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Abstract

Competition in health insurance markets may fail to improve health outcomes if con-
sumers are not willing to pay for high quality plans. We document large differences
in the mortality rates of Medicare Advantage (MA) plans within local markets. We
then show that when high (low) mortality plans exit these markets, enrollees tend to
switch to more typical plans and subsequently experience lower (higher) mortality.
We develop a framework that uses this variation to estimate the relationship between
observed mortality rates and causal mortality effects; we find a tight link. We then
extend the framework to study other predictors of mortality effects and estimate con-
sumer willingness to pay. Higher spending plans tend to reduce enrollee mortality, but
existing quality ratings are uncorrelated with plan mortality effects. Consumers place
little weight on mortality effects when choosing plans. Moving beneficiaries out of
the bottom 5% of plans could save tens of thousands of elderly lives each year.
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1 Introduction

When product quality is difficult to observe, consumers and producers may make suboptimal
choices and investments. This concern is heightened in healthcare markets, where the quality
of healthcare providers or insurance plans can be especially hard to infer. If consumers cannot de-
termine whether certain plans are more likely to improve their health, then competition is unlikely
to incentivize insurers to invest in this dimension of quality. To better inform consumers, policy-
makers disseminate provider and plan quality measures. But there is little evidence for how well
existing quality measures predict the causal impacts of insurance plans on enrollee health, much
less whether consumers attend to such differences in plan quality.

We estimate the effects of different private health insurance plans on enrollee mortality, inves-
tigate why some plans are higher quality by this measure, and assess whether consumer demand
responds to plan mortality effects. Our setting is the Medicare Advantage (MA) market, in which
beneficiaries choose from a broad array of private managed care plans that are subsidized by the
government. The MA program is large and growing, covering more than one third of Medicare
beneficiaries (KFF, 2019). Annual mortality in the elderly MA population is high, at 4.7%.

Measuring plan mortality effects is fundamentally challenging. Differences in observed mor-
tality rates may reflect non-random selection by consumers of different unobserved health, while
quasi-experimental variation in plan choice is both limited and likely under-powered to detect dif-
ferent mortality effects across individual plans. Quantifying the extent to which consumer demand
responds to mortality effects is also difficult, since any effect estimates are likely noisy and poten-
tially biased by non-random sorting. We develop tools to overcome these challenges by combining
observational and quasi-experimental variation, following a small but growing literature on quality
estimation in education and health (Chetty et al., 2014; Angrist et al., 2017; Hull, 2020). We add
to this literature by showing that instrumental variables (IV) methods relating observational qual-
ity estimates to true causal effects require a previously overlooked condition governing individual
choice. We build theoretical and empirical support for the condition in the MA setting, and show
how extensions of such IV regressions can be combined with standard discrete choice modeling to
estimate consumer willingness to pay for plan quality.

We begin by documenting large differences in the one-year mortality rates of MA plans oper-
ating in the same county, after adjusting for observable differences in enrollee demographics and
accounting for statistical noise. We refer to these adjusted mortality rates as “observational mortal-
ity.” If causal, the estimated variation in observational mortality would suggest that a one standard
deviation higher quality plan decreases beneficiary mortality by 0.9 percentage points—a 19% re-
duction in mortality from a baseline rate of 4.7%, comparable to the sizable variation in mortality
effects across hospitals (Hull, 2020). Given conventional estimates of the value of a statistical life
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(VSL), such variation suggests consumers should value higher-quality MA plans at tens or even
hundreds of thousands of dollars more per year.

However, variation in our observational mortality measure may reflect unobserved sorting as
well as causal plan health effects. To validate the measure, we leverage variation in MA choice sets
arising from plan terminations. Intuitively, when plans with high or low observational mortality
exit a market, their enrollees tend to re-enroll in plans that have more typical observational mortal-
ity. The enrollees of non-terminated plans, in contrast, tend to be highly inertial and thus tend to
remain in high- or low-mortality plans. If the observational mortality variation reflects variation in
true mortality effects, we thus expect cohort mortality to decline (rise) when high- (low-) mortality
plans exogenously exit the market, relative to mortality in similar plans that do not terminate. The
magnitude of the relationship should furthermore reveal the relationship between observational es-
timates and causal plan effects. All else equal, cohort mortality should change one-for-one with
observational predictions when selection bias is negligible.

We formalize this quasi-experimental approach to validating observational mortality with a
novel IV framework. Our main parameter of interest is the mortality effect “forecast coefficient,”
defined by the regression of unobserved plan mortality effects on observational mortality. While
not identifying mortality effects for individual plans, the forecast coefficient can be used to eval-
uate many policies of interest. We show how a feasible beneficiary-level IV regression identifies
the forecast coefficient under three assumptions. First, we assume that terminations impact the
observational mortality of an enrollee’s plan via subsequent plan enrollment. We verify that the
first stage is quite strong in our setting. Second, we assume that any relationship between obser-
vational mortality and underlying beneficiary health is the same in terminated and non-terminated
plans, conditional on observables. We build support for this exclusion restriction by showing that
enrollees in terminated MA plans are observably similar to those in non-terminated plans and that
past cohorts in these plans have similar mortality rates prior to termination. In some specifications,
we isolate terminations arising from a nationwide change in reimbursement policy for a category
of Medicare Advantage plans.

Our primary methodological contribution is to show that these two standard IV conditions
are not generally enough to estimate the plan forecast coefficient. Instead, IV estimation of the
forecast coefficient requires a novel “fallback condition.” In our setting, this condition restricts the
“fallback” (second choice) plans that enrollees choose after a plan termination. Fallback choices
must be similar to those chosen initially in terms of the unforecastable component of plan mortality
effects. We show how this third assumption can be microfounded theoretically by a standard
discrete choice model. We further show how the assumption can be investigated empirically by
testing for observable differences in fallback plans after exogenous terminations.

Our IV framework shows that observational mortality is a highly reliable predictor of true MA
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mortality effects. Across a variety of specifications, we find first-stage effects of terminations on
enrolled plan observational mortality which closely match the associated reduced-form effects of
terminations on enrollee mortality. Consequently, IV forecast coefficient estimates are close to
and statistically indistinguishable from one. This finding does not rule out selection bias in indi-
vidual plan mortality rates. However it shows given our assumptions that observational mortality
accurately predicts causal mortality effects on average.

We then extend our approach to answer a series of policy-relevant questions. We first use the
three IV assumptions to estimate the relationship between plan mortality effects and plan charac-
teristics other than observational mortality. We find that the most widely used measure of plan
quality, CMS star ratings, is uncorrelated with plan mortality effects. Higher premium plans have
better mortality effects, as do plans with more generous prescription drug coverage and higher
medical-loss ratios. Thus, in every way we measure, plans that spend more tend to reduce enrollee
mortality. We further find suggestive evidence that plan networks could account for large differ-
ences in mortality effects by directing enrollees to high-quality providers, though we lack data to
precisely measure the importance of this channel.

We next extend the IV approach to measure the extent to which consumers value plan mortality
effects. Plans with better mortality effects tend to have larger market shares conditional on premi-
ums. We further show how our IV framework can be used to estimate the implicit willingness to
pay for plan quality (WTP). Estimating WTP is challenging because we observe only noisy and
biased measures of mortality effects. We show how this challenge can be overcome by using our
IV framework to compute forecast coefficients that relate mortality effects to premium-adjusted
mean utility for each plan. Under our three IV assumptions, these forecast coefficients can be used
to compute an upper bound on consumer WTP for plan quality. We find a positive WTP, but one
which is several orders of magnitude smaller than standard VSL estimates. While consumers have
some ability to identify higher quality plans, we find that they underrespond to mortality effects.

Finally, we simulate how consumer health might change if MA enrollment decisions were
more aligned with plan quality. While consumers are only weakly sensitive to plan quality, status
quo choices are better than random. Redirecting consumers from the observably worst plans in
a market may also dramatically improve their health. We find that randomly reassigning those in
plans with the worst 5% observational mortality rates could avert around 10,000 elderly deaths
each year. At conventional VSL estimates, such an effect would have a dollar-equivalent mortality
benefit of $10,000 per reassigned enrollee.

Our analysis of MA plan quality adds to a growing literature estimating the impact of health
insurance on health. Miller et al. (2019) and Goldin et al. (2019), for example, show that gaining
access to Medicaid leads to large mortality reductions. Card et al. (2008) similarly document a
discontinuous drop in mortality when beneficiaries age into Medicare. Less well studied is the
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question of whether different types of insurance plans in a market can differentially affect health
outcomes.1 By connecting plan quality differences to consumer demand, we add to a long literature
studying consumer attentiveness to plan heterogeneity (Abaluck and Gruber, 2016a, 2011; Ericson
and Starc, 2016; Handel, 2013; Handel and Kolstad, 2015). Our findings have general equilibrium
implications to the extent consumer demand impacts the characteristics of offered plans (Starc and
Town, 2019; Miller et al., 2019).2

Our analysis also adds to a recent methodological literature combining observational and quasi-
experimental variation to estimate heterogeneity in the quality of institutions, such as hospitals,
doctors, nurses, teachers, schools, and regions (Hull, 2020; Fletcher et al., 2014; Yakusheva et al.,
2014; Kane and Staiger, 2008; Chetty et al., 2014; Angrist et al., 2016, 2017; Doyle et al., 2017;
Finkelstein et al., 2017). The literature draws on “value-added” estimation methods originally
developed in the field of education; we are the first to apply such methods to measure the health
effects of individual health insurance plans. We extend this literature in two ways. First, we
formalize and develop tests for a novel assumption (i.e. the fallback condition) under which IV can
be used to measure the relationship between observational value-added estimates and causal effects
in the presence of selection bias. Second, we show how conventional discrete choice modeling
can be integrated with such IV procedures to both microfound the key fallback condition and to
measure how sensitive consumer choice is to true value-added (e.g. the implicit consumer WTP).

We organize the remainder of the paper as follows. In Section 2, we describe the institutional
setting and data, document large variation in observational mortality across MA plans, and moti-
vate our quasi-experimental validation approach. In Section 3, we develop our econometric frame-
work for IV estimation of forecast coefficients and related parameters. In Section 4, we present our
main forecast coefficient estimates. In Section 5, we study the correlates of mortality effects and
estimate consumer WTP. In Section 6, we discuss the scope for quality-based enrollment policy.
We conclude in Section 7.

1McGuire et al. (2011), for example, note the lack of systematic analysis comparing health outcomes in MA to
health outcomes in traditional Medicare. One exception is Duggan et al. (2015) who find that MA plan terminations
in counties with only a single MA plan lead to increased hospital utilization, but no change in mortality. Even fewer
studies compare the quality of Medicare Advantage plans. Geruso et al. (2019), for example, study random assignment
of low-income beneficiaries to alternative Medicaid Managed Care plans, finding large spending effects but lacking
sufficient power to detect mortality differences.

2Similarly, Gaynor et al. (2013) find that hospitals improve care quality when they face demand pressure, with
corresponding reductions in patient mortality.
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2 Setting and Data

2.1 Medicare Advantage

The Medicare program was established in 1965, primarily to provide insurance coverage for Amer-
icans aged 65 and older. Parts A and B of the Medicare program are typically referred to as “tra-
ditional Medicare” (TM). TM is centrally administered by the Centers for Medicare and Medicaid
Services (CMS) and covers hospitalizations and physician services for most Medicare beneficia-
ries.3 In recent years a large and growing share of beneficiaries have opted to receive coverage
through a set of diverse private managed care plans (34% as of 2019; see KFF (2019)). This par-
allel private program has gone by various names (see McGuire et al. (2011) for a comprehensive
history), but is currently known as Medicare Advantage (MA).

Medicare beneficiaries can choose between TM and (typically) many MA plans in their local
market. Broadly, MA plans must provide all of the mandated insurance benefits of TM in ex-
change for a capitated monthly payment. Competitive plans may charge lower premiums or offer
supplemental benefits to attract certain consumers. MA plans also tend to vary significantly in
their insurance networks, with some restricting access to providers (similar to commercial HMOs)
while offering more generous financial coverage or better cost-sharing. While there is significant
geographic heterogeneity in MA enrollment, most markets offer a wide variety of MA plans to
choose from. In 2010, for example, 33 MA plans operated in the average county (KFF, 2009).

The MA program has historically had two broad and sometimes conflicting goals: to expand
consumer choice and reduce Medicare costs (Commission, 2001, 1998).4 Less discussed is the role
of competition among MA plans in enhancing product quality, though policymakers recognize the
need for beneficiaries to make informed decisions in the MA market. Consequently, some form
of public plan quality ratings has existed since 1999, with current quality rankings (known as star
ratings) provided since 2007. These ratings score plans on multiple dimensions, including quality
of care and customer service. Star ratings have also begun to play a role in policy-making, with
the 2009 Affordable Care Act giving bonus payments to high-ranked MA plans. Unlike with other
programs, such as Value-Based Purchasing for hospitals, MA plans are not currently ranked or
rewarded for achieving low enrollee mortality rates.

Multiple insurers may enter or exit a local market in any given year and change MA consumer
choice sets. Broadly, insurers consider the cost of maintaining a given network, the potential

3Some beneficiaries, known as “dual-eligibles”, receive insurance coverage from both Medicare and Medicaid. We
include these beneficiaries in our analysis, while controlling for dual-eligible status.

4The MA program has always been controversial. “Cherry-picking” of healthy beneficiaries by MA plans could
lead to over-payment by the federal government or skew benefit design to attract favorable risks (Brown et al., 2014).
Despite potential efficiency gains, a substantial portion of the private (financial) gains from the MA program likely
accrue to insurers (see Cabral et al. (2014); Duggan et al. (2015)).
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revenue from different groups of beneficiaries, and policies affecting federal reimbursement when
deciding what plans to offer. Duggan et al. (2015) argue that the factors that drive plan exit are
unlikely to relate to outcomes through any other channel. For example, a policy change in 2008
increased the fixed costs of certain MA plans, known as private-fee-for-service (PFFS). Pelech
(2018) documents significant plan terminations in the year following the policy, with the market
share of PFFS plans falling by two-thirds between 2008 and 2011. We leverage this specific policy
variation in some analyses below.

2.2 Data and Summary Statistics

We use data on the universe of Medicare beneficiaries aged 65 or older in one of 50 US states or
the District of Columbia from 2006 to 2011. For each beneficiary in each year, we observe the
identity of their selected plan (both MA and TM), their local market (county), standard beneficiary
demographics (age, sex, race, and dual-eligible status), and their end-of-year mortality status. For
traditional Medicare enrollees, we further observe inpatient claims. We supplement these data with
characteristics of plans such as annual premiums, star ratings, and medical loss ratios.

Our Medicare data consists of 186,603,694 beneficiary-years with non-missing enrollment,
demographics, and mortality information. We use the full sample to construct our observational
mortality measure, as discussed below. For our IV analysis we restrict attention to the subset of
beneficiaries in 2008-2011 who ended the previous year in a MA plan. Because of changes to
Medicare reimbursement policy (Pelech, 2018), the vast majority of plan terminations we observe
take place during these years. The restrictions yield an analysis sample of 15,012,189 enrollees
in 75,417 plans, where we treat plans in different counties as different products. Appendix B
describes the construction of these samples in detail.

