A Ramsey Theory of Financial Distortions

Wei Cui (UCL) Marco Bassetto (Minneapolis Fed) ${ }^{1}$

July, 2020
${ }^{1}$ This paper reflects the views of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Intertemporal Distortions

- Capital taxes are used throughout the world
- $r<g$ frequently for government bonds with shortage of these safe/liquid assets
- Low rates of return in years following fiscal shocks
- Reinhart \& Sbrancia (2015) (financial repression)
- Berndt, Lustig, \& Yeltekin (2012)

Are capital taxes and low interest rates on debt optimal?

- Not in a Ramsey problem with a neoclassical growth economy.
- with distortionary taxes on labor and capital.
- Not optimal to distort the intertemporal margin
- Long run: neither capital tax nor low rates on government debt (Judd, 1985, Chamley, 1986). Rely on labor alone in the long run.
- Fiscal shocks: absorbed by quick devaluation and immediate low return (Lucas
- Stokey, 1983, and Siu, 2004,...);
- or, by future taxes, smoothed by debt (Barro, 1979, and AMSS, 2002).
- Our view: optimal policy with imperfect substitutes between public and private liquidity
- Idiosyncratic investment risks + liquidity frictions in financing investment
- partially liquid private claims;
- fully liquid government debt (but costly in terms of distortionary taxes)

Optimal financial distortions: Results

- Two-period model - if public liquidity is insufficient, we have a trade-off
- want to subsidize investment which is underprovided
- but credit frictions make the capital supply inelastic; optimal to tax it when gov budget is tight
- Infinite-horizon model - provide as much public liquidity as possible:
- either attain unconstrained solution (sufficient self-financing), standard Ramsey, zero capital taxes
- or, get to the "top of the Laffer curve:'
* shortage of safe/liquid assets remains
\star low interest rates
* positive capital taxes
- Our model can be related to broader financial distortion policies.
- capital controls / banking regulation / collateralized borrowing requirements...

Part 1: The two-period model

- Periods 1 and 2
- A continuum of families, with preferences:

$$
\begin{equation*}
\sum_{t=1}^{2} \beta^{t-1}\left[u\left(c_{t}\right)-v\left((1-\chi) \ell_{t}\right)\right] \tag{1}
\end{equation*}
$$

- only in period 1: workers (population $1-\chi$) and entrepreneurs (population χ)
- reunite at the end of period 1 and period 2
- Firms
- Government (with legacy debt B_{0})

An entrepreneur of a family in period 1

- An entrepreneur with (exogenous) government debt $b_{0}^{e}=B_{0}^{e} / \chi$ finances k_{1}^{e}

$$
\begin{equation*}
k_{1}^{e} \leq b_{0}^{e}+q_{1} s_{1}^{e} \tag{2}
\end{equation*}
$$

- ...financial claims s_{1}^{e} sold at price $q_{1} ; s_{1}^{e}$ less than ϕ_{1} units of investment k_{1}^{e} :

$$
\begin{equation*}
s_{1}^{e} \leq \phi_{1} k_{1}^{e} \tag{3}
\end{equation*}
$$

A worker of a family in period 1

- Each worker begins with government bonds $b_{0}^{w}=B_{0}^{w} /(1-\chi)$
- works and earns $w_{1} \ell_{1}$;
- buys government bonds and financial claims.
- At the end of period 1 :
- workers rejoin entrepreneurs and pool assets together

$$
\begin{equation*}
c_{1}+B_{1}+\chi\left(k_{1}^{e}-q_{1} s_{1}^{e}\right)+(1-\chi) q_{1} s_{1}^{w}=\left(1-\tau_{1}^{\ell}\right) w_{1} \ell_{1}(1-\chi)+B_{0} \tag{4}
\end{equation*}
$$

- government bonds $B_{1}=(1-\chi) b_{1}^{w} ;$ capital $K_{1}=\chi\left(k_{1}^{e}-s_{1}^{e}\right)+(1-\chi) s_{1}^{w}$

