RATIONAL SENTIMENTS AND ECONOMIC CYCLES

Maryam Farboodi MIT Sloan, NBER & CEPR

> Péter Kondor LSE & CEPR

July 07 2020

CREDIT MARKET SENTIMENT REAL FUNDAMENTALS

Economies are subject to cycles!

- good times
 - abundant credit at small spread even to risky firms
 - deterioration of credit quality

high credit market sentiments, overheated market

- high output, positive output growth
- bad times
 - risky firms are squeezed, credit is expensive if there is any
 - issued credit is higher quality

low credit market sentiments

low output, negative output growth

ECONOMIC CYCLES

- what predictably triggers
 - periods of credit market overheating?
 - transition into a recession
 - length of booms/recessions
- is the economy (constrained) efficient?
- cost and benefit of policy instruments

OVERVIEW

- sentiment: choice of lending standards
- rational model
 - two-way interaction between sentiments and real outcomes

⇒ endogenous cycles

- diverse cycles: various boom/bust lengths, lengthy recovery, double-dip recessions, ···
- compare macro-prudential/monetary policy instruments

AGENTS

- ightharpoonup one good, infinite time t = 0, 1, 2...
 - each day: morning and evening
- agents: entrepreneurs produce, investors provide funding
 - risk neutral
 - maximize expected life-time utility
 - receive a unit endowment each morning
 - ightharpoonup can save at $1 + r_f$ within period (but not overnight)

ENTREPRENEURS.

TYPE DISTRIBUTION

- unit measure
- **b** good or bad (τ) , transparent or opaque (ω)
- \blacktriangleright μ : measure of bad agents

	au = g: good	au=b: bad
$\omega = 1$: transparent	$(1-\mu_{0,t}-\mu_{1,t})/2$	$\mu_{1,t}$
$\omega = 0$: opaque	$(1-\mu_{0,t}-\mu_{1,t})/2$	$\mu_{0,t}$

DYNAMICS OF ENTREPRENEUR TYPE DISTRIBUTION

- stochastic OLG model
- each entrepreneur is replaced by a newborn if
 - 1. dies with exogenous probability δ
 - 2. not granted credit
- outside distribution:
 - λ bad, 1λ good; $\frac{1}{2}$ opaque or transparent (iid)
 - ⇒ entrepreneur type distribution endogenously determined by credit market outcomes

 $\mu_{0,t}$ and $\mu_{1,t}$ endogenous, time-varying state variables

Entrepreneur Technology

- ightharpoonup each entrepreneur chooses investment $i(\tau,\omega)$ to produce with linear technology
- ▶ obtains credit $\ell(\tau, \omega)$ at interest rate $r(\tau, \omega)$ in the morning
- each unit of investment, i
 - **c** costs 1, covered by endowment or credit: $i = \ell + 1$
 - returns $\rho > 1 + r_f$ in the evening
- ▶ credit is collateralized by i: $(1+r)\ell = i \Rightarrow \ell = \frac{1}{r}$
 - financing each unit of investment requires r down-payment
- friction: bad collateral not seizeable
 - ⇒ bad entrepreneurs do not pay back

INVESTORS

- lives one period, replaced by same type next day
- two types
 - small measure of Skilled (w₁): observe type of entrepreneur/project
 - large measure of Unskilled (w₀): observe imperfect signals on the sample of loan applications they receive
 - signals are generated by a test of investor choice

Bold	good	bad
transparent	✓	X
opaque	V	V

Cautious	good	bad
transparent	V	X
opaque	X	X

either test costs c

CREDIT MARKET

- main friction
 - bad entrepreneurs do not pay back
 - investors have imperfect information about entrepreneur type
- \triangleright each investor advertises an interest rate \tilde{r}
- each unskilled investor picks a test
- each entrepreneur submits credit demand

STAGE GAME EQUILIBRIUM

key intermediate result!

investors choose bold test iff few bad (and opaque) entrepreneurs

trade-off:

- (1) with bold test (lax lending standards) more lending, but some borrowers default
- (2) more defaults when $\mu_{0,t}$ large
- \rightarrow cautious investors can offer lower interest rate than bold ones

$$\left\{ \begin{array}{l} \mu_{0,t} \leq \frac{c}{1+r_t} \text{: all investors choose bold test} & \rightarrow \textbf{bold stage} \\ \\ \mu_{0,t} > \frac{c}{1+r_t} \text{: all choose cautious test} & \rightarrow \textbf{cautious stage} \end{array} \right.$$

THE BOLD STAGE

- bold investors lend to all good and some bad entrepreneurs
- investment and output are high
- all entrepreneurs raise funding at common (low) interest rate
- loan quality is low

booming economy, overheated credit market

THE CAUTIOUS STAGE

- cautious investors lend to good-transparent firms only
- good-opaque are constrained by scarce skilled capital
 - limited credit, high interest rate, low output
- no bad credit
 - investment and output is low
 - credit spread: dispersion in interest rate
 - loan quality is high

low sentiment credit market

DYNAMIC EQUILIBRIUM

- dynamics: the law of motion for μ_0
 - cautious stage:

bad entrepreneurs die at higher rate (no credit)

- \Rightarrow steady state: $\bar{\mu}_{0,C} < \bar{\mu}_{0,B}$
- 2. investors become cautious when μ_0 high

$$\bar{\mu}_C < \frac{c}{1+f_f} < \bar{\mu}_B$$
: cycle

CYCLING TYPE DISTRIBUTION.

MEASURE OF BAD OPAQUE ENTREPRENEURS

CYCLING OUTPUT GROWTH

CYCLING CREDIT SPREAD

THREE MAJOR CLASSES OF CYCLES

- normal expansion and contraction
- prolonged recovery
- double-dip recession

NORMAL EXPANSION AND CONTRACTION

PROLONGED RECOVERY

(B) output growth

DOUBLE-DIP RECESSION

(A) state variables (μ_0, μ_1)

(B) output growth

OPTIMAL CYCLES AND ECONOMIC POLICY

- constrained planner: chooses which test the investors run
 - change the bold-cautious threshold
- constraint optimal outcome
 - cyclical
 - if fraction of newborn bad intermediate enough persistence (death rate not too high)
- equilibrium not constraint efficient
 - cautious stage: dynamic welfare gain keeps fraction of bad projects at bay
 - ⇒ makes boom more welfare enhancing
 - individual investor does not internalize her effect on the evolution of state

POLICY

- 1. *simple monetary policy:* risk-free asset with interest rate r_f in every stage
- 2. counter-cyclical monetary policy: 0 interest rate in a cautious stage, $r_f > 0$ in bold stage
- 3. *macro-prudential policy:* capital requirement for "risky" loans (issued by bold test)

how do they rank?

OPTIMAL CYCLES AND ECONOMIC POLICY

Equilibrium, Planner, and Policy Outcomes

MODEL AND FACTS

1. counter-cyclical quality spread

(A) Stein 2013: high yield share and excess realized returns

(B) model: opaque credit share and realized excess return

MODEL AND FACTS

- 2 heterogeneous portfolio rebalancing
- 3 terms and quality of credit cycle
 - credit standards are lax in booms
 - average quality of issued credit is deteriorating in booms
 - less dispersed interest rates in booms than busts

CONCLUSION

two-way interaction between rational sentiment and real outcomes

endogenous cycles

- normal expansion and contraction, prolonged recovery, double-dip recession
- decentralized equilibrium not constrained efficient
 - investors fail to internalize effect of their lending standards on quality of future investment
 - typically planner can push the economy to a higher-welfare cycle
 - policy instruments
 - achieve same cycle at different cost (higher lending rate)

CREDIT MARKET

sampling and market clearing

- start at the smallest advertised rate, r₀
 - 1. each entrepreneur with $\sigma(r_0, \tau, \omega) > 0$ has posted r_0 down-payment per application
 - 2. unskilled investors who advertised r_0
 - 2.1 sample applications pro-rata up to capacity by endowment and run test
 - 2.2 grant credit to passed applications
 - 2.3 credit + down-payment invested, *i* posted as collateral
 - 3. skilled investors who advertised r_0 sample remaining good applications pro rata and (2.2)-(2.3)
 - 4. remaining endowments go to risk-free
- proceed to the next lowest advertised rate, if any

