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Abstract

What determines the success and decline of cities over time? In this paper, we propose

that geographical and technological frictions in the diffusion of ideas make the growth tra-

jectory of cities sensitive to technology cycles, defined as long-term shifts in the centrality

of some fields in the knowledge space. Using a novel dataset of historical US patents that

spans the period 1836-2010, we show that cities whose innovative activities are more cent-

ral in the technology network grow more over the following decades. We also show that

diversification makes cities more resilient to technology cycles by guaranteeing a broad

spectrum of ideas to draw from as specific fields gain or lose importance. We formalize

these notions through a spatial, dynamic theory of innovation and frictional knowledge

diffusion across city-sector pairs. In our model, the heterogeneous effects of technology

cycles across cities accounts for 45% of the variation in city growth in the last century.

We show that the changes over time in importance of fields of knowledge induced the rise

and fall of manufacturing-intensive cities in the Rust Belt and the recent emergence of

modern knowledge hubs. Finally, we use our model to speculate how future changes in

the technological landscape may affect city growth in the next decades.
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1 Introduction

The economic geography of countries is in perpetual evolution. In the United States, many

cities and regions that have thrived in the past have progressively lost population and influence

in favor of newly emerging areas. In recent decades, several cities in the Rust Belt, that

had experienced extraordinary growth throughout most of the 20th century, have entered a

prolonged phase of decline. At the same time, a handful of urban areas specialized in knowledge-

intensive sectors, such as information technology and pharmaceuticals, have gained prominence,

becoming increasingly attractive for workers and firms (Glaeser and Gottlieb, 2009, Moretti,

2012). What determines these rich dynamics in the growth and decline of cities is still a matter

of debate and one of the central questions in urban economics.

In this paper, we propose that frictions in the diffusion of ideas across regions and fields

of knowledge make cities sensitive to “technology cycles”, defined as long-term swings in the

centrality of technological sectors in the innovation space. To measure technology cycles and

their impact on the economic geography, we leverage on a new dataset of geolocated historical

US patents over the period 1836-2010. We document a strong positive relationship between

shocks to a city’s centrality in the innovation landscape, induced by a favorable exposure to

the current technology cycle, and its ability to attract population over the following decades.

We further show that diversification of local innovation activities makes cities more resilient

to technology cycles by decreasing their exposure to shocks and by improving their ability to

reallocate resources towards expanding fields.

We then formalize the nexus between innovation, knowledge diffusion and migration in

a dynamic, spatial-equilibrium model. We propose a parsimonious and tractable model that

allows to characterize migration and knowledge flows in closed form. Leveraging on measures of

innovation centrality and patent citations, we use our model to quantify the effect of technology

cycles on US city growth over the twentieth century. We find that our proposed channel

accounts for 45% of the observed changes in city growth. We also zoom in two episodes of

radical transformation of the US economic geography: the growth of manufacturing-intensive

cities in the first half of the 20th century, and their later decline accompanied by the rise of

modern technological hubs. We show that knowledge diffusion played a substantive role in both

episodes. We conclude by simulating the evolution of the US economic geography over the next

decades under different possible scenarios of technological trends.

Our dataset of historical patents provides detailed information on the geographical origin,

technological classes, and backward and forward citations on the universe of US patents granted

since 1836. Using the frequency of co-appearance of each pair of technology classes in the same

patent grant to infer technological connections between fields, we construct PageRank-based

measures of centrality of each technological field in the innovation space over time. We show
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that the relative importance of fields has evolved significantly since the late 19th century, with

innovation in agriculture giving way as the most central field to improvements in transportation

in the earlier decades of the 20th century, followed by the expansion of IT-related sectors in

later decades.

Using this measure of centrality, we document novel facts on how changes in the innovation

landscape affected the US economic geography since the late 19th century. First, in the spirit

of a shift-share analysis, we assess the relationship between exposure to favorable technology

cycles and local population growth. We find that cities whose innovation activities are more

heavily skewed towards expanding sectors experience higher population growth in the following

decade. This relationship is statistically and economically significant, and is robust to a wide

range of specifications, controls, and time windows.

Second, we explore the effect of a city’s degree of diversification, measured as the Euclidean

distance between the local and the national shares of patents across fields, and its sensitivity to

technology cycles. We find that diversification reduces the likelihood of being exposed to large

shocks, since it guarantees that negative shocks to some knowledge fields will be compensated

by positive shocks to other fields. Moreover, we show that diversified cities respond more

effectively to technology cycles by reallocating their portfolios away from declining fields and

towards expanding ones.

