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Intertemporal Distortions

Capital taxes are used throughout the world
r < g frequently for government bonds with shortage of these safe/liquid
assets
Low rates of return in years following fiscal shocks

I Reinhart & Sbrancia (2015) (financial repression)
I Berndt, Lustig, & Yeltekin (2012)



Are capital taxes and low interest rates on debt optimal?

Not in a Ramsey problem with a neoclassical growth economy.
I with distortionary taxes on labor and capital.

Not optimal to distort the intertemporal margin
I Long run: neither capital tax nor low rates on government debt (Judd, 1985,
Chamley, 1986). Rely on labor alone in the long run.

I Fiscal shocks: absorbed by quick devaluation and immediate low return (Lucas
- Stokey, 1983, and Siu, 2004,...);

I or, by future taxes, smoothed by debt (Barro, 1979, and AMSS, 2002).

Our view: optimal policy with imperfect substitutes between public and
private liquidity

I Idiosyncratic investment risks + liquidity frictions in financing investment
I partially liquid private claims;
I fully liquid government debt (but costly in terms of distortionary taxes)



Optimal financial distortions: Results

Two-period model - if public liquidity is insufficient, we have a trade-off
I want to subsidize investment which is underprovided
I but credit frictions make the capital supply inelastic; optimal to tax it when
gov budget is tight

Infinite-horizon model - provide as much public liquidity as possible:
I either attain unconstrained solution (sufficient self-financing), standard
Ramsey, zero capital taxes

I or, get to the “top of the Laffer curve:”
F shortage of safe/liquid assets remains
F low interest rates
F positive capital taxes

Our model can be related to broader financial distortion policies.
I capital controls / banking regulation / capital requirement / collateralized
borrowing requirements...



Part 1: The two-period model

Periods 1 and 2
A continuum of families, with preferences:

2
∑
t=1

β
t−1 [u(ct)−v ((1−χ)`t)] (1)

I only in period 1: workers (population 1−χ) and entrepreneurs (population χ)
I reunite at the end of period 1 and period 2

Firms (producing goods only)
Government (with legacy debt B0)



An entrepreneur of a family in period 1

An entrepreneur with (exogenous) government debt be
0 = Be

0/χ finances ke
1

ke
1 ≤ be

0 +q1se
1 (2)

...financial claims se
1 sold at price q1; se

1 less than φ1 units of investment ke
1 :

se
1 ≤ φ1ke

1 (3)



A worker of a family in period 1

Each worker begins with government bonds bw
0 = Bw

0 /(1−χ)
I works and earns w1`1;
I buys government bonds and financial claims.

At the end of period 1:
I workers rejoin entrepreneurs and pool assets together

c1 +B1 + χ(ke
1 −q1se

1 ) + (1−χ)q1sw
1 = (1− τ

`
1)w1`1(1−χ) +B0 (4)

I government bonds B1 = (1−χ)bw
1 ; capital K1 = χ(ke

1 − se
1 ) + (1−χ)sw

1



The family in period 2

Capital return r2 and wage rate w2

The budget constraint:

c2 = (1− τ
k
2 )r2K1 + (1− τ

`
2)w2(1−χ)`2 +R1B1 (5)

The HH maximizes utility in (1)
- budget constraints in period 1 and period 2
- financing constraints in period 1



Firms

Goods produced by competitive firms
Period 1: w1 = A

Y1 = AL1
L1 = (1−χ)`1: hours from workers
Period 2: w2 = FL(K1,L2), r2 = FK (K1,L2), and

Y2 = F (K1,L2)

L2 = (1−χ)`2: hours from workers



Government

Benevolent (same objective as households)
Exogenous spending G1 and G2

I Taxes labor at rate τ`1 and τ`2 and capital at rate τk
2

I Issues bonds B1 in period 1 (interest rate rate R1)
Period 1:

G1 +R0B0 = B1 + τ
`
1w1L1

Period 2:
G2 +R1B1 = τ

k
2 r2K1 + τ

`
2w2L2

Solution strategy:
I Compute optimal competitive-equilibrium allocation (primal approach);
I back out taxes and prices.



To be or not to be (financing constrained)?

