
Entry versus Rents

David Baqaee Emmanuel Farhi

UCLA Harvard



Aggregating Shocks

I How to aggregate shocks?

I Efficient economy, no entry (Hulten, 1978):

d log Y
d log Ak

=
salesk

GDP
.

I What happens with entry?

I General result: d log Y depends on changes in rents and
quasi-rents.

I Quantitatively, the entry margin is very powerful.
(e.g. doubles losses from misallocation)



Goal

I General theory of aggregation with entry.

I General class of models: IO network, structure of entry,
elasticities, Ricardian rents, monopoly rents, and increasing or
decreasing internal or external returns to scale.

I Characterize comparative statics.

I First and second-best policy and associated gains.
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Framework: Producers and Entrants

I Entrants j ∈ E pay entry cost and draw technology and markup
according to ζ (i, j).

I Entrants decide whether or not to pay overhead costs.

I Producer ω of type i makes

yi(ω) = fi
(
{xij(ω)}j∈N ,Ai

)
,

I Industry aggregator over producers of type i :

Yi = Fi

(∫
yi(ω)dω

)
.



Framework: Household

I Representative household maximizes homothetic aggregator

Y = D(C1, . . . ,CN)

subject to

∑
i

PiCi ≤ net rents,

net rents are Ricardian and monopoly rents net of entry costs.
Primary factor payments are pure net Ricardian rents.

I Focus on Walrasian equilibrium.

I Nests: Hopenhayn (1992), Melitz (2003), Romer (1990),
Grossman and Helpman (1991), as well as Baqaee
(2018)/Baqaee and Farhi (2019).
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Marginal-Cost Pricing Equilibrium

Theorem (First Welfare Theorem)

The marginal-cost pricing equilibrium is Pareto-efficient.

I Normative implication: optimal policy can be achieved by
enforcing marginal-cost pricing.

I Also useful for positive questions:

I straightforward comparative statics à la Hulten;

I straightforward aggregation à la Domar.



Examples of Perfectly Competitive Comparative Statics

I With Ai Hicks-neutral shifter to variable production of producer i :

d log Y
d log Ai

=
sales of type i

GDP
.

I With zi Hicks-neutral shifter to overhead cost of producer i :

d log Y
d log zi

=
overhead cost of producer i

GDP
.

I With zj Hicks-neutral shifter to entry cost of entrant j :

d log Y
d log zj

=
entry cost of entrant j

GDP
.
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Inefficient Model

I We introduce markup µi and output tax/wedge µY
i .

I Assume

qi = Ai fi
(
{xij}j∈N

)
, with fi CRS,

yi = q1−εi
i ,

Yi = Ai(Miyi)
1
γi .

I Hopenhayn/DRS Benchmark γ = 1;

I Dixit-Stiglitz/IRS/CES Benchmark is γ = 1− ε .



Inefficient Model Preliminaries

Define
ζ̃ (i, j) = Prob(Entrant j | Product i) ,

λπk =
profitsk

GDP
.

Lemma

In equilibrium,

d log M = ζ̃
′(ζ̃ λπ ζ̃

′)−1
(

ζ̃ λπ d log λπ

)
∆entry is projection of ∆rents on entry conditions.



Domar Weights

I Using input-output table, we can define

λ
B
i = Backward Domar weight,

measure of importance as consumer of inputs.

λ
F
i = Forward Domar weight,

measure of importance as supplier of inputs.

I When marginal cost pricing,

λ
F
i = λ

B
i = salesi/GDP.



Comparative Statics when Inefficient

Proposition (Productivity Shocks)

In response to a perturbation d log A:

d log Y = λ
F d log A

−λ
F ·
(

1− 1− ε

γ

)(
d log λπ −d log λ̂π

)
+ λ

F ·
(

1
γ
−1

)
d log λ̂π ,

I “Hulten” term.

I Deviation from “Hulten” term.

I Paper has formulas for d log λπ as function of primitives.



Reallocation

I Let X (µ,µY ,A) be allocation of resources across all uses.

I Output in any feasible allocation is Y (A,X ), so

d log Y =
∂ log Y
∂ log A

d log A︸ ︷︷ ︸
∆Pure Technology

+
∂ log Y
∂X

dX︸ ︷︷ ︸
∆Reallocation

.

Pure technology is the “Hulten” term:

∂ log Y
∂ log A

d log A = λ
F ·d log A,

and reallocation effects are the rest.