Table 1 summarizes our analysis samples. Column 1 shows average demographics and out-
comes for the universe of Medicare beneficiaries in 2008-2011. The average Medicare beneficiary
is 78 years old; 86% are white, 42% are male, and 16% are low-income and eligible for Medicaid
in addition to Medicare (“dual-eligibles”). In any given year of our sample, 8.1% of Medicare ben-
eficiaries change plans and 5.6% die. Within a county-year, we find about 25 plans in the median
beneficiary choice set (including both traditional Medicare and MA plans).

Columns 2-4 of Table 1 summarize the subpopulation of beneficiary-years who ended the pre-
vious year in a MA plan (our IV sample). MA enrollees are less likely to be dual-eligible than
Medicare beneficiaries as a whole, but are otherwise demographically similar. A higher rate of
MA beneficiaries switch plans in a given year (22.6%) and their annual mortality rate is somewhat
lower than in the full sample (4.7%).

Columns 3 and 4 of Table 1 summarize the subpopulations of enrollees of MA plans that
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Table 1: Summary Statistics

All
Medicare

Plans

IV Sample
All Non-

Terminated
MA Plans Terminated

(1) (2) (3) (4)

Beneficiary Age 77.5 77.3 77.3 77.0
% White 85.5 87.1 87.0 90.4
% Male 41.9 41.3 41.3 43.4
% Dual-Eligible 15.9 8.6 8.7 6.2
% Switched Plans 8.1 22.6 20.9 100.0
% Died 5.6 4.7 4.7 4.5
Median N Plans in Choice Set 25 33 33 25
Total Plans 226,460 75,417 65,768 9,649

N Beneficiary-Years 118,184,127 15,012,189 14,682,291 329,898

Notes: This table summarizes the analysis samples in 2008–2011. Column 1 reports average enrollee demographics,
annual plan switching rates, and annual mortality of the full Medicare population. Column 2 restricts the sample
to beneficiary-years who ended the previous year in a MA plan. Columns 3 and 4 present the sample divided into
beneficiary-years previously enrolled in MA plans that did and did not terminate. The total number of plans in column
3 subtracts the number of plans that ever terminate in column 4 from the number of MA plans in column 2. Choice
sets are defined as county-years; plans operating in different counties are treated as different plans.

did and did not terminate in the previous year. Broadly, these two groups are observationally
similar, though beneficiaries in terminated plans are slightly less likely to be dual-eligible and are
in somewhat smaller markets.5 The largest difference in these samples is the annual plan-switching
rate: while all beneficiaries previously enrolled in a terminated plan are forced to change to a new
MA plan, only 20.9% of beneficiaries in non-terminated plans switch.6

2.3 Observational Mortality

We begin our analysis by computing observational differences in one-year mortality rates among
Medicare plans operating in the same county, adjusting for observable differences in plan enrollees
and accounting for statistical noise. These observational mortality estimates come from ordinary

5Appendix Figure A1 shows that the majority of counties have at least one termination during our sample period.
Appendix Table A1 shows that counties with and without terminations have similar demographics, though counties
without terminations are somewhat smaller and more sparsely populated than counties with terminations.

6Appendix Table A2 describes switching behavior in more detail. In the full sample, 77.4% of enrollees do not
switch plans in any given year. Among those consumers, 7.8% enroll in a different plan offered by the same insurer
and 14.8% enroll in a plan offered by a different insurer. Consumers in terminated plans switch by definition; 18.6%
enroll in a different plan offered by the same insurer and 81.2% enroll in a plan offered by a different insurer. Thus the
vast majority of termination-induced switches are to new insurers within a market.

8



least squares (OLS) regressions, of the form

Yit = ∑
j

µ jDi jt +X ′itω + εit,, (1)

where Yit is an indicator for beneficiary i dying in year t and Di jt indicates her enrollment in a
given plan j at the start of this period. The control vector Xit contains observable characteristics
of enrollees (age, sex, race, and dual-eligibile status) as well as a full set of county and year fixed
effects. We allow the coefficient vector ω to vary flexibly by plan size. Given the fixed effects
and controls, variation in the observational mortality coefficients µ j thus reflects within-county
differences in one-year MA plan mortality rates among observably similar enrollees.

We account for statistical noise in the observational mortality estimates by applying a con-
ventional empirical Bayes correction (Morris, 1983). This correction, detailed in Appendix C.1,
“shrinks” the estimated µ j towards their county- and plan size-level mean, in proportion to their
expected degree of estimation error. The shrinkage is larger for smaller plans but minimal for the
larger plans that make up the majority of our sample; as discussed in the appendix, our shrinkage
procedure further allows for correlation of observational mortality rates within an insurer’s offer-
ings. In practice the shrinkage procedure plays a minimal role for the typical plan, which enrolls
over 9,000 beneficiary-years. The average effective shrinkage coefficient is very close to one, with
97% of plans having an effective shrinkage coefficient greater than 0.9.7

Estimates of Equation (1) reveal substantial within-county variation in MA plan mortality rates
among observably similar beneficiaries. The estimated beneficiary-weighted standard deviation of
µ j, after correcting for estimation error, is 0.9 percentage points or 19% of the average one-year
mortality rate of 4.7%. Figure 1 plots the full distribution of shrunk observational mortality rates
across MA plans. The solid line shows this distribution for our baseline specification of Equation
(1), with all observable controls included in Xit , while the dashed line shows the corresponding dis-
tribution for a simpler specification that omits the beneficiary demographic controls. We normalize
average observational mortality in both models by the average in the complete model. The model
without controls has a slightly lower mean (implying that MA plans have observably healthier
beneficiaries, on average) and a 20% larger standard deviation of 1.1 percentage points.

The changing mean and standard deviation of observational mortality when beneficiary demo-
graphic controls are included suggests some degree of selection-on-observables. In other words,
the variation in observational mortality from the simpler specification appears to be in part driven
by observable differences in plan enrollees and not the true mortality effects of plans. This selec-
tion appears to be primarily on two dimensions of our observable characteristics: age and dual-
eligibility. Conditional on these characteristics, further controlling for beneficiary sex and race has

7Appendix Figure A2 shows the distribution of effective shrinkage coefficients. See Appendix C.1 for details.
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Figure 1: Observational Mortality

Notes: This figure summarizes the enrollment-weighted distribution of observational mortality across MA plans.
The solid dark line shows this distribution when observational mortality is estimated from Equation (1), with all
demographic controls, while the light dashed line shows the corresponding distribution for a simpler specification that
omits age, race, sex, and dual-eligible status. Average observational mortality across all plans (traditional Medicare
and MA) is normalized to the average of the full model. Estimates are shrunk via the empirical Bayes procedure in
Appendix C.1. Estimated means and standard deviations of µ j for MA plans are computed as described in Appendix
C.1 and shown for each estimation procedure.

little effect on on the estimated distribution of observational mortality (e.g. the noise-adjusted stan-
dard deviation of µ j remains at 0.9 percentage points). Absent further observables, we are unable
to directly test for remaining selection bias in our benchmark specification. Instead, we derive an
indirect validation based on termination-induced variation in MA choice sets.

2.4 Plan Terminations

To build intuition for our quasi-experimental approach to validating observational mortality, con-
sider a set of beneficiaries who start the year enrolled in a MA plan with a high observational mor-
tality rate µ j. Since Medicare plan choice is highly inertial (only 23% of MA beneficiaries change
plans in a given year, per Table 1), most of these enrollees will remain in their high-mortality plan
throughout the year. Suppose, however, that at the start of the year the high-mortality plan ter-
minates for a plausibly idiosyncratic reason (such as a federal change in reimbursement policy).
This termination would force the plan’s enrollees to make an active enrollment choice, and under
standard regression-to-the-mean, they will tend to switch to a new MA plan that is more typical in
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terms of µ j. If the observational mortality rates were causal, then all else equal we would expect
the mortality of this enrollee cohort to fall commensurate to the decline µ j. Identical logic holds
for beneficiaries enrolled in exogenously terminated plans with low observational mortality rates:
subsequent plan choice is likely to be more typical in terms of µ j, relative to enrollees in non-
terminated low observational mortality plans. If observational mortality variation reflects causal
effects, then cohort mortality should rise. Combining these two termination quasi-experiments may
reveal the predictive content of our observational mortality rate estimates while allowing for direct
termination effects on mortality that are common to the high- and low-mortality terminations.

Figure 2 illustrates the relationship between plan mortality rates and termination status for
high- and low-mortality plans in our IV sample. The solid lines indicate regression-adjusted trends
in observational mortality for beneficiaries before and after a plan termination, separately for bene-
ficiaries previously enrolled in plans with above-median (blue) and below-median (red) mortality.8

The dashed lines indicate comparable trends in observational mortality for beneficiaries in the
same counties and years whose plans did not terminate, again separately for beneficiaries enrolled
in above- and below-median mortality plans. The solid lines indicate a regression-to-the-mean in
plan choice following termination: those previously enrolled in high- and low-mortality plans tend
to switch to more similar mortality plans on average. At the same time, the dotted lines indicate in-
ertia in plan choice absent termination: beneficiaries previously enrolled in high- and low-mortality
plans tend to stay in very different plans provided their plans remain available. Bracketed 95%
confidence intervals show that the post-termination difference in observational mortality is statis-
tically significant for both high- and low-mortality plans, despite terminated and non-terminated
plans having similar observational mortality prior to termination.

Figure 3 illustrates the corresponding relationship between realized beneficiary mortality and
plans termination status for beneficiaries enrolled in high- and low-mortality plans. Here the solid
and dashed lines correspond to the one-year mortality rates of the same groups of beneficiaries
summarized in Figure 2. Unlike with the average µ j of enrolled plans, mortality risk increases
with age, such that the beneficiaries in non-terminated plans (dashed blue and red lines) exhibit
an increasing trend in realized mortality. However, the solid blue line (indicating the realized
mortality of beneficiaries enrolled in a low-mortality plan prior to termination) exhibits a steeper
trend while the solid red line (indicating the realized mortality of beneficiaries enrolled in a high-
mortality rate plan prior to termination) exhibits a decreasing trend. Again the bracketed 95%
confidence intervals show a significant termination effect for both high- and low-mortality plans,
while average mortality prior to termination is more similar.

8Specifically, following our IV specifications below, we adjust for county-by-year fixed effects; flexible interactions
of lagged plan type, lagged observational mortality, and lagged market shares and beneficiary demographics (age in
5-year bands, sex, race and dual-eligibility status).
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Figure 2: Plan Terminations and Observational Mortality
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Notes: This figure shows regression-adjusted trends in the observational mortality of enrollees of non-terminated and
terminated MA plans, separately for plans with above- and below-median observational mortality. The median is
defined over the entire IV sample. Year 0 is defined as the last year prior to termination for terminated plans and year 1
is the following year. Termination effects are estimated in each year and median group by a separate regression which
controls for county-by-year fixed effects; flexible interactions of lagged plan type, lagged observational mortality,
and lagged market shares; and beneficiary demographics (age in 5-year bands, sex, race and dual-eligibility status).
County-clustered 95% confidence intervals for the termination effects are shown in brackets.

Together, the differential trends in Figures 2 and 3 suggest that a termination-induced move
to MA plans with different observational mortality µ j has a differential causal effect on actual
mortality Yit . This finding suggests that the sizable variation in observational mortality we find
in Figure 1 is not driven entirely by selection bias. At least some of the variation in observational
mortality appears to be attributed to causal variation in MA plan mortality effects. We next develop
an econometric framework to formalize this logic and measure precisely the predictive reliability
of observational mortality for such causal effects.

3 Econometric Framework

We develop an instrumental variables (IV) framework for using plan terminations to measure the
reliability of observational mortality differences in predicting causal plan mortality effects. While
not identifying mortality effects for individual plans, this approach is sufficient to estimate the
expected mortality impact of reallocating beneficiaries across observably different plans. We first
outline the econometric setting and parameter of interest before providing three conditions under
which this parameter is identified by an IV regression. We devote special attention to the third
condition, the “fallback condition,” which is novel to our paper.
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Figure 3: Plan Terminations and Beneficiary Mortality
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Notes: This figure shows regression-adjusted trends in the one-year mortality of enrollees of non-terminated and
terminated MA plans, separately for plans with above- and below-median observational mortality. The median is
defined over the entire IV sample. Year 0 is defined as the last year prior to termination for terminated plans and year 1
is the following year. Termination effects are estimated in each year and median group by a separate regression which
controls for county-by-year fixed effects; flexible interactions of lagged plan type, lagged observational mortality,
and lagged market shares; and beneficiary demographics (age in 5-year bands, sex, race and dual-eligibility status).
County-clustered 95% confidence intervals for these effects are shown in brackets.

3.1 Plan Health Effects

We use a simple model to define causal plan effects and the IV parameter of interest. Let Yi jt

denote the potential mortality outcome of individual i in year t if she were to enroll in a plan j in
her market. For the moment, we assume an additively separable model of Yi jt = β j+υit ; we extend
our framework to account for unobserved treatment effect heterogeneity in Section 3.4 below. By
normalizing the beneficiary-weighted average β j in each market to zero, we can interpret each β j

as the average mortality effect from moving a random beneficiary to plan j, with υit capturing
beneficiary health. Projecting υit on a vector of observable characteristics Xit (which includes a
constant) yields

Yi jt = β j +X ′itγ + εit , (2)

where E[Xitεit ] = 0 by definition of the projection coefficient γ .
Consumers choose among the set of available plans in their market, with Di jt = 1 indicating

that consumer i enrolls in plan j in year t. Consumer mortality is then given by Yit = ∑ j Yi jtDi jt .
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Substituting in the previous expression for Yi jt yields:

Yit = ∑
j

β jDi jt +X ′itγ + εit . (3)

In contrast to the regression model (1) in the previous section, Equation (3) is a causal model
linking beneficiary plan choice Di jt to subsequent mortality Yit via the causal plan effects β j.

Nonrandom plan selection creates fundamental econometric challenges in estimating plan mor-
tality effects. To the extent that any given plan attracts consumers of poor (good) unobserved
health, its observed mortality rate will be an upward- (downward-)biased estimate of β j. For this
reason, variation in the regression parameters µ j that we estimate in Equation (1) need not coincide
with variation in the causal parameters β j in Equation (3): formally, average unobserved health εit

need not be uncorrelated with the Di jt choice indicators.
In principle, quasi-experimental variation in plan choice could be used to address such selection

bias and estimate the full set of plan effects. This IV approach would require a set of exogenous
variables Zi jt to instrument for the plan choice indicators in Equation (3). In practice, any available
quasi-experimental variation in plan choice is unlikely to generate enough instruments for such
a procedure (given the large number of MA plans in each market) nor have sufficient power to
detect small differences in mortality effects (since mortality is relatively rare). We next discuss our
approach to quantifying variation in the plan mortality effects in light of these challenges.9

3.2 The Forecast Coefficient

Our first goal is to measure the reliability of observational mortality µ j in predicting the variation
in true MA mortality effects β j. Formally, we seek to estimate the MA forecast coefficient λ ,
defined by the the projection of causal mortality effects β j on observational mortality µ j (here,
without loss, also normalized to zero):

β j = λ µ j +η j, (4)

where η j is mean-zero and uncorrelated with µ j by definition. This regression is infeasible in the
sense that the dependent variable β j is neither observed nor estimated, despite measurement of the
independent variable µ j. The forecast coefficient nevertheless captures the predictive reliability
of the observational mortality measures. For example, µ j is an on average unbiased predictor of
causal mortality effects when λ = 1, while observational mortality has little association with true

9Estimating β j would also generally require structural assumptions that our approach does not impose. See Geweke
et al. (2003) and Hull (2020) for applications of such models to estimate hospital mortality effects.

