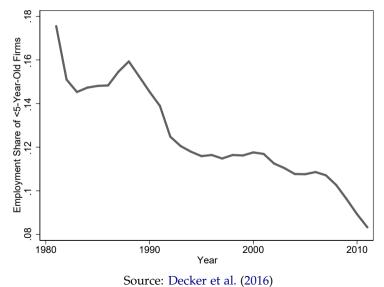
Value Without Employment


Simcha Barkai

(Boston College)

Stavros Panageas

(UCLA Anderson and NBER)

Employment Contribution of Young Firms

Declining Dynamism

Since the early 1980s

- Declining employment contribution of young firms (Decker et al. (2016a))
- Declining gross labor flows (Decker et al. (2014))
- Declining firm entry and exit rates (Decker et al. (2016a))
- ► Since the early 2000s
 - Decline in high growth firms (Decker et al. (2016b))
- Magnitude for contribution: at least 15pp to 10pp, a 33% decline

How Concerned Should We Be?

Will output and consumption decline and if so by how much?

This Paper

- 1. New stylized fact:
 - Market valuations and sales don't show that same weakness as employment
- 2. Interpretation:
 - New cohorts of firms have high average- and low marginal- product of labor
- 3. Model to study implications:
 - Stylized model of dynamic firm heterogeneity
 - High-APL low-MPL for new cohorts generates declining dynamism
 - Use model to determine implications for long run consumption

Preview of Empirical Results

- 1. Compustat: Increase in market value/employment and sales/employment
- 2. Pitchbook: Increase in market valuations across cohorts
- 3. NETS: establishments purchased by young firms have less employment growth

Preview of Model Results

- 1. This one feature (high APL, low MPL) can generate:
 - Declining labor share, contribution of young firms (targeted)
 - Declining exit rates
 - Declining gross labor flows
 - Increase in TFP dispersion
- 2. Log-linear formula relates long-run consumption to contribution of young firms
 - Slope is likely very small (multiplies 50% decline)
 - Intercept may be large (effect of structural change)
 - Intercept depends on the cause of declining dynamism

Market Value vs Employment

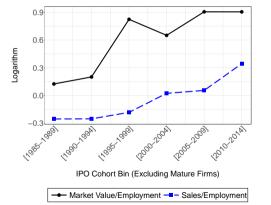
Compustat: Data

- US public firms traded on NYSE, AMEX, NASDAQ
 - Exclude finance, utilities...
- Supplement with data on firm founding year
 - Avoid counting the contribution of old firms going public (age>10 at IPO)
 - Taken from large number of sources to reach maximum coverage: Loughran and Ritter (2004), Jovanovic and Rousseau (2001), SDC Platinum, Crunchbase, Wikipedia, Bloomberg, Funding Universe, and Google
- Outcomes: market value (debt + equity), employment, and sales
 - Operating income in Appendix D

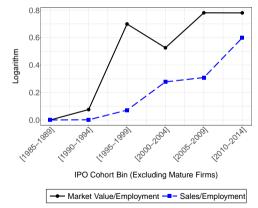
Compustat: Contribution of IPO Cohort

Contribution of IPO Cohort t as:

 $\label{eq:employment} \text{Employment Contribution}_t = \frac{\text{Employment of IPO Firms} \left(\text{Excluding Mature Firms}\right)_t}{\text{Total Employment}_{t-1}}$


▶ We bin IPO cohorts into 5-year bins

Employment Contribution_{bin} =
$$\sum_{i \in Bin}$$
 Employment Contribution_i


Analogous measures for market value and sales

Compustat: Results (Ratio)

(c) Ratio of Contributions

(d) Ratio of Contributions Normalized

Compustat: Magnitude

Comparing 1985-1989 cohort with 2010-2014 cohort

- Employment contribution declines 50%
- Sales contribution declines 10%
- Market value contribution shows small increase

Compustat: Additional Comments and Results

Composition

- Numerator: Entering firms could come from sectors with high MV/emp
- Denominator: Mature firms could come from sectors with low MV/emp
- Both are treated in Appendix D

