"Multinationals, Markets, and Markups" Keller and Yeaple

Discussion by Ariel Burstein

UCLA

July 2020

Summary

- Multinational firms: large, market power, rich information on sales and employment in multiple countries
- Simple theory of markups and entry across host countries to motivate empirics
- New, interesting empirical facts on US multinationals
 - consistent with many qualitative implications of theory

Summary

- Multinational firms: large, market power, rich information on sales and employment in multiple countries
- Simple theory of markups and entry across host countries to motivate empirics
- New, interesting empirical facts on US multinationals
 - consistent with many qualitative implications of theory
- My discussion:
 - relation with ER pass-through literature
 - dealing with markup unobservability
 - are markups lower in high income countries?
 - other models consistent with entry facts

Markups across firms and host countries

- Variable markup model with linear demand (Melitz-Ottaviano)
- In practice, output of MN firms sold across markets with different demand. Restrict to sales in host country?
- Markup of firm f with marginal cost z_{fct} in host country c

$$\mu_{fct} = \frac{1}{2} \left(\frac{p_{ct}^{max}}{z_{fct}} + 1 \right)$$

Markups across firms and host countries

- Variable markup model with linear demand (Melitz-Ottaviano)
- In practice, output of MN firms sold across markets with different demand. Restrict to sales in host country?
- Markup of firm f with marginal cost z_{fct} in host country c

$$\mu_{fct} = \frac{1}{2} \left(\frac{p_{ct}^{max}}{z_{fct}} + 1 \right)$$

Up to a first order

$$\log\left(\mu_{f'ct}\right) - \log\left(\mu_{fct}\right) = -\left(1 - \frac{1}{2\mu_{cft}}\right) \left[\log\left(z_{f'ct}\right) - \log\left(z_{fct}\right)\right]$$

- 1. lower cost (or larger size) firms charge higher markups
- if markups are higher in country c than in c', then markup differences are larger in c

Connection to exchange-rate pass-through

$$\log\left(\mu_{f'ct}\right) - \log\left(\mu_{fct}\right) = -\left(1 - \frac{1}{2\mu_{cft}}\right) \left[\log\left(z_{f'ct}\right) - \log\left(z_{fct}\right)\right]$$

- Range of demand models consistent with 1. and 2. (Arkolakis-Morlacco, Burstein-Gopinath)
- Analogous relation studied in pass-through literature
 - ► compare △ markup over time (rather than between firms) between exporters (rather than across countries)
 - ► extensive evidence that ∆ markup larger for high markup (larger) exporters
 - e.g. Berman-Martin-Mayer, Amiti-Itskhoki-Konings

Descriptive representation of how US MP affiliate markups vary across countries c and firms f

 $\mu_{fct} = \beta_Y GDPW_{ct} + \beta_F PS_{ft} + \lambda GDPW_{ct} \times PS_{ft} + \varepsilon_{fct} \quad (1)$

GDD per worker interesting, but theory is silent

Concentration? Entry barriers?

Descriptive representation of how US MP affiliate markups vary across countries c and firms f

 $\mu_{fct} = \beta_Y GDPW_{ct} + \beta_F PS_{ft} + \lambda GDPW_{ct} \times PS_{ft} + \varepsilon_{fct} \quad (1)$

GDD per worker interesting, but theory is silent

- Concentration? Entry barriers?
- By cost minimization

$$\mu_{fct} = \log\left(\frac{S_{fct}}{W_{fct}L_{fct}}\right) + \log\left(\theta_{fct}\right)$$
(2)

• θ_{fct} is output elasticity with respect to flexible input L

- Authors use total affiliate labor
 - fixed overhead costs
 - materials vs labor
- Standard approach: estimate θ_{fct} , infer μ_{fct}

Assume output elasticity:

$$\log(\theta_{fct}) = \theta_{i(f)t} + \alpha_0 \log(K_{fct}/L_{fct}) + \iota_{fct}$$
(3)

Plugging (2) in (3)

$$\mu_{fct} = \log\left(\frac{S_{fct}}{W_{fct}L_{fct}}\right) + \theta_{i(f)t} + \alpha_0 \log\left(K_{fct}/L_{fct}\right) + \iota_{fct}$$

Assume output elasticity:

$$\log(\theta_{fct}) = \theta_{i(f)t} + \alpha_0 \log(K_{fct}/L_{fct}) + \iota_{fct}$$
(3)

Plugging (2) in (3)

$$\mu_{fct} = \log\left(\frac{S_{fct}}{W_{fct}L_{fct}}\right) + \theta_{i(f)t} + \alpha_0 \log\left(K_{fct}/L_{fct}\right) + \iota_{fct}$$

Combining with (1)

$$\log\left(\frac{S_{fct}}{W_{fct}L_{fct}}\right) = \beta_Y GDPW_{ct} + \beta_F PS_{ft} + \lambda GDPW_{ct} \times PS_{ft}$$
$$-\theta_{i(f)t} - \alpha_0 \log\left(K_{fct}/L_{fct}\right) + \varepsilon_{fct} - \iota_{fct}$$
instrument K_{fct}/L_{fct} using parent K_{ft}/L_{ft} and K_{ct}

• Identification of β and λ without measuring markups!