14



causal effects when λ is small.10 We emphasize that Equation (4) reflects an equilibrium statistical
relationship, given by existing patterns of selection, and that λ is not a structural parameter.

Along with the forecast coefficient, Equation (4) defines a forecast residual, η j. This residual
reflects the fact that for a given level of observational mortality µ j, some plans may increase
mortality by more or less than expected due to selection bias (even when λ = 1). Only when
both λ = 1 and η j = 0 for all j is observational mortality unbiased for individual MA plans (i.e.
µ j = β j).11 Since Cov(η j,µ j) = 0, knowledge of the forecast coefficient is enough to place a lower
bound on the variance in true causal effects, even in the presence of selection bias, by ignoring the
contribution of η j. Namely, Var(β j)≥ λ 2Var(µ j).

While it is not feasible to estimate Equation (4) directly, we can relate it to observed enrollee
mortality via the causal model (3). Substituting the former equation into the latter, we obtain

Yit = λ µit +X ′itγ + εit +ηit , (5)

where µit = ∑ j µ jDi jt denotes the observational mortality of beneficiary i given her plan choice
Di jt and ηit = ∑ j η jDi jt is the corresponding forecast residual of her selected plan.

Equation (5) is again a causal model, linking observational mortality µit to realized mortality
Yit via the forecast coefficient λ . As with the initial causal model (3), OLS estimation of Equation
(5) will be biased when consumers of different unobserved health sort non-randomly into plans.12

To estimate the forecast coefficient, we will instead use an IV approach that follows the logic
of Figures 2 and 3. This approach leverages an instrument for the observational mortality of an
enrollee’s plan that combines quasi-experimental choice set variation from plan terminations and
the lagged observational mortality of an enrollee’s plan. In contrast to the initial causal model,
a single valid instrument is enough to identify λ in Equation (5). There is, however, a cost to
simplifying Equation (3) captured by the additional residual term ηit . We next discuss this cost in
formalizing our IV approach.

3.3 Identification

Intuition To see the basic logic of our IV approach, consider a market with three plans of equal
market shares. Two of the plans, A and B, have an observational mortality µ j of 0.05 and the third
plan C has an observational mortality of 0.03. Suppose plan C exogenously terminates, and that

10This definition of the forecast coefficient aligns 1−λ with the notion of “forecast bias” in the education value-
added literature (Kane and Staiger, 2008; Chetty et al., 2014; Angrist et al., 2017).

11Chetty et al. (2014) refer to the analogue of µ j 6= β j as “teacher-level bias,” to contrast it with the weaker condition
of λ = 1 (see also (Rothstein, 2009)). Angrist et al. (2016, 2017) discuss IV-based tests of µ j = β j and λ = 1.

12In fact, when the control vector Xit is the same in these two models, OLS estimation of Equation (5) (which uses
the first-step estimates of µ j from Equation (3)) will mechanically give a λ estimate of 1, even when observational
mortality is a badly biased predictor of true mortality effects. This result follows by standard projection algebra.
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subsequently all of its enrollees move to plan A or B. In either case, enrollees in plan C move
to a plan where observational mortality is 2 percentage points higher. All else equal, the forecast
regression (4) should then predict the resulting change in beneficiary mortality. If λ = 1, we expect
mortality for the plan C cohort to rise by 5−3= 2 percentage points. If instead λ = 1/2, we expect
this cohort’s mortality to rise by 1

2(5−3) = 1 percentage point, as the 2 percentage point difference
in observational mortality between plan C and either A or B would then partly reflect selection bias
and not causal effects. Such intuition mirrors the motivation for quasi-experimental evaluations of
observational quality measures in other settings (e.g. Kane and Staiger, 2008; Chetty et al., 2014;
Angrist et al., 2016; Doyle et al., 2017).

A subtle but key ingredient to this intuition is “all else equal.” In the three-plan example, there
is an implicit assumption that not only are terminations as-good-as-randomly assigned to plan C,
in the sense of being unrelated to unobserved beneficiary health εi, but that the plans chosen before
and after its termination are representative in terms of η j, the error term in Equation (4). In fact,
the presence of η j may confound quasi-experimental inferences on λ , even when terminations are
completely randomly assigned and thus independent of beneficiary health.

To see how the forecast residual can yield misleading quasi-experimental estimates of the fore-
cast residual, suppose that while observational mortality is unbiased on average (λ = 1), there is
still bias at the level of individual plans (η j 6= 0). Concretely, suppose in the three-plan example
that βA = βC = 0.03 and βB = 0.07. In this case the exact mixture of “fallback” plans A and B de-
termines how mortality responds to the termination. If all enrollees move to plan B following plan
C’s termination, then mortality will rise by 4 percentage points. Given the observational mortality
difference of 2 percentage points, a naïve estimate of the forecast coefficient will be inflated by a
factor of 2 (i.e. βB−βC

µB−µC
= 2λ ). Conversely, if all of C’s enrollees switch to plan A, one might falsely

conclude that observational mortality has no relationship with true causal effects (i.e. βA−βC
µA−µC

= 0).
Only in the case where beneficiaries sort evenly into plans A and B following C’s termination,
maintaining the equal market shares of the original plan choice distribution, will the comparison
of actual mortality effects to observational mortality effects yield the correct estimate of λ = 1.

This potential challenge with quasi-experimental estimation of observational reliability is quite
general. It arises whenever an instrument is used to estimate the relationship between observational
value-added estimates or other attributes of an entity (e.g. mortality for hospitals or test-scores for
teachers) and (unknown) causal effects. Doyle et al. (2017), for example, leverage the quasi-
experimental assignment of emergency Medicare patients to different ambulance companies in IV
regressions of short-term mortality on the average spending of the hospital to which a patient is
admitted. In this case, interpreting the resulting IV coefficient as a measure of the correlation
between hospital mortality effects and hospital spending requires more than random assignment
of patients to ambulances. It also requires knowing that certain ambulance companies do not
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systematically refer patients to hospitals which are higher quality than would be predicted by the
quality-spending relationship. Likewise, even if teachers quasi-randomly move across schools (as
in Chetty et al. (2014)), the within-school assignment of teachers to classrooms may matter for
estimation of the predictive reliability of observational value-added estimates.13

While the three-plan example may make this challenge seem intractable, such pessimism is
unwarranted in our setting. When pooling termination-induced choice set variation across many
markets, the solution becomes weaker and more natural. We show below that it holds in a wide
range of discrete choice models (including those typically estimated in the industrial organization
literature) and can be empirically investigated. Before presenting the general condition and its
microfoundation, we first discuss the more standard first-stage and exclusion restrictions required
by our IV approach.

The First-Stage and Exclusion Restriction Our approach to estimating the forecast coefficient
uses an instrument which, as in Figures 2 and 3, leverages the interaction of past plan choice and
plan terminations. Consider, for a beneficiary i observed in year t, the instrument

Zit = µi,t−1×Ti,t−1, (6)

where µi,t−1 denotes the observational mortality of the beneficiary’s plan in the previous year, and
Ti,t−1 is an indicator for whether that year was the plan’s last (prior to termination). We first derive
conditions for this instrument to identify λ in a simplified setting where observational mortality
is known without estimation error, there is no unobserved treatment effect heterogeneity, and we
control only for characteristics of a beneficiary’s plan in the previous year. We discuss how we
relax each of these simplifying assumptions in Section 3.4 below.

An IV regression of beneficiary mortality Yit on observational mortality µit which instruments
with Zit and controls for Xit identifies the forecast coefficient λ under three conditions, per Equation
(5). First, we require that the residualized instrument Z̃it (that is, Zit after partialling out Xit in the
population) is correlated with observational mortality:

Assumption 1. (First Stage): Cov(Z̃it ,µit) 6= 0.

The first-stage condition is highly intuitive in our setting. We expect most beneficiaries to remain
in their previous year’s plan due to inertia, unless the plan is terminated. Beneficiaries forced into
an active choice by a termination, however, will tend to switch to more typical plans. This combi-
nation of inertia and regression-to-the-mean implies that lagged terminations are likely to predict

13The education value-added literature typically considers quasi-experimental tests for selection bias, which can
be thought to impose the null hypothesis of η j = 0 (e.g. Angrist et al. (2016, 2017)). Our approach shows that a
previously overlooked condition is needed to estimate the forecast coefficient when such bias might be present.
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the observational mortality of year t choices differentially depending on lagged observational mor-
tality, so that Z̃it and µit are negatively correlated. Such negative correlation is shown in Figure 2,
where terminated enrollees in below-median (above-median) observational mortality plans saw an
increased (decreased) observational mortality of their enrolled plan in the following year.

The second condition is a standard exclusion restriction: that Zit is conditionally uncorrelated
with unobserved beneficiary health εit .

Assumption 2. (Exclusion): Cov(Z̃it ,εit) = 0.

As-good-as-random assignment of plan terminations is sufficient, but not necessary for this condi-
tion to hold. Since Zit is given by the interaction of terminations and lagged observational mortality,
and since both Zit and Xit only vary at the lagged plan level, we only require that any relationship
between observational mortality and the average unobserved health of a plan’s beneficiaries is the
same for terminated and non-terminated plans. Formally, we can evaluate Assumption 2 in terms
of the infeasible plan-level difference-in-differences regression,

ε̄ jt = φZ
(
µ j×Tj,t−1

)
+X ′j,t−1φX + e jt , (7)

where ε̄ jt = E[εit | Di j,t−1 = 1] denotes the average unobserved health among beneficiaries previ-
ously enrolled in plan j and X j,t−1 includes the lagged plan characteristics in Xit . Appendix C.2
shows that Cov(Z̃it ,εit) = 0 if and only if φZ = 0 in the version of this regression that weights by
lagged market shares. Since Tj,t−1 is included in X j,t−1, this formulation of Assumption 2 makes
clear that we allow both for terminated and non-terminated plans to enroll beneficiaries of system-
atically different unobserved health, and for plan terminations to have direct disruption effects. We
only require that this imbalance or effect is not systematically related to the observational mortality
measure.14 The similarity of the pre-period mortality in Figure 3 supports the stronger version of
Assumption 2 in our setting; we develop and apply additional falsification tests of the sufficient
exclusion restriction in Section 4.1 below.

The Fallback Condition The third identification condition we consider is novel, and follows
the above intuition regarding fallback plans. Even when terminations are as-good-as-randomly
assigned (satisfying Assumption 2), consumers are not randomly assigned to fallback plans after
terminations. Imbalance in the forecast residual η j must thus be ruled out for Zit to identify λ :

14To see when this condition might fail, suppose that terminations among low observational mortality plans occur
because population health appears to be systematically worsening but terminations among high observational mortality
plans occur because of exogenous financial shocks. In this case, we might wrongly conclude that a relative decline in
health among cohorts in terminated, low-mortality plans was due to those beneficiaries being reassigned to medium-
mortality plans, and not because health was worsening among that population. The balance tests discussed below
suggest such a story is unlikely in our setting.
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Assumption 3. (Fallback): Cov(Z̃it ,ηit) = 0.

Recall that ηit = ∑ j Di jtη j is the unobserved forecast residual of the plan that consumer i selects
in period t. For the instrument to be relevant, Z̃it must be correlated with plan choice Di jt so as-
good-as-random assignment with respect to η j does not guarantee that Z̃it is uncorrelated with ηit .
Consumers in terminated plans may subsequently make systematically different choices than those
in non-terminated plans, in a manner that induces correlation between Z̃it and ηit . Assumption 3
rules this correlation out, requiring fallback choices to be “typical” in a particular sense.

Interpreting Assumption 3 can be challenging because ηit is not structural. It instead arises
from the statistical Equation (4) and the potentially complex realizations of consumer choices and
health which give rise to µ j. We take two approaches to better understand the fallback condition.
First, we give a plan-level interpretation analogous to Equation (7). Second, we microfound the
fallback condition by asking what restrictions on consumer choices of plans would lead it to hold.

The fallback condition can be viewed (as with Assumption 2) as restricting the relationship
between observational mortality and a particular plan-level unobservable to be similar across ter-
minated and non-terminated plans. Specifically, Assumption 3 restricts a plan-level difference-in-
differences regression which replaces ε̄ jt in Equation (7) with η̄ jt = E[ηit | Di j,t−1 = 1]. For the
fallback condition to hold, the interaction of observational mortality µ j and lagged plan termina-
tion Tj,t−1 must not predict η̄ jt conditional on the controls. This, in turn, says that the conditional
relationship between µ j and the average η j of beneficiaries previously enrolled in terminated and
non-terminated plans must be the same. This plan-level interpretation gives some intuition for
the behavioral restrictions that might be sufficient. The fallback condition requires the first- and
second-choice plans of consumers (i.e. the choices made before and after termination) to be sim-
ilar, in terms of the relationship between the predictable dimension of plan quality µ j and the
unpredictable dimension η j. Since the first-choice µ j and η j are uncorrelated by definition, the
fallback condition requires that this lack of correlation remains as consumers switch from their
first-choice plan to their second-choice plan. The fallback condition should hold when consumers,
after terminations, make similar choices from the remaining plans as new consumers in the market.

Microfounding the fallback condition requires behavioral restrictions on underlying consumer
choice, since Assumption 3 is not ensured by as-good-as-random assignment of plan terminations.
Appendix C.3 formalizes this intuition with a discrete choice model that satisfies the fallback
condition. The simplest version of the model assumes that consumers in non-terminated plans are
fully inertial, while consumers in terminated plans make an unrestricted choice that maximizes
their latent utility Ui jt . We show that the fallback condition holds provided the IV control vector
Xit includes any lagged chararacteristics of plans that lead to persistent unobserved heterogeneity
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in choice. Suppose, for example, that consumer utility has the form

Ui jt = α
′
itWjt +ξ j +ui jt , (8)

where αit captures potentially heterogeneous preferences over observed plan characteristics Wjt , ξ j

denotes a fixed plan unobservable, and ui jt captures unobserved idiosyncratic time-varying plan-
specific preferences. We show in Appendix C.3 that the fallback condition holds in this model
(absent any functional form assumptions) when αit is either fixed across consumers or idiosyn-
cratic over time. For general αit , we show that the fallback condition holds provided flexible
transformations of lagged plan characteristics are controlled for: namely, when one conditions
on the characteristics of plans over which consumers exhibit heterogeneous and persistent prefer-
ences. Similar logic can be extended outside the utility model of Equation (8): in Appendix C.3 we
discuss how any controls sufficient to capture persistent heterogeneity in plan choice probabilities
can be included to satisfy Assumption 3 more generally.