The empirical facts that we document can have both positive and normative implications,

as they suggest that the local composition of innovation can be a source of sustained urban

growth in case of favorable technology cycles, but also lead to a reversal of fortune when the

evolution of the innovation landscape changes direction. One hypothesis to rationalize these

patterns is that the existence of geographical frictions in the transmission of ideas makes cities

sensitive to changes in the centrality of their fields of specialization. In the second part of the

paper, we develop a dynamic model of migration, innovation, and knowledge diffusion that we

use to quantitatively assess the importance of this channel.

In our setting, overlapping generations of individuals make migration and occupational

choices to maximize expected lifetime utility in a spatial economy. Upon entering adulthood,

individuals are exposed to both local knowledge, that they can imitate and directly use in

production, and to ideas learned from external sources, which they can combine with their

current knowledge to generate an innovation. The local distribution of ideas endogenously

retains a Fréchet structure over time, allowing us to characterize the knowledge flows through a

simple gravity equation that can be estimated using bilateral citation probabilities. Moreover,

these idea flows naturally imply a notion of technological importance of different fields in the

network of knowledge, that can be disciplined using our empirical measures of centrality. While

our framework is flexible in accounting for the incidence of other possible mechanisms behind

these correlations, such as the existence of specialized physical and human capital or frictions in
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the reallocation of factors across space,1 its structure allows us to accurately quantify to what

extent the interaction between technology cycles and frictions in knowledge diffusion affected

the dynamics of US cities over the last century.

The model remains tractable for any arbitrary number of sectors, locations, and time peri-

ods, and has a unique equilibrium that can be solved in closed form. We also show that the

model has a recursive structure that allows us to calibrate the parameters and to back up the

unobserved disturbances, including the shocks controlling the technology cycles, by making

a small set of transparent assumptions. The calibrated model is successful in capturing key

features of the data, and suggests that the endogenous mechanism of knowledge creation and

diffusion, interacted with the estimated technology cycles, can account for 45% of the variation

in population growth across US cities between 1910 and 2010.

The model delivers an intuitive representation for the evolution of a city’s stock of knowledge

as a function of the local and external spillovers and the identified technology cycles shocks.

This allows us to isolate a structural residual that captures all the factors affecting the evolution

of local innovation that cannot be directly ascribed to the endogenous mechanism of knowledge

creation and diffusion. These factors include a variety of forces that can be either exogenous

(e.g., natural events) or endogenous (e.g., opening of new research facilities) with respect to the

local exposure to technology cycles. Our setting does not require to make any assumptions on

the nature of this structural residual, but allows us to tell apart cases in which residual factors

amplify or dampen the direct effect of technology cycles.

We use the model to analyze the quantitative importance of technology cycles in the context

of two of the most prominent transformations of the US economic geography of the last century:

The rise of manufacturing-intensive cities in the early decades of the 20th century, and their

later decline to the benefit of emerging knowledge hubs specialized in information and bio

technology. We find that the mechanism of endogenous knowledge creation and diffusion can

explain a significant portion of the growth (and subsequent decline) of the major centers of heavy

manufacturing, with residual forces amplifying the oscillations in their growth trajectory. This

experience was mirrored in recent decades by some of the most rapidly expanding innovation

centers in the US.

Finally, we use the quantitative model to predict transformations in the US economic geo-

graphy in the coming decades under different scenarios for the evolution of the technological

landscape. In particular, we ask which cities would benefit and lose under the following scen-

arios: (1) A comeback of transportation-related technologies to their 1950 peak, due to a rise

in new modes of transportation such as autonomous vehicles; (2) An increase in the centrality

of pharmaceuticals and biotech as the most pivotal technologies (at the expense of IT and

1Adão et al. (2020) provide evidence that technology-specific skills imply slow and unequally distributed
adjustments to the emergence of new technologies.
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electronics) in response to new challenges in global health; (3) A comeback of agriculture to

its 1890 peak as a result of extensive regulatory change and increasing demand for sustainable

farming. We find that cities in the Rust Belt would benefit from the first scenario, at the

expense of cities in the North-East and the Pacific. The second scenario would penalize know-

ledge hubs specialized in IT-related innovation, favoring more diversified areas such as Boston,

and Southern California. The third scenario would prompt a reallocation of economic activity

towards the agricultural areas in the Central states.

