Taking Stock of Trade Policy Uncertainty: Evidence from China’s Pre-WTO Accession

George Alessandria1 Shafaat Y. Khan2 Armen Khederlarian1

1University of Rochester

2The World Bank

NBER Summer Institute
July 2020
Two Main Questions about Trade & Trade Policy

1. How do agents respond in anticipation of future, uncertain changes in tariffs?
Two Main Questions about Trade & Trade Policy

1. How do agents respond in anticipation of future, uncertain changes in tariffs?

2. How do we measure the future, uncertain path of tariffs?
Two Main Questions about Trade & Trade Policy

1. How do agents respond in anticipation of future, uncertain changes in tariffs?

2. How do we measure the future, uncertain path of tariffs?
 ▶ When?
 ▶ How much?
 ▶ How likely?
Two Main Questions about Trade & Trade Policy

1. How do agents respond in anticipation of future, uncertain changes in tariffs?

2. How do we measure the future, uncertain path of tariffs?
 ▶ When?
 ▶ How much?
 ▶ How likely?

Explore these inter-related questions with US renewal of China’s MFN Status
Two Main Questions about Trade & Trade Policy

1. How do agents respond in anticipation of future, uncertain changes in tariffs?

2. How do we measure the future, uncertain path of tariffs?
 ▶ When?
 ▶ How much?
 ▶ How likely?

Explore these inter-related questions with US renewal of China’s MFN Status

Innovation: use within-year variation in future tariff risk from political process.
1. Show imports rise with TPU in monthly trade flows (anticipatory stockpiling).
1. Show imports rise with TPU in *monthly* trade flows (anticipatory stockpiling).

2. Quantify role of expected tariffs vs uncertainty in sS inventory model.
1. Show imports rise with TPU in monthly trade flows (anticipatory stockpiling).

2. Quantify role of expected tariffs vs uncertainty in sS inventory model.

3. Estimate annual non-renewal probability (6 percent).
1. Show imports rise with TPU in *monthly* trade flows (anticipatory stockpiling).

2. Quantify role of expected tariffs vs uncertainty in sS inventory model.

3. Estimate annual non-renewal probability (6 percent).

4. Show stockpiling behaviour accounts for 30 percent of TPU effects in annual data.
Main idea: Anticipated Risk of a 10% Tariff Hike
Main idea: Anticipated Risk of a 10% Tariff Hike

- sS inventory model with many firms importing & reselling a foreign input.
- Assume tariffs expected to rise by 10 percent in 12 months with probability, π
 - But, tariff Δ not realized.
- Firms will shift timing of imports to avoid importing when tariffs are high.
- Strength of shifting rises in tariffs.
- Only affects imports in narrow window around possible tariff Δ.
Main idea: Anticipated Effect of Risky 10% Tariff Hike
Main idea: Anticipated Effect of Risky 10% Tariff Hike

Imports, log

News

Shock

- 0% Prob
- 20% Prob
- 50% Prob
Main idea: Anticipated Effect of Risky 10% Tariff Hike
Literature

- **Trade Policy Uncertainty**
 - New mechanism: *Incumbents ordering decisions.*
Literature

- **Trade Policy Uncertainty**
 - *New mechanism: Incumbents ordering decisions.*

- **Anticipation to Policy Changes**
 Coglianese et al. (2017), Agarwal et al. (2017), Baker et al. (2018), Fajgelbaum et al. (2019), Khan & Khederlarian (2019)
 - *Evidence of stockpiling in anticipation of TPU*
Literature

- **Trade Policy Uncertainty**
 - *New mechanism: Incumbents ordering decisions.*

- **Anticipation to Policy Changes**
 Coglianese et al. (2017), Agarwal et al. (2017), Baker et al. (2018), Fajgelbaum et al. (2019), Khan & Khederlarian (2019)
 - *Evidence of stockpiling in anticipation of TPU*

- **Inventories & Trade**
 - *First moment drives majority of the uncertainty effect*
Outline

Empirical Evidence

Model

Model Implied Probability of MFN Status Reversal

Uncertainty vs Expected Tariff Change

Effect on Annual Trade Flows
Outline

Empirical Evidence

Model

Model Implied Probability of MFN Status Reversal

Uncertainty vs Expected Tariff Change

Effect on Annual Trade Flows
Background US Tariff Treatment of China

- Non Normal Trade Relation (NNTR) rates to communist countries.

- 1974 onward: MFN status conditional on annual renewal by President.
 - For China, temporary MFN status expired annually every 3rd of July.

- 1980: EU grants China MFN unconditionally.

- 1990 onward: Congress considers disapproving renewal within 60 days.
 - Ex-post, MFN status was always renewed.

- 10/2000: Congress grants Permanent NTR upon joining WTO.

- 12/2001: China enters the WTO.
Background US Tariff Treatment of China

- Non Normal Trade Relation (NNTR) rates to communist countries.

- 1974 onward: MFN status conditional on annual renewal by President.
 - For China, temporary MFN status expired annually every 3rd of July.

