv

)
−

(
wi − µjW

σv

)]2
+ 2(1− ρuv)

(
yi − µjY
σu

)[
σu
γσv

(
yi − µjY
σu

)
+

(
wi − µjW

σv

)]
,

µji ≡

(
yi − µjY
σu

)
ρue − ρuvρve

1− ρ2
uv

+

[(
wi − µjW

σv

)
+

σu
γσv

(
yi − µjY
σu

)]
ρve − ρuvρue

1− ρ2
uv
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for j ∈ {e, d} and

σ̃e ≡

√
1− ρ2

ue − ρ2
uv − ρ2

ve + 2ρueρuvρve
1− ρ2

uv

.

Furthermore,

γ = −
µeY − µdY
µeW − µdW

, (F.6)

is not an independently estimable parameter.

Proof. The conditional likelihood functions (F.4) and (F.5) follow from eqs. (F.2) and (F.3) after substituting

ui = yi − µ1
y, vi = wi − µeW + 1

γ (yi − µeY ) for exporters and ui = yi − µ2
y, vi = wi − µdW + 1

γ (yi − µdY ) for

non-exporters, setting σe = 1, and accounting for eq. (F.1). Eq. (F.6) follows from eq. (D.3).

For tractability we introduce three further auxiliary variables:

aji ≡

(
yi − µjY
σu

)
, bji ≡

(
wi − µjW

σv

)
, cji ≡ a

j
i

σu
γσv

+ bji . (F.7)

These auxiliary variables lead to the simplifications

xji =

√√√√(aji − cji)2
+ 2(1− ρuv)aji c

j
i

1− ρ2
uv

and

µji = aji
ρue − ρuvρve

1− ρ2
uv

+ cji
ρve − ρuvρue

1− ρ2
uv

,

Introducing yet two more auxiliary variables,

dji ≡
µX + µji
σ̃e

and aj ≡
min{yj} − µjY

σu
, (F.8)

helps us rewrite the conditional likelihood functions as follows:

L̂d
(
·
∣∣y, w, I) =

N∏
i=1

1√
2πσuσv

√
1− ρ2

uv

{
φ (xei )

Φ (−ad)
Φ (dei )

}Ii { φ
(
xdi
)

Φ (−ad)
Φ
(
−ddi

)}1−Ii

, (F.9)
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L̂e
(
·
∣∣y, w, I) =

N∏
i=1

1√
2πσuσv

√
1− ρ2

uv

{
φ (xei )

Φ (−ae)
Φ (dei )

}Ii { φ
(
xdi
)

Φ (−ae)
Φ
(
−ddi

)}1−Ii

. (F.10)

F.2 Estimation in two steps

To simplify the estimation problem we can make use of the specific structure of our model—with censoring based

on only one unobserved characteristic u—and estimate the parameters of interest in two steps. For this purpose,

we separate the full equation system (42) into the two sub-models, model 1:

yi =


yei = µeY + ui if Ii = 1

ydi = µdY + ui if Ii = 0

, (F.11a)

Ii =


1 if I∗i = µX + ei ≥ 0

0 if I∗i = µX + ei < 0

, (F.11b)

yi, Ii = missing if ui < a, (F.11c)

and model 2:

wi =


w1
i = µeW − (1/γ)ui + vi if Ii = 1

wdi = µdW − (1/γ)ui + vi if Ii = 0

, (F.12a)

Ii =


1 if I∗i = µX + ei ≥ 0

0 if I∗i = µX + ei < 0

, (F.12b)

wi, Ii = missing if ui < a. (F.12c)

The parameter vector θu = (µeY , µ
d
Y , µX , σu, ρue) appears in model 1 as well as model 2 because γ is a composite

of µeY , µ
d
Y and because endogenous switching and censoring involve µX , σu and ρue in model 2. In contrast, the

parameter vector θv = (µeW , µ
d
W , σv, ρve, ρuv) only appears in model 2 because model 1 lacks the error term v.