Related Literature This paper contributes to multiple strands of literature. First, our

growth theory is based on idea flows at the city-sector level, with technological and geographical

frictions in knowledge diffusion playing a key role in explaining city dynamics. While a rich

body of literature has documented the strength and geographical span of localized knowledge

spillovers (among others, Jaffe et al., 1993, Audretsch and Feldman, 1996, Greenstone et al.,

2010) there has been no attempt to perform a quantitative assessment of the importance of these

externalities for understanding long-run city dynamics. One of the main obstacles for providing

such an assessment is the complexity of modeling idea diffusion in a spatial setting. In recent

years, two flourishing bodies of literature have provided major methodological advances in this

direction. First, a number of papers have developed tractable endogenous growth models that

emphasize recombination, imitation, and knowledge diffusion as major drivers of aggregate

productivity growth (e.g., Perla and Tonetti, 2014, Lucas and Moll, 2014, and Buera and

Oberfield, 2016). Second, a rich body of work on quantitative spatial economics has developed

tools for studying the determinants of economic activity in space, both within cities (e.g.,

Ahlfeldt et al., 2015, Heblich et al., 2018) and in a system of locations (e.g., Allen and Arkolakis,

2014, Desmet et al., 2018b).2 This paper combines insights from these two strands of the

literature and develops a dynamic, multi-sector, endogenous growth model in a spatial economy

that is highly tractable and can be quantitatively disciplined using data on population and

patents over a long time period. While a number of papers have used detailed data on patenting

to study innovation and knowledge flows in firm and industry dynamics (e.g., Akcigit and

Kerr, 2018, Cai and Li, 2019), or developed static models that emphasize localized knowledge

spillovers as the main determinant of the economic geography (e.g., Davis and Dingel, 2019),

this paper is, to the best of our knowledge, the first attempt at quantitatively assessing the

importance of frictions in knowledge diffusion for city dynamics.

An extensive literature has investigated the forces governing the long-run evolution of the

economic geography, specifically in its propensity to display path dependence and occasional

2Comprehensive reviews of these bodies of literature are provided by Buera and Lucas (2018) for models
of endogenous growth with idea flows, and by Redding and Rossi-Hansberg (2017) for quantitative spatial
equilibrium models.
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reversal of fortune (Davis and Weinstein, 2002, Bleakley and Lin, 2012, Kline and Moretti,

2014), as well as in its responsiveness to aggregate shocks such as rising sea-level (Desmet

et al., 2018a), and regional or sectoral shocks (Caliendo et al., 2018). Our working hypothesis

is that aggregate changes in the technological landscape, combined with frictional knowledge

transmission, have a major impact on the geographical distribution of economic activity. Our

framework can account simultaneously for path dependence and reversal of fortune in city dy-

namics, with a focus on understanding the evolution of the US economic geography in response

to the main technological transformations in the last century. While the focus on innovation

and idea diffusion is new to this literature, there is a rich body of work that has analyzed the

historical dynamics of the US geography, both from an empirical perspective (e.g., Bostic et al.,

1997, Simon and Nardinelli, 2002, Desmet and Rappaport, 2017) and from a structural and

quantitative viewpoint (Desmet and Rossi-Hansberg, 2014, Nagy, 2017, Allen and Donaldson,

2018, Eckert and Peters, 2019).

This paper also contributes to the long-standing tension between the returns to local spe-

cialization (Marshall, 1890) and urban diversity (Jacobs, 1969), and their effect on city growth.

Notable contributions in this literature include Glaeser et al. (1992), whose empirical assess-

ment finds evidence supporting Jane Jacob’s view of urban variety as the key driver of local

employment growth, and Duranton and Puga (2001), who develop a model in which diversified

and specialized cities coexist in equilibrium.3 Our paper suggests and quantifies a new channel

through which urban diversification affects long-run city growth, namely, the responsiveness of

a city to changes in the surrounding innovation landscape. It also implies a tradeoff between

larger growth opportunities during favorable cycles, but more severe oscillations during adverse

ones.4 In this sense, our model provides a new lens for interpreting the effect of local policies

directed at increasing local diversity.

The remainder of the paper is organized as follows: Section 2 introduces the data used for

the empirical analysis, calibration, and quantitative exercises. Section 3 presents the stylized

facts on the relationship between city growth and technological centrality and diversification.