- 1990 onward: Congress considers disapproving renewal within 60 days.

- Ex-post, MFN status was always renewed.

- 10/2000: Congress grants Permanent NTR upon joining WTO.

- 12/2001: China enters the WTO.

- 1980: EU grants China MFN unconditionally.
Background US Tariff Treatment of China

- Non Normal Trade Relation (NNTR) rates to communist countries.

- 1974 onward: MFN status conditional on annual renewal by President.
 - For China, temporary MFN status expired annually every 3rd of July.

- 1990 onward: Congress considers disapproving renewal within 60 days

 - Ex-post, MFN status was always renewed.

- 10/2000: Congress grants Permanent NTR upon joining WTO.

- 12/2001: China enters the WTO.
Background US Tariff Treatment of China

- Non Normal Trade Relation (NNTR) rates to communist countries.
 - 1974 onward: MFN status conditional on annual renewal by President.
 - For China, temporary MFN status expired annually every 3rd of July.
 - 1990 onward: Congress considers disapproving renewal within 60 days
 - Ex-post, MFN status was always renewed.
 - 10/2000: Congress grants Permanent NTR upon joining WTO.
 - 12/2001: China enters the WTO.
- 1980: EU grants China MFN unconditionally.
TPU before WTO Accession

Features of China MFN renewal helpful to answer our two questions
TPU before WTO Accession

Features of China MFN renewal helpful to answer our two questions

- **When?** Every year after Presidential renewal and Congress vote.
Features of China MFN renewal helpful to answer our two questions

- **When?** Every year after Presidential renewal and Congress vote.
- **How much?** NNTR Rate - MFN Rate.
 - NNTR rates set in 1930, time-invariant
Features of China MFN renewal helpful to answer our two questions

- **When?** Every year after Presidential renewal and Congress vote.

- **How much?** NNTR Rate - MFN Rate.
 - NNTR rates set in 1930, time-invariant

- **How likely?** Use anticipatory dynamics to study likelihood.
Empirical Approach

- Consider trade dynamics around MFN renewal decisions
- Use differences in growth of US imports from China relative to other countries
- In the background we have a nested CES aggregator determining purchases of goods by firms from specific countries.
Empirical Approach

- Within-year trade growth rates \(\ln \left(\frac{v_{i,j,z}^{t,m-2:m}}{v_{i,j,z}^{t,m-7:m-5}} \right) \)
 - \(v_{i,j,z}^{t} \) monthly averages of imports (CIF consumption value) from i to j of good z.
 - Cancels out year FE.

- Tariff risk, \(X_{z,t} \equiv \ln \left(\frac{1 + \tau_{NNTR,z,t}}{1 + \tau_{MFN,z,t}} \right) \).

- Product \(z \) at HS 6-digit level, balanced panel of 1812 products.
Empirical Approach

- Within-year trade growth rates $\ln \left(\frac{v_{i,j,z,t}^{m-2:m}}{v_{i,j,z,t}^{m-7:m-5}} \right)$
 - $v_{i,j,z,t}$ monthly averages of imports (CIF consumption value) from i to j of good z.
 - Cancels out year FE.

- Tariff risk, $X_{z,t} \equiv \ln \left(\frac{1 + \tau_{z,NNTR}}{1 + \tau_{z,MFN}} \right)$.

- Product z at HS 6-digit level, balanced panel of 1812 products
Cross-sectional Distribution

Fraction

NNTR Gap (NNTR-MFN)
Identification Challenges

1. Lumpiness
 - Aggregate across time and products

2. Product specific seasonalities.
 - Sector-Month FE.

 - Reference exporter j, RoW (135 countries): Unconditional MFN rates.
 - Reference importer i, EU-12: Unconditional MFN rates to both exporters.
 - Importer-Month-Year FE & Exporter-Month-Year FE
Identification Challenges

1. Lumpiness
 ▶ Aggregate across time and products
Identification Challenges

1. **Lumpiness**
 - Aggregate across time and products

2. **Product specific seasonalities.**
 - Sector-Month FE.
Identification Challenges

1. Lumpiness
 ▶ Aggregate across time and products

2. Product specific seasonalities.
 ▶ Sector-Month FE.

 ▶ Reference exporter j, RoW (135 countries): Unconditional MFN rates.
 ▶ Reference importer i, EU-12: Unconditional MFN rates to both exporters.
 ▶ Importer-Month-Year FE & Exporter-Month-Year FE
Estimation Equation

\[
\ln\left(\frac{v_{i,j,z,t}^{m-2:m}}{v_{i,j,z,t}^{m-7:m-5}} \right) = \sum_{m'} \beta_{m'}^{TPU} \mathbb{1}\{i=US, j=China\} \mathbb{1}\{m=m'\} X_{z,t} \\
+ \sum_{m'} \beta_{m} X_{z,t} \\
+ \gamma_{i,t,m} + \gamma_{j,t,m} + \gamma_{s,m} + \varepsilon_{i,j,z,t,m}
\]