The family in period 2

- Capital return r_{2} and wage rate w_{2}
- The budget constraint:

$$
\begin{equation*}
c_{2}=\left(1-\tau_{2}^{k}\right) r_{2} K_{1}+\left(1-\tau_{2}^{\ell}\right) w_{2}(1-\chi) \ell_{2}+R_{1} B_{1} \tag{5}
\end{equation*}
$$

- The HH maximizes utility in (1)
- budget constraints in period 1 and period 2
- financing constraints in period 1

Firms

- Goods produced by competitive firms
- Period 1: $w_{1}=A$

$$
Y_{1}=A L_{1}
$$

$L_{1}=(1-\chi) \ell_{1}$: hours from workers

- Period 2: $w_{2}=F_{L}\left(K_{1}, L_{2}\right), r_{2}=F_{K}\left(K_{1}, L_{2}\right)$, and

$$
Y_{2}=F\left(K_{1}, L_{2}\right)
$$

$L_{2}=(1-\chi) \ell_{2}$: hours from workers

Government

- Benevolent (same objective as households)
- Exogenous spending G_{1} and G_{2}
- Taxes labor at rate τ_{1}^{ℓ} and τ_{2}^{ℓ} and capital at rate τ_{2}^{k}
- Issues bonds B_{1} in period 1 (interest rate rate R_{1})
- Period 1 :

$$
G_{1}+R_{0} B_{0}=B_{1}+\tau_{1}^{\ell} w_{1} L_{1}
$$

- Period 2:

$$
G_{2}+R_{1} B_{1}=\tau_{2}^{k} r_{2} K_{1}+\tau_{2}^{\ell} w_{2} L_{2}
$$

- Solution strategy:
- Compute optimal competitive-equilibrium allocation (primal approach);
- back out taxes and prices.

To be or not to be (financing constrained)?

Ψ_{1} : shadow cost of government revenue; quasi-linear utility example

Part 2: The ∞-horizon model

- Idiosyncratic investment risks repeated many times
- Financing constraints tied to endogenous asset liquidity and price
- $\left(\phi_{t}, q_{t}\right)$ pairs determined through directed search
- avoid kinks but does not matter for the fundamentals
- other good co-movement properties between ϕ_{t} and q_{t}; see Cui \& Radde (2016, 2019) and Cui (2016)
- The planner chooses $\left\{C_{t}, L_{t}, K_{t}, B_{t}, \phi_{t}\right\}$ for $t \geq 0$ given K_{-1} and B_{-1}
- deterministic model: as if with (aggregate) state-contingent bonds
- New results (compared to the 2-period model)
- low rates and capital tax
- may not be able to provide enough liquidity

The "best" competitive equilibrium

- Private FOC for bonds:

$$
1=\frac{\beta u^{\prime}\left(C_{t+1}\right)}{u^{\prime}\left(C_{t}\right)} R_{t+1}\left(1+\chi \rho_{t+1}\right)
$$

- $u^{\prime}\left(C_{t}\right) \chi \rho_{t}>0$ measures tightness of financing constraint
- reflects the liquidity service provided by government debt.
- Note: asset price q_{t} and ρ_{t} are functions of ϕ_{t}
- Public FOC for bonds:

$$
\psi_{t+1}=\left(1+\chi \rho_{t+1}\right) \psi_{t}+\chi \gamma_{t+1}
$$

Ψ_{t} : shadow cost of government revenue (measures gov't budget tightness)
γ_{t} : shadow cost of financing constraints

Long-run result

Proposition

If the economy converges to a steady state, there are two possibilities.
(1). Slack financing constraints in the limit, capital tax $\tau^{k}=0$, and the interest rate $R=1 / \beta$. Tightness Ψ_{t} and converges to finite constant.
(2). Financing constraints bind in the limit, budget tightness $\Psi_{t} \rightarrow \infty, R<1 / \beta$, and $\tau^{k} \neq 0$. Sufficient conditions for $\tau^{k}>0$:
(1). $u(c)=c$; (2). β close to 1