Section 4 introduces the model setting and Section 5 describes the methodology used to bring

the model to the data. Section 6 presents the quantitative results. Section 7 discusses avenues

for further research and concludes.

3A comprehensive overview of the patterns of specialization across US locations is provided by Holmes and
Stevens (2004).

4Consistently with this interpretation, Balland et al. (2015) find that cities with more diverse knowledge
bases are less sensitive to technological crises, defined as sustained declines in patenting activity.
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2 Data

Technological change is a slow-moving secular process. To study how the rise and fall of

technologies determines the success of cities, we therefore need to consider a time period long

enough to capture multiple episodes of technological replacement. In this paper, we exploit

a recently assembled dataset of historical patents spanning a period of almost two centuries

to measure technological cycles, as well as the centrality of cities in the innovation space and

their level of specialization. We approximate cities using a full partition of the United States,

namely the 1990 commuting zones (CZ), that we keep fixed throughout our analysis. Although

commuting flows are likely to have changed over time, assuming a stable geography has the

advantage of allowing us to abstract from annexations and redefinition of town borders that

have been pervasive phenomena throughout the 19th and 20th century.

2.1 Patents Data

To measure innovative activities at the city level, we leverage on the Comprehensive Universe of

US Patents (CUSP),5 that contains information about patents filed (and subsequently issued)

by the US Patent and Trademark Office (USPTO) between 1836 and 2010, with an estimated

coverage above 90% in each year. Particularly, CUSP provides information about the technology

classes,6 name and location of each inventor (and assignee) listed on a patent, as well as their

filing and issue dates. For our purposes, it has the advantage of assigning a set of coordinates

to the residence of each inventor listed on a patent, instead of relying on the reported county.

This allow us to build geographically consistent measures of innovation across decades.

2.2 Other Data

We collect economic and demographic information at the county level from the decennial his-

torical Census (for the decades 1890-1940) and from the NHGIS (for the remaining decades).

We then aggregate the data at the level of 1990 commuting zones, and we keep this geography

fixed throughout the empirical and structural analysis. Assigning historical values to a re-

cent geographical partition represents a challenge, since throughout the period considered the

5Berkes (2018) provides details about the data collection procedure, as well as some summary statistics
and stylized facts related to the underlying data. Andrews (2019), in a comparison of historical patents data,
describes it as ”currently the gold standard, in terms of the patent- and inventor-level information included in
the published datasets.” Some slices of the data have already been successfully employed in Berkes and Nencka
(2020) who study the effect of Carnegie libraries on the local patenting activity, Clemens and Rogers (2020)
who study how procurement policies affect the characteristics of medical innovation by comparing prosthetic
patents during the Civil War and WWI, and Babina et al. (2020) who study the effect of the Great Depression
on innovative activities in the United States.

6Retrieved from the USPTO’s website in June 2016.

7



geography of the United States has undergone major modifications, with new territories being

annexed and county boundaries being sometimes completely re-drawn, particularly in the West.

To construct consistent population measures over this stable geography, we follow a three

step procedure. First, we assign each unique location in the historical decennial Censuses –

in terms of town, county, and state – their latitude and longitude.7 Second, we count the

number of people living in each town for the subset of locations that we were able to geolocate

in the previous step. Each town in this sub-sample is weighted so that the population at the

county level matches the aggregate one.8 Third, the total county population is assigned to 1990

counties depending on the distribution of people within that county in the considered decade.9

Following the same approach, we construct consistent measures of human capital that com-

bine the available information on local literacy and education over time. To make this measure

comparable across decades, we rank cities in terms of the relevant measure for that decade and

use the resulting ranking for our analysis. To the best of our knowledge, this paper is the first

to construct consistent local measures of human capital over a time span of over a century.

In both the empirical analysis and the model, we restrict the sample to the subset of

commuting zones that accounted for at least 0.02% of the U.S. population for each decade

since 1880. This delivers a sample of 425 commuting zones, that jointly account for 94.1% of

the US population in 2010.10

3 Reduced-Form Evidence on Technology Cycles and

City Growth

In this section, we document novel facts on the connection between the evolution of the tech-

nological landscape and the growth and decline of cities in the United States since 1860. We

start by describing our PageRank-based measure of importance of technology classes over the

period 1860-2010. This measure allows us to track episodes of expansion and decline of each

7We retrieve the coordinates from Google Maps or, when uniquely available, from an offline database available
at https://nationalmap.gov

8Some towns in newly annexed territories are sometimes reported with generic names such as Township
43. These observations are dropped from our sample and the remaining ones weighted to match the county
population reported in NHGIS.