Operating Income

- Would like to use value added as outcome (not available in Compustat)
- Results with Operating Income in Appendix D

Pitchbook

- Financial data provider that covers venture capital, private equity, and M&A
- Firm level information on public and private firms
 - Line of business, key personnel, founding year, recent news, and financial history
- When firm exits (IPO or M&A) the data provide post-money valuation (equity)

Pitchbook: Data

Construct cohorts using founding year (Compustat was based on IPO year)

- Extract aggregate exit values for each cohort in each year
 - Separately for IPO and M&A
- Example: 2002 cohort in year 2006
 - IPO exit value \$3.6bil
 - M&A exit value \$4.1bil
- Our sample covers 1990–2019

Pitchbook: Construction

- ▶ Bin cohorts into 5-year bins (1990–1994, 1995–1999, ...)
- Measure the cumulative exit values at each "age"
 - Age of the cohort bin 2000-2004 in 2005 is 5
- ▶ Deflate exit values in year t by US market cap at end of year t-1

 $\label{eq:deflated} \mbox{deflated exit value}_t = \mbox{nominal exit value}_t \times \frac{\mbox{market capitalization}_{2000}}{\mbox{market capitalization}_{end of t-1}}.$

1,250,000 M 1,000,000 750,000 500,000 250,000 0 10 15 20 5 Ó Cohort Age

 →
 1990-1994
 -⊞
 1995-1999
 2000-2004

 ·
 ◆
 2005-2009
 2010-2014
 2015-2019

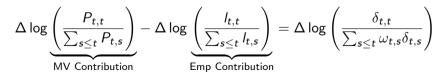
Cumulative Deflated Exit Value

Pitchbook: Additional Comments and Results

- Previous slide combines IPO and M&A
 - M&A exits are twice as large in value as IPO exits
 - Important to use data that covers both
- The results hold separately for IPO and M&A exits
 - Despite decline in number of firms going public, no decline in their combined value

Implications of Finding for Average/Marginal Product of Labor

Goal: implications of finding for average/marginal labor productivity


•
$$\delta_{t,s} \equiv \frac{\frac{y_{t,s}}{l_{ts}}}{w_t} - 1$$
 (average/marginal)

Notation: gross profits

$$P_{\frac{t,s}{\pi_{t,s}}} = A(t) \times B(t-s)$$

Assumption: valuation ratio

Result

Compustat: public firms, lots of outcomes

- Pitchbook: VC + PE backed firms, market value outcome
- NETS: universe of US firms, employment outcome

NETS: Thought Experiment

- Two identical establishments for sale
 - Will command same price and have same discount rate
 - Implies same profits
- One is purchased by young firm, the other by an old firm
- ▶ If establishment purchased by young firm operates with fewer employees then
 - 1. Must have lower MPL (fewer employees)
 - 2. Must have higher APL (higher profits per employee)
- Complete details in Section 2.4 of the paper

NETS: Data

- Establishment data from National Establishment Time-Series (NETS) Database
- Constructed from annual snapshots of Dun and Bradstreet (D&B)
- Contain unique id, headquarters (HQ), industry, employment, and location
 - Firm is the collection of establishments that share an HQ
- ▶ Time period: 1991–2015
- We carefully construct firm age (details in Appendix E)

NETS: Switchers

Switchers are establishments that have change in HQ (change in ownership)

Sample	Ν
Changes in ownership, all private payroll establishments	1,728,088
After removing exiting establishments	$1,\!618,\!286$
After further removing reorganizations and spin-offs	$1,\!546,\!055$
After further removing imputed employment	$982,\!131$
After further removing sticky employment	$213,\!255$

NETS: Specification

- Unit of observation is an acquired establishment
- ▶ Dependent variable: $\log L_{t+1} \log L_{t-1}$
- ▶ Baseline specification: indicator for young acquirer (age<8) + fixed effects
- Main specification: split sample into early and late (2005 is mid point)