Ψ1: shadow cost of government revenue; quasi-linear utility example



Part 2: The ∞-horizon model

Idiosyncratic investment risks repeated many times
Financing constraints tied to endogenous asset liquidity and price

I (φt , qt) pairs determined through directed search
I avoid kinks but does not matter for the fundamentals
I other good co-movement properties between φt and qt ; see Cui & Radde
(2016, 2019) and Cui (2016)

The planner chooses {Ct , Lt , Kt , Bt , φt} for t ≥ 0 given K−1 and B−1
I deterministic model: as if with (aggregate) state-contingent bonds

New results (compared to the 2-period model)
I low rates and capital tax
I may not be able to provide enough liquidity



The “best” competitive equilibrium

Private FOC for bonds:

1 =
βu′(Ct+1)

u′(Ct)
Rt+1 (1+ χρt+1)

I u′(Ct)χρt > 0 measures tightness of financing constraint
I reflects the liquidity service provided by government debt.

Note: asset price qt and tightness ρt are functions of asset liquidity φt

Public FOC for bonds:

Ψt+1 = (1+ χρt+1)Ψt + χγt+1

Ψt : shadow cost of government revenue (measures gov’t budget tightness)
γt : shadow cost of financing constraints



Long-run result

Proposition
If the economy converges to a steady state, there are two possibilities.

1. Slack financing constraints in the limit, capital tax τk = 0, and the interest rate
R = 1/β . Tightness Ψt and converges to finite constant.

2. Financing constraints bind in the limit, budget tightness Ψt → ∞, R < 1/β ,
and τk 6= 0. Sufficient conditions for τk > 0 :
(a). u(c) = c; (b). β close to 1

The key FOC for bonds shows Ψt is non-decreasing:

Ψt+1 = (1+ χρt+1)Ψt + χγt+1

The growth rate of Ψt reflects supply of government debt. Make budget
tighter and tighter; when to stop?

I liquidity is satiated
I top of the Laffer curve with low rate and capital tax



Conclusion

Financial distortions can be optimal
I A new trade-off: the tightness of government budget and the tightness of
financing constraint

If provision of public liquidity cannot undo financing constraint, then it
provides a reason to tax capital and run low interest rate:

I a wedge between returns
I distorting the inter-temporal margin (different from secular stagnation)
I endogenous capital price important: bond in the utility / capital adjustment
cost is not enough

... more to come with the ∞-horizon model
I response to adverse MIT shocks: more debt issuance in the short run
I aggregate risks can generate a finite Ψ and low rates: government debt not
aggregate-state contingent as in AMSS (2002)



Thank You!
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Our paper: why government will distort the inter-temporal margin with
capital taxes/subsidies

I government debt is chosen not to fully insure idiosyncratic risks



Eqm conditions

Labor supply: for t = 1,2

(1− τ
`
t )wtu′(Ct) = v ′(Lt) (6)

Demand for bonds
1
R1

=
βu′(C2)

u′(C1)
(7)

Demand for claims and supply for claims:

q1 =
βu′(C2)

u′(C1)
(1− τ

k
2 )r2 (8)

q1 = max

{
1, K1−Be

0
φ1K1

}
(9)

using (1−φ1q1)K1 ≤ Be
0

Feasibility
AL1 = C1 +K1 +G1 (10)

F (K1,L2) = C2 +G2 (11)



The primal approach

The planner maximizes welfare (1), subj. to
I feasibility constraints (10) and (11);
I implementability constraint (financing-constrained adjusted)

Maximum level of investment when q1 = 1 (slack financing constraint)

K ∗ :=
Be
0

1−φ1

The implementability constraint:

2
∑
t=1

β
t−1[u′(Ct)Ct −v ′(Lt)Lt ]−u′(C1)B0

=

{
0 if K1 ≤ K ∗(

1
φ1
−1
)
u′(C1)(K1−K ∗) if K1 > K ∗

What happen when the asset market is fully liquid (φ1 = 1)?



An analytical case

Production: F (K1,L2) = AKα
1 L

1−α

2 + (1−δ )K1. Preferences (no interest rate
effect)

u(c, `) = c− µ`1+ν

1+ ν

Ψ1: multiplier w.r.t. the implementability constraint; measures legacy debt
B0 (or, PV of gov spending)
The planner’s FOC:

β

[
Aα

(
K1
L2

)α−1
+1−δ

]
= 1+

{
0 if K1 ≤ K ∗
Ψ1(φ

−1
1 −1)

1+Ψ1
if K1 > K ∗

Recall the HH FOC:

β (1− τ
2
k )