9To fix ideas, in 1890 Denver, CO, was part of Arapahoe County a large and sparsely populated county. By
1990, the city of Denver had separated from the rest of the county to form its own. Our first two steps reveal that
a large portion of Arapahoe County’s population in 1890 was located in Denver. Thanks to this observation,
the third step correctly assigns the largest share of population to the city and county of Denver. There are
two special cases that are worth mentioning. First, when more than 95% of the area of the historical county
falls within a 1990 county, then the whole population is assigned to that county. Second, when a historical
county does not contain any town that we were able to geolocate reliably, then its population is assigned to
1990 counties based on the overlapping of their areas.

10To fix ideas, this rule requires that cities had a population of at least 6,500 people in 1880 and 61,500 people
in 2010.
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field of knowledge over time. We then show that cities’ exposure to those episodes is strongly

correlated with local population growth over the following decade. Finally, we explore how

diversification of the local portfolio of innovation activities affects a city’s sensitivity to tech-

nology cycles by reducing their exposure to shocks and by increasing their ability to reallocate

resources towards the fields that offer the best innovation possibilities.

3.1 Measuring the importance of technology classes over time

To track changes in the importance of technology classes over time, we implement a weighted

variant of the PageRank algorithm (Brin and Page, 1998) to a network whose nodes are given

by patent classes, and the strength of the connection between each pair of nodes is given by the

frequency of co-appearance of that pair in the same patent grant. Intuitively, the PageRank of

a given node captures the probability that a hypothetical “network-explorer” walking through

the network at random eventually reaches that node. In our implementation, the “network-

explorer” decides which edge to follow assigning a higher probability to edges with stronger

connection. To avoid boundary problems with nodes without outbound edges, we assume that

at each step the explorer has a probability p to jump to any node in the network. We set p = 0.85

consistently with the prevailing value in the literature (Brin and Page, 1998). Formally, the

weighted PageRank (WPR) for technology class s in decade t is recursively defined as follows:

WPRs,t = (1− p) + p
∑
r∈S

wr,s,t∑
k wr,k,t

WPRr,t (1)

where S is the set of technology classes, and wr,s,t is the strength of the link between node r

and node s in decade t. We compute the PageRank for each decade t using all the patents filed

between decade t and t + 1 (not included).11 Since the PageRank captures the probability of

visiting a given node in the network at any point in time, it adds up to one by construction for

each decade.

Figure 1 illustrates that the PageRank captures substantial changes in the importance of

technology classes over time. The graph uses a chromatic scale in which darker pixels corres-

pond to higher PageRank. At the beginning of the sample (1860), Agriculture (class-group A1)

is the one with the highest PageRank. At the turn of the century, class-groups B2 (“Shaping”,

that includes several IPC classes related to manufacturing technologies) and B4 (“Transport-

ing”, that includes the bulk of the automobile industry) emerge as the most central classes.

Towards the end of the century, class-groups G1 (“Physics”, that includes most of the inven-

tions related to computers and information technology) and H1 (“Electricity”, that includes

11For example, the weighted PageRank for decade 1960 takes into account all the patents filed between 1960
and 1969.
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Figure 1: Importance of patent class-groups over time.

Notes: Heatmap representing the PageRank of each patent class-group over time. Darker pixels
correspond to higher PageRank. The description of patent class-groups can be found in Table 8 in
the Appendix.

most technologies around electronics and semi-conductors) rise to the top, together with class-

group A4 (“Health; Life-Saving; Amusement”, that includes the majority of innovation related

to Medical Sciences) and C1 (“Chemistry”).12

3.2 A tale of three cities

Our hypothesis of interest is that the swings in technological importance depicted in Figure 1

can contribute to explaining the evolution of the US economic geography since the late 19th

century. Before turning to our econometric analysis, we illustrate three archetypal examples

of cities whose urban history is commonly narrated as intertwined with the history of their

innovation activities and fields of specialization.