MANY BAD PROJECTS: RECESSION, COOL-OFF, SEPARATION

FEW BAD PROJECTS: BOOM, OVERHEATING, POOLING

DOUBLE-DIP RECESSION

- not all recessions lead to a boom
 - some recessions are not sufficiently deep to trigger a purifying cautious stage
 - ⇒ double-dip recession: another crash is needed to make recovery possible

THE MIX EQUILIBRIUM

Mix equilibrium structure

3-STAGE ECONOMY: INTEREST RATE SCHEDULE

let
$$ilde{\mu}_0(\mu_1)\equiv rac{ar{r}-r_f-c-\mu_1(ar{r}+c-r_f)}{2+c+ar{r}+r_f}$$

- 1. there is a bold stage if $\mu_0 \in \left[0, \frac{c}{1+r_f}\right]$
- 2. there is a cautious stage if $\mu_0 \in \left[\max\{\frac{c}{1+r_f}, \tilde{\mu}_0(\mu_1)\}, 1\right]$
- 3. there is a mix stage if $\mu_0 \in \left[\frac{c}{1+r_f}, \max\{\frac{c}{1+r_f}, \tilde{\mu}_0(\mu_1)\}\right]$

3-STAGE ECONOMY: INTEREST RATE SCHEDULE

3-STAGE ECONOMY: INTEREST RATE

3-STAGE ECONOMY: TYPE-DISTRIBUTION

Return

3-STAGE ECONOMY: OUTPUT

PROPOSITION.

DYNAMIC EVOLUTION OF STATE VARIABLES

Assume $\min\{r_B, r_C\} < \bar{r}$.

$$1. \ \mu_0 \in \left[0, \max\{\tfrac{c}{1+r_f}, \tilde{\mu}_0(\mu_1)\}\right]$$

$$\mu_{0B}(\delta,\lambda,\mu_0,\mu_1) = (1-\delta)\mu_0 + (\delta+(1-\delta)\mu_1)\frac{\lambda}{2}$$

$$\mu_{1B}(\delta,\lambda,\mu_0,\mu_1) = (\delta+(1-\delta)\mu_1)\frac{\lambda}{2}$$

2.
$$\mu_0 \in [\max\{\frac{c}{1+r_f}, \tilde{\mu}_0(\mu_1)\}, 1]$$

$$\mu_{0C}(\delta,\lambda,\mu_0,\mu_1) = \left(\delta + (1-\delta)(\mu_0 + \mu_1)\right)\frac{\lambda}{2}$$

$$\mu_{1C}(\delta,\lambda,\mu_0,\mu_1) = \left(\delta + (1-\delta)(\mu_0 + \mu_1)\right)\frac{\lambda}{2}$$

PROPOSITION. DYNAMIC EQUILIBRIUM

 $\text{Consider } \bar{\mu}_{0B}(\delta,\lambda) > \mu_{0C}^*(\delta,\lambda) > \mu_{0B}^*(\delta,\lambda) > \bar{\mu}_{0C}(\delta,\lambda),$

- 1. $\frac{c}{1+r_f} \geq \bar{\mu}_{0B}$: $\mu_0 \to \bar{\mu}_{0B}$ degenerate ergodic distribution, permanent bold stage
- 2. $\frac{c}{1+r_f} < \bar{\mu}_{0C}$: $\mu_0 \to \bar{\mu}_{0C}$ degenerate ergodic distribution, permanent cautious stage
- 3. $\mu_{0B}^* \leq \frac{c}{1+r_f} \leq \mu_{0C}^*$: ergodic distribution: two-point support, μ_{0C}^* and μ_{0B}^* . cycle between 1-period bold and 1-period cautious stage
- 4. $\mu_{0C}^* < \frac{c}{1+r_f} < \bar{\mu}_{0B}$: ergodic distribution: more than two points of support. multi-period bold stage $(\mu_0 \uparrow)$, followed by a one-period cautious stage $(\mu_0 \downarrow \downarrow)$
- 5. $\bar{\mu}_{0C} \leq \frac{c}{1+r_f} < \mu_{0B}^*$: ergodic distribution: more than two points of support. multi-period cautious stage ($\mu_0 \downarrow$), followed by a one-period bold stage when ($\mu_0 \uparrow \uparrow$)