- The key FOC for bonds shows Ψ_{t} is non-decreasing:

$$
\psi_{t+1}=\left(1+\chi \rho_{t+1}\right) \psi_{t}+\chi \gamma_{t+1}
$$

- The growth rate of Ψ_{t} reflects supply of government debt. Make budget tighter and tighter; when to stop?
- liquidity is satiated
- top of the Laffer curve with low rate and capital tax

Conclusion

- Financial distortions can be optimal
- A new trade-off: the tightness of government budget and the tightness of financing constraint
- If provision of public liquidity cannot undo financing constraint, then it provides a reason to tax capital and run low interest rate:
- a wedge between returns
- distorting the inter-temporal margin (different from secular stagnation)
- endogenous capital price important: bond in the utility / capital adjustment cost is not enough
- ... more to come with the ∞-horizon model
- response to adverse MIT shocks: more debt issuance in the short run
- aggregate risks can generate a finite Ψ and low rates: government debt not aggregate-state contingent as in AMSS (2002)

Thank You!

Literature

- Liquidity frictions: Woodford (1990); Holmstrom - Tirole (1998); Kiyotaki Moore (2012); Shi (2015); Cui - Radde (2016, 2019)...
- Ramsey plans under various asset market structures: Lucas - Stokey (1983); Chari - Kehoe (1999), Aiyagari et.al. (2002), Farhi (2010), Chien - Wen (2019)...
- Optimal public supply of liquidity: Angeletos et.al. (2013), Azzimonti - Yared (2017, 2019)...
- Our paper: why government will distort the inter-temporal margin with capital taxes/subsidies
- government debt is chosen not to fully insure idiosyncratic risks

Eqm conditions

- Labor supply: for $t=1,2$

$$
\begin{equation*}
\left(1-\tau_{t}^{\ell}\right) w_{t} u^{\prime}\left(C_{t}\right)=v^{\prime}\left(L_{t}\right) \tag{6}
\end{equation*}
$$

- Demand for bonds

$$
\begin{equation*}
\frac{1}{R_{1}}=\frac{\beta u^{\prime}\left(C_{2}\right)}{u^{\prime}\left(C_{1}\right)} \tag{7}
\end{equation*}
$$

- Demand for claims and supply for claims:

$$
\begin{align*}
& q_{1}=\frac{\beta u^{\prime}\left(C_{2}\right)}{u^{\prime}\left(C_{1}\right)}\left(1-\tau_{2}^{k}\right) r_{2} \tag{8}\\
& q_{1}=\max \left\{1, \frac{K_{1}-B_{0}^{e}}{\phi_{1} K_{1}}\right\} \tag{9}
\end{align*}
$$

using $\left(1-\phi_{1} q_{1}\right) K_{1} \leq B_{0}^{e}$

- Feasibility

$$
\begin{align*}
& A L_{1}=C_{1}+K_{1}+G_{1} \tag{10}\\
& F\left(K_{1}, L_{2}\right)=C_{2}+G_{2} \tag{11}
\end{align*}
$$

The primal approach

- The planner maximizes welfare (1), subj. to
- feasibility constraints (10) and (11);
- implementability constraint (financing-constrained adjusted)
- Maximum level of investment when $q_{1}=1$ (slack financing constraint)

$$
K^{*}:=\frac{B_{0}^{e}}{1-\phi_{1}}
$$

- The implementability constraint:

$$
\begin{aligned}
& \sum_{t=1}^{2} \beta^{t-1}\left[u^{\prime}\left(C_{t}\right) C_{t}-v^{\prime}\left(L_{t}\right) L_{t}\right]-u^{\prime}\left(C_{1}\right) B_{0} \\
= & \begin{cases}0 & \text { if } K_{1} \leq K^{*} \\
\left(\frac{1}{\phi_{1}}-1\right) u^{\prime}\left(C_{1}\right)\left(K_{1}-K^{*}\right) & \text { if } K_{1}>K^{*}\end{cases}
\end{aligned}
$$

- What happen when the asset market is fully liquid $\left(\phi_{1}=1\right)$?