The left panel of Figure 2 shows the population growth of the commuting zones of Detroit,

Austin, and Boston over the past 130 years. Detroit displays the most striking growth rates in

12These findings are robust to using other measures of network centrality, such us eigenvector centrality.
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Figure 2: Technology and city dynamics

Notes: Panel (a): Residuals of a regression of decade-by-decade population growth on a set of Census
Division-decade fixed effects. Panel (b): Evolution of the PageRank of the patent class-groups that
have had the highest centrality for at least one decade since 1860 (the labels of the patent classes are
abbreviated).

the decades after the advent of the automobile industry around 1910, followed by a long-lasting

decline that resulted in a steady loss of population since the 1980s. A specular trajectory is

visible in the commuting zone of Austin. The city lost population in the early part of the 20th

century as a consequence of the Texas Oil Boom that made Austin slip from the 4th to the

10th place among Texas’s largest cities.13 However, in recent decades Austin has emerged as

one of the leading innovation hubs in the country, leveraging its base of high-tech start-ups

and a large college-educated population. Finally, a still different experience is observed for the

commuting zone of Boston, that, throughout the last century, has retained a significantly less

volatile growth path, characterized by moderate population growth, interrupted by occasional

periods of modest population decline.

The left panel of Figure 2 reproposes a snapshot of the evolution of the centrality of the

three patent class-groups that have occupied, for at least one decade since 1860, the top spot

in terms of PageRank. The timing of these technology cycles suggests a connection with the

city dynamics of the right panel of Figure 2. The rise and fall of transportation as the most

central class-group coincides with the rapid expansion and decline of Detroit in the first half

of the 20th century. Similarly, the ascent of computing-related technologies at the end of the

20th century closely tracks the expansion of Austin over the same period.

Those cities varied significantly not only in their fields of specialization, but also in the

13https://tshaonline.org/handbook/online/articles/hda03
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(a) Detroit
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(b) Austin
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(c) Boston

Figure 3: Composition of the Technological Output

Notes: The composition of the technological output is heterogeneous over time and across cities. The
plots show the patenting output in Detroit, Austin, and Boston by technology class. The areas in the
figure represent the 8 main classes in the International Patent Classification System. The blue area
(bottom) represents class A (Human Necessities), whereas the gray area (top) represents the share of
patents of class H (Electricity) in each city. The remaining colors are in descending order from H to
A.

degree of diversification of their innovation activities. Figure 3 shows how the technological

composition of patenting output changed over time across the cities considered in Figure 2.

The areas in the Figure represent the 8 main classes in the International Patent Classification

System ordered from A to H going from the bottom to the top.14 Detroit’s patenting output

has specialized since the 1920s in patents of class B (Performing Operations; Transporting) and

F (Mechanical Engineering), that made up about 80% of the technology output. Its portfolio

has remained broadly unchanged since then with a slight shift towards patents of classes G

(includes Computing) and H (includes Microchips) in the past decade. Austin, on the other

hand, shows a fairly diversified patenting activity up until the 1960s when patents of classes

14The full description of each class is available at https://www.wipo.int/classifications/ipc/en/.
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G and H started gaining importance to constitute about 90% of the technology portfolio in

2010. Interestingly, this shift towards specialization started around the same time Austin’s

population started its rapid increase. Boston displays a diversified technology portfolio which

includes about 20% of patents in class A (includes Agriculture and Medicine) and about half

of patents split between classes G and H. The consistent diversification of Boston’s innovation

output could make the city less sensitive to technology cycles, and contribute to explain the

stability of its growth rate shown in Figure 2.15

In the remainder of this section we provide a systematic assessment of these patterns.

3.3 Technology cycles and the growth and decline of cities

Changes in the PageRank over time capture the long-run evolution of the innovation landscape.

A positive (negative) change in the PageRank for a given knowledge field reflects an increase

(decrease) in the centrality of that field in the patents network. In what follows, we explore

to what extent those long-run changes in the relative importance of technological fields (“tech-

nology cycles”) can be responsible for the growth and decline of cities. To this end, we first

construct for each commuting zone a measure of local exposure to changes in the PageRank.

We then verify whether commuting zones with more favorable exposure to technology cycles

display systematically higher growth rates of population.

