# A Ramsey Theory of Financial Distortions

Wei Cui (UCL) Marco Bassetto (Minneapolis Fed)<sup>1</sup>

NBER SI, July, 2020

<sup>&</sup>lt;sup>1</sup>This paper reflects the views of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

### Intertemporal Distortions

- Capital taxes are used throughout the world
- $\bullet$   $\it r < g$  frequently for government bonds with shortage of these safe/liquid assets
- Low rates of return in years following fiscal shocks
  - ► Reinhart & Sbrancia (2015) (financial repression)
  - Berndt, Lustig, & Yeltekin (2012)

### Are capital taxes and low interest rates on debt optimal?

- Not in a Ramsey problem with a neoclassical growth economy.
  - with distortionary taxes on labor and capital.
- Not optimal to distort the intertemporal margin
  - Long run: neither capital tax nor low rates on government debt (Judd, 1985, Chamley, 1986). Rely on labor alone in the long run.
  - Fiscal shocks: absorbed by quick devaluation and immediate low return (Lucas Stokey, 1983, and Siu, 2004,...);
  - or, by future taxes, smoothed by debt (Barro, 1979, and AMSS, 2002).
- Our view: optimal policy with imperfect substitutes between public and private liquidity
  - ► Idiosyncratic investment risks + liquidity frictions in financing investment
  - partially liquid private claims;
  - fully liquid government debt (but costly in terms of distortionary taxes)

### Optimal financial distortions: Results

- Two-period model if public liquidity is insufficient, we have a trade-off
  - want to subsidize investment which is underprovided
  - but credit frictions make the capital supply inelastic; optimal to tax it when gov budget is tight
- Infinite-horizon model provide as much public liquidity as possible:
  - either attain unconstrained solution (sufficient self-financing), standard Ramsey, zero capital taxes
  - or, get to the "top of the Laffer curve:"
    - \* shortage of safe/liquid assets remains
    - ★ low interest rates
    - ★ positive capital taxes
- Our model can be related to broader financial distortion policies.
  - capital controls / banking regulation / capital requirement / collateralized borrowing requirements...

### Part 1: The two-period model

- Periods 1 and 2
- A continuum of families, with preferences:

$$\sum_{t=1}^{2} \beta^{t-1} \left[ u(c_t) - v((1-\chi)\ell_t) \right] \tag{1}$$

- lacktriangle only in period 1: workers (population  $1-\chi$ ) and entrepreneurs (population  $\chi$ )
- reunite at the end of period 1 and period 2
- Firms (producing goods only)
- Government (with legacy debt B<sub>0</sub>)

# An entrepreneur of a family in period 1

 $\bullet$  An entrepreneur with (exogenous) government debt  $b_0^e=B_0^e/\chi$  finances  $k_1^e$ 

$$k_1^e \le b_0^e + q_1 s_1^e \tag{2}$$

• ...financial claims  $s_1^e$  sold at price  $q_1$ ;  $s_1^e$  less than  $\phi_1$  units of investment  $k_1^e$ :

$$s_1^e \le \phi_1 k_1^e \tag{3}$$

# A worker of a family in period 1

- ullet Each worker begins with government bonds  $b_0^w = B_0^w/(1-\chi)$ 
  - works and earns  $w_1\ell_1$ ;
  - buys government bonds and financial claims.
- At the end of period 1:
  - workers rejoin entrepreneurs and pool assets together

$$c_1 + B_1 + \chi(k_1^e - q_1 s_1^e) + (1 - \chi)q_1 s_1^w = (1 - \tau_1^{\ell})w_1 \ell_1(1 - \chi) + B_0$$
 (4)

• government bonds  $B_1=(1-\chi)b_1^w$ ; capital  $K_1=\chi(k_1^e-s_1^e)+(1-\chi)s_1^w$ 