- Anticipation: \(\beta_{m}^{TPU} > 0 \) for months before uncertainty resolution
Baseline Result

See $\hat{\beta}_m$
Magnitude: Certain vs Uncertain Changes

- For median uncertain tariff increase, 31% relative to monthly average
 - Before uncertainty resolution, imports rise 10% (anticipatory elasticity = 0.35)
 - After resolution imports fall 5% (resolution elasticity = -0.2)

- For median certain tariff cut of 3% from NAFTA's phase-outs Khan & Khederlian (19)
 - Before resolution, imports fall 15% (anticipatory elasticity = 5)
 - After resolution imports rise 22.5% (resolution elasticity = -7.5)
Magnitude: Certain vs Uncertain Changes

- For median **uncertain** tariff increase, 31% relative to monthly average
 - Before uncertainty resolution, imports **rise** 10% (**anticipatory** elasticity = 0.35)
 - After resolution imports **fall** 5% (resolution elasticity = -0.2)

- For median **certain** tariff cut of 3% from NAFTA’s phase-outs Khan & Khederlarian (19)
 - Before resolution, imports **fall** 15% (**anticipatory** elasticity = 5)
 - After resolution imports **rise** 22.5% (resolution elasticity = -7.5)
Robustness

- Fixed Effects.

- Growth windows: base window, size of window.

- Prices vs Quantities.

- Alternative dependent variables.
Post-WTO comparison

- Previously, sample limited to 1991-2000, now expand until 2005.

- Compare US-China trade flows previous to WTO Accession vs. all others.

\[
\ln\left(\frac{v_{i,j,z,t}^{m-2:m}}{v_{i,j,z,t}^{m-7:m-5}}\right) = \sum_{m'} \beta_{m'}^{TPU} \mathbb{1}\{i=US, j=China\} \mathbb{1}\{t \in Pre\} \mathbb{1}\{m=m'\} X_{z,t} \\
+ \sum_{m'} \beta_{m'}^{Post} \mathbb{1}\{i=US, j=China\} \mathbb{1}\{m=m'\} X_{z,t} \\
+ \sum_{m'} \beta_{m'} \mathbb{1}\{m=m'\} X_{z,t} \\
+ \gamma_{i,m} + \gamma_{j,m} + \gamma_{s,m} + \varepsilon_{i,j,z,t,m}
\]
Pre-relative to Post-WTO

See β_{Post}
Anticipation & Storability

- Anticipatory effects will be larger for goods that are more storable. Of course, all traded goods are storable to some extent.
Anticipation & Storability

- Anticipatory effects will be larger for goods that are more storable. Of course, all traded goods are storable to some extent.

- Use trade lumpiness of US imports from RoW over 1991-2000 at HS-6 level.

\[
HH_{z,i,t} = \sum_{m=1}^{12} \left(\frac{v_{i,z,t,m}}{\sum v_{i,z,t,m}} \right)^2 \in \left[\frac{1}{12}, 1 \right]
\]
Anticipation & Storability

- Anticipatory effects will be larger for goods that are more storable. Of course, all traded goods are storable to some extent.

- Use trade lumpiness of US imports from RoW over 1991-2000 at HS-6 level.

\[
HH_{z,i,t} = \sum_{m=1}^{12} \left(\frac{v_{i,z,t,m}}{\sum v_{i,z,t,m}} \right)^2 \in [1/12, 1]
\]

- Estimate \(HH_z \) by washing out country-year fixed effects.
Anticipation & Storability

- Anticipatory effects will be larger for goods that are more storable. Of course, all traded goods are storable to some extent.

- Use trade lumpiness of US imports from RoW over 1991-2000 at HS-6 level.

\[HH_{z,i,t} = \sum_{m=1}^{12} \left(\frac{v_{i,z,t,m}}{\sum v_{i,z,t,m}} \right)^2 \in [1/12, 1] \]

- Estimate \(HH_z \) by washing out country-year fixed effects.

- Consider \(1/HH_z \) - the effective number of months w/ shipments
Anticipation & Storability

- Anticipatory effects will be larger for goods that are more storable. Of course, all traded goods are storable to some extent.

- Use trade lumpiness of US imports from RoW over 1991-2000 at HS-6 level.

\[HH_{z, i, t} = \sum_{m=1}^{12} \left(\frac{v_{i, z, t, m}}{\sum v_{i, z, t, m}} \right)^2 \in [1/12, 1] \]

- Estimate \(HH_z \) by washing out country-year fixed effects.