OUTPUT AND WELFARE

PROPOSITION (OUTPUT)

When $r_B\left(\frac{c}{1+r_f}, \mu_1, c, r_f\right) < \overline{r}$, total output jumps downward at $\mu_0 = \frac{c}{1+r_f}$, when the economy switches from the bold stage to the cautious stage in a two-stage economy.

PROPOSITION (WELFARE)

Consider a two-stage economy. Welfare is decreasing in the measure of bad projects, μ_0 . There is a discontinuous drop in $W(\mu_0,\mu_1)$ at the threshold $\mu_0=\frac{c}{1+r_f}$.

CONSTRAINT PLANNER

PROPOSITION (CYCLICAL OPTIMUM)

Let $\lambda^{\min} \equiv \frac{2c+2r_f}{3c+3r_f+1} < \lambda^{\max} \equiv 2\frac{\rho-c-r_f-1}{2\rho-c-r_f-1}$, and consider $\lambda \in [\lambda^{\min}, \lambda^{\max}]$. Then there exists a $\bar{\delta}$ such that for $\delta < \bar{\delta}$, the constrained planner's solution features endogenous cycles.

POLICY

PROPOSITION (POLICY CYCLES)

Under policy profile π , the equilibrium is identical to decentralized equilibrium with adjusted interest rate functions $r_{n}^{\pi}(\mu_{0},\mu_{1},c,\pi),r_{0}^{\pi}(\mu_{0},\mu_{1},c,\pi)$, and $r_{l}^{\pi}(\mu_{0},\mu_{1},c,\pi)$, as well as $\hat{\mu}_{0}^{\pi}(\mu_{1},c,\pi)$ and $\tilde{\mu}_{0}^{\pi}(\mu_{1},c,\rho,\pi)$ as adjusted thresholds $\frac{c}{1+r_{f}}$ and $\tilde{\mu}_{0}(\mu_{1},c,r_{f},\rho)$.

POLICY

DEFINITION (EQUIVALENT POLICIES)

Two policy profiles π and π' are equivalent (also to the planner's choice $\hat{\mu}_0^P$) if they imply the same ergodic distribution for the states (μ_0, μ_1) .

PROPOSITION (MACROPRUDENTIAL & MONETARY POLICY)

Consider a constraint optimal solution with more frequent cautious stages than the decentralized equilibrium. Equivalent policies $\pi_{r_i^B}$ and π_x imply the same equilibrium interest rate for any entrepreneur in every stage. The macroprudential policy delivers a slightly lower welfare than the countercyclical monetary policy.

PROPOSITION. STAGE GAME EQUILIBRIUM

There are $r_B(\mu_0, \mu_1, c, r_f) < r_C(\mu_0, \mu_1, c, r_f) < r_I(\mu_0, \mu_1, c, r_f) < \bar{r}$, and $\tilde{\mu}_0(\mu_1)$, such that if $\min\{r_B, r_C\} < \bar{r}$:

- 1. $\mu_0 \in [0, \frac{c}{1+r_f}]$: bold stage credit market: pooling equilibrium r_B every unskilled investor: bold test all good and some opaque bad: r_B
- 2. $\mu_0 \in [\max\{\frac{c}{1+r_f}, \tilde{\mu}_0(\mu_1)\}, 1]$: cautious stage credit market: separating equilibrium (r_C, \bar{r}) every unskilled investor: cautious test transparent good: r_C , opaque good: \bar{r} , opaque bad: none
- 3. $\mu_0 \in [\frac{c}{1+r_f}, \max\{\frac{c}{1+r_f}, \tilde{\mu}_0(\mu_1)\}]$: mix stage credit market: semi-separating equilibrium (r_C, r_I) Some unskilled investors bold test, some cautious test transparent good: r_C , opaque good and bad: r_I Otherwise: autarky.