# The family in period 2

- Capital return  $r_2$  and wage rate  $w_2$
- The budget constraint:

$$c_2 = (1 - \tau_2^k) r_2 K_1 + (1 - \tau_2^\ell) w_2 (1 - \chi) \ell_2 + R_1 B_1$$
 (5)

- The HH maximizes utility in (1)
  - budget constraints in period 1 and period 2
  - financing constraints in period  $\boldsymbol{1}$

### **Firms**

- Goods produced by competitive firms
- Period 1:  $w_1 = A$

$$Y_1 = AL_1$$

 $L_1 = (1 - \chi)\ell_1$ : hours from workers

• Period 2:  $w_2 = F_L(K_1, L_2)$ ,  $r_2 = F_K(K_1, L_2)$ , and

$$Y_2 = F(K_1, L_2)$$

 $L_2 = (1 - \chi)\ell_2$ : hours from workers

#### Government

- Benevolent (same objective as households)
- Exogenous spending  $G_1$  and  $G_2$ 
  - ullet Taxes labor at rate  $au_1^\ell$  and  $au_2^\ell$  and capital at rate  $au_2^k$
  - ▶ Issues bonds  $B_1$  in period 1 (interest rate rate  $R_1$ )
- Period 1:

$$G_1 + R_0 B_0 = B_1 + \tau_1^{\ell} w_1 L_1$$

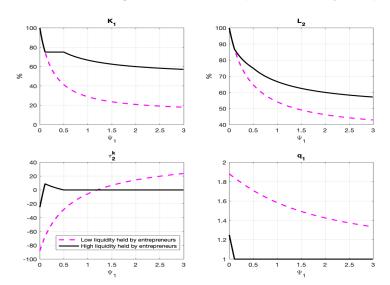
Period 2:

$$G_2 + R_1 B_1 = \tau_2^k r_2 K_1 + \tau_2^\ell w_2 L_2$$

- Solution strategy:
  - Compute optimal competitive-equilibrium allocation (primal approach);
  - back out taxes and prices.

# To be or not to be (financing constrained)?

 $\Psi_1$ : shadow cost of government revenue; quasi-linear utility example



#### Part 2: The ∞-horizon model

- Idiosyncratic investment risks repeated many times
- Financing constraints tied to endogenous asset liquidity and price
  - $(\phi_t, q_t)$  pairs determined through directed search
  - avoid kinks but does not matter for the fundamentals
  - other good co-movement properties between  $\phi_t$  and  $q_t$ ; see Cui & Radde (2016, 2019) and Cui (2016)
- The planner chooses  $\{C_t, L_t, K_t, B_t, \phi_t\}$  for  $t \ge 0$  given  $K_{-1}$  and  $B_{-1}$ 
  - deterministic model: as if with (aggregate) state-contingent bonds
- New results (compared to the 2-period model)
  - low rates and capital tax
  - may not be able to provide enough liquidity

# The "best" competitive equilibrium

• Private FOC for bonds:

$$1 = \frac{\beta u'(C_{t+1})}{u'(C_t)} R_{t+1} (1 + \chi \rho_{t+1})$$

- $u'(C_t)\chi\rho_t > 0$  measures tightness of financing constraint
- reflects the liquidity service provided by government debt.
- Note: asset price  $q_t$  and tightness  $\rho_t$  are functions of asset liquidity  $\phi_t$
- Public FOC for bonds:

$$\Psi_{t+1} = (1 + \chi \rho_{t+1}) \Psi_t + \chi \gamma_{t+1}$$

 $\Psi_t$ : shadow cost of government revenue (measures gov't budget tightness)  $\gamma_t$ : shadow cost of financing constraints

### Long-run result

#### Proposition

If the economy converges to a steady state, there are two possibilities.