- Consider \(1/HH_z \) - the effective number of months w/ shipments

- Lower \(1/HH_z \) \(\implies \) more storability
\[\ln(\frac{v_{i,j,z,t}^{m-2:m}}{v_{i,j,z,t}^{m-7:m-5}}) = \sum_{m'} \beta_{m'}^{HH} \mathbb{1}\{i=US, j=China\}\mathbb{1}\{m=m'\}[1/HH_z] \times X_{z,t} \\
+ \sum_{m'} \beta_{m'}^{TPU} \mathbb{1}\{i=US, j=China\}\mathbb{1}\{m=m'\} X_{z,t} \\
+ \sum_{m'} \beta_{m'} \mathbb{1}\{m=m'\} X_{s,t} \\
+ \gamma_{i,m} + \gamma_{j,m} + \gamma_{s,m} + \varepsilon_{i,j,z,t,m} \]
Anticipation & Storability
Outline

Empirical Evidence

Model

Model Implied Probability of MFN Status Reversal

Uncertainty vs Expected Tariff Change

Effect on Annual Trade Flows
Model

- Consider (s,S) inventory model (Alessandria, Kaboski, & Midrigan, 2010)

- Continuum of monopolistic importers differentiating and reselling foreign intermediate with stock (s)
Model

- Consider \((s,S)\) inventory model (Alessandria, Kaboski & Midrigan, 2010)

- Continuum of monopolistic importers differentiating and reselling foreign intermediate with stock \((s)\)

- Fixed import cost \((f)\), demand uncertainty \((\sigma_\nu)\) & one-month delivery lag

- Per unit price \(\tau > 1\) possibly stochastic.
Model

▶ Consider \((s,S)\) inventory model (Alessandria, Kaboski & Midrigan, 2010)

▶ Continuum of monopolistic importers differentiating and reselling foreign intermediate with stock \((s)\)

▶ Fixed import cost \((f)\), demand uncertainty \((\sigma_\nu)\) & one-month delivery lag

▶ Per unit price \(\tau > 1\) possibly stochastic.

▶ Holding costs: Interest \((\beta)\) and depreciation \((\delta)\)
Model

- Consider \((s,S)\) inventory model (Alessandria, Kaboski & Midrigan, 2010)

- Continuum of monopolistic importers differentiating and reselling foreign intermediate with stock \((s)\)

- Fixed import cost \((f)\), demand uncertainty \((\sigma_\nu)\) & one-month delivery lag

- Per unit price \(\tau > 1\) possibly stochastic.

- Holding costs: Interest \((\beta)\) and depreciation \((\delta)\)

- Demand faced by the importer is

\[
q_j = e^{\nu_j} p_j^{-\sigma}, \text{ where } \nu_j \sim N(0, \sigma_\nu)
\]
Model: No Trade Policy Shocks

- Importer decides between importing or not importing

\[V(s, \nu; \tau) = \max[V^a(s, \nu; \tau), V^n(s, \nu; \tau)] \]

\[V^a(s, \nu; \tau) = \max_{p, i > 0} q(p, s, \nu)p - \tau i - f + \beta EV(s', \nu'; \tau) \]

\[V^n(s, \nu; \tau) = \max_{p > 0} q(p, s, \nu)p + \beta EV(s', \nu'; \tau) \]

subject to

\[q(p, s, \nu) = \min(e^{\nu} p^{-\sigma}, s) \]

\[s' = \begin{cases} (1 - \delta)[s - q(p, s, \nu) + i] & \text{if import} \\ (1 - \delta)[s - q(p, s, \nu)] & \text{o/w} \end{cases} \]
Stationary Decisions Rules (constant tariff)

Order ←→ Do not order

Demand Shock (ν)

Inventory / Sales$_{ss}$

Pricing	 Calibration
Model: Trade Policy Shocks

- Importer decides between Importing or not importing

\[V_t(s, \nu, \tau) = \max[V^a_t(s, \nu, \tau), V^n_t(s, \nu, \tau)] \]

\[V^a_t(s, \nu, \tau) = \max_{p, i > 0} q(p, s, \nu) p - \tau i - f + \beta E V^i_{t'}(s', \nu', \tau') \]

\[V^n_t(s, \nu, \tau) = \max_{p > 0} q(p, s, \nu) p + \beta E V^i_{t'}(s', \nu', \tau') \]

- Where \(\tau \in \{1, 1 + X_z\} \)

- Let \(\Pi^\tau \) be the transition matrix for \(\tau \)
Model: Trade Policy Uncertainty Shock

- All firms start with $\tau = 1$

- Make transition matrix time specific, Π^τ_t

- Firms anticipate a change in τ in period $m_{res} + 1$ when the uncertainty resolves

\[
\Pi^\tau_t = \begin{cases}
I_{|T|} & \text{if } t \neq m_{res} \\
\tilde{\Pi}^\tau & \text{if } t = m_{res}
\end{cases}, \quad \tilde{\Pi}^\tau = \begin{bmatrix} (1 - \pi) & \pi \\ 0 & 1 \end{bmatrix}
\]
Decisions Rule - Ordering Cutoffs
Decisions Rule - Ordering Cutoffs

![Graph showing the relationship between Demand Shock (\(\nu\)) and Inventory / Sales (\(\text{SS}_{\text{SS}}\)). The graph compares Initial SS and 12 Months before.](image-url)
Decisions Rule - Ordering Cutoffs