As a consequence, we can estimate θu from model 1 first and then use the parameter estimates from model 1 in

model 2 and estimate parameter θv in a second step.
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The density function for realization (u, e) in model 1 is given by eq. (D.6). Using eq. (D.8) we obtain

fu,e =
1

2πσuσe
√

1− ρ2
uvP0

exp

{
− 1

2(1− ρ2
ue)

[(
u

σu

)2

− 2
ueρue
σuσe

+

(
e

σe

)2
]}

. (F.13)

The export selection disturbance e is unobservable but it generates the endogenous switching between ex-

porter and non-export status. We can integrate eq. (F.13) over e to determine the likelihood functions for ex-

porters and non-exporters, relying on revenue observations from the data (see Maddala 1986). We compute for

exporters (Ii = 1)

f1
u,e =

� ∞
−µX

fu,ede =
1√

2πσu
exp

[
−1

2

(
u

σu

)2
] � ∞
−µX

1√
2πσe

√
1− ρ2

ue

exp

−1

2

(
e− uρueσeσu

σe
√

1− ρ2
ue

)2
 de

=
1

σu
φ

(
u

σu

) � ∞
−µX

1

σe
√

1− ρ2
ue

φ

(
e− uρueσeσu

σe
√

1− ρ2
ue

)
de =

1

σu
φ

(
u

σu

)
Φ

(
µX + uρueσeσu

σe
√

1− ρ2
ue

)
.

(F.14)

Similarly, for non-exporters (Ii = 0) we compute

f2
u,e =

� −µX
−∞

fu,ede =
1√

2πσu
exp

[
−1

2

(
u

σu

)2
]� ∞
−µX

1√
2πσe

√
1− ρ2

ue

exp

−1

2

(
e− uρueσeσu

σe
√

1− ρ2
ue

)2
 de

=
1

σu
φ

(
u

σu

) � −µX
−∞

1

σe
√

1− ρ2
ue

φ

(
e− uρueσeσu

σe
√

1− ρ2
ue

)
de =

1

σu
φ

(
u

σu

)
Φ

(
−
µX + uρueσeσu

σe
√

1− ρ2
ue

)
.

(F.15)

The conditional likelihood function for observed realizations u does not permit separate identification of σe from

µX . We therefore set σe = 1 or, put differently, we estimate the normalized export cutoff µX/σe.

Lemma 2. Denote the observed data with the vectors (y,w, I) whose characteristic elements are (yi, wi, Ii),

denote the minimum observable yi with ymin ≡ min{yi}, let N be the number of observations, and set σe = 1.

We can replace the truncation point a with min{ydi } − µdY if the ymin is observed for a non-exporter and with

min{yei } − µeY if ymin is at an exporter. Then the conditional likelihood function for system (F.11) is

Le
(
·
∣∣y, I) = Lj

(
µeY , µ

d
Y , µX , σu, ρue

∣∣y, I), j ∈ {e, d}.
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If ymin = min{yi} occurs at a non-exporter, the conditional likelihood function is

Ld
(
·
∣∣y, I) =

N∏
i=1

1

σu

{
φ (x̄ei )

Φ (−ad)
Φ
(
d̄ei
)}Ii { φ

(
x̄di
)

Φ (−ad)
Φ
(
−d̄di

)}1−Ii

(F.16)

If ymin = min{yi} occurs at a non-exporter, the conditional likelihood function is

Le
(
·
∣∣y, I) =

N∏
i=1

1

σu

{
φ (x̄ei )

Φ (−ae)
Φ
(
d̄ei
)}Ii { φ

(
x̄di
)

Φ (−ae)
Φ
(
−d̄di

)}1−Ii

(F.17)

We have used σ̄e =
√

1− ρ2
ue,

x̄ji ≡ a
j
i =

yi − µjy
σu

, d̄ji ≡
µX + µ̄1

i

σ̄e
, µ̄ji ≡

ρue(yi − µeY )

σu
,

and aj =
(

min{yi} − µjY
)
/σu for j ∈ {e, d}.

Proof. The conditional likelihood functions (F.16) and (F.17) follow from eqs. (F.14) and (F.15) after substituting

ui = y1
i − µeY for exporters and ui = y2

i − µdY for non-exporters and setting σe = 1.

Once θ̂u is determined, we can proceed with estimating parameter vector θv from model 2 in eq. (F.12). The

marginal likelihood for the observed realizations of (u, v, e) in model 2 is given by Lemma 1 with parameters

µeY , µ
d
Y , µX , σu, and ρue replaced by their estimated counterparts.
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This Online Supplement presents additional empirical evidence.