I In marginal-cost pricing equilibrium, reallocation effects are zero.
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Hopenhayn-style: Residual (Pure Rent) Matters

For Hopenhayn-style models (γ = 1):

d log Y = λ
F ·d log A−λ

F · ε ·
(

d log λπ −d log λ̂π

)
.

I The second-term captures how the price of quasi-fixed-factors is
changing in equilibrium.

I If the allocation of resources improves, then fixed-factors become
less scarce and their price declines.



Dixit-Stiglitz-style: Projection (Quasi-rent) Matters

For Dixit-Stiglitz-style models (1− εi = γi):

d log Y = λ
F ·d log A + λ

F ·
(

1
γ
−1

)
·d log λ̂π .

I Projections of rents on entry key suff. stat.

I If entry/quasi-rents increase, then by increasing marginal returns,
productivity shocks are magnified.
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First-Best Policy

Theorem

The optimal allocation is attained when µi = µY
i = 1 for every i ∈ N.

I Optimal policy is “network” blind.



Second-Best Policy

I Consider marginal intervention around the decentralized
equilibrium (markup regulation or entry subsidy).

I Consider the social bang for marginal buck.

I Revives Hirschman’s argument that policy encourage forward and
backward linkages.



Second-Best Competition Policy

I For example, at CES markups:

d log Y
d log µi

= ∑
j∈N

(
1
γj
−1

)
λ

F
j

d log λ̂ B
j

d log µi
.

Maximize a forward-weighted-sum of backward linkages.
Intuitively, should try to boost sales over GDP.

I For Cobb-Douglas Input-Output Network:

I Reduce markups of sectors that have complex supply chains.

I Subsidize entry of sectors that have complex demand chains.



General Takeaway
I Example with CES markups and Input-Output:
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(a) Entry subsidies for CES
markups
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(b) Markup reduction for CES
markups

I Biggest entry bank-for-buck: Oil, mining, forestry.
I Smallest entry bank-for-buck: nursing, social assistance.
I Biggest markup bang-for-buck: Motor vehicles, metals, plastics.
I Smallest markup bang-for-buck: Housing, legal, oil, forestry.



Gains from Optimal Policy

Theorem
At the efficient point, to a second order, the losses are

d2 log Y = ∑
i∈N

1
2

λid log Yid log µi µ
Y
i

−∑
j∈E

∑
i∈N

1
2

λi ζ̃ij

γi
d log ME

j d log µi .

I Distance to efficient frontier as sum of Harberger triangles.

I Paper: formulas in terms of primitives.



Examples

I One sector CES model without entry

d2 log Y =−1
2

θVarλ

(
d log µ

2) .
I One sector CES model with undirected entry

d2 log Y =−1
2

θEλ

(
d log µ

2) .
I Both the level and the dispersion matter.



Application: Markups in US

I Suppose firm-level markups are only distortions.

I Assign Compustat firms to industries.

I Estimate markups using production function estimation.

I Elasticities of substitution: across industries in consumption 0.9;
between value-added and intermediates 0.5; across
intermediates in production 0.01; between labor and capital 1;
within industries 8.



Gains from Industrial/Competition Policy

IRS, γ = 1− ε = 0.75 No Entry Free Entry

Level only 4.6% 17%
Dispersion only 22% 23%
Benchmark 19% 32%

DRS, γ = 1,1− ε = 0.75

Level only 0.8% 9.5%
Dispersion only 9.2% 9.2%
Benchmark 9.6% 19%

I Structure of entry matters.

I Entry and variable production networks matter.



Comparative Statics
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Figure: Efficiency losses for the benchmark IRS model as function of
elasticity of substitution

I Unlike classical misallocation, losses are non-monotone in the
elasticity of substitution.



Conclusion

I Aggregation with scale.

I Propagation of shocks with entry.

I Normative and positive implications.



Determination of Profit Shares

Proposition (Profit Shares)

Assuming λπ 6= 0, in response to a perturbation (d log A,d log µ)

d log λπ = d log λ +
(1− ε)/µ

1− (1− ε)/µ
d log µ.



Special Case: Decreasing-returns and Entry

I Suppose εi ∈ (0,1] and γi = 1 and ζ lower rank than N. Then

d log Y = λ̃i

(
d log Ai −

1− εi

1− 1−εi
µi

(
1− 1

µi

)
d log µi

)
− ∑

k∈N
λ̃k

(
εk

(
d log λπk −d log λ̂πk

))
.