The microfoundation suggests that the novel fallback condition is likely to hold in discrete
choice specifications that are commonly estimated in both canonical and recent papers in the in-
dustrial organization literature. For example, Equation (8) is the classic random-coefficient model
of demand for differentiated products used in Berry et al. (1995). More recently, Allende (2019)
employs a model in this class when estimating school value-added. That said, there exist choice
specifications that would violate the fallback condition. Assumption 3 could fail if, for example,
termination-induced changes in preferences cause consumers to select plans differently.15

The microfoundation of the fallback condition has two implications for our IV approach. First,
when estimating the MA forecast coefficient it may be important to control for lagged plan char-
acteristics over which consumers may have persistent heterogeneous preferences. We include such
controls in our baseline specification, as discussed below. Second, as with the conventional ex-
clusion restriction, the fallback condition may be investigated empirically. Assumption 3 asserts
that the forecast error of a beneficiary’s plan, ηit , is conditionally uncorrelated with the instrument
Z̃it . We do not observe this residual directly, just as we do not observe the beneficiary residual
εit which enters Assumption 2. However, just as standard IV falsification tests can investigate
whether the instrument is correlated with observable proxies for such εit , we can construct and test
for instrument balance on an observable proxy for ηit . Intuitively, we would check whether the
observable characteristics of a beneficiary’s fallback plans have a differential relationship with the
observational mortality of her previous plan, across those previously enrolled in terminated and

15Suppose, for example, that consumers in terminated high observational mortality plans learn to better identify
plans with low β j when forced to make an active choice. These consumers might choose plans with systematically
smaller η j following terminations; consequently, we may overstate the forecast coefficient by attributing a consumer’s
change in mortality to µ j instead of η j. The tests we discuss below suggest such a story is unlikely in our setting.
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non-terminated plans. We conduct this test in the MA setting below.

3.4 Extensions

We consider four extensions to our basic econometric framework before bringing it to the data.
First, we note that while we have derived the first-stage, exclusion, and fallback conditions for
an IV regression involving µ j, in practice the observational mortality of each plan is not known
and must be estimated. We show in Appendix C.4 how each of these conditions extend to the
case where µ j is replaced with an empirical Bayes posterior mean of observational mortality µ∗j .
The untestable exclusion restriction is unchanged in this case, while the feasible IV regression
fallback condition is satisfied under the same microfoundation we considered above. Importantly,
we continue to estimate the same forecast coefficient λ with the feasible IV regression as we
would if observational mortality were known, although increased estimation error in µ∗j is likely to
reduce power. In practice the issue of estimating µ j should be of little empirical consequence in our
setting, since the typical plan in our sample has thousands of enrollees and the typical shrinkage
coefficient is correspondingly close to one (see Appendix Figure A2).

Second, we note that we simplified the exposition by only considering an IV regression with
lagged plan-level controls, of the form Xit = ∑ j X j,t−1Di j,t−1. This restriction also allows for con-
trols at a level higher than plan, such as county-by-year fixed effects. In practice we further include
controls that vary at the beneficiary level (such as demographics) in some IV specifications. When
not necessary for identification, we expect such controls to absorb residual variation in beneficiary
mortality and potentially yield precision gains.

Third, in Appendix C.5 we show how our framework can accommodate unobservable selection
on heterogeneous treatment effects. Our core argument proceeds similarly, although we require a
further condition on unobserved selection on treatment effects. The new condition requires that
any relationship between the degree of such Roy selection and observational mortality is again
the same among consumers in terminated and non-terminated plans. Below we probe the role of
treatment effect heterogeneity by allowing plan effects to vary by observables.

Finally, we note that while we have derived first-stage, exclusion, and fallback conditions for
the purposes of estimating the forecast coefficient λ , analogous conditions can be imposed to
estimate the coefficient from regressing plan effects β j on any plan observable Wj. The first stage
for an instrument of the form Zit =Wi,t−1×Ti,t−1 (where Wi,t−1 =∑ j WjDi j,t−1) continues to derive
power from a combination of plan choice inertia and termination-induced regression-to-the-mean;
the exclusion restriction is analogous to Assumption 2, and the appropriate fallback condition
continues to hold under our choice model microfoundation. We use this extension in Section 5 to
study the observable correlates of plan quality, such as premiums and star ratings. We also show
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how our IV framework can be used to bound the implicit willingness to pay for plan quality using
the association between plan mortality effects and premium-adjusted market shares.

4 Results

4.1 Tests of Assumptions

We first investigate Assumption 1 by showing that termination-induced changes to consumers’
choice sets lead to predictable changes in the observational mortality of the plan in which they
subsequently enroll. We show this by estimating an OLS first-stage regression of:

µit = πZZit +X ′itπX + vit , (9)

where again µit denotes the plan observational mortality for beneficiary i at time t and Zit = µi,t−1×
Ti,t−1 is the interaction of lagged plan observational mortality and an indicator for lagged plan
termination. To explore robustness, we sometimes replace the linear interaction with more flexible
alternatives, such as interactions of percentiles of lagged observational mortality and lagged plan
terminations. The baseline control vector Xit includes county-by-year fixed effects (such that we
only exploit variation within choice sets), year- and county-specific termination main effects (to
allow for flexible direct effects) and flexible interactions of lagged plan type, lagged observational
mortality, and lagged plan size and market shares (to allow for a weakened fallback condition).16

In some specifications we also include controls for beneficiary demographics (age in 5-year bands,
sex, race and dual-eligibility status). We cluster standard errors at the county level, allowing for
arbitrary correlation in the regression residual across different beneficiaries, plans, and years.

First-stage coefficient estimates are reported in Panel A of Table 2. The finding of πZ < 0 is
consistent with a combination of inertia and regression-to-the-mean in MA plan choice, first doc-
umented in Figure 2. Beneficiaries enrolled in high- or low-mortality plans that are terminated in
year t−1 tend to choose plans in year t which are more typical in terms of observational mortality,
relative to the mostly inertial beneficiaries in non-terminated plans; consequently, Z̃it and µit are
negatively correlated. In column 1, we estimate a termination-induced regression-to-the-mean of
-0.35, implying that a consumer in a one percentage point higher observational mortality plan in
the previous period switches to a plan with 0.35 percentage points lower observational mortality
in the period following termination, relative to a consumer in a similarly high-mortality plan that
does not terminate. Column 2, corresponding more directly to Figure 2, shows that the termination
of an above-median observational mortality plan in year t− 1 induces a differential reduction in

16Plan type distinguishes traditional Medicare from several private alternatives: health maintenance organizations,
local and regional preferred provider organizations, private fee-for-service plans, and demonstration plans.
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Table 2: Tests of Assumptions

(1) (2)

Dep. Var.: Observational Mortality A. First Stage
Instrument −0.349 −0.0055

(0.037) (0.0011)
F Statistic 89.6 24.3

Dep. Var.: Predicted Mortality B. Exclusion
Instrument 0.042 −0.0003

(0.029) (0.0007)

Dep. Var.: Predicted Forecast Residual C. Fallback
Instrument 0.002 −0.0001

(0.002) (0.0001)

Specification Linear Median
Demographic Controls No No
N Beneficiary-Years 15,012,189

Notes: Panel A of this table is based on estimation of Equation (9) and presents the OLS coefficient in a first-stage
regression of observational mortality on the instrument. Panel B replaces observational mortality as the dependent
variable with a prediction of one-year mortality based on beneficiary demographics. Panel C uses as the dependent
variable a prediction of the forecast residual based on plan characteristics. In column 1 the instrument is the
interaction of lagged plan observational mortality and a lagged plan termination indicator. In column 2 the instrument
is the interaction of an indicator for above-median lagged plan observational mortality and a lagged plan termination
indicator. In all specifications, we control for the lagged plan observational mortality and termination main
effects, county-by-year fixed effects, year- and county-specific termination effects, and interactions of lagged plan
characteristics (as described in the text). Standard errors are clustered by county and reported in parentheses.

the observational mortality of year t plans of 0.55 percentage points, relative to a termination of a
below-median observational mortality plan. Both specifications yield high first-stage F statistics,
confirming the relevance of our instrument (Assumption 1).

Panel A of Figure 4 illustrates the first-stage relationship by replacing the linear instrument
in Equation (9) with one based on deciles of lagged observational mortality (and including decile
main effects). We then use this specification to plot the contemporaneous plan observational mor-
tality of enrollees who, in the previous year, were enrolled in plans of different deciles of observa-
tional mortality that did and not terminate. The figure shows that while lagged plan observational
mortality predicts current plan observational mortality among both groups, the relationship is much
flatter for terminated plans. The flattening again reflects the combination of inertia and regression-
to-the-mean in plan choice that yields negative first-stage coefficients in Panel A of Table 2.

We next build support for the IV exclusion restriction (Assumption 2) by testing whether the

23



Figure 4: Graphical Tests of Assumptions and the Reduced Form

Notes: This figure illustrates the three assumptions in our IV approach and the IV reduced form. Panel A shows
average observational mortality by deciles of lagged observational mortality among non-terminated and terminated
plans, controlling for county-by-year fixed effects and other observables in our baseline specification. Panel B shows
the corresponding averages of predicted one-year mortality given omitted beneficiary demographics (age, sex, race,
and dual-eligible status). Panel C shows the corresponding averages of a predicted forecast residual given omitted
plan characteristics (star ratings, premiums, MLRs, and an indicator for donut hole coverage). Panel D shows the
corresponding averages of one-year mortality. Points are the average of each left-hand side variable in deciles of lag
plan observational mortality combined with the decile-specific termination effects estimated from specifications of the
form of Equation (9), with controls as in Table 2, including decile main effects. Coefficients are normalized to remove
termination main effects.
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instrument predicts observable differences in beneficiary health. We replace the observational
mortality outcome in Equation (9) with a prediction of one-year beneficiary mortality, obtained
from a regression of one-year mortality on dummies for 5-year age bands, sex, race, and dual-
eligibility fixed effects (see Appendix Table A3 for model estimates). The results are in Panel B of
Table 2. In contrast to the large and significant first-stage effects in Panel A, we cannot reject the
null of instrument balance on predicted beneficiary mortality. With the baseline linear specification
we obtain an insignificant coefficient of 0.042, while in the median specification we obtain an
insignificant coefficent of -0.0003. Both of these estimates are more than an order of magnitude
smaller than the corresponding first-stage estimates, with the linear specification coefficient of
opposite sign. Finding balance for our instrument on predicted mortality is not surprising in light
of the motivating Figure 3, which shows a lack of imbalance of terminations on lagged mortality.
Appendix Figure A3 further shows that our instrument is balanced on average CMS risk scores,
which attempt to predict enrollee costs based on demographics and diagnoses and are available for
a subset of plan-years in our data.17 All three findings are consistent with Assumption 2.

Panel B of Figure 4 illustrates the predicted mortality regressions by replacing the observational
mortality measure in Panel A. We plot the average predicted mortality among terminated and non-
terminated plans at different deciles of lagged observational mortality. In contrast to the clear
first-stage effect, there is no differential trend in predicted mortality for terminated versus non-
terminated plans. Any differential trend in the actual mortality of beneficiaries in terminated and
non-terminated plans is therefore unlikely to be due to pre-existing differences in their health.

Finally, we build support for the novel fallback condition (Assumption 3) by testing whether
our instrument predicts an observable proxy for the forecast residual ηi. We construct the proxy
by first regressing observational mortality on a set of observable plan characteristics (plan star
ratings, premiums, medical loss ratios, and an indicator for donut hole coverage). We then take the
residual from projecting the fitted values from this regression (as an observable proxy of β j) on µ j.
This residual yields an observable proxy for η j, and thus of ηi = ∑ j η jDi j given a beneficiary’s
plan. Panel C of Table 2 reports the resulting instrument coefficients from replacing the outcome
in Equation (9) with this proxy. As in Panel B, where we effectively constructed a proxy for the
relevant beneficiary unobservable εi, we cannot reject the null of instrument balance on our proxy
for the relevant plan unobservable. The linear specification yields an insignificant coefficient of
0.002, while with the median specification yields an insignificant coefficient of -0.0001.

Panel C of Figure 4 illustrates these predicted forecast residual regressions by replacing the pre-
dicted mortality measure in Panel B. As before, we see no systematic relationship between termina-
tions and the predicted enrollee unobservable at any decile of lagged observational mortality. This

17The corresponding median specification from Table 2 for this observable proxy for beneficiary health gives an
insignificant coefficient of 0.022 with a county-clustered standard error of 0.014.
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result builds confidence in our third and final identification condition, suggesting that termination-
induced changes in observational mortality can be related to termination-induced changes in actual
mortality to estimate the MA forecast coefficient. We next present these IV estimates.

4.2 Forecast Coefficient Estimates

Table 3 reports first-stage, reduced-form, and second-stage estimates for our main IV specification.
These estimates are obtained from a second stage regression of

Yit = λ µit +X ′itγX + εit +ηit , (10)

and a first stage given by Equation (9). The reduced form replaces the observational mortality
outcome in Equation (9) with the actual mortality outcome in Equation (10). The second-stage
coefficient λ estimates the observational mortality forecast coefficient under Assumptions 1–3.
As before, we use both this linear specification and an alternative specification which replaces
the instrument with one constructed from an above-median lag observational mortality indicator.
We also report two specifications for the control vector Xit ; one which mirrors the tests of our
assumptions, and a second which adds beneficiary demographics (age, sex, race, and dual-eligible
status). Given the balance of our instrument on these beneficiary observables, via the predicted
mortality measure above, we do not expect the inclusion of these controls to meaningfully affect
the IV estimates (though it may increase their precision).

Panel A of Table 3 replicates the first-stage results reported in Panel A of Table 2 and confirms
that these change little when we add the demographic controls. Panel B shows the corresponding
reduced-form estimates from the same specifications. We find reduced-form coefficients of -0.34
and -0.39 for the linear specification (without and with demographic controls) and of -0.0068 and
-0.0065 for the median specification. Each of these estimates are quite similar to the corresponding
first-stage coefficients, reflecting the pattern first shown in Figures 2 and 3: terminations tend to
shift observational mortality and realized mortality by similar amounts.

Panel C of Table 3 shows that the similarity of first-stage and reduced-form effects yields high
forecast coefficient estimates, in the range of 0.99–1.23, with standard errors in the range of 0.19–
0.35. The point estimates are again similar with and without baseline demographic controls, which
indeed tend to reduce the standard errors. The median specification yields a slightly higher forecast
coefficient, although the estimates are not statistically distinguishable. Together, these IV estimates
suggest observational mortality is a highly reliable predictor of true mortality effects.