![Graph showing demand shock (v) vs. inventory/sales (ss) for different time periods: Initial SS, 12 Months before, and 3 Months before. The graph illustrates the cutoff points for decision making.](image-url)
Decisions Rule - Ordering Cutoffs

![Graph showing demand shock vs. inventory/sales ratio with different time periods: Initial SS, 12 Months before, 3 Months before, and 1 Month before.]
Path of Imports by NTR gap - 10% probability
Path of Inventories by NTR gap - 10% probability
Outline

Empirical Evidence

Model

Model Implied Probability of MFN Status Reversal

Uncertainty vs Expected Tariff Change

Effect on Annual Trade Flows
Measuring Likelihood of MFN Reversal

- Estimate average and time-varying probability of non-renewal, π_t
- Need to match product-level variation in tariff gaps and trade flows
- But, the seasonal is related to industry structure, tariff gap and industry characteristics (storability)
Calibration

- Balanced data panel consists of 1812 products

- Classify products into bins (h) of 4 products by NNTR gap
Measuring Likelihood of MFN Reversal

1. Generate 453 simulations facing tariff hike of X_h with probability π. Calibrate δ_h to match monthly concentration of annual imports in product h.

2. Estimate:

$$\ln\left(\frac{v_{h_m}^{\text{res}} - 2}{v_{h_m}^{\text{res}} - 5}\right) = \beta_{\text{sim}1} X_h + \beta_{\text{sim}2} \delta_h + \epsilon_h$$

3. Iterate over π until $\beta_{\text{sim}1} = \hat{\beta}_{\text{US, CHN}} = 0$.

Average model-implied expected likelihood of reversal: $\hat{\pi} = 6\%$
Measuring Likelihood of MFN Reversal

1. Generate 453 simulations facing tariff hike of X_h with probability π. Calibrate δ_h to match monthly concentration of annual imports in product h.

2. Estimate:

$$\ln\left(\frac{v_{m_{res}-2:m_{res}}^h}{v_{m_{res}-5:m_{res}-7}^h}\right) = \beta_{1}^{sim} X_h + \beta_{2}^{sim} \delta_h + \epsilon_h$$
Measuring Likelihood of MFN Reversal

1. Generate 453 simulations facing tariff hike of X_h with probability π. Plot
 - Calibrate δ_h to match monthly concentration of annual imports in product h.

2. Estimate:
 \[
 \ln\left(\frac{v_{m_{res}-2:m_{res}}^h}{v_{m_{res}-5:m_{res}-7}^h}\right) = \beta_1^{sim} X_h + \beta_2^{sim} \delta_h + \epsilon_h
 \]

3. Iterate over π until $\beta_1^{sim} = \hat{\beta}^{US,CHN} = 0.35$
Measuring Likelihood of MFN Reversal

1. Generate 453 simulations facing tariff hike of X_h with probability π. Calibrate δ_h to match monthly concentration of annual imports in product h.

2. Estimate:

$$\ln\left(\frac{v_{m_{res}-2:m_{res}}^h}{v_{m_{res}-5:m_{res}-7}^h}\right) = \beta_{1}^{sim} X_h + \beta_{2}^{sim} \delta_h + \epsilon_h$$

3. Iterate over π until $\beta_{1}^{sim} = \hat{\beta}^{US,CHN} = 0.35$

\Rightarrow Average model-implied expected likelihood of reversal: $\hat{\pi} = 6\%$
Measuring Likelihood of MFN Reversal: Annual Probabilities

- Redo previous exercise year-by-year to construct annual probability
Measuring Likelihood of MFN Reversal: Annual Probabilities

- Redo previous exercise year-by-year to construct annual probability

 ⇒ Between 1990-2001: \(\hat{p} \in [2.4\%, 11\%] \)

- Compare annual probability to news-based measures of non-renewal
Annual Probabilities of Revoked Access to MFN Rates

![Graph showing annual probabilities of revoked access to MFN rates over years from 1991 to 2000. The graph includes two lines: one for the implied probability of revocation (\(\pi \)) and one for the percentage of news articles (PS, 2016).](image)
Outline

Empirical Evidence

Model

Model Implied Probability of MFN Status Reversal

Uncertainty vs Expected Tariff Change

Effect on Annual Trade Flows
Role of Uncertainty vs. First Moment Shock: Model I

Reconsider uncertainty vs. expected tariff Δ: separate 1st & 2nd moment in model.

1. Generate h simulations facing tariff hike of $\hat{\pi}_X$ with probability π.
2. Estimate:
 $$\ln(v_{hmres} - 2: mres/v_{hmres} - 5: mres - 7) = \beta_{sim1} X_h + \beta_{sim2} \delta_h + \epsilon_h \Rightarrow$$
 Anticipatory response under certainty: $\hat{\beta}_{sim1} = 0$.

\Rightarrow Uncertainty dampens anticipation - “wait and see”.

\Rightarrow Expected trade costs explains around 3/4 of trade response.
Role of Uncertainty vs. First Moment Shock: Model I

Reconsider uncertainty vs. expected tariff Δ: separate 1st & 2nd moment in model.