S1 Comparison to GSOEP data

To gauge the plausibility of our multi-tasking measures, in Appendix A.2 we compare the BIBB-BAuA based

measures of 15 tasks in 2012 to the German Socioeconomic Panel (GSOEP) that reports 23 tasks in 2013

in a one-time supplemental survey. To enhance comparability of the multi-tasking measures from two data

source, BIBB-BAuA and GSOEP even further, in this supplemental section we present a multi-tasking count

from 14 individually comparable workplace operations. For this purpose, we omit task 9. Apply Legal Knowl-

edge from BIBB-BAuA, which has no counterpart in the GSOEP. Conversely, we omit from GSOEP the tasks

16. Securing, protecting, monitoring, directing traffic; 17. Cleaning, clearing, recycling; 20. Writing/reading

texts/documents/e-mails, editing forms; 22. Reporting, publishing, entertaining, presenting; and 23. Sorting,

stocking, ticketing. In addition, in GSOEP we map the tasks 1. Making, processing or assembling things; and 2.

Building, installing, or fitting things/objects into a single BIBB-BAuA-consistent task (1. Manufacture, Produce

Goods); we map 5. Selling; and 6. Buying, purchasing into a single task (7. Purchase, Procure, Sell); and

we map 10. Collecting information, researching, documenting, analyzing; and 12. Designing, developing, re-

searching, constructing, shaping into a single task (6. Gather Information, Develop, Research, Construct). With

these adjustments, we derive from both BIBB-BAuA and GSOEP a multitasking measure based on 14 closely

comparable tasks.

We select three predictors that are observed in both the GSOEP survey in 2013 and the BIBB-BAuA data in

2012 in a similar way: years of schooling (which we transform in BIBB-BAuA to become similar to the GSOEP

convention), gross monthly income in Euros (observed in intervals in the BIBB-BAuA data), and the reported

weekly work hours. Table S.1 shows the results. In both data sets, educational attainment, income and work hours
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Table S.1: Worker-level Predictors of the Number of Tasks

Dependent variable: Number of tasks
(1) (2) (3) (4) (5)

GSOEP (up to 23 tasks)
Years of education 0.104∗∗∗ 0.0583∗ -0.0622

(0.0304) (0.0345) (0.0440)

Gross monthly income 0.000232∗∗∗ 0.0000505 0.0000276
(0.0000477) (0.0000640) (0.0000756)

Weekly work hours 0.0413∗∗∗ 0.0348∗∗∗ 0.0310∗∗∗
(0.00605) (0.00763) (0.00835)

FE yes
R2 0.013 0.029 0.052 0.057 0.221
Observations 864 801 848 788 788

BIBB-BAuA (up to 15 tasks)
Years of education 0.162∗∗∗ 0.139∗∗∗ 0.0518∗∗∗

(0.00791) (0.0103) (0.0113)

Gross monthly income 0.000236∗∗∗ 0.0000998∗∗∗ 0.000128∗∗∗
(0.0000477) (0.0000148) (0.0000148)

Weekly work hours 0.0447∗∗∗ 0.0382∗∗∗ 0.0465∗∗∗
(0.00240) (0.00287) (0.00279)

FE yes
R2 0.021 0.024 0.020 0.046 0.232
Observations 20,012 13,936 17,104 13,928 13,928

Sources: GSOEP 2013 and BIBB-BAuA 2012.
Notes: Number of tasks from count of reported individual tasks out of 23 in GSOEP 2013, out of 15 in BIBB-BAuA 2012. Years of
education in BIBB-BAuA data transformed into GSOEP definition; gross monthly income in BIBB-BAuA reported in intervals; weekly
work hours are reported actual hours in BIBB-BAuA. Occupations at the two-digit ISCO level in GSOEP and at the two-digit KldB-88
occupation group level in BIBB-BAuA. The fixed-effects (FE) specification conditions on Bundesland, industry and respective two-digit
occupation. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

are individually positively associated with multi-tasking and statistically significantly so at the one-percent con-

fidence level. Workers whose assignments require more multi-tasking are more educated, earn more, and work

longer hours. The regression coefficients are of similar magnitude in both dat; even the measures of goodness of

fit are closely similar. However, when including all regressors simultaneously and especially when conditioning

on region (Bundesland), sector (39 longitudinally consistent industries) and occupation group effects (two-digit