For any commuting zone c, we define exposure to the technology cycle in decade t as the

sum over all the patent class-groups, s ∈ S, of the change in the PageRank of s between t− 1

and t, interacted with local patenting per capita in class s in decade t− 1:

Kc,t =
∑
s∈S

(WPRs,t −WPRs,t−1)
Patc,s,t−1

Popc,t−1

. (2)

The measure in (2) reflects both the distribution of patenting activity across classes within

a commuting zone, which determines the sign of the shock, and the local patenting intensity,

which controls the magnitude of the shock. Since the measure allows for negative values,

corresponding to cities that are mostly exposed to declining fields, it cannot be regularized by

taking logarithms.16 Hence, in order to obtain a well-distributed variable, in what follows we

work with the within-decade ranking of Kc,t, that we denote by K̃c,t and that we rescale so that

a value of 0 reflects the largest negative shock, and a value of 1 the largest positive shock.17

15Glaeser (2005) provides an overview of the causes of the slow decline of Boston between 1920 and 1980,
and the subsequent re-emergence of the city. The high density of human capital is proposed as the major factor
behind its resilience.

16This is particularly problematic in this case, since, as it is shown in Figure 13 in the Appendix, Kc,t has
thick tails.

17Note that this transformation corresponds to the c.d.f. of the exposure measure in each decade t. Results
are consistent when using the non-transformed measure winsorized to regularize the fat tails.
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Figure 4: Cities Exposure to Technology Cycles

Notes: Cities exposure to technology cycles is correlated with local population growth in the following
decade. The bin-scatter plot is residualized with respect to the full set of controls of equation (3).

We next show that exposure to technology cycles is positively correlated with local popula-

tion growth. Specifically, we run a regression of the following form:

∆ log(Popc,t+1) = βK̃c,t +
N∑
j=0

δj log(Popc,t−j) + γhc,t + µd,t + νc + ζc,t. (3)

In (3), ∆ log(Popc,t+1) represents the growth rate of population between decade t and t+ 1.

The full empirical model includes Census Division times decade fixed effects, µd,t. A positive

estimate of the parameter of interest, β, implies that cities that are more positively affected by

changes in the technological environment will attract more population than other cities in the

same Census division. We cluster standard errors two-way at the commuting zone and Census

Division-decade level.

We control for current and lagged (up to N = 2 lags) log-population to account for size and

convergence effects, and for the persistence of past shocks to population growth. We also control

for a consistent measure of local density of human capital, hc,t, assembled by combining different

indicators from the historical Censuses.18 Figure 4 shows a bin-scatter plot of the relationship

between exposure to technology cycles (K̃c,t) and local population growth (∆ log(Popc,t+1)),

18This measure corresponds to a within-decade ranking of commuting zones along a summary index that
encapsulates several local measures of human capital. The specific indicators we use change over the decades
depending on the availability of information in the historical Census. In the early decades, the measure focuses
on indicators of literacy and schooling, while in later decades it emphasizes the local density of workers with
high educational attainment.
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Table 1: OLS Regressions of Technology Dynamics and City Growth

Growth rate of population

(1) (2) (3) (4) (5) (6)

Exposure to tech. cycle .048*** .049*** .043*** .040*** .051*** .039***
(.013) (.013) (.012) (.012) (.012) (.011)

Human capital .063*** .066** .14***
(.021) (.024) (.026)

Lags of population (0-2) yes yes yes yes yes yes

Decade FE yes yes yes yes yes yes

Census Division × Decade FE no no yes yes yes yes

Commuting Zone FE no no no no yes yes

# Obs. 5,525 5,503 5,525 5,503 5,525 5,503

R2 0.42 0.41 0.50 0.49 0.68 0.68

Notes: CZ-level regression, 1860-2010. Standard errors clustered two-way at the Census Division ×
decade and commuting zone level in parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.

where both variables are residualized with respect to the complete set of controls.

Table 1 reports the Pooled-OLS and within estimates of (3) when the complete set of fixed

effects and controls is progressively introduced in the regression model. Exposure to technology

cycles is systematically correlated with higher population growth over the following decade. The

magnitude of the estimated coefficient is similar across specifications and implies that cities with

the highest positive exposure experience growth rates of population that are between 3.9 and

5.1 percentage points higher than cities with the most negative exposure. The effect of human

capital on population growth is also consistently positive and statistically significant. In the

appendix, we show that these results are robust to considering various sub-samples of decades

(Figure 14) or to dropping from the sample one commuting zone at a time (15).