1. Generate h simulations facing tariff hike of $\hat{\pi}X_h$ with probability $\pi = 1$.

2. Estimate:

$$\ln\left(\frac{v^h_{m_{res}-2:m_{res}}}{v^h_{m_{res}-5:m_{res}-7}}\right) = \beta_1^{sim}X_h + \beta_2^{sim}\delta_h + \varepsilon_h$$

\Rightarrow Anticipatory response under certainty: $\hat{\beta}_1^{sim} = 0$.

\Rightarrow Uncertainty dampens anticipation - “wait and see”.

\Rightarrow Expected trade costs explains around 3/4 of trade response.
Role of Uncertainty vs. First Moment Shock: Model I

Reconsider uncertainty vs. expected tariff Δ: separate 1st & 2nd moment in model.

1. Generate h simulations facing tariff hike of $\hat{\pi}X_h$ with probability $\pi = 1$.

2. Estimate:

$$\ln\left(\frac{v^h_{m_{res}-2:m_{res}}}{v^h_{m_{res}-5:m_{res}-7}}\right) = \beta_{1}^{sim}X_h + \beta_{2}^{sim}\delta_h + \varepsilon_h$$

\Rightarrow Anticipatory response under certainty: $\hat{\beta}_1^{sim} = 0.46$
Role of Uncertainty vs. First Moment Shock: Model I

Reconsider uncertainty vs. expected tariff Δ: separate 1st & 2nd moment in model.

1. Generate h simulations facing tariff hike of $\hat{\pi}X_h$ with probability $\pi = 1$.

2. Estimate:

$$\ln\left(\frac{v_{m_{\text{res}}-2:m_{\text{res}}}}{v_{m_{\text{res}}-5:m_{\text{res}}-7}}\right) = \beta_{1}^{\text{sim}}X_h + \beta_{2}^{\text{sim}}\delta_h + \varepsilon_h$$

\Rightarrow Anticipatory response under certainty: $\hat{\beta}_1^{\text{sim}} = 0.46$

- Uncertainty dampens anticipation - “wait and see”.
- Expected trade costs explains around 3/4 of trade response.
Outline

Empirical Evidence

Model

Model Implied Probability of MFN Status Reversal

Uncertainty vs Expected Tariff Change

Effect on Annual Trade Flows
Effect of Stockpiling on Annual Flows

- Reconsider source of trade dampening effects of TPU (Handley & Limao, 14)

\[
\ln(v_{i,j,z,t}) = \beta \mathbb{1}_{(i,j)=(US,Chn)} \mathbb{1}_{\{t\in Pre\}} X^{HL}_{z,t} + \delta_{i,s,t} + \delta_{j,z,t} + \delta_{i,j,t} + \varepsilon_{i,j,z,t}
\]

- But, stockpiling \Longrightarrow higher holding costs \Longrightarrow lower annual trade

\[
\ln(v_{i,j,z,t}) = \beta \mathbb{1}_{(i,j)=(US,Chn)} \mathbb{1}_{\{t\in Pre\}} X^{HL}_{z,t} + \gamma \ln(HH_{i,j,z,t}) + \delta_{i,s,t} + \delta_{j,z,t} + \delta_{i,j,t} + \varepsilon_{i,j,z,t}
\]

Where

\[
X^{HL}_{z,t} = \left(\frac{1 + \tau^{NNTR}_{z,t}}{1 + \tau^{MFN}_{z,t}} \right)^{-\sigma}
\]
Controlling for Lumpiness

<table>
<thead>
<tr>
<th>Dep Variable $\ln(v_{i,j,z,t})$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1{(i,j)=(US,China)}1{t\in Pre} \times X_{z,t}^{HL}$</td>
<td>0.41***</td>
<td>0.72***</td>
<td>0.20***</td>
<td>0.23***</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.06)</td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Adj R^2</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Note: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Model
Controlling for Lumpiness

<table>
<thead>
<tr>
<th>Dep Variable $\ln(v_{i,j,z,t})$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1{(i,j)={(US,China)}}1{t\in Pre} \times X_{z,t}^{HL}$</td>
<td>0.41***</td>
<td>0.72***</td>
<td>0.20***</td>
<td>0.23***</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.06)</td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
</tbody>
</table>

| Adj R^2 | 0.76 | 0.76 | 0.76 | 0.49 |

| $1\{(i,j)={(US,China)}\}1\{t\in Pre\} \times X_{z,t}^{HL}$ | 0.31*** | 0.48*** | 0.16*** | 0.13*** |
| | (0.05) | (0.02) | (0.03) | (0.03) |

| $\ln(HH_{i,j,z,t})$ | -1.94*** | -1.95*** | -1.94** | -2.65*** |
| | (0.01) | (0.01) | (0.01) | (0.01) |

| Adj R^2 | 0.86 | 0.86 | 0.86 | 0.75 |

| Reduction | 24% | 33% | 20% | 43% |

| Observations | 234294 | 234294 | 234294 | 252582 |

*Note: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Model
Mechanism at work: US and UK