ISCO level in GSOEP and two-digit KldB-88 occupation group level in BIBB-BAuA), then the small number of

only about 800 observations in GSOEP does not allow for statistically significant predictions except for the work

hours predictor. In the BIBB-BAuA data in contrast, with roughly 14,000 valid observations in 2012, all three

predictors remain statistically significant at the one-percent confidence level even after controlling for region,

sector and occupation group effects.
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Table S.2: Worker-level Predictors of Plant Size

Dependent variable: Plant size (midpoint of respective employment category)
(1) (2) (3) (4) (5)

GSOEP (up to 23 tasks)
Years of education 205.1∗∗∗ 25.62 -139.2

(58.59) (67.45) (85.63)

Gross monthly income 0.591∗∗∗ 0.693∗∗∗ 0.545∗∗∗
(0.0918) (0.125) (0.147)

Weekly work hours 30.47∗∗ -22.27 -8.038
(11.96) (14.93) (16.26)

FE yes
R2 0.014 0.049 0.008 0.056 0.228
Observations 864 801 848 788 788

BIBB-BAuA (up to 15 tasks)
Years of education 59.35∗∗∗ -4.478 37.69∗∗∗

(7.573) (10.05) (11.80)

Gross monthly income 0.354∗∗∗ 0.350∗∗∗ 0.245∗∗∗
(0.0124) (0.0146) (0.0155)

Weekly work hours 33.66∗∗∗ 2.632 0.748
(0.00150) (0.00174) (2.974)

FE yes
R2 0.003 0.057 0.011 0.057 0.142
Observations 18,881 13,246 16,185 13,238 13,238

Sources: GSOEP 2013 and BIBB-BAuA 2012, using LIAB 2013 and 2012 to compute the respective employment category midpoints.
Notes: Dependent variable are the LIAB employment averages per size category in 2012 (for BIBB-BAuA) and 2013 (for GSOEP).
Years of education in BIBB-BAuA data transformed into GSOEP definition; gross monthly income in BIBB-BAuA reported in intervals;
weekly work hours are reported actual hours in BIBB-BAuA. Occupations at the two-digit ISCO level in GSOEP and at the two-digit
KldB-88 occupation group level in BIBB-BAuA. The fixed-effects (FE) specification conditions on Bundesland, industry and respective
two-digit occupation. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

Our empirical analysis and model emphasize the relationship between plant size and multi-tasking. To as-

sess the similarity between GSOEP and BIBB-BAuA with respect to plant size, we use the same worker-level

predictors as in Table A2 above to check the association with employment. In the GSOEOP, size categories of

plants are 1-4, 5-9, 10-19, 20-99, 100-199, 200-1999, and more than 2000 workers. In the BIBB-BAuA data,

the size categories are 1-4, 5-9, 10-49, 50-99, 100-499, 500-999, and more than 1000 workers. To make the

categories comparable, we compute the average employment midpoints within each range from the representa-

tive sample of plants in LIAB 2012 (for BIBB-BAuA) and 2013 (for GSOEP), and use those midpoints as the

dependent variable in our descriptive regressions. Table A3 reports the results. All three predictors are positive

and statistically significantly associated with plant size (at the one-percent confidence level) in both data, when

used as individual predictors. More educated workers, higher-paid workers and workers with longer work weeks
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are employed at larger plants. Coefficients on educational attainment and income remain robustly positive in the

BIBB-BAuA data also within region (Bundesland), sector and two-digit occupation group in a joint prediction,

but not work hours. In the GSOEP data, the small observation numbers preserve only the positive association

between a worker’s income and the size of the worker’s employer, while the other two predictors are no longer

separately statistically significant when conditioning on region, sector and occupation group.

In summary, the GSOEP data for 2013 exhibit closely similar covariation patterns between main character-

istics of workers and their jobs (educational attainment, pay, work hours) on the one-hand side and multitasking

or employer size on the other hand. Importantly, the worker and job characteristics are positively associated with

both multitasking and employer size.
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