Panel D of Figure 4 illustrates this finding by plotting reduced-form variation in one-year mor-
tality rates for beneficiaries in terminated and non-terminated plans by deciles of lagged observa-
tional mortality. The resulting differential trend (obtained by replacing observational mortality in
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Table 3: Forecast Coefficient Estimates

(1) (2) (3) (4)

Dep. Var.: Observational Mortality A. First Stage
Instrument −0.349 −0.0055 −0.349 −0.0055

(0.037) (0.0011) (0.037) (0.0011)
F Statistic 89.6 24.3 89.4 24.3

Dep. Var.: One-Year Mortality B. Reduced Form
Instrument −0.344 −0.0068 −0.386 −0.0065

(0.099) (0.0024) (0.088) (0.0020)

Dep. Var.: One-Year Mortality C. Second Stage (Forecast Coefficient)
Observational Mortality 0.986 1.230 1.107 1.183

(0.230) (0.353) (0.187) (0.310)

Specification Linear Median Linear Median
Demographic Controls No No Yes Yes
N Beneficiary-Years 15,012,189

Notes: Panels A and C of this table report first- and second-stage coefficient estimates from Equations (9) and (10).
Panel B reports the corresponding reduced-form coefficients. The dependent variable is observational mortality in
Panel A and realized mortality in Panels B and C. In columns 1 and 3 the instrument is the interaction of lagged plan
observational mortality and a lagged plan termination indicator. In columns 2 and 4 the instrument is the interaction
of an indicator for above-median lagged plan observational mortality and a lagged plan termination indicator. In
all specifications, we control for lagged observational mortality and termination main effects, county-by-year fixed
effects, year- and county-specific termination effects, and interactions of lagged plan characteristics (as described in
the text). Columns 3 and 4 additionally control for beneficiary demographics. Standard errors are clustered by county
and reported in parentheses.

Equation (9) with actual one-year mortality) strongly mirrors that of the first stage in Panel A, con-
sistent with the finding of a forecast coefficient that is close to one. Lagged observational mortality
strongly predicts the subsequent mortality of beneficiaries previously enrolled in non-terminated
plans, while the relationship attenuates for beneficiaries previously enrolled in terminated plans
(who switch to more typical plans). This finding is striking in contrast to Panel B of Figure 4,
which shows no such relationship for predicted one-year mortality. Beneficiaries in high- and low-
mortality terminated plans appear similar to those in corresponding non-terminated plans until they
are induced by terminations to choose more average plans.

4.3 Robustness Checks

We verify the robustness of our forecast coefficient estimates in several exercises summarized in
Appendix Table A4. First, we show that the estimates in Table 3 are unaffected by the removal of
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counties which do not see a plan termination during our sample period. Panel A of Appendix Table
A4 shows we obtain similar forecast coefficient estimates of around 1.09–1.15 in this specification,
with comparable standard errors. This finding is consistent with the fact that the vast majority of
counties see MA plan terminations (see Appendix Figure A1) and that counties with and without
terminations are broadly similar (see Appendix Table A1).

Second, we verify that similar results are obtained when we drop the minority of beneficiaries
who switch from a MA plan to a TM plan (our baseline specification includes comparisons between
the majority of MA plans and a single TM plan in each county). While this specification may be
biased by selecting on an endogenous variable, we nevertheless obtain similar forecast coefficients
in Panel B of Appendix Table A4 with confidence intervals containing our baseline estimates.

Third, we show that we obtain similar but less precise estimates when we limit attention to
terminations of PFFS plans. Pelech (2018) links such terminations to a 2008 policy change which
increased PFFS operating costs. Panel C of Appendix Table A4 shows that these perhaps more
plausibly exogenous plan terminations yield a similar forecast coefficient estimate of 1.15, though
with larger standard error of 0.37. The corresponding median specification gives a larger but even
more imprecise estimate, with a standard error of 0.78 (and a first-stage F statistic below 10).

Finally, we investigate the role of treatment effect heterogeneity. Panel D of Appendix Table
A4 shows that we obtain similar estimates, of around 1.13–1.17, when we exclude dual-eligible
beneficiaries from both the IV sample and the sample used to construct the observational mortality
measure. Panel E further shows that our results are similar when we allow observational mortality
to vary by beneficiary age, estimating Equation (1) separately by five-year age bins. This specifica-
tion yields forecast coefficients of around 1.14–1.15, with smaller standard errors. This robustness
is especially striking as age and dual-eligible status appear to drive the majority of selection bias in
the most naïve observational mortality estimates, as discussed in Section 2.3. The findings suggest
either that treatment effect heterogeneity is not first-order in this setting, or that the extension of
our framework in Appendix C.5 (that accommodates such heterogeneity) is likely to hold.

4.4 Interpretation

Taken together, our forecast coefficient estimates suggest that a large proportion of the sizable vari-
ation in observational mortality across MA plans reflects the causal impact of plan enrollment. It
is worth emphasizing that this finding does not rule out selection bias in observational mortality, in
the sense of µ j 6= β j. Instead, our findings imply that µ j is a highly reliable predictor of β j despite
any such selection bias, in that λ ≈ 1. One might, for example, expect unobservably sicker benefi-
ciaries to systematically prefer certain plans with more coverage. Our results and framework allow
for this possibility: in the microfoundation of our fallback condition (discussed in Appendix C.3),
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we allow beneficiary preferences to correlate with their health in both observed and unobserved
ways, nesting common discrete choice models of plan choice. A forecast coefficient near one can
arise in such models even with systematic unobserved selection if the selection bias is negatively
correlated with true causal effects (i.e. better plans attract unobservably sicker beneficiaries).18 In
this case (with η j 6= 0), our forecast coefficient estimates give a lower bound on the variability of
true causal effects: with λ ≈ 1, the standard deviation of β j is at least as large as the 0.9 percentage
point standard deviation of µ j found in Section 2.3.

While an effect size this large may seem surprising, it is broadly consistent with a growing lit-
erature that shows large impacts of insurance status on health outcomes. Medicare as a whole has
been found to have large mortality effects. Card et al. (2008), for example, estimate a 20% mor-
tality reduction in Medicare beneficiaries who are admitted to emergency departments.19 The lit-
erature on place-based mortality effects estimates similarly large variation within Medicare across
all elderly beneficiaries, though these may capture both the joint impact of changing health sys-
tems and other demand side factors.20 Below, we further argue that evidence on provider effects is
consistent with the magnitudes we document.

5 Correlates of Plan Effects

When combined with our observational mortality estimates, a forecast coefficient close to one
implies large differences across plans in causal mortality effects. In this section, we investigate
how these differences relate to observed plan attributes. We first ask whether plan characteristics
predict observational mortality, µ j. We then extend our basic IV framework to see whether these
characteristics predict true mortality effects β j. We consider different characteristics that may serve
as proxies for plan quality, capture financial generosity and potential mechanisms, or measure
consumer willingness to pay for plan health effects.

18Formally, note that the forecast coefficient can be written as λ =
Cov(β j ,µ j)

Var(µ j)
=

Var(β j)+Cov(β j ,b j)

Var(β j)+Var(b j)+2Cov(β j ,b j)
, where

b j = µ j − β j denotes selection bias for plan j. A forecast coefficient of λ ≈ 1 can arise with non-zero bias when
Cov(β j,b j)≈−Var(b j), or when bias is sufficiently negatively correlated with the causal effect β j. Hull (2020) finds
such negative correlation between quality and selection in emergency hospital markets.

19A growing literature also shows that insurance lowers mortality in the Medicaid program (Miller et al., 2019;
Goldin et al., 2019). A 19% reduction in mortality within the MA program is thus within the range of the estimated
extensive-margin effect of gaining health insurance more broadly (Sommers et al., 2017).

20Finkelstein et al. (2019) find that moving from a 10th percentile geographic region of health outcomes to a 90th
percentile place reduces mortality by over 30%. Deryugina and Molitor (2018) also find evidence of large place effects.
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5.1 Proxies for Plan Quality

We start by considering whether existing plan quality measures (star ratings) or prices (premiums)
proxy for observational mortality and true plan effects. To help beneficiaries select plans, CMS
produces star ratings on a 1–5 scale, with 5-stars indicating the highest quality. Star ratings depend
on consumer satisfaction surveys and measures of clinical quality, but they explicitly do not con-
dition on outcome data like mortality. In addition to making these ratings available to consumers,
the government now pays "bonuses" to highly rated (4- and 5-star) plans.21

Surprisingly, we find that CMS star ratings are positively correlated with our observational
mortality measure, suggesting higher-ranked plans have higher mortality rates.22 The first column
of Table 4, Panel A, shows that a one-star increase in a plan’s ratings is associated with a 0.42
percentage point increase in observational mortality, controlling for county-by-year fixed effects
and other baseline controls. This is a small but statistically significant positive correlation. Of
course, this correlation could arise either because higher-ranked plans have worse mortality effects
β j or because sicker beneficiaries sort into higher star rating plans (causing selection bias µ j−β j

to be positively correlated with star ratings).
To eliminate selection bias, we next recover the relationship between true mortality effects, β j,

and star ratings by an extension of our IV approach. We estimate the analog of Equation (10),

Yit = θWit +X ′itρ + εit +ηW,it , (11)

which replaces the observational mortality treatment µit with a measure Wit = ∑ j WjDi jt of a dif-
ferent enrolled plan characteristic Wj (here, star ratings), instruments with Zit =Wi,t−1×Ti,t−1, and
replaces lagged observational mortality in Xit with the lagged plan characteristic Wi,t−1. For star
ratings, the IV coefficient θ intuitively captures the extent to which termination-induced switches
from low-rated plan to high-rated plans correlate with increased mortality Yit . Formally, we can
interpret θ as the plan-level regression analogous to Equation (4) (which here projects plan effects
β j on star ratings Wj, instead of observational mortality µ j) by natural extensions of our first stage,
exclusion and fallback conditions to this setting.

IV estimates of θ show no relationship between star ratings and mortality effects. The first
column of Panel B in Table 4 shows that a one-unit increase in star ratings is associated with a
smaller and statistically insignificant 0.06 percentage point increase in plan effects, with a standard
error of 0.14 percentage points. This result suggests that the most commonly used measure of plan
quality does not predict which plans systematically reduce beneficiary mortality on average.

21See Darden and McCarthy (2015) for measures of demand responsiveness to star ratings and Decarolis and
Guglielmo (2017) for an analysis of strategic incentives under the bonus program.

22We study cross-sectional correlations with plan observables. Star ratings, for example, are averaged for each plan
across all observed years (weighting by enrollment). We similarly average premiums and medical loss ratios.
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Table 4: Plan Characteristics Regressions

(1) (2) (3) (4) (5)

Panel A: OLS (Observational Mortality)
Star Rating 0.0042

(0.0003)
Premium 0.0048 0.0051

(0.0005) (0.0005)
Has Donut Hole Coverage −0.0021 −0.0024

(0.0003) (0.0003)
Medical Loss Ratio 0.0142 0.0087

(0.0035) (0.0033)

Panel B: IV (Plan Mortality Effect)
Star Rating 0.0006

(0.0014)
Premium −0.0051 −0.0044

(0.0020) (0.0026)
Has Donut Hole Coverage −0.0041 −0.0001

(0.0016) (0.0023)
Medical Loss Ratio −0.0214 −0.0223

(0.0044) (0.0044)
First-Stage F Statistic 2,860.3 2,085.8 1,437.8 1,644.6 372.9
Maximum Forecast R2 0.0005 0.0218 0.0214 0.0095 0.0298

N Beneficiary-Years 15,012,189

Notes: This table reports OLS and IV estimates of the regression of observational mortality and plan mortal-
ity effects, respectively, on plan characteristics. The dependent variable is observational mortality in Panel
A and one-year mortality in Panel B. All specifications include the baseline controls in columns 3 and 4 of
Table 3. The IV specifications instrument by the interaction of lagged plan characteristics and terminations,
controlling for main effects. Premiums are monthly and measured in hundreds of dollars. Missing plan
characteristics are replaced by the average non-missing value across plans. Standard errors are clustered
by county and reported in parentheses. The maximum forecast R2 is computed using the lower bound of
Var(β j) implied by the observational mortality forecast coefficient in column 3 of Table 3.
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We next investigate the correlation of observational mortality and plan effects with plan pre-
miums. Premiums may also proxy for plan quality if quality investments are costly to insurers
or if consumers demand higher quality plans (we investigate the latter in more depth in Section
5.3 below). In the second column of Panel A in Table 4 we find a positive and highly significant
relationship between premiums and observational mortality, suggesting that a $100 increase in
monthly premiums is associated with a 0.5 percentage point increase in µ j. Of course, as with star
ratings, this correlation may be due to selection bias: plans may charge high premiums precisely
because they enroll sicker-than-average beneficiaries.

IV estimates of the premium forecast coefficient are negative, suggesting that more expensive
plans are of higher quality. The second column of Panel B in Table 4 suggests that a $100 increase
in monthly premiums ($1,200 per year) is associated with a 0.5 percentage point decrease in β j. In
combination with the OLS estimate, this finding suggests that higher premium plans are favored
by sicker consumers (consistent with the findings of Starc (2015)). It also suggests that consumers
may be leaving money on the table when it comes to the effective price of mortality reductions, a
point we return to below. Even with conservative assumptions on the value of a statistical life, the
dollar-equivalent mortality benefits of higher premium plans appears to exceed the added cost.23

Although premiums (in contrast with star ratings) significantly predict plan mortality effects,
they similarly explain a small share of quality variation. Since we can use the observational mor-
tality variance and forecast coefficient to place a lower bound on the variance of β j, we can use the
star rating and premium forecast coefficients to place an upper bound on the R2 from regressing
plan effects on either of these plan characteristics.24 We find a maximum R2 of 0.05% for star rat-
ings and 2.18% for premiums, suggesting that only a small share of within-market quality variation
can be explained by either observable.

We emphasize that these IV results are causal in a limited sense. They do not imply that, for
example, a plan which raises premiums will improve its quality. This stronger claim (that we have
recovered the causal impact of plan characteristics on β j) only follows under stronger assumptions.
Namely, it would require that there are no omitted plan characteristics that are correlated with
premiums and also impact mortality (such that the regression of β j on plan characteristics is itself
causal). However, our results do suggest that higher premium plans are of systematically higher
quality, and are more predictive of quality differences than CMS star ratings. To further explore
potential mechanisms for plan quality differences, we next turn to other plan characteristics.

23At a conservative $1 million VSL, a 0.5 percentage point reduction in mortality is worth $5,000.
24Formally, Var(W ′j θ)/Var(β j) ≤ Var(W ′j θ)/Var(λ µ j) since Var(β j) ≥ Var(λ µ j). To estimate the maximum R2

in Table 4 we compute beneficiary-weighted variances of W ′j θ̂ and divide by beneficiary-weighted variances of λ̂ µ j

where λ̂ comes from column 3 of Table 3.
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5.2 Mechanisms

We investigate three mechanisms through which plans may impact beneficiary health: cost-sharing,
direct control of beneficiary utilization, and provider networks.

We first study the potential role of cost-sharing, as proxied by whether a plan offers coverage
in the Medicare Part D “donut hole” (a range of prescription drug expenditures at which some
plans stop cost-sharing). In Panels A and B of Table 4 we find that plans which offer donut hole
coverage tend to both have lower observational mortality (0.2 percentage points) and significantly
more negative plan effects (0.4 percentage points), on average. This contrast is consistent with
earlier findings that sicker beneficiaries tend to to select into plans with donut hole coverage (e.g.
Polyakova (2016)). The finding of large plan effect differences among plans which offer donut
hole coverage suggests that lower cost-sharing may be more broadly beneficial.25

MA plans may also affect utilization through other means, such as prior authorization require-
ments or physician reimbursement (Dillender, 2018). These supply side controls could affect both
utilization and quality. We next study whether mortality effects correlate with overall expendi-
tures, as measured by medical loss ratios (MLRs): the percentage of premiums which are paid out
in claims.26 In Panels A and B of Table 4 we find that plans with higher MLRs tend to have higher
observational mortality, but significantly lower plan effects. A one standard deviation higher MLR
(1.4 percentage points) is associated with a 2.1 percentage point reduction in the plan mortality
effect. This finding suggests that expenditure levels predict plan quality, echoing a similar corre-
lation found between hospital expenditure and mortality effects (e.g. Doyle et al. (2014)), but that
sicker beneficiaries tend to be found in plans with higher loss ratios.