- Trade policy uncertain since Brexit & US election
- Tariffs have been rising in US and China but with more on the horizon
- Observed rising stocks and robust economic growth
Mechanism at work: Brexit
Mechanism at work: UK & Euro Area

UK & Euro Area Inventory to Production

- UK
- EURO Area

Time periods: 2014m1 to 2020m1
Mechanism at work: UK

UK Trade and Output

- Trade
- Mfr IP

Time:
- 2016m1
- 2017m1
- 2018m1
- 2019m1
- 2020m1

Last date: 02/20; Relative to 18Q4; Source: OECD MEI
Mechanism at work: UK

UK Trade and Output

Trade
Mfr IP

Last date: 02/20; Relative to 18Q4; Source: OECD MEI
Mechanism at work: Covid-19

- An uncertain future demand shock will generate similar stockpiling.

\[
q_t = p_t^{-\sigma} e^{\nu_t}
\]

\[
\nu_t = \rho \nu_{t-1} + \alpha_0 \varepsilon_t + \alpha_1 \varepsilon_{t-1}
\]

- Use storability of goods used for infectious diseases (Ventilators, PPE, etc) to estimate country-specific expectations of Covid-spread \((\rho, \alpha_0, \alpha_1)\)

- Alternative real-time monitor of global health & policy response.
Mechanism at Work: Covid-19

Graph showing the growth in product share for Ventilators and Surgical Gloves over a bimonthly period starting in 2019.
Conclusion

- New approach to quantifying TPU leveraging *near-term* TPU using *monthly* data.
 - Bundling with other decisions to get full path of expected tariffs.

- Robust evidence of anticipation to TPU for this episode.

- Model implies low and decreasing probability of revoking MFN status.

- Expected tariff more important than uncertainty in ordering decisions.

- Important for the recent world - aggregate effects?
<table>
<thead>
<tr>
<th>Year</th>
<th>Disapproval Res.</th>
<th>Final Status</th>
<th>Alternate bills</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>None</td>
<td>—</td>
<td>None</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Vetoed by President 3/2</td>
<td>House override vote 3/11 (357-61)</td>
<td>Senate override vote 3/18 (60-38) - veto sustained</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. 2808</td>
<td>Senate amended with text of S. 2808, passed by voice vote, 9/14</td>
<td>H.R. 5318 vetoed by President, 9/28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. 1367</td>
<td>Passed H.R. 2212 in lieu 7/18 (55-44)</td>
<td>House override vote 9/30 (345-74)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H.R. 3584</td>
<td>Senate override vote 10/1 (59-40) - veto sustained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>H.J.Res. 208</td>
<td>House rejected 6/8 (103-318)</td>
<td>H.R. 1835</td>
<td>No action</td>
</tr>
<tr>
<td></td>
<td>S. 806</td>
<td></td>
<td>S. 806</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>H.J.Res. 373</td>
<td>House rejected 8/9 (75-356)</td>
<td>H.R. 4590</td>
<td>Amended to impose no conditions, then passed House 6/8 (280-152)</td>
</tr>
<tr>
<td></td>
<td>S.J.Res. 37</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.J.Res. 56</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>H.J.Res. 79</td>
<td>House rejected 6/24 (173-259)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>S.J.Res. 31</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>S.Amdt. 890*</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Senate rejected 7/16 (22-77)</td>
<td>*(S.Amdt. 890 expressed the sense of the Senate that China’s MFN status should be revoked. It was offered as non-binding language to S. 955, the FY1998 Foreign Operations Appropriations bill.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>H.J.Res. 121</td>
<td>House rejected 7/22 (166-264)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1999</td>
<td>H.J.Res. 57</td>
<td>House rejected 7/27 (170-260)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>S.J.Res. 27</td>
<td>Senate rejected motion to discharge committee 7/20 (12-87)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2000</td>
<td>H.J.Res. 103</td>
<td>House rejected 7/18 (147-281)</td>
<td>H.R. 4444</td>
<td>House passed 5/24 (237-197)</td>
</tr>
<tr>
<td></td>
<td>S. 2277</td>
<td>Senate passed H.R. 4444 on 9/19 (85-13)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Note: Spread percentiles are calculated each year over NAICS Industries. Gaps are means over HS-8 Product lines from Pierce & Schott (2016).
Note: NNTR Gaps are means over HS-8 Product lines from Pierce & Schott (2016). The HH indexes are calculated as the mean HH index of the US imports from China in the second year a product line appears in the sample.
Note: The HH indexes are calculated as the mean HH index of the US imports from China in the second year a product line appears in the sample.
Stationary Pricing Decision