- 1. Slack financing constraints in the limit, capital tax  $\tau^k = 0$ , and the interest rate  $R = 1/\beta$ . Tightness  $\Psi_t$  and converges to finite constant.
- 2. Financing constraints bind in the limit, budget tightness  $\Psi_t \to \infty$ ,  $R < 1/\beta$ , and  $\tau^k \neq 0$ . Sufficient conditions for  $\tau^k > 0$ :
- (a). u(c) = c; (b).  $\beta$  close to 1

• The key FOC for bonds shows  $\Psi_t$  is non-decreasing:

$$\Psi_{t+1} = (1 + \chi \rho_{t+1}) \Psi_t + \chi \gamma_{t+1}$$

- ullet The growth rate of  $\Psi_t$  reflects supply of government debt. Make budget tighter and tighter; when to stop?
  - liquidity is satiated
  - top of the Laffer curve with low rate and capital tax



#### Conclusion

- Financial distortions can be optimal
  - A new trade-off: the tightness of government budget and the tightness of financing constraint
- If provision of public liquidity cannot undo financing constraint, then it provides a reason to tax capital and run low interest rate:
  - ► a wedge between returns
  - distorting the inter-temporal margin (different from secular stagnation)
  - endogenous capital price important: bond in the utility / capital adjustment cost is not enough
- ... more to come with the ∞-horizon model
  - response to adverse MIT shocks: more debt issuance in the short run
  - ightharpoonup aggregate risks can generate a finite  $\Psi$  and low rates: government debt not aggregate-state contingent as in AMSS (2002)

# Thank You!

#### Literature

- Liquidity frictions: Woodford (1990); Holmstrom Tirole (1998); Kiyotaki Moore (2012); Shi (2015); Cui Radde (2016, 2019)...
- Ramsey plans under various asset market structures: Lucas Stokey (1983);
   Chari Kehoe (1999), Aiyagari et.al. (2002), Farhi (2010), Chien Wen (2019)...
- Optimal public supply of liquidity: Angeletos et.al. (2013), Azzimonti Yared (2017, 2019)...
- Our paper: why government will distort the inter-temporal margin with capital taxes/subsidies
  - government debt is chosen not to fully insure idiosyncratic risks

### Eqm conditions

• Labor supply: for t = 1,2

$$(1-\tau_t^{\ell})w_tu'(C_t)=v'(L_t) \tag{6}$$

Demand for bonds

$$\frac{1}{R_1} = \frac{\beta u'(C_2)}{u'(C_1)} \tag{7}$$

Demand for claims and supply for claims:

$$q_1 = \frac{\beta u'(C_2)}{u'(C_1)} (1 - \tau_2^k) r_2 \tag{8}$$

$$q_1 = \max\left\{1, rac{\mathcal{K}_1 - B_0^e}{\phi_1 \mathcal{K}_1}
ight\}$$

using  $(1 - \phi_1 q_1) K_1 \leq B_0^e$ 

Feasibility

$$AL_1 = C_1 + K_1 + G_1$$

$$F(K_1, L_2) = C_2 + G_2$$
(10)

(9)

# The primal approach

- The planner maximizes welfare (1), subj. to
  - feasibility constraints (10) and (11);
  - implementability constraint (financing-constrained adjusted)
- Maximum level of investment when  $q_1 = 1$  (slack financing constraint)

$$\mathcal{K}^*:=rac{B_0^e}{1-\phi_1}$$

• The implementability constraint:

$$\begin{split} &\sum_{t=1}^{2} \beta^{t-1} [u'(C_t)C_t - v'(L_t)L_t] - u'(C_1)B_0 \\ &= \begin{cases} 0 & \text{if } K_1 \leq K^* \\ \left(\frac{1}{\phi_1} - 1\right)u'(C_1)(K_1 - K^*) & \text{if } K_1 > K^* \end{cases} \end{split}$$

• What happen when the asset market is fully liquid ( $\phi_1 = 1$ )?