I A big residual means a big rent. When production hits
diminishing returns, it reduces output.



Example: One Sector Model

HH1L

I Let ζ = 0 (no entry)

d log Y =
1
γ

d log A + 0d log µ.



Example: One Sector Model

HH1L

I Suppose ζ 6= 0 (entry) but γ = 1 (no diminishing marginal cost):

d log Y = λ̃d log A− λ̃
(1− ε)

1− (1− ε)/µ
(1−1/µ)d log µ

I Elasticity of substitution is irrelevant.



Example: One Sector Model

HH1L

I Suppose ζ 6= 0 and γ 6= 1, but entry cost paid in units of labor

d log Y =
d log A

γ
− 1− ε

γ

1−1/µ

1− (1− ε)/µ
d log µ.

I Similar to the case without diminishing marginal cost.



Example: One Sector Model

HH1L

I Suppose ζ 6= 0 and γ 6= 1, and allow entry cost to be paid partly
in units of output:

d log Y =
λ̃/γ

1− λ̃

(
1
γ
−1
)

(λ −1)(θ −1)(1−ΩE )
d log A

+ λ̃

((
1
γ
−1
)(

(λ −1)
(

1
µ−1

)
+ (1−ε)/µ

1−(1−ε)/µ

)
− (1−ε)/µ

1−(1−ε)/µ

(
µ

γ
−1
))

1− λ̃

(
1
γ
−1
)

(λ −1)(θ −1)(1−ΩE )
d log µ.

I Multiplier that depends on elasticity of substitution θ and share of
output in entry cost ΩE .



Example: Multisector Model

HH· · ·

1

N

L

I Elasticity of substitution across sectors is θ0.

I Consider CES specification inside sectors
1−1/θi = 1− εi = γi ∈ (0,1).



Example: Multisector Model

HH· · ·

1

N

L

I With no entry ζ = 0,

d log Y = λk (d log Ak −d log µk )−d log λL.

I For a productivity shock,

d log Y
d log Ak

= λk d log Ak − (1−θ0)λk

(
1/µk

∑j∈N λj/µj
−1

)
,

I For markup shocks,

d log Y
d log µk

= θ0λk

(
1/µk

∑j∈N λj/µj
−1

)
.



Example: Multisector Model

HH· · ·

1

N

L

I Suppose single entrant type, then

d log Y =−λk (d log µk −d log Ak ) + ∑
j∈N

(
λj

θj −1

)
d log λ̂πj .

or,

d log Y =−λk (d log µk/Ak ) +

(
∑
j∈N

λj

θj −1

)(
∑
i∈N

λπk

∑l∈N λπl

λπk

d log µk

µk −1

)

+

(
∑
j∈N

λj

θj −1

)
1

∑j λπj

([
λπk −

(
∑
j 6=k

λπj

)
λk

1−λk

])
d log λk .



Example: Multisector Model

HH· · ·

1

N

L

I Suppose entrant for each sector, then

d log Y =−λk (d log µk −d log Ak ) + ∑
j∈N

(
λj

θj −1

)
d log λπj .

or,

d log Y =−λk (d log µk −d log Ak ) +

(
λk

θj −1

)
d log µk

µk −1

+ λk

(
1

θk −1
−∑

j 6=k

(
λj/∑l 6=k λl

θj −1

))
d log λk .



Example: Vertical Economy with γ = 1

HH12L

I Suppose no entry ζ = 0 and γ = 1, then

d log Y = d log A1 + (1− ε1)d log A2.

I Suppose entry only downstream (upstream perfect competition
CRS), then

d log Y = d log A1 +(1−ε1)d log A2−
(1− ε1)/µ1

1− (1− ε1)/µ1
(µ1−1)d log µ1.

I Suppose entry upstream and downstream

d log Y = d log A1 + (1− ε1)d log A2−
(1− ε1)/µ1

1− (1− ε1)/µ1
(µ1−1)d log µ1

− (1− ε1)
(1− ε2)/µ2

1− (1− ε2)/µ2
(µ2−1)d log µ2.



Example: Vertical Economy with 1− ε = γ

HH12L

I Suppose no entry ζ = 0 and γ = 1− ε

d log Y = d log A1 + d log A2,

I Suppose entry only downstream (upstream competitive CRS)

d log Y = d log A1 + d log A2 +

(
1

(ε1−1)(µ1−1)
−1

)
d log µ1.