NETS: Table 1

	Dependent variable:				
	$\log L_{t+1} - \log L_{t-1}$				
	(1)	(2)	(3)		
Young Acquirer	-0.039^{***}	-0.035^{***}	-0.027^{**}		
	(0.010)	(0.010)	(0.012)		
Fixed Effects	Year	Year×SIC4	Year×SIC4×State		
S.E. Cluster	$Year \times SIC4 \times State$	$Year \times SIC4 \times State$	$Year \times SIC4 \times State$		
Sample Period	1998 - 2014	1998 - 2014	1998 - 2014		
Observations	$213,\!255$	$213,\!255$	$213,\!255$		
\mathbb{R}^2	0.015	0.119	0.504		

Note:

*p<0.1; **p<0.05; ***p<0.01

NETS: Table 2

		$Dependent \ variable:$			
	$\log L_{t+1} - \log L_{t-1}$				
	(1)	(2)	(3)		
Young Acquirer	-0.018^{*}	-0.018^{*}	-0.017		
	(0.009)	(0.010)	(0.013)		
Young Acquirer \times Post-2005	-0.134^{***}	-0.127^{***}	-0.120^{**}		
	(0.035)	(0.039)	(0.055)		
Fixed Effects	Year	Year×SIC4	Year×SIC4×State		
S.E. Cluster	$Year \times SIC4 \times State$	$Year \times SIC4 \times State$	$Year \times SIC4 \times State$		
Sample Period	1998 - 2014	1998 - 2014	1998 - 2014		
Observations	213,255	$213,\!255$	$213,\!255$		
\mathbb{R}^2	0.015	0.119	0.504		

Note:

*p<0.1; **p<0.05; ***p<0.01

NETS: Robustness

Two concerns

- 1. Young firms might purchase young establishments
- 2. Young firms might purchase smaller establishments
- Note: would need change over time
- Paper presents results controlling for target age and size

Recap of Empirical Results

- Compustat: weak employment contribution, but stable market value contribution
- > Pitchbook: (deflated) exit values have been increasing with each cohort
- ▶ NETS: establishments purchased by young firms display less employment growth
- Interpretation: recent cohorts display increasing APL and declining MPL
 - Low MPL needed to rationalize low employment contribution
 - ► High APL needed to rationalize high valuations / employment

Model

Model Overview

Declining labor share + dynamism as consequence of high-APL, low-MPL

- Simplest version of model: labor only input into production
- Agnostic on reason for high-APL, low-MPL
- log-linear formula relates long-run consumption to contribution of young firms
 - Richer model: labor and capital inputs
 - Can offer guidance under different theories of high-APL, low-MPL
- Model points to increase in rents as reason for high-APL, low-MPL
 - Necessary to jointly explain declining labor share and declining dynamism

Model: Setup

- Continuous time, continuum of firms
 - ▶ Birth, exogenous exit (death shock), and endogenous exit (bankruptcy, low Z)
- Production + permanent idiosyncratic productivity shocks (no aggregate risk)

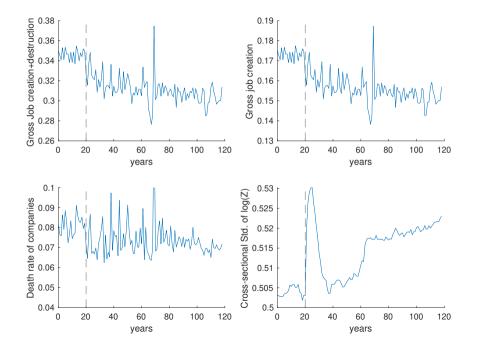
$$f(I_{it}, Z_{it}) = Z_{it}I_{it}^{\alpha}$$

$$dZ_{it} = \mu Z_{it} dt + \sigma Z_{it} dW_{it}$$

Households supply labor and consume output

$$r_t =
ho + IES^{-1}\left(rac{\dot{C}_t}{C_t}
ight)$$

Transition Path


Change production of new cohorts

- Lower α to match decline in labor share (low MPL)
- ▶ Higher Z to match output decline < employment decline (high APL)
- Numerical solution of economy along transition path
 - Guess path of bankruptcy cutoffs
 - Clear all markets (path of prices w_t and r_t)
 - Iterate until solution converges
 - Described in Appendix C