### An analytical case

• Production:  $F(K_1, L_2) = AK_1^{\alpha}L_2^{1-\alpha} + (1-\delta)K_1$ . Preferences (no interest rate effect)

$$u(c,\ell)=c-\frac{\mu\ell^{1+\nu}}{1+\nu}$$

- $\Psi_1$ : multiplier w.r.t. the implementability constraint; measures legacy debt  $B_0$  (or, PV of gov spending)
- The planner's FOC:

$$\beta \left[ A\alpha \left(\frac{K_1}{L_2}\right)^{\alpha-1} + 1 - \delta \right] = 1 + \begin{cases} 0 & \text{if } K_1 \leq K^* \\ \frac{\psi_1(\phi_1^{-1}-1)}{1+\psi_1} & \text{if } K_1 > K^* \end{cases}$$

• Recall the HH FOC:

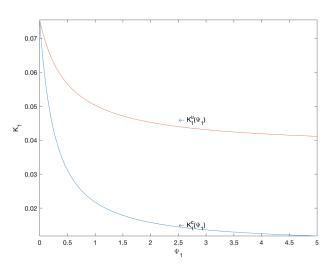
$$eta(1- au_k^2)\left[Alpha\left(rac{K_1}{L_2}
ight)^{lpha-1}+1-\delta
ight]=q_1$$

# Government financing and individual financing constraint

- If financing constraint is slack,  $\tau_k^2 = 0$ , independent of  $\Psi_1$  (e.g.,  $\phi_1 = 1$ )
  - private cost: 1; private rewards  $\beta r_2$
  - social cost:  $1 + \Psi_1$ ; the social reward:  $\beta r_2(1 + \Psi_1)$
  - reward / cost are the same (only related to technologies)
- If financing constraint is binding,  $\tau_k^2 \neq 0$ , interacting with  $\Psi_1$ 
  - the private return needs to be adjusted by financing constraint
- Subsidy initially when government financing is flexible, but tax later (the quasi-rent)
  - lacktriangleright a higher  $q_1$  tightens the implementability constraint, raising  $\Psi_1$
  - $\triangleright$  thus, using more distortionary taxes, affecting investment and  $q_1$  again

# To be (financing constrained) or not to be

$$\beta=$$
 0.96,  $\phi=$  0.5,  $\delta=$  0.95, and  $A=1$ 



#### Households

• Preferences:

$$\sum_{t=0}^{\infty} \beta^{t} \left[ u(c_{t}) - v((1-\chi)\ell_{t}) \right]$$
 (12)

- $\forall t$ , liquidity held by entrepreneurs  $b_t^e = \chi B_t$
- The financing constraint

$$(1 - \phi_t q_t) k_t^e \le R_t b_{t-1} + \phi_t q_t (1 - \delta) k_{t-1}$$

The budget constraint

$$\begin{aligned} c_{t} + b_{t} + q_{t}^{S} k_{t} &= (1 - \tau_{t}^{\ell}) w_{t} (1 - \chi) \ell_{t} + R_{t} b_{t-1} + (1 - \tau_{t}^{k}) r_{t} k_{t-1} \\ &+ \left[ q_{t}^{S} - \chi \phi_{t} \left( q_{t}^{S} - q_{t} \right) \right] (1 - \delta) k_{t-1} \\ &+ \left[ q_{t}^{S} - 1 - \phi_{t} \left( q_{t}^{S} - q_{t} \right) \right] \chi k_{t}^{e} \end{aligned}$$

•  $q_t^S \ge q_t$  because of financial intermediation



# Goods and Financial Firms (optional)

- $\bullet$   $w_t$  and  $r_t$  are marginal products of labor and capital
- Competitive financial intermediaries: cost is  $\eta(\phi_t)$  per unit of capital intermediated

$$q_t^S - q_t = \eta(\phi_t) \tag{13}$$

- Search-and-matching to link  $\phi_t$  and  $q_t$
- $\eta(\phi_t)$  is increasing and convex w.r.t.  $\phi_t$
- Think about paying cost for each asset orders processed
  - $\phi_t$  is also the probability to fill sell orders