[
Aα

(
K1
L2

)α−1
+1−δ

]
= q1



Government financing and individual financing constraint

If financing constraint is slack, τ2k = 0, independent of Ψ1 (e.g., φ1 = 1)
I private cost: 1; private rewards β r2
I social cost: 1+ Ψ1; the social reward: β r2(1+ Ψ1)
I reward / cost are the same (only related to technologies)

If financing constraint is binding, τ2k 6= 0, interacting with Ψ1
I the private return needs to be adjusted by financing constraint

Subsidy initially when government financing is flexible, but tax later (the
quasi-rent)

I a higher q1 tightens the implementability constraint, raising Ψ1
I thus, using more distortionary taxes, affecting investment and q1 again



To be (financing constrained) or not to be

β = 0.96, φ = 0.5, δ = 0.95, and A = 1



Households

Preferences:
∞

∑
t=0

β
t [u(ct)−v((1−χ)`t)] (12)

∀t, liquidity held by entrepreneurs be
t = χBt

The financing constraint

(1−φtqt)ke
t ≤ Rtbt−1 + φtqt(1−δ )kt−1

The budget constraint

ct +bt +qS
t kt = (1− τ

`
t )wt(1−χ)`t +Rtbt−1 + (1− τ

k
t )rtkt−1

+
[
qS

t −χφt
(
qS

t −qt
)]

(1−δ )kt−1

+
[
qS

t −1−φt
(
qS

t −qt
)]

χke
t

qS
t ≥ qt because of financial intermediation



Goods and Financial Firms (optional)

wt and rt are marginal products of labor and capital
Competitive financial intermediaries: cost is η(φt) per unit of capital
intermediated

qS
t −qt = η(φt) (13)

I Search-and-matching to link φt and qt
I η(φt) is increasing and convex w.r.t. φt

Think about paying cost for each asset orders processed
I φt is also the probability to fill sell orders



Directed search / competitive search (optional)

An entrepreneurs brings back: ke
t − se

t = (1−φt)ke
t

Therefore, the financing constraint (2) becomes

1−φtqt
1−φt︸ ︷︷ ︸

replacement cost

(ke
t − se

t )≤ Be
0/χ

Replacement cost is similar to down-payment
Financial intermediaries open sub-markets (φt ,qt); search is directed with
price posting

min
(φt ,qt )

1−φtqt
1−φt

s.t. the zero-profit (13).
The solution is

qt = 1+ (1−φt)φtη
′(φt)



Permanent fiscal expansion

˙u(c, `) = c1−σ−1
1−σ

− µ`1+ν

1+ν
, β = 0.96, δ = 0.1, α = 1/3, δ = 0.1, ν = 1/1.5,

η(φ) = η0φ2, µ = 1, σ = 0.2.

Table: Steady state of the Ramsey allocation for different government expenditures

G/Y 29.93% 33.33% 34.44% 34.88%
Capital: K 100% 91.74% 87.00% 84.57%

Capital tax: τk 0% 2.46% 4.04% 4.90%
Labor tax: τ` 52% 51.23% 50.57% 49.99%
Interest rate: 4.17% 3.22% 2.37% 1.51%

Debt-to-output: B/Y 117.69% 56.13% 32.80% 14.97%
Asset Liquidity φ 0 0.1792 0.2465 0.2988



Permanent worsening financial conditions

Table: The long-run economies with different financial intermediation

η0 = 0.5 η0 = 0.6 η0 = 0.7 η0 = 0.8
Capital: K 100% 97.03% 93.36% 87.31%

Capital tax: τk 2.46% 3.45% 4.78% 7.03%
Labor tax: τ` 51.23% 50.94% 50.53% 49.37%
Interest rate: 3.22% 2.95% 2.60% 1.64%

Debt-to-output: B/Y 56.13% 53.03% 48.47% 34.52%
Asset Liquidity φ 0.1792 0.1851 0.1947 0.2310



Inter-temporal substitution (optional)

Table: The long-run economies with different intertemporal substitution

σ = 0 σ = 0.2 σ = 0.4 σ = 0.8
Capital: K 100% 99.31% 99.90% 89.64%

Capital tax: τk 0% 0% 0% 0%
Labor tax: τ` 40.00% 52% 64% 88%
Interest rate: 4.17% 4.17% 4.17% 4.17%

Debt-to-output: B/Y 117.66% 117.69% 117.70% 117.36%
G-to-output: G/Y 21.90% 29.93% 37.98% 54.07%
Asset Liquidity φ 0 0 0 0
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