Finally, we relate our findings to estimates of provider heterogeneity. The existing literature
documents large variation in hospital mortality effects (Hull, 2020; Doyle et al., 2014; Geweke
et al., 2003), with Hull (2020) and Doyle et al. (2015) finding evidence that such variation is
reliably captured by observational models. Correspondingly, we find that a hospital observational
mortality model estimated across all Medicare beneficiaries (with the same demographic controls)
suggests a one standard deviation better hospital decreases one-year mortality by roughly 20%.
Given the significant variation in provider networks across plans (e.g. Chernew et al. (2004)) this
variation suggests a plausible mechanism for the equally large variation that we find in plan-level
mortality effects. However an IV analysis of this potential mechanism is infeasible, given limited
data on MA networks.27

25At a $1 million VSL, the social value of more generous drug coverage is almost $5,000 per year.
26Due to data availability, we use 2011 MLRs data rather than averaging MLRs over years as with the other plan

characteristics. MLRs also differ in being determined at the insurer level, see Appendix B for details.
27Hospital network data is available from State Inpatient Databases, but consistent information on Medicare Ad-

vantage discharges is available only for three states (California, Maryland, and Massachusetts). While market shares
and hospital observational mortality estimates can be combined to create a measure of hospital network quality, the
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Overall, this analysis of mechanisms paints a clear and consistent picture. More expensive and
higher spending plans tend to reduce beneficiary mortality while also tending to attract sicker bene-
ficiaries. Still, much of the variation in plan quality remains unexplained as shown by the relatively
low maximum R2 of 2.98% in column 5 of Table 4, which includes all financial measures.28 The
large residual variation leaves ample room for alternative but harder-to-measure channels, such as
physician and hospital networks, to play an important role.

5.3 Demand for Plan Quality

We next estimate the extent to which higher quality plans tend to attract a greater market share.
This analysis follows a further extension of our IV framework which allows us to estimate the
implicit weight consumers place on plan mortality effects and estimate the implicit willingness to
pay (WTP) for plan quality. Intuitively, we can estimate latent demand from a plan’s market share
after accounting for differences in prices. Our IV framework then allows us to relate demand to
unobserved plan quality and recover the WTP from this relationship.

To formalize our approach, first consider how WTP might be computed if plan quality β j were
directly observed. A standard discrete choice approach specifies consumers as selecting plans to
maximize their latent utility Ui j, given by

Ui j = α p j +ξ j +ui j, (12)

where p j denotes the observed premium of plan j, ξ j collects all other relevant characteristics
of plans (observed or unobserved by the econometrician), and ui j is a set of unobserved taste
shocks for consumer i. We follow the usual assumption that ui j follows a type-I extreme value
distribution but make no other parametric assumptions and allow premiums to be endogenous in
the sense of being correlated with ξ j. Projecting ξ j on β j across plans, we obtain a decomposition
of ξ j = τβ j +ψ j with ψ j uncorrelated with β j. We expect both α and τ to be negative, as both
higher premiums and larger mortality effects (worse quality) will tend to decrease demand. The
ratio τ/(100×α) captures WTP for plan quality: the decrease in premiums sufficient to offset a
one percentage point increase in mortality effects β j, on average across other characteristics ψ j.

When p j and β j are both observed, standard discrete choice methods (e.g. Berry (1994))
may be used to estimate the WTP parameter, perhaps using instruments to account for the possible
endogeneity of premiums with respect to β j and ψ j. In practice β j is not known; we instead observe
the unbiased prediction λ µ∗j , where λ is again the observational mortality forecast coefficient

fact that these data cover a relatively small number of markets makes it challenging to draw inferences.
28We do not simultaneously include all five characteristics in Table 4 because star ratings and premiums are highly

correlated. This correlation makes the OLS regression in Panel A difficult to interpret and weakens the first stage in
Panel B, below the point where the IV coefficients can be easily interpreted.
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(approximately one, in this setting) and µ∗j is posterior observational mortality. Naïvely using this
proxy in discrete choice estimation of WTP is likely to generate bias for at least two reasons. First,
estimation error in µ∗j (due to finite samples) is likely to bias estimates of τ and α , potentially in
the direction of attenuating the WTP estimate. Second, even when λ = 1, there may be unobserved
differences in quality (i.e. non-zero η j) that may add further bias.29

We employ an alternative WTP estimation procedure that combines the discrete choice formu-
lation with our IV framework for estimating plan forecast coefficients. Equation (12) implies that
variation in log plan market shares recovers the normalized systematic component of consumer
utility, which we denote δ j:

ln
(
s j
)
− ln(s0) = δ j ≡ α p j + τβ j +ψ j, (13)

where we have without loss normalized the plan characteristics as relative to an outside option with
market share s0. Given an estimate or calibrated value of the premium coefficient α , we may back
out from this expression ξ j = δ j−α p j. We can then use our IV approach to implicitly regress β j

on this ξ j, identifying a forecast coefficient of

κ ≡
Cov(β j,ξ j)

Var(ξ j)
= τ

Var(β j)

Var(ξ j)
, (14)

using the fact that Cov(β j,ψ j) = 0 by construction. Given Equation (13), Var(ξ j) =Var(δ j−α p j)

is identified by market shares and the premium coefficient α . Our observational mortality forecast
coefficient further identifies a lower bound on Var(β j) ≥ λ 2Var(µ j). The forecast coefficient κ

then identifies a lower bound on τ = κ
Var(ξ j)
Var(β j)

≥ κ
Var(ξ j)

λ 2Var(µ j)
(recalling that τ < 0, and thus κ < 0,

when consumers value plan quality). The estimated or calibrated value of α < 0 then yields an
upper bound on consumer WTP, τ/(100×α).

We show this calculation in Table 5 for a range of possible premium elasticities given in the first
column.30 In column 2, we translate these elasticities to a value for α , dividing by the beneficiary-
weighted average premium. In column 3, we report corresponding estimates of κ , obtained from an
IV regression of one year mortality on the implied mean utility δ j of a beneficiary’s plan with our
usual specification of the instrument and controls. These estimates are again valid under natural
analogs of our Assumptions 1–3, as in Sections 5.1 and 5.2. For each premium elasticity we
obtain a negative coefficient estimate, suggesting that β j is negatively correlated with δ j or that
higher quality plans tend to have higher premium-adjusted market shares (consistent with a similar

29Alternative revealed-preference approaches may be used to overcome some of these identification challenges and
bound WTP under certain conditions. See Pakes et al. (2015) for a discussion.

30Curto et al. (2015) estimate an elasticity of -7 in this setting. Elasticities less than one in magnitude are implausi-
ble, since they are inconsistent with insurer profit maximization; nevertheless we include an elasticity of −0.5.
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Table 5: Willingness to Pay Bounds

Premium
Elasticity

Premium
Coefficient (α)

Forecast
Coefficient (κ)

Minimum
Quality

Coefficient (τ)

Maximum
WTP:

τ/(100×α)
(1) (2) (3) (4) (5)

-10 −0.0229 −0.0003 −403.95 176.38
(0.0001) (129.74) (56.65)

-7 −0.0160 −0.0004 −284.07 177.19
(0.0001) (91.30) (56.95)

-3.5 −0.0080 −0.0007 −144.81 180.66
(0.0002) (47.45) (59.20)

-1 −0.0023 −0.0017 −46.43 202.75
(0.0008) (22.23) (97.05)

-0.5 −0.0011 −0.0015 −25.23 220.30
(0.0013) (21.68) (189.30)

Notes: Column 5 of this table reports estimates of the upper bound on quality willingness to pay (WTP) described in
the text, for different values of the premium elasticity given in column 1. WTP is expressed in dollars per percentage
point reduction in one-year mortality. The forecast estimates in column 3 are obtained by an IV regression of one-year
mortality on the adjusted mean utility (ξ j) of a beneficiary’s plan, instrumented by the interaction of lagged adjusted
mean utility interacted with lag terminations and controlling for lag adjusted mean utility and lag termination main
effects along with the baseline controls in Table 3 (including demographics). Mean utility is adjusted by the premium
utility coefficient (in column 2) implied by the elasticity in column 1. The estimation sample is as in Table 3. Column
4 translates the forecast coefficient estimate to an estimate of the quality utility coefficient bound described in the text.
Standard errors are clustered by county and reported in parentheses.

finding for hospitals in Chandra et al. (2015)).31 Column 4 of Table 5 uses these estimates to
compute our upper bound on τ , while column 5 reports our corresponding estimates of the WTP
for a one percentage point increase in plan quality.

For the wide range of possible premium elasticities, we obtain estimated WTP bounds of
around $180–$220, implying that consumers are willing to pay no more than this amount to offset
a one percentage point increase in one-year mortality.32 These estimates are around half of the
average yearly premium in the sample (roughly $500) and extremely small relative to conventional
estimates of the value of a statistical life (around $10 million for the average American and 20%
of that, or $2 million by age 80; see Kniesner and Viscusi (2019) and Murphy and Topel (2006)).

31In unreported regressions, we find that the largest insurers (Humana, United, and Blue plans) appear to supply
higher quality plans. This pattern suggests an interesting avenue for future research.

32Naïve WTP estimates based on λ µ∗j tend to be lower in magnitude and negative. For example, a premium elasticity
of -1 yields an implied WTP of -167.89 with a standard error of 26.22—a finding that would imply consumers are
willing to pay for increases in mortality risk. This reflects the fact that observational mortality is increasing in plan
size and decreasing in premiums, even as we find an opposite-signed relationship for true plan effects.
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Conventional estimates imply a value of a one percentage point reduction in mortality of between
$20,000 and $100,000. Although our WTP bounds increase and become more imprecise as we use
a lower premium elasticity, our most conservative estimate is several orders of magnitude lower.33

The finding that consumers are insensitive to plan mortality effects is broadly consistent with a
literature demonstrating that consumers overweigh easily observable features, such as premiums,
when choosing between health insurance plans (Abaluck and Gruber, 2011). Many institutional
features may explain the finding of low WTP for mortality effects in this setting. First, consumers
may not have access to adequate information about quality. While disclosure of plan quality has
long been mandatory, CMS star ratings have only been publicly available since 2008, and we
find them to be uncorrelated with the mortality effects above. Second, even when information is
available, consumers may not be aware of it or may be unsure how to map it into outcomes they
care about (Dafny and Dranove, 2008; Darden and McCarthy, 2015).

6 Plan Choice and Mortality

Our forecast coefficient estimates in Section 4.2 suggest that MA plan mortality effects are enor-
mously variable within a market and can be reliably predicted by observational mortality differ-
ences. At the same time, our WTP estimates in Section 5.3 suggest that consumers place lit-
tle weight on this dimension of plan quality when making enrollment decisions. Together, these
findings imply that redirecting consumers from observably low-quality plans to plans with better
observational mortality could substantially improve beneficiary health.

We quantify the potential gains from aligning consumer choice with plan mortality effects in
a series of partial-equilibrium simulations. We first compare average one-year mortality among
MA beneficiaries under their status quo choices to a benchmark of random assignment to plans
within a market. Random assignment is used for low-income subsidy enrollees in Medicare Part
D (Decarolis, 2015) and in some state Medicaid programs (including California, New York, and
South Carolina). If MA consumers are more likely to choose plans with better mortality effects, as
we found in Section 5.3, then random assignment could increase mortality relative to the status quo.
This first simulation quantifies the change in β j, and thus the change in average mortality under
active choice.34 In practice we compute this value by first obtaining a forecast coefficient that
implicitly regresses β j on log plan market shares by our baseline IV approach. We then multiply
this coefficient by the change in market shares obtained under random assignment.

33Even if we assume that the deaths prevented by enrolling in lower mortality plans are delayed only a few years,
with a $250,000 value of a statistical life-year (Cutler, 2005), the value of a one percentage point reduction in mortality
should be at least an order of magnitude higher than we measure.

34All of the exercises in this section are partial equilibrium in that we assume plans do not have capacity constraints,
do not strategically enter or exit, and do not change plan characteristics affecting mortality.
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Table 6: Mortality and Plan Choice Simulations

Change
Among

Reassigned

% of Mean
Mortality

Unconditional
Change

% of Mean
Mortality

(1) (2) (3) (4)

Random Assignment to Plans 0.0027 5.7 0.0027 5.7

Assignment to Minimum- −0.0192 -40.8 −0.0192 -40.8
Mortality Plans

Assignment from Top- to −0.0077 -16.3 −0.0019 -4.1
Bottom-Quartile Plans

Random Assignment from −0.0108 -23.0 −0.0005 -1.1
Top 5% of Plans

Notes: The first row of this table uses a forecast coefficient estimate, obtained as in Table 4 by an IV regression of
beneficiary mortality on the log market share of her plan, to predict how mortality would change if consumers were
randomly assigned MA to plans within counties to the point of equalizing market shares. The remaining rows sum-
marize the simulated change in observational mortality posteriors when MA beneficiaries are reassigned to plans, as
described in the text. Given an observational mortality forecast coefficient near one, these results imply commen-
surate changes in mortality. All simulations are conducted on the MA sample, excluding plans with fewer than 12
beneficiaries in a given year.

The results are reported in the first row of Table 6. While we find in Section 5.3 that consumers
are only modestly attentive to plan mortality effects, plans are sufficiently differentiated that this
modest attentiveness produces large benefits in our simulation. We find that redirecting consumers
to plans at random increases average mortality by an average of 0.3 percentage points, or 5.7%
of the average one-year mortality rate in the sample. Scaling by a conservative VSL of one mil-
lion dollars, this estimate would imply that the partial equilibrium health benefits of active choice
relative to (unconditional) random assignment are at least $2,700 per person.35

We next consider the scope for improving on random assignment by leveraging observational
predictions of plan quality. These simulations proceed in three steps. First, we simulate draws
of observational mortality µ j and posteriors µ∗j given the variance parameters and distribution of
estimation error that we estimate by the empirical Bayes procedure in Section 2, and a normality
assumption on the underlying distribution of µ j. Next, within each county, we simulate a policy of
reassigning beneficiaries in plans with an observational mortality posterior µ̃∗j (e.g. the maximum)
to plans with a better prediction of µ

∗
j (e.g. the average observational mortality). Our estimate of

35Of course, these benefits would be substantially lower if evaluated given the WTP estimates in the previous section
rather than the $1 million VSL. We do not think that this alternative calculation is normatively appropriate given that
consumers are likely not fully informed about the significant differences in MA plan mortality effects.
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the average mortality improvement from such reassignment is then the average λ̂ (µ j− µ̃ j), where
λ̂ is an estimate of the forecast coefficient and (µ j, µ̃ j) denotes the actual observational mortality
of plans with posteriors of (µ∗j , µ̃

∗
j ). With λ̂ = 1, this simulation effectively predicts the potential

mortality effect by the average change in observational mortality.36

The results are reported in the remaining rows of Table 6. In the second row we find that
assigning beneficiaries to the observably best plan has a large impact. Given a forecast coefficient
near one, the reassignment would reduce mortality by -1.9 percentage points, or -40.8%, relative to
average mortality in the sample. This simulation helps illustrate the overall magnitude of variation
in plan effects but is not especially realistic and may be driven by the assumed (normal) tails of the
distribution of µ j. In the third row of Table 6 we instead reassign beneficiaries from plans in the
top quartile of observational mortality posteriors to those in the bottom quartile. Given a forecast
coefficient near one, the reassignment would reduce mortality among the affected consumers by a
smaller (but still sizeable) 0.8 percentage points, or 16.3% of the average mortality rate.