# Directed search / competitive search (optional)

- An entrepreneurs brings back:  $k_t^e s_t^e = (1 \phi_t)k_t^e$
- Therefore, the financing constraint (2) becomes

$$\underbrace{\frac{1-\phi_t q_t}{1-\phi_t}}_{ ext{replacement cost}} \left(k_t^e - s_t^e 
ight) \leq B_0^e/\chi$$

- Replacement cost is similar to down-payment
- Financial intermediaries open sub-markets  $(\phi_t, q_t)$ ; search is directed with price posting

$$\min_{(\phi_t, q_t)} \frac{1 - \phi_t q_t}{1 - \phi_t}$$

- s.t. the zero-profit (13).
- The solution is

$$q_t = 1 + (1-\phi_t)\phi_t\eta'(\phi_t)$$

# Permanent fiscal expansion

$$\begin{array}{l} u(c,\ell) \stackrel{\cdot}{=} \frac{c^{1-\sigma}-1}{1-\sigma} - \frac{\mu\ell^{1+\nu}}{1+\nu}, \; \beta = 0.96, \; \delta = 0.1, \; \alpha = 1/3, \; \delta = 0.1, \; \nu = 1/1.5, \\ \eta(\phi) = \eta_0\phi^2, \; \mu = 1, \; \sigma = 0.2. \end{array}$$

Table: Steady state of the Ramsey allocation for different government expenditures

| G/Y                   | 29.93%  | 33.33% | 34.44% | 34.88% |
|-----------------------|---------|--------|--------|--------|
| Capital: K            | 100%    | 91.74% | 87.00% | 84.57% |
| Capital tax: $	au^k$  | 0%      | 2.46%  | 4.04%  | 4.90%  |
| Labor tax: $	au^\ell$ | 52%     | 51.23% | 50.57% | 49.99% |
| Interest rate:        | 4.17%   | 3.22%  | 2.37%  | 1.51%  |
| Debt-to-output: $B/Y$ | 117.69% | 56.13% | 32.80% | 14.97% |
| Asset Liquidity φ     | 0       | 0.1792 | 0.2465 | 0.2988 |
|                       |         |        |        |        |

# Permanent worsening financial conditions

Table: The long-run economies with different financial intermediation

|                       | $\eta_0 = 0.5$ | $\eta_0 = 0.6$ | $\eta_0 = 0.7$ | $\eta_0 = 0.8$ |
|-----------------------|----------------|----------------|----------------|----------------|
| Capital: K            | 100%           | 97.03%         | 93.36%         | 87.31%         |
| Capital tax: $	au^k$  | 2.46%          | 3.45%          | 4.78%          | 7.03%          |
| Labor tax: $	au^\ell$ | 51.23%         | 50.94%         | 50.53%         | 49.37%         |
| Interest rate:        | 3.22%          | 2.95%          | 2.60%          | 1.64%          |
| Debt-to-output: $B/Y$ | 56.13%         | 53.03%         | 48.47%         | 34.52%         |
| Asset Liquidity φ     | 0.1792         | 0.1851         | 0.1947         | 0.2310         |

# Inter-temporal substitution (optional)

Table: The long-run economies with different intertemporal substitution

|                       | $\sigma = 0$ | $\sigma = 0.2$ | $\sigma = 0.4$ | $\sigma = 0.8$ |
|-----------------------|--------------|----------------|----------------|----------------|
| Capital: K            | 100%         | 99.31%         | 99.90%         | 89.64%         |
| Capital tax: $	au^k$  | 0%           | 0%             | 0%             | 0%             |
| Labor tax: $	au^\ell$ | 40.00%       | 52%            | 64%            | 88%            |
| Interest rate:        | 4.17%        | 4.17%          | 4.17%          | 4.17%          |
| Debt-to-output: $B/Y$ | 117.66%      | 117.69%        | 117.70%        | 117.36%        |
| G-to-output: $G/Y$    | 21.90%       | 29.93%         | 37.98%         | 54.07%         |
| Asset Liquidity φ     | 0            | 0              | 0              | 0              |