Figure 3: Optimal Price Functions

- Import
- Do not import
- Excess inventories

(price vs. beginning-of-period inventories (relative to mean sales))
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.97</td>
<td>St. Louis Fed</td>
</tr>
<tr>
<td>σ</td>
<td>4</td>
<td>Literature</td>
</tr>
<tr>
<td>f</td>
<td>0.095</td>
<td>Match HH index</td>
</tr>
<tr>
<td>μ</td>
<td>1 pd</td>
<td>AKM</td>
</tr>
<tr>
<td>σ_ν</td>
<td>0.8</td>
<td>AKM</td>
</tr>
<tr>
<td>δ</td>
<td>30%</td>
<td>AKM</td>
</tr>
</tbody>
</table>

Moments

HH Index	0.32	75th pctile in data
Median Inventory-Sales	3.64 months	
Mean(Fixed Cost/Revenue)	6.8%	
Note: Crosses are point estimates from the baseline estimating equation. Blue are estimates for $\hat{\beta}_TPU$, red are estimates $\hat{\beta}_m$. Lines is the applied locally weighted scatterplot smoother. Dashed lines are the 90% confidence interval. Standard errors are clustered at HS-6 product level.
Note: Crosses are point estimates from the baseline estimating equation. Blue are estimates for $\hat{\beta}_m^{TPU}$, red are estimates $\hat{\beta}_m^{Post}$. Lines is the applied locally weighted scatterplot smoother. Dashed lines are the 90% confidence interval. Standard errors are clustered at HS-6 product level.
Annual Probabilities

<table>
<thead>
<tr>
<th>Year</th>
<th>(\max_m { \hat{\beta}_{m}^{TPU} })</th>
<th>(\hat{\pi})</th>
<th>(\hat{\beta}_{m=9}^{TPU})</th>
<th>(m_{max})</th>
<th>Peak-to-Trough</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>0.61***</td>
<td>10.4%</td>
<td>0.52***</td>
<td>October</td>
<td>1.02***</td>
</tr>
<tr>
<td>1992</td>
<td>0.41***</td>
<td>7.0%</td>
<td>0.41***</td>
<td>September</td>
<td>0.57***</td>
</tr>
<tr>
<td>1993</td>
<td>0.51**</td>
<td>8.7%</td>
<td>0.47***</td>
<td>August</td>
<td>0.89***</td>
</tr>
<tr>
<td>1994</td>
<td>0.65***</td>
<td>11%</td>
<td>0.45***</td>
<td>October</td>
<td>0.88***</td>
</tr>
<tr>
<td>1995</td>
<td>0.46***</td>
<td>7.9%</td>
<td>0.46***</td>
<td>September</td>
<td>0.82***</td>
</tr>
<tr>
<td>1996</td>
<td>0.50***</td>
<td>8.6%</td>
<td>0.47***</td>
<td>August</td>
<td>0.99***</td>
</tr>
<tr>
<td>1997</td>
<td>0.58***</td>
<td>9.9%</td>
<td>0.43***</td>
<td>August</td>
<td>0.83***</td>
</tr>
<tr>
<td>1998</td>
<td>0.26**</td>
<td>5.0%</td>
<td>0.23**</td>
<td>June</td>
<td>0.64***</td>
</tr>
<tr>
<td>1999</td>
<td>0.21***</td>
<td>3.6%</td>
<td>0.12</td>
<td>August</td>
<td>0.33***</td>
</tr>
<tr>
<td>2000</td>
<td>0.14*</td>
<td>2.4%</td>
<td>0.12</td>
<td>October</td>
<td>0.44***</td>
</tr>
</tbody>
</table>

Average

<table>
<thead>
<tr>
<th>Year</th>
<th>(\max_m { \hat{\beta}_{m}^{TPU} })</th>
<th>(\hat{\pi})</th>
<th>(\hat{\beta}_{m=9}^{TPU})</th>
<th>(m_{max})</th>
<th>Peak-to-Trough</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991 - 2000</td>
<td>0.43***</td>
<td>7.45%</td>
<td>0.37***</td>
<td>8.6</td>
<td>0.74***</td>
</tr>
</tbody>
</table>

Pooled Sample (Baseline)

<table>
<thead>
<tr>
<th>Year</th>
<th>(\max_m { \hat{\beta}_{m}^{TPU} })</th>
<th>(\hat{\pi})</th>
<th>(\hat{\beta}_{m=9}^{TPU})</th>
<th>(m_{max})</th>
<th>Peak-to-Trough</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991 - 2000</td>
<td>0.35***</td>
<td>6%</td>
<td>0.35***</td>
<td>September</td>
<td>0.58***</td>
</tr>
</tbody>
</table>
Controlling for Lumpiness: Model

<table>
<thead>
<tr>
<th></th>
<th>$\ln(\tilde{HH}_b)$</th>
<th>$\ln(\tilde{v}_b)$</th>
<th>$\ln(\tilde{\nu}_b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{X}_b^{HL}</td>
<td>-0.78***</td>
<td>3.03***</td>
<td>0.23***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>$\ln(\tilde{HH}_b)$</td>
<td></td>
<td></td>
<td>-3.57***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.08)</td>
</tr>
</tbody>
</table>

Reduction in Effect

92%

Observations

453 453 453

*Note: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

[Back](#)