Finally, row 4 of Table 6 presents a policy-relevant simulation in the spirit of Chetty et al.
(2014) (who simulate the effect of removing the observably lowest quality teachers on student
test scores) and Abaluck and Gruber (2016b) (who simulate the effect of removing the financially
worst health insurance plans on beneficiary costs). We consider the impact of removing plans with
the worst observational mortality by randomly reassigning beneficiaries in the observably worst
(top 5% observational mortality) plans to other plans at random. This reassignment rule reduces
observational mortality posteriors by 0.05 percentage points (1.1 percentage points for affected
consumers), or 1.1% of the sample mean. With more than 20 million MA enrollees each year,
even this small change in mortality would have a large impact, averting around 10,000 elderly
deaths each year given a forecast coefficient of one.37

While suggestive of potentially large mortality reductions, these partial-equilibrium simula-
tions should be interpreted with care. Any policy that reassigns beneficiaries to plans is likely to
impact consumer well-being through many channels other than the mortality effects we consider.
On one hand, plans that reduce mortality likely also produce better morbidity outcomes such that
our estimates understate the health benefits. On the other hand, consumers may be made worse off
by having to switch providers, though we find no evidence that terminations directly raise mortal-
ity (through a channel other than plan choice) in any specification.38 Our simulations also do not

36This exercise may understate the gains from active choice to the extent status quo choices reflect positive selection
on unobserved treatment effect heterogeneity (Hull, 2020). As noted in Section 4.3 the role of such Roy selection
appears small in this setting.

37This number is not additive across years, due to competing risks. In other words, some of of the 10,000 deaths
that are averted in any given year will still die the following year. The 10,000 deaths averted per year thus corresponds
to a minimum of 10,000 life-years saved per year.

38Sabety (2020) and Staiger (2020) argue that switching providers could be harmful, as relationships with primary
care physicians improve patient health. When we estimate Equation (10) with a single direct termination effect, we
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account for the possibility that plans with lower mortality may differ systematically on financial
dimensions that consumers value. Our findings in Section 5.1 suggest that plans with lower obser-
vational mortality also have lower premiums, although the general equilibrium consequences we
have not modelled are likely especially important for premiums. In a sample of MA plans from
2015 to 2017, the average standard deviation of total costs (premiums + out of pocket costs) in MA
is around $1,000 (Gruber et al., 2020).39 With a $1 million VSL, the health benefits of the reas-
signments in row 4 of Table 6 would be $10,000 per reassigned beneficiary-year, likely dwarfing
any effects via switching costs or financial plan characteristics.

7 Conclusions

We find large within-market differences in mortality rates across MA plans after adjusting for
observable differences in enrollee characteristics and statistical noise. We then show that this vari-
ation is a highly reliable predictor of true plan mortality effects with a novel quasi-experimental
design. Publicly available quality measures are uncorrelated with true mortality effects. Perhaps
as a result, consumer demand is under-responsive to this dimension of plan quality. In partial-
equilibrium simulations we show that one-year mortality would fall significantly if beneficiaries
were reassigned to lower observational mortality plans, suggesting broad scope for policy inter-
ventions based on these measures.

We make two main contributions to the broader literature on health insurance plan choice. First,
we show that mortality effects are critical for assessing consumer choices. Papers that study only
financial consequences miss an important dimension of plan quality. Second, our findings suggest
large returns to understanding the market and plan-level determinants of plans’ mortality effects.
We find that plans with higher premiums, more generous drug coverage, and higher spending tend
to reduce consumer mortality. Richer data is needed to fully investigate the role of plan networks.

Methodologically, this paper adds to a recent literature combining quasi-experimental and ob-
servational variation to estimate heterogeneous quality of institutions (such as schools and hospi-
tals). We derive a novel condition for quasi-experimental variation in institutional choice to recover
forecast coefficients in the presence of selection bias. We show how these forecast coefficients can

nevertheless find precise zeros estimate of the direct impact of terminations on mortality. For example, when we
estimate the specification in column 1 of Table 3 with only a direct effect of terminations (rather than interactions
by year and county), our estimate is a 0.06 percentage point reduction in mortality with a standard error of 0.08
percentage points. This rules out even a 0.1 percentage point increase in mortality, compared to the 1.5 percentage
point reduction we simulate for eliminating the 5% of worst plans. Atherly et al. (2020) estimate switching costs in
Medicare Advantage of $2,800, although other analyses suggest that most inertia in health plan choice results from
inattention, so utility-relevant switching costs might be as much as 85% lower (Heiss et al., 2016; Abaluck and Adams,
2017; Drake et al., 2020).

39We thank Ben Handel and Sam Kina for providing this information.
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be used to quantify the benefits of policies which assign individuals to different alternatives. We
further show how our approach can be used to recover the sensitivity of consumer choices to unob-
served causal effects and to estimate the willingness to pay for these attributes. These methods may
prove useful in many settings where consumers select institutions of differing quality and price.

From a policy perspective, our results suggest potentially large benefits from directing con-
sumers to lower observational mortality plans. While the government does not currently release
risk-adjusted mortality information, we find that such information might be incredibly important.
Existing programs subsidize plans that score better on measures like star ratings, which we find
to be uncorrelated with causal mortality effects.40 Such programs may therefore do a poor job of
rewarding plans that improve beneficiary health and might do better if they targeted risk-adjusted
mortality. Our results also imply that insurers face weak incentives to invest in improving consumer
health, which could be strengthened by new contractual or organizational forms (e.g. integrating
conventional health insurers with life insurance, as in Koijen and Van Nieuwerburgh (2020)).

These conclusions come with important caveats. Our policy simulations are partial-equilibrium;
in general equilibrium, publishing observational mortality rates might induce plans to invest in
selecting healthier beneficiaries rather than improving health. Furthermore, our model does not
allow for capacity constraints or for premiums and quality to adjust with demand. Such effects
could offset our implied gains, although the health effects are large enough that they are likely
to be first-order.41 The long-term consequences of better quality information are more difficult
to gauge, but no less important. Making consumers more attentive to differences in plan health
effects could accelerate the adoption of technologies that provide higher-quality care at lower cost.

40See Decarolis and Guglielmo (2017) for an analysis of the MA Quality Bonus Payment Demonstration program.
41Nevertheless, the methods we develop here could help in adding these features: for example, with quasi-

experimental variation in the number of enrollees per plan, one could in principle investigate whether plans which
experience enrollment shocks become less effective at promoting health.
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A Appendix Figures and Tables

Figure A1: Geographic Distribution of Plan Terminations

Notes: This map shows the fraction of plans in a county that were terminated over 2008-2011, with counties shaded
according to the quantiles reported in the legend.
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Figure A2: Distribution of Observational Mortality Shrinkage Coefficients
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Notes: This figure shows the distribution of “pseudo shrinkage coefficients” for observational mortality, given by the
ratio of each plan’s de-meaned posterior to the de-meaned OLS estimate, across beneficiary-years in our main sample.
A coefficient close to one thus implies minimal shrinkage. This coefficient can be negative under the hierarchical
shrinkage procedure described in Appendix C.1.

47



Figure A3: Plan Terminations and Beneficiary Risk Scores

Notes: This figure shows average beneficiary risk scores by deciles of lagged observational mortality among non-
terminated and terminated plans (with non-missing risk score averages), controlling for county-by-year fixed effects
and other observables in our baseline specification. Points are given by average risk scores combined with the decile-
specific termination effects estimated from specifications of the form of Equation (9), with controls as in Table 2,
including decile main effects. Coefficients are normalized to remove termination main effects.
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Table A1: County Characteristics

No Terminations Terminations

Median Income 41,182 44,922
% of Pop >65 17.35 16.32
% Dual 13.80 14.06
% White 83.46 84.00
% Black 8.38 9.19
% Asian 0.61 1.38
Population 26,190 119,638
Population Density 52 315

Counties 595 2,466
Number of Beneficiaries 198,448 5,322,676

Notes: This table compares the demographics of counties with and without terminations, using data taken from
the 2011 American Community Survey (ACS). Population density is calculated as population per square mile. All
percentage variables are calculated using total population as the denominator.
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Table A2: Switching Behavior Summary Statistics

Sample: MA Terminated

% Do Not Switch 77.4 0.1
% Switch Plans within Same Insurer 7.8 18.6
% Switch Insurer 14.8 81.2
% Switch Into PFFS Plan 4.6 17.6

N Beneficiary-Years 15,012,189 329,898

Notes: This table compares choice behavior of consumers in MA plans to those in a MA plan that terminates. Market
shares sum to more than one due to rounding.
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Table A3: Predicted Mortality Model

(1)

Age 70-74 0.0051
(0.0002)

Age 75-79 0.0183
(0.0002)

Age 80-84 0.0410
(0.0002)

Age 85-90 0.0800
(0.0002)

Age 90-94 0.1425
(0.0003)

Age 95+ 0.2385
(0.0006)

Female −0.0188
(0.0001)

White 0.0068
(0.0020)

Black 0.0057
(0.0020)

Other −0.0054
(0.0021)

Asian −0.0099
(0.0021)

Hispanic −0.0068
(0.0020)

Native American 0.0090
(0.0024)

Dual 0.0453
(0.0002)

R2 0.039
N Beneficiary-Years 15,013,172

Notes: This table reports coefficients of our predicted mortality regression model. Standard errors are clustered by
county and reported in parentheses. The sample includes 983 singleton observations which are dropped from the main
IV sample for being perfectly collinear with the fixed effects.
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Table A4: Forecast Coefficient Robustness Checks

(1) (2)

A. Counties With Terminations
Observational Mortality 1.085 1.150

(0.189) (0.309)
First-Stage F Statistic 89.6 24.4
N Beneficiary-Years 14,644,200

B. No TM Enrollments
Observational Mortality 1.380 1.325

(0.219) (0.289)
First-Stage F Statistic 122.0 32.9
N Beneficiary-Years 14,166,119

C. PFFS Terminations
Observational Mortality 1.154 1.987

(0.369) (0.778)
First-Stage F Statistic 54.1 7.2
N Beneficiary-Years 14,904,951

D. No Dual-Eligibles
Observational Mortality 1.132 1.169

(0.207) (0.313)
First-Stage F Statistic 107.1 30.5
N Beneficiary-Years 13,151,504

E. Age-Specific Effects
Observational Mortality 1.146 1.135

(0.088) (0.140)
First-Stage F Statistic 829.2 231.1
N Beneficiary-Years 15,012,189

Specification Linear Median
Demographic Controls Yes Yes

Notes: This table reports second-stage coefficient estimates from Equation (10). The dependent variable is one-year
mortality. In column 1 the instrument is the interaction of lagged plan observational mortality and a lagged plan
termination indicator. In column 2 the instrument is the interaction of an indicator for above-median lagged plan
observational mortality and a lagged plan termination indicator. Panel A drops counties with no terminations over
2008-2011. Panel B drops beneficiaries who switch to a TM plan. Panel C drops non-PFFS plans that terminate.
Panel D drops dual-eligible beneficiaries. Panel E allows observational mortality to depend on beneficiary age, as
described in the text. In all specifications, we control for the lagged plan observational mortality and termination
main effects, county-by-year fixed effects, year- and county-specific termination effects, and interactions of lagged
plan characteristics (as described in the text), and beneficiary demographics. Standard errors are clustered by county
and reported in parentheses.
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B Data Appendix
We use the 100% CMS Master Beneficiary Summary Files for 2007–2011 as the basis of our
analysis. We apply a series of sample selection criteria throughout. We restrict to Medicare benefi-
ciaries who are 65 years or older and who reside in the 50 United States or the District of Columbia.
We drop beneficiaries that are ever observed in a small minority of plans or contracts with more
than 50% dual-eligible beneficiaries, which tend to be outliers with high mortality rates. We fur-
ther drop beneficiaries with incomplete enrollment or location data, beneficiaries with gap years
in their enrollment, beneficiaries with contract and plan data missing for every month of a given
year, beneficiaries with enrollment data in years after the year of their death, and beneficiaries with
multiple years of death records.

Our IV analysis is based on a subsample of beneficiaries enrolled in a MA plan from 2008-
2011. We define MA plans as those with types of HMO, non-HMO/POS, Local PPO, Local HMO,
PFFS, or Regional PPO. We exclude 800-series plans, special needs plans, and demonstration
plans. We define terminations by the CMS Landscape file for Medicare Advantage and Cost Plans.

Star rating data become available from CMS in 2008. We take average star ratings in 2008–
2011 and merge these characteristics by plan contracts.

We collect premium data also from the CMS Landscape files. The variable includes Medicare
Part C and Part D. The average premium is taken at the state, county, and plan contract level.
Premium data from the Landscape files are merged onto our observational mortality estimates first
using state, county, plan, and contract. If an observation has a missing premium value after this first
merge, then a second merge is performed to the Landscape files using state, county, and contract,
where contracts with the lowest plan ID in the Landscape files are used.

We construct Medical Loss Ratios (MLRs) from data provided by CMS. These data are only
publicly available online from 2011–2017, so the 2011 data are used, subset to the government
market segment. MLR is calculated as (total claims with permitted adjustments + total expenses
for activities to improve healthcare quality) / (total premium adjusted for payments to or from the
federal and state high risk pools - total federal and state payments as adjustment to premium).
MLRs that are negative or greater than 2 are excluded. We merge MLR values to the observational
mortality dataset, first by state, county, plan, and contract. If an observation has a missing star
rating after this first merge, then a second merge is performed to the Landscape files using state,
county, and contract, where contracts with the lowest plan ID in the Landscape files are used.
If there were multiple organization names associated with the same plan and contract within a
given state and county, the longest organization name was used. Then a manual mapping between
the company name in the MLR data and the organization name from the Landscape files was
constructed.
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C Econometric Appendix

C.1 Empirical Bayes Shrinkage

This Appendix describes our empirical Bayes approach to account for noise in our estimates of
observational mortality µ j. We specify a hierarchical linear model in which µ j is clustered across
plans in the same contract, c( j). We further allow the distribution of µ j to vary across plan size
bins.42 Throughout we normalize the mean µ j to be zero within each county. For notational
simplicity we here abstract away from the latter two implementation details, imagining a set of
mean-zero observational mortality levels µ = (µ1, . . . ,µJ) of a given size in a given county.