An analytical case

- Production: $F\left(K_{1}, L_{2}\right)=A K_{1}^{\alpha} L_{2}^{1-\alpha}+(1-\delta) K_{1}$. Preferences (no interest rate effect)

$$
u(c, \ell)=c-\frac{\mu \ell^{1+v}}{1+v}
$$

- Ψ_{1} : multiplier w.r.t. the implementability constraint; measures legacy debt B_{0} (or, PV of gov spending)
- The planner's FOC:

$$
\beta\left[A \alpha\left(\frac{K_{1}}{L_{2}}\right)^{\alpha-1}+1-\delta\right]=1+ \begin{cases}0 & \text { if } K_{1} \leq K^{*} \\ \frac{\psi_{1}\left(\phi_{1}^{-1}-1\right)}{1+\psi_{1}} & \text { if } K_{1}>K^{*}\end{cases}
$$

- Recall the HH FOC:

$$
\beta\left(1-\tau_{k}^{2}\right)\left[A \alpha\left(\frac{K_{1}}{L_{2}}\right)^{\alpha-1}+1-\delta\right]=q_{1}
$$

Government financing and individual financing constraint

- If financing constraint is slack, $\tau_{k}^{2}=0$, independent of Ψ_{1} (e.g., $\phi_{1}=1$)
- private cost: 1; private rewards βr_{2}
- social cost: $1+\Psi_{1}$; the social reward: $\beta r_{2}\left(1+\Psi_{1}\right)$
- reward / cost are the same (only related to technologies)
- If financing constraint is binding, $\tau_{k}^{2} \neq 0$, interacting with Ψ_{1}
- the private return needs to be adjusted by financing constraint
- Subsidy initially when government financing is flexible, but tax later (the quasi-rent)
- a higher q_{1} tightens the implementability constraint, raising Ψ_{1}
- thus, using more distortionary taxes, affecting investment and q_{1} again

To be (financing constrained) or not to be

$$
\beta=0.96, \phi=0.5, \delta=0.95, \text { and } A=1
$$

Households

- Preferences:

$$
\begin{equation*}
\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)-v\left((1-\chi) \ell_{t}\right)\right] \tag{12}
\end{equation*}
$$

- $\forall t$, liquidity held by entrepreneurs $b_{t}^{e}=\chi B_{t}$
- The financing constraint

$$
\left(1-\phi_{t} q_{t}\right) k_{t}^{e} \leq R_{t} b_{t-1}+\phi_{t} q_{t}(1-\delta) k_{t-1}
$$

- The budget constraint

$$
\begin{aligned}
c_{t}+b_{t}+q_{t}^{S} k_{t} & =\left(1-\tau_{t}^{\ell}\right) w_{t}(1-\chi) \ell_{t}+R_{t} b_{t-1}+\left(1-\tau_{t}^{k}\right) r_{t} k_{t-1} \\
& +\left[q_{t}^{S}-\chi \phi_{t}\left(q_{t}^{S}-q_{t}\right)\right](1-\delta) k_{t-1} \\
& +\left[q_{t}^{S}-1-\phi_{t}\left(q_{t}^{S}-q_{t}\right)\right] \chi k_{t}^{e}
\end{aligned}
$$

- $q_{t}^{S} \geq q_{t}$ because of financial intermediation

Goods and Financial Firms (optional)

- w_{t} and r_{t} are marginal products of labor and capital
- Competitive financial intermediaries: cost is $\eta\left(\phi_{t}\right)$ per unit of capital intermediated

$$
\begin{equation*}
q_{t}^{S}-q_{t}=\eta\left(\phi_{t}\right) \tag{13}
\end{equation*}
$$