- When can we identify the impact of any variable (e.g. GDPW_{ct}) on markups when we can only measure one of the components of markups?
- Variable that we are interested in cannot impact markups through unmeasurable components of markups

- When can we identify the impact of any variable (e.g. GDPW_{ct}) on markups when we can only measure one of the components of markups?
- Variable that we are interested in cannot impact markups through unmeasurable components of markups
- e.g. suppose that θ_{fct} depends on $GDPW_{ct}$

 $\log(\theta_{fct}) = \theta_{i(f)t} + \alpha_0 \log(K_{fct}/L_{fct}) + \chi GDPW_{ct} + \iota_{fct}$

• produce higher quality for richer countries, quality affects θ_{fct}

• do not identify
$$\beta_Y$$
, but $\beta_Y - \chi$

$$\log\left(\frac{S_{fct}}{W_{fct}L_{fct}}\right) = (\beta_{Y} - \chi) GDPW_{ct} + \beta_{F}PS_{ft} + \lambda GDPW_{ct} \times PS_{ft}$$
$$-\theta_{i(f)t} - \alpha_{0}\log(K_{fct}/L_{fct}) + \varepsilon_{fct} - \iota_{fct}$$

More standard endogeneity

$$\log\left(\frac{S_{fct}}{W_{fct}L_{fct}}\right) = \beta_Y GDPW_{ct} + \beta_F PS_{ft} + \lambda GDPW_{ct} \times PS_{ft}$$

$$- heta_{i(f)t} - lpha_0 \log(K_{fct}/L_{fct}) + \varepsilon_{fct} - \iota_{fct}$$

Correlation of errors across countries (and time)

- $\varepsilon_{fct} \iota_{fct}$ may be correlated across c (including US) within f
- $\varepsilon_{fct} \iota_{fct}$ correlated with f parent variables
- could include firm×time FE, instrument using lagged variables, requires errors uncorrelated over time

More standard endogeneity

$$\log\left(\frac{S_{fct}}{W_{fct}L_{fct}}\right) = \beta_Y GDPW_{ct} + \beta_F PS_{ft} + \lambda GDPW_{ct} \times PS_{ft}$$

$$- heta_{i(f)t} - lpha_0 \log(K_{fct}/L_{fct}) + \varepsilon_{fct} - \iota_{fct}$$

Correlation of errors across countries (and time)

- $\varepsilon_{fct} \iota_{fct}$ may be correlated across c (including US) within f
- $\varepsilon_{fct} \iota_{fct}$ correlated with f parent variables
- could include firm×time FE, instrument using lagged variables, requires errors uncorrelated over time

Endogenous entry

- firm may know it has a high ε_{fct} and choose to enter there
- use model to correct for endogenous selection

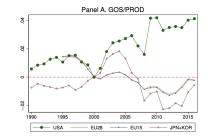
Are higher income countries more competitive?

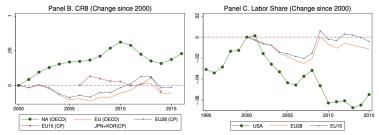
- Empirical results imply, through lens of model, that higher income per worker countries have lower markups
- Cross-country variation in aggregate markups does not reveal clear relation to GDP, e.g. Eekhout-De-Loecker (2020)

	Markup				Μ	arkup
	2016	$change^*$			2016	change
Global aggregate	1.61	+0.46				
Europe	1.63	+0.62	As	ia	1.45	+0.3
1 Denmark	2.84	+1.88	1	South Korea	1.48	+0.51
2 Switzerland	2.72	+1.63	2	Hong Kong	1.65	+0.41
3 Italy	2.54	+1.54	3	India	1.32	+0.34
4 Belgium	2.06	+1.03	4	Indonesia	1.53	+0.26
5 Greece	1.80	+0.85	5	Japan	1.33	+0.26
6 United Kingdom	1.68	+0.67	6	Thailand	1.44	+0.21
7 Ireland	1.82	+0.66	7	Malaysia	1.33	+0.03
8 Norway	1.60	+0.60	8	Pakistan	1.17	-0.01
9 France	1.51	+0.53	9	Taiwan	1.23	-0.15
10 Netherlands	1.46	+0.42	10	Turkey	1.16	-0.32
11 Austria	1.32	+0.41	11	China	1.40	-0.49
12 Finland	1.36	+0.39	12	Philippines	1.50	-0.77
13 Sweden	1.31	+0.37	Oc	eania	1.55	+0.4
16 Germany	1.35	+0.30	1	Australia	1.57	+0.46
13 Spain	1.34	+0.24	2	New Zealand	1.35	+0.38
16 Portugal	1.19	-0.09	So	uth America	1.59	+0.0
North America	1.81	+0.57	1	Argentina	1.45	+0.64
1 United States	1.84	+0.59	2	Colombia	1.56	+0.42
2 Canada	1.53	+0.49	3	Brazil	1.61	-0.01
3 Mexico	1.55	+0.21	3	Peru	1.64	-0.04

Europe vs US, differences in market power?

Covarrubias-Gutiérrez-Philippon (2019)





Multinational firm entry across markets

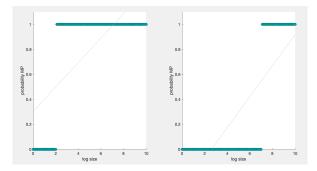
Probability that US multinational firm f (with parent firm sales PS_f) enters in country c

$$Prob_{fc} = \alpha_c + \beta_c PS_f + \varepsilon_{fc}$$

- Estimate imposing $\beta_c = \beta_0 + \beta_1 GDPW_c$
- Key results:
 - $\beta_c > 0$: large firms more likely to do MP
 - ► $\beta_1 > 0$: large firms disproportionately more likely to do MP in high $GDPW_c$ countries
- Linear demand model with endogenous entry
 β₁ > 0 if large countries have higher GDPW_c
- Alternative models that can generate this fact?

Multinational firm entry across markets

- Alternative 1: CES demand and fixed MP costs
 - even though firm productivity and aggregate price index are log additive, slope of linear regression changes with productivity cutoff, e.g. single fixed cost, slope rises when cutoff rises



- Alternative 2: Fajgelbaum-Grossman-Helpman
 - Iow productivity firms produce lower quality goods, catered to lower income countries