Our hierarchical linear model specifies the observational mortality effects as the sum of iid

contract- and plan-level random effects

µ j = wc( j)+u j, (15)

where E[wc] = E[u j] = 0, Var(wc) = σ2
w, Var(u j) = σ2

u . Medicare assigns both “contract IDs”
and “plan IDs” within a contract. Throughout, we consider a product a contract-plan-county;
observational mortality µ j is time invariant. We estimate σ2

w and σ2
u from a vector of estimates

µ̂ , where µ̂ j = µ j + e j with e j denoting mean-zero and uncorrelated estimation error with a j-
specific variance σ2

e, j. These estimates are given by (recentered) OLS coefficients, and we estimate
σ2

w, σ2
u , and σ2

e by a conventional random effects procedure (Morris, 1983). To minimize small-
sample biases, we exclude from this procedure the small minority of contracts with fewer than 100
beneficiary-years. Our estimates of Var(wc) = σ2

w and Var(u j) = σ2
u yield our overall estimate of

the standard deviation of observational mortality, according to Equation (15).
“Shrunk” empirical Bayes posteriors of observational mortality are given by Equation (15) and

our estimates of Var(wc) = σ2
w, Var(u j) = σ2

u , and Var(u j) = σ2
e . Formulas for these posteriors

are derived from the regression of µ on µ̂ and give the best linear unbiased prediction of µ from
µ̂ by standard Gauss-Markov logic. To illustrate this procedure, suppose there are only three plans
(A, B, and C) in two contracts, with c(A) = c(B). Then the posterior vector is given by

µ
∗ =Cov([µ̂A, µ̂B, µ̂C], [µA,µB,µC]

′)Var([µ̂A, µ̂B, µ̂C]
′)−1[µ̂A, µ̂B, µ̂C]

′

=V (V +diag([σ2
e,A,σ

2
e,B,σ

2
e,C])

−1[µ̂A, µ̂B, µ̂C]
′, (16)

42Roughly equal-sized bins are given by the following cutoffs on plan size: ≤ 1,000, 1,000-2,500, 2,500-5,000,
5,000-15,000, 15,000-25,000, 25,000-75,000, 75,000-200,000, and ≥ 200,000.
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where

V =Var(µ) =

σ2
w +σ2

u σ2
w 0

σ2
w σ2

w +σ2
u 0

0 0 σ2
w +σ2

u

 . (17)

This shows that the posterior for the third plan C is

µ
∗
C =

σ2
w +σ2

u

σ2
w +σ2

u +σ2
e,C

µ̂C =
Var(µC)

Var(µC)+Var(eC)
µ̂C, (18)

as in a standard empirical Bayes shrinkage procedure. The formula also shows that the posteriors
of the two clustered plans A and B are determined by the relative variances at the contract and plan
level. When σw is small, µ∗A and µ∗B will be similar to the conventional non-clustered shrinkage
formula (18). Otherwise, noisy observational mortality estimates of plans in the same contract are
implicitly shrunk towards one another, as well as towards the grand mean of zero.

In practice, the typical estimate of a plan’s observational mortality is very precise (i.e. the
typically Var(e j) is very small), making µ∗ close to µ̂ . This fact is summarized in Appendix
Figure A2, which shows the distribution of a “pseudo shrinkage coefficient,” µ̂ j/µ∗j given our
estimates of the variance parameters in Equation (15). The median coefficient is one, with nearly
all coefficients found to be larger than 0.75.

C.2 Plan-Level Exclusion Restriction

This Appendix shows how our exclusion restriction (Assumption 2) can be written in terms of an
infeasible plan-level difference-in-differences regression. We first note that by the Frisch-Waugh-
Lovell Theorem, Cov(Z̃it ,εit) = 0 if and only if φZ = 0 in the beneficiary-level regression of

εit = φZZit +X ′itφX + eit . (19)

We next note that since the regressors of this equation, Zit = µi,t−1Ti,t−1 = ∑ j µ jTj,t−1Di j,t−1 and
Xit = ∑ j X j,t−1Di j,t−1, only vary at the level of lagged enrollment group indicators Di j,t−1, the
coefficients of this equation are equivalently obtained by a Pr(Di j,t−1 = 1)-weighted plan-level
regression of

ε̄ jt = φZµ jTj,t−1 +X ′j,t−1φX + e jt , (20)

where ε̄ jt = E[εit |Di j,t−1 = 1]. Thus Cov(Z̃i,εi) = 0 if and only if φZ = 0 in this regression, which
conicides with Equation (7).
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C.3 Discrete Choice Microfoundation

This Appendix develops a simple discrete choice model which satisfies Assumption 3. We then
discuss extensions to this approach of microfounding the fallback condition. The simplest version
of the model assumes that plan terminations are as good-as-randomly assigned, that consumers in
non-terminated plans are fully inertial, and that consumers in terminated plans make an unrestricted
choice to maximize a latent utility of

Ui jt = α
′
itWjt +ξ j +ui jt . (21)

Here αit captures potentially heterogeneous preferences over observed plan characteristics Wjt and
ξ j denotes a fixed plan unobservable. We follow the standard convention in such models (e.g.
Berry et al. (1995)) of treating residual utility ui jt as an independent iid shock, though we do not
require any parametric assumptions on the distribution of αit or ui jt . We complement this model
for plan choice with our baseline outcome model Yi jt = β j + εit , allowing the unobserved εit to be
arbitrarily correlated with both αit and ui jt . Such correlation with the choice process (21) will tend
to generate endogeneity in plan choice and bias in the observational mortality measure µ j.

A sufficient condition for Assumption 3 is that the beneficiaries previously enrolled in termi-
nated plans select new plans similarly to those previously enrolled in non-terminated plans, given
the regression controls. When consumers in non-terminated plans are fully inertial, this condition
means that the fallback choice probability of consumers in terminated plans does not systemati-
cally depend on the identity of their previous plan, making their choices representative of the initial
choices of non-terminated consumers. Formally, we consider the sufficient condition of

Πk→ j(Xk,t−1)≡ Pr(Di jt = 1 | Dik,t−1 = 1,Xk,t−1) = Pr(Di jt = 1 | Xk,t−1)≡ π j(Xk,t−1), (22)

where X j,t−1 are lagged plan characteristics which the IV regression flexibly controls for (via the
transformation of Xit = ∑ j X j,t−1Di j,t−1). Equation (22) holds when fallback choice probabilities
Πk→ j(Xk,t−1) do not depend on the identity of the lagged plan k, and are thus equal to the uncon-
ditional choice probabilities π j(Xk,t−1), given the observables in Xk,t−1.

To see that Equation (22) is enough to satisfy the fallback condition, consider a version of the
IV regression which conditions on the lagged plan characteristics in Xit . As in the full-sample
case we can without loss normalize average observational mortality to zero in this subsample: i.e.

∑ j:X j,t−1=x µ j = 0 for the conditioning value x. The forecast residual η j is furthermore defined to
be mean-zero and uncorrelated with µ j in this subsample. Consequently, means the the instrument
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and fallback residual are conditionally uncorrelated among beneficiaries in non-terminated plans:

Cov(Zit ,ηit | Ti,t−1 = 0,Xit = x) = ∑
k:Xk,t−1=x

µkηk = 0, (23)

where we use the as-good-as-random assignment of plan terminations and the fact that beneficiaries
in non-terminated plans are fully inertial. Furthermore, when Equation (22) holds, we have the
same relationship among beneficiaries in terminated plans:

Cov(Zit ,ηit | Ti,t−1 = 1,Xit = x) = ∑
k:Xk,t−1=x

µk

(
∑

j
η jΠk→ j(x)

)
= ∑

j
η jπ j(x)

(
∑

k:Xk,t−1=x
µk

)
= 0.

(24)

This logic extends to feasible IV regressions which control flexibly for the lagged plan character-
istics that make Equation (22) hold.

It remains to be shown that the discrete choice model (21) admits a set of X j,t−1 satisfying
Equation (22). We show this by building up to Equation (21) in a series of special cases. First sup-
pose αit = 0, such that beneficiaries in terminated plans resort to new plans in proportion to their
market shares. The fallback condition is clearly satisfied in this case without any conditioning.
Next, suppose αit varies across beneficiaries but is iid over time. Then beneficiaries differ unob-
servably in their fallback choice probabilities, but this variation is still independent of lagged plan
choice so the fallback condition again holds unconditionally. Finally, consider the case where αit

both varies across beneficiaries and is persistent across time. Then it is apparent that Equation (22)
holds provided the lagged plan characteristics that consumers exhibit heterogeneous and persistent
preferences over, in Wk,t−1, are included in Xk,t−1.

We note two extensions of this simple microfoundation for the fallback condition. First, the
basic logic of controlling for lagged plan characteristics governing variation in fallback choice
probabilities appears very general. Consider, for example, a version of Equation (21) which allows
for random coefficients on plan unobservables:

Ui jt = α
′
itWjt +νitξ j +ui jt , (25)

with νi potentially correlated with εi, along with αit and ui jt . If ξ j were observed, one could control
for it in Xi,t to account for any persistent unobserved heterogeneity due to νit that may cause the
fallback condition to fail. With ξ j unobserved, it may still be possible to implicitly condition on it
by conditioning on the market share variation that is sufficient to identify these random coefficients.
If νit is almost-surely positive, for example, the market share functions given by (25) are typically
invertible in ξ j, yielding such identification. Berry et al. (2013) provide weaker conditions for such
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invertibility in a general class of utility specifications nesting (25).
Second, we note that one may extend the model to allow for imperfect inertia among non-

terminated beneficiaries. Suppose, for example, that an exogenous proportion of such beneficia-
ries are free to make an active choice each year and maximize utility as if their plan had termi-
nated. Then the conditional fallback choice probabilities of beneficiaries in terminated and non-
terminated plans will again be the same, satisfying Equation (22) and thus the fallback condition.

C.4 Forecast IVs with Estimated Observational Mortality

This appendix discusses feasible forecast IV regressions when observational mortality µ j is not
known and must be estimated. To understand the problem with a naïve regression of mortality
Yit on unadjusted regression estimates µ̂it = ∑ j µ̂ jDi jt , instrumented by some Z̃it satisfying our
first-stage, exclusion, and fallback conditions, write µ̂ j = µ j +e j for idiosyncratic estimation error
satisfying E[e j] = 0, Var(e j) =σ2

e, j, and Cov(e j,µ j) =Cov(e j,η j) = 0. Suppose for simplicity that
E[β j] = E[µ j] = 0 and Var(µ j) = σ2

µ . Then, under Assumptions 1–3 this IV regression identifies
an attenuated forecast coefficient, given by

λ̃ =
1
J ∑ j Cov(β j, µ̂ j)

1
J ∑ j Var(µ̂ j)

=
1
J ∑ j Cov

(
λ µ j +η j,µ j + e j

)
1
J ∑ j Var(µ j + e j)

= λ
σ2

µ

σ2
µ + 1

J ∑ j σ2
e j
. (26)

Intuitively, under Assumptions 1–3 the IV procedure recovers the regression of β j on µ̂ j, which
suffers from classic attenuation bias due to the measurement error in µ̂ j.

As with classic attenuation bias, this attenuation bias can be addressed by replacing µ̂ j with
a posterior mean µ∗j like those considered in Appendix C.1. To see this simply suppose µ∗j =

σ2
µ

σ2
e j+σ2

µ

µ̂ j as in a conventional shrinkage procedure. Then, again under Assumptions 1-3, and IV

regression of Yit on the corresponding µ∗it instrumented by a valid Zit identifies

1
J ∑ j Cov(β j,µ

∗
j )

1
J ∑ j Var(µ∗j )

=

1
J ∑ j Cov

(
λ µ j +η j,

σ2
µ

σ2
e j+σ2

µ

(µ j + e j)

)
1
J ∑ j Var

(
σ2

µ

σ2
e j+σ2

µ

(µ j + e j)

)

= λ

1
J ∑ j

σ4
µ

σ2
e j+σ2

µ

1
J ∑ j

σ4
µ

(σ2
e j+σ2

µ)
2Var

(
µ j + e j

) = λ . (27)

Intuitively, the shrinkage adjustment in µ∗j undoes the attenuation bias due to e j, as it would if we
were to estimate directly the regression of β j on µ∗j .
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C.5 Treatment Effect Heterogeneity

This Appendix shows how our IV framework accommodates unobserved treatment effect hetero-
geneity. The general model allows for heterogeneous treatment effects by writing

Yi jt = β j +X ′itγ + εit +ζi jt , (28)

where β j is normalized such that 1
J ∑ j β j = 0, εit is normalized such that E[Xit(Yi jt−β j− εit)] = 0

for each j, and ζi jt is a residual from this projection. In our baseline model ζi jt = 0 and εit

captures the relevant unobserved health of beneficiary i in year t. Otherwise, ζi jt captures the
relative unobserved appropriateness of beneficiary i for plan j in year t: when ζi jt < 0 then (i, t)

derives a better-than-average reduction in mortality from selecting plan j relative to the typical
beneficiary-year with similar observables Xit .

We can continue to project β j on µ j in this more general model to define a forecast coefficient
λ and forecast residual η j. This projection yields a second-stage equation of

Yit = ∑
j

Yi jtDi jt = ∑
j

β jDi jt +X ′itγ + εit +ζit

= λ µit +X ′itγ + εit +ηit +ζit , (29)

where µit = ∑ j µ jDi jt and ηit = ∑ j η jDi jt as before, and now ζit = ∑ j ζi jtDi jt . This latter term
captures the selected-on-gains of beneficiary i in year t: here ζit < 0 implies that (i, t) has selected
a plan which is relatively more appropriate for her than the typical beneficiary-year.

The first-stage, exclusion, and fallback conditions continue to be necessary for estimation of
Equation (29) with an instrument Zit to identify λ . With ζit 6= 0 we also require a fourth condition,
that Cov(Z̃it ,ζit) = 0. This condition says that the conditional variation in the instrument does not
predict variation in the relative extent of selection-on-gains captured by ζit . As with Assumptions
2 and 3, it can be interpreted via an infeasible plan-level difference-in-differences regression, of

ζ̄ jt = φZµ jTj,t−1 +X ′j,t−1φX + e jt , (30)

where ζ̄ jt = E[ζit |Di j,t−1 = 1] captures the average selection-on-gains among beneficiaries previ-
ously enrolled in plan j at time t−1. For φZ = 0 in this expression, satisfying Cov(Z̃it ,ξit) = 0, the
conditional relationship between observational mortality and average selection-on-gains in termi-
nated and non-terminated plans should be similar.

This new condition mirrors the logic of the fallback condition, as it is satisfied when beneficia-
ries choose similarly following a plan termination to new consumers in a given market. Formally,
note that the microfoundation in Appendix C.3 easily generalizes to allow for treatment effect het-
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erogeneity by replacing εit with εit +ζi jt . That is, the fallback condition holds given no persistent
unobserved heterogeneity in plan choice that is correlated with either beneficiary health or the ben-
eficiary’s appropriateness for certain plans. As with the fallback condition, this new restriction can
also be empirically investigated by using beneficiary observables to proxy for unobservables that
might drive treatment effect heterogeneity; we discuss such an exercise in Section 4.3.
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