- Search-and-matching to link ϕ_{t} and q_{t}
- $\eta\left(\phi_{t}\right)$ is increasing and convex w.r.t. ϕ_{t}
- Think about paying cost for each asset orders processed
- ϕ_{t} is also the probability to fill sell orders

Directed search / competitive search (optional)

- An entrepreneurs brings back: $k_{t}^{e}-s_{t}^{e}=\left(1-\phi_{t}\right) k_{t}^{e}$
- Therefore, the financing constraint (2) becomes

$$
\underbrace{\frac{1-\phi_{t} q_{t}}{1-\phi_{t}}}_{\text {replacement cost }}\left(k_{t}^{e}-s_{t}^{e}\right) \leq B_{0}^{e} / \chi
$$

- Replacement cost is similar to down-payment
- Financial intermediaries open sub-markets $\left(\phi_{t}, q_{t}\right)$; search is directed with price posting

$$
\min _{\left(\phi_{t}, q_{t}\right)} \frac{1-\phi_{t} q_{t}}{1-\phi_{t}}
$$

s.t. the zero-profit (13).

- The solution is

$$
q_{t}=1+\left(1-\phi_{t}\right) \phi_{t} \eta^{\prime}\left(\phi_{t}\right)
$$

Permanent fiscal expansion

$$
\begin{aligned}
& \beta=0.96, \delta=0.1, \alpha=1 / 3, \delta=0.1, v=1, \eta(\phi)=\eta_{0} \phi^{2}, \mu=1 \\
& u(c)=\frac{c^{1-\sigma-1}}{1-\sigma}, \sigma=0.1 ; G / Y \text { is } 36.7 \%
\end{aligned}
$$

Table: Steady state of the Ramsey allocation for different government expenditures

	$G=G^{*}$	$G=1.02 G^{*}$	$G=1.04 G^{*}$	$G=1.06 G^{*}$
Capital: K	100%	103.33%	106.78%	110.49%
Capital tax: τ^{k}	11.88%	11.40%	10.49%	9.15%
Labor tax: τ^{ℓ}	53.85%	53.84%	53.83%	53.77%
Interest rate:	4.17%	4.10%	3.90%	3.53%
Debt-to-output: B / Y	81.93%	66.20%	49.01%	29.49%
Asset Liquidity ϕ	0	0.0660	0.1337	0.2064

Permanent worsening financial conditions

Table: The long-run economies with different financial intermediation

	$\eta_{0}=0.2$	$\eta_{0}=0.4$	$\eta_{0}=0.8$	$\eta_{0}=1$
Capital: K	100%	99.94%	99.74%	99.50%
Capital tax: τ^{k}	11.21%	10.81%	9.58%	8.38%
Labor tax: τ^{ℓ}	53.85%	53.84%	53.82%	53.79%
Interest rate:	4.07%	3.94%	3.56%	3.18%
Debt-to-output: B / Y	62.20%	60.99%	57.12%	53.10%
Asset Liquidity ϕ	0.0821	0.0866	0.1006	0.1149

Inter-temporal substitution (optional)

Table: The long-run economies with different intertemporal substitution

	$\sigma=0$	$\sigma=0.2$	$\sigma=0.8$	$\sigma=1.0$
Capital: K	100%	98.81%	85.46%	76.64%
Capital tax: τ^{k}	$11.48 \% \%$	12.35%	17.53%	21.37%
Labor tax: τ^{ℓ}	50.00%	57.61%	77.75%	83.39%
Interest rate:	4.17%	4.17%	4.17%	4.17%
Debt-to-output: B / Y	84.32%	79.18%	58.73%	51.58%
G-to-output: G / Y	33.10%	39.99%	61.10%	68.42%
Asset Liquidity ϕ	0	0	0	0