Along Transition Path

Work in Progress (calibration and simulation noise)

- Targeted
 - Declining labor share (features small within-firm increase)
 - Declining output contribution < declining employment contribution</p>
- Consequence: declining dynamism
 - Declining gross job flows
 - Declining exit rates
 - Increase in TFP dispersion

Implications for Long Run Consumption

• Production:
$$y_{it} = exp\{z_{it} + z^c\} I_{it}^{\alpha} k_{it}^{\beta}$$

▶ $1 - \alpha - \beta > 0$ is share of rents

Alternative: monopolistic competition with CRS production (Appendix B)

Study general change dz^c , $d\alpha$, $d\beta$

Log-linear formula relating long-run consumption to contribution of young firms

$$d \log \mathcal{C}^{\mathcal{SS}} = (1 - lpha - eta) \, d \log \mathcal{Y}^{\mathsf{new}} + \left(\log \mathcal{I}^{\mathcal{SS}} - \log \mathcal{I}^{\mathit{new}} - 1
ight) (dlpha + deta)$$

▶ log *I*^{SS} - log *I*^{new} difference in size between average and entering firm

Theory #1: Capital-Labor Substitution

- Zeira (1998), Acemoglu (2003), Jones (2003), Summers (2013), Brynjolfsson and McAfee (2014), Karabarbounis and Neiman (2014), Piketty (2014), Acemoglu and Restrepo (2016)...
- Ballpark Numbers

$$\blacktriangleright d\alpha + d\beta = 0$$

▶
$$1 - \alpha - \beta$$
 close to 0

•
$$d \log C^{SS} = \underbrace{(1 - \alpha - \beta)}_{\text{close to zero}} \times \underbrace{d \log Y^{\text{new}}}_{>-0.4}$$
 is close to zero

Theory #2: Declining Competition

Barkai (2020), Gutierrez and Philippon (2017), De Loecker and Eeckhout (2020)

Ballpark Numbers

• $d\alpha + d\beta = -0.135$ Barkai (2020)

▶ $1 - \alpha - \beta$ close to 0 in old steady state

▶ log I^{SS} - log I^{new} around 2.7 (calculated in NETS; similar in public LBD)

$$\bullet \ d \log C^{SS} = \underbrace{(1 - \alpha - \beta) d \log Y^{\text{new}}}_{\text{close to zero}} + \underbrace{(\log I^{SS} - \log I^{\text{new}} - 1)}_{1.7} \times \underbrace{(d\alpha + d\beta)}_{-0.135}$$

Potentially very large decline

Theory #3: Sectoral Composition

- Model multiple sectors, each with their own α_j, β_j, z_j^c
- Shocks
 - ▶ Different productivity shocks $\{dz_i^c\}$ to entering firms in each sector
 - $(d\alpha_j + d\beta_j) = 0$ in each sector
- ▶ d log C^{SS} likely very small, full details in the paper
- Data: declining labor share and dynamism appear within sector

Model Points to Increase in Rents

- Necessary to jointly explain declining labor share and declining dynamism
- $d(\alpha + \beta) = 0$ can't generate decline in firm responsiveness
 - Decline in firm responsiveness \rightarrow decline in gross labor flows
- Consistent with empirical evidence in Decker et al. (2018)
 - Declining responsiveness of firms to productivity shocks

Summary

- 1. New stylized fact:
 - Market valuations and sales don't show that same weakness as employment
- 2. Interpretation:
 - New cohorts of firms have high average- and low marginal- labor productivity
- 3. Model to study implications:
 - Stylized model of dynamic firm heterogeneity
 - High-APL low-MPL for new cohorts generates declining dynamism
 - Log-linear formula relates long-run consumption to contribution of young firms
 - Slope is small, intercept potentially large (rents vs substitution)