I Suppose entry upstream and downstream

d log Y = d log A1 + d log A2 +

(
1

(ε2−1)(µ2−1)
−1

)
d log µ2

+

(
1

(ε1−1)(µ1−1)
− 1

(ε2−1)
−1

)
d log µ1.



Example: Round-about Economy

HH1L

I No entry ζ = 0, with constant external returns and internal
returns γ = 1− ε = 1.

d log Y = λ̃ (d log A− (1− ε)d log µ)

− λ̃ εd log λ − λ̃ (1− ε)(1− Ω̃)d log λl ,

= λ̃d log A−
(

λ − λ̃

)
(θ −1)d log A + θ(λ − λ̃ )d log µ,

I Generally, θ is an important parameter.
I Intuitively, markups affect output by distorting allocation of

resources between intermediates and consumption.



Example: Round-about Economy

HH1L

I With entry ζ 6= 0, with constant external returns γ = 1 and
arbitrary internal marginal returns.

d log Y = λ̃

(
d log A− (1− ε)/µ

1− (1− ε)/µ
(µ−1)d log µ

)
.

I Elasticity of substitution θ disappears.

I Intuitively, markups no longer affect allocation between materials
and final uses, instead, they distort scale of each firm.



Example: Round-about Economy

HH1L

I Without entry ζ = 0, with increasing external returns and
decreasing internal marginal returns γ = 1− ε .

d log Y =−θ(λ̃1−1)(1−µ
−1)λ1d log µ

+
(

λ̃1− (λ̃1−1)λ1(µ
−1−1)(θ −1)

) d log A
1− ε

.

I Similar to case without increasing external economies.



Example: Round-about Economy

HH1L

I With entry ζ 6= 0, with increasing external returns and decreasing
internal marginal returns γ = 1− ε .

d log Y = λ̃

(
d log A
1− ε

−d log µ

)
+ λ̃

ε

1− ε

(1− ε)/µ

1− (1− ε)/µ
d log µ

+ λ̃
ε

1− ε

(
λ Ω̃(1−θ)

1−λ Ω̃(θ −1) ε

1−ε

((
µ−1

ε + µ−1
d log µ− 1

1− ε
d log A

)
−µd log µ

))
.

I Elasticity of substitution is very important — if θ > 1, then a
positive shock increases intermediate input usage, which
increases entry, which reduces the price of output, which induces
additional entry, positive feedback loop.



Example: Projections vs. Residuals with Directed Entry

I Multiple sectors, heterog. producers, variable production and
entry in labor, directed entry.

I Hopenhayn-style model:

d log Y = Eλ (d log A) .

I Dixit-Stiglitz-style-model:

d log Y = Eλ (d log A) +Eλ

((
1
γi
−1

)
d log λi

)
.



Forward Propagation

To solve model fully, we need forward and backward propagation:

Proposition

Changes in prices on response to shocks d log A:

d log P =ΨF d log A + ΨF
(

1− 1− ε

γ

)(
d log λπ −d log λ̂π

)
+ λ

F
(

1− 1
γ

)
d log λ̂π .

I Forward-linkages equations.



Backward Propagation

Assume nested-CES with θm as elasticity of substitution for nest m
(easy to generalize).

Proposition

Changes in shares in response to shocks d log A:

d log λi =− ∑
m∈N∪E

λmµ
−1
m (θm−1)Covm

(
d log P,

ΨB
(i)

λi

)
.

I Backward-linkages equations.

I Forward and backward propagation together pin down everything.



Baqaee, D. R. (2018). Cascading failures in production networks.
Econometrica 86(5), 1819–1838.

Baqaee, D. R. and E. Farhi (2019). Productivity and Misallocation in
General Equilibrium. NBER Working Papers 24007, National
Bureau of Economic Research, Inc.

Grossman, G. M. and E. Helpman (1991). Innovation and growth in
the global economy. MIT press.

Hopenhayn, H. A. (1992). Entry, exit, and firm dynamics in long run
equilibrium. Econometrica, 1127–1150.

Hulten, C. R. (1978). Growth accounting with intermediate inputs. The
Review of Economic Studies, 511–518.

Melitz, M. J. (2003). The impact of trade on intra-industry reallocations
and aggregate industry productivity. Econometrica 71(6),
1695–1725.


	Framework
	Marginal-Cost Pricing Benchmark
	Inefficient Model
	Policy