Within estimates are unbiased for large T under the assumption of weak exogeneity (i.e.,

conditional on controls, current and past values of the independent variable are uncorrelated

with current and future population shocks).19 Although this assumption is not implausible

since past population trajectories are likely to capture various unobserved local factors that

affect population growth, including persistence in the propensity to innovate and the innova-

tion composition of a city, it is not completely innocuous. Unobserved shocks, such as local

19See Acemoglu et al. (2019) for a discussion of this point. The asymptotic bias of the within estimator
(Nickell bias) is of order 1/T .
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Table 2: System GMM Regressions of Technology Dynamics and City Growth

Growth rate of population

(1) (2) (3) (4)

Exposure to tech. cycle .124*** .110*** .132*** .108***
(.016) (.011) (.020) (.017)

Human capital .067*** .054***
(.011) (.018)

Lags of population (0-2) yes yes yes yes

Decade FE yes yes yes yes

Census Division × Decade FE no no yes yes

# Obs. 5,525 5,503 5,525 5,503

Arellano-Bond AR(1) test -4.34*** -4.38*** -4.53*** -4.44***

Arellano-Bond AR(2) test 1.74* 1.70* 1.63 1.54

Notes: CZ-level System GMM regression, 1860-2010. Two-step robust standard errors in parenthesis
corrected for small-sample bias as described Windmeijer (2005). ***p < 0.01; **p < 0.05; *p < 0.1.

financial disruptions, might contemporaneously affect our measure of exposure (for example,

by changing local patenting rates) as well as population growth. To attenuate these concerns,

we complement the analysis with the GMM system estimator proposed by Arellano and Bover

(1995), and Blundell and Bond (1998).20 The main idea behind this approach is to use past

values of the endogenous variables to instrument the regression model in its version in levels

and differences.21

Table 2 reports the estimates obtained with the system estimator, with standard errors com-

puted following the two-step procedure proposed by Arellano and Bond (1991) and corrected

for finite-sample bias as recommended in Windmeijer (2005). Results are qualitatively in line

with the ones obtained via OLS, but the point estimates are larger. They imply that moving

from the most negatively to the most positively exposed city increases subsequent city growth

between 10.8% and 13.2%. Since the average city growth in the sample is 12% (see Table 7) this

effect is economically meaningful. An increase in exposure of one residual standard deviation

leads to an increase of 24.3% to 29.7% of one residual standard deviation of population growth.

20Examples of papers adopting this empirical approach include Beck and Levine (2004), Arcand et al. (2015),
and Acemoglu et al. (2019).

21It can be shown that in the absence of second-order correlation for the error terms in the first differences
equation, these are valid instruments. Under similar assumptions, lagged differences are valid instruments for
the model in levels.
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3.4 Diversification and resilience to technology cycles

As previously shown in Figure 3, there is a significant amount of variation in the degree of

diversification of local portfolios of innovation activities across cities and over time. In what

follows, we explore to what extent diversification can make cities more resilient to changes in

the technological environment. We first show that more diversified cities have significantly less

exposure to technology cycles, since diversification makes it more likely that negative shocks in

some sectors are counterbalanced by corresponding positive shocks in other sectors. Moreover,

we show that local diversification increases local resilience to technology cycles by facilitating

the reallocation of activities away from declining, and towards expanding, fields. Specialized

cities, on the other hand, are at the same time more exposed to technology cycles, and more

sensitive to them, as they are less effective at reallocating innovation activities.

We start by defining our measure of local specialization as the Euclidean distance between

the local and the national vector of patenting shares across patent class-groups:

Sc,t =

[∑
s∈S

(sharec,s,t − shareUS,s,t)2

] 1
2

. (4)

The expression in (4) assumes that a city is perfectly diversified whenever its distribution

of innovation activities across all patent class-groups, s ∈ S, is identical to the nationwide

distribution, captured by the aggregate shares. To flexibly control for dimensionality biases

in the construction of the measure, in the following regressions, we include a full set of 10

indicators for the total local patent count. Also in this case, to regularize the distribution of

the measure, we work with the within-decade ranking of Sc,t, denoted by S̃c,t, that we rescale so

that a value of 0 represents the most diversified and a value of 1 the most specialized commuting

zone.

To study the relationship between diversification and economic performance, we proceed

in two steps. First, we show that more specialized cities are significantly more exposed to

technology cycles. We construct a commuting zone-decade level dummy variable, Expc,t that

is equal to one if a given commuting zone has recorded in decade t an extraordinary large

exposure (either positive or negative) to the technology cycle. In particular, this is captured

by K̃c,t being either close to zero (for negative shocks) or to one (for positive shocks). In our

benchmark, we define the variable Expc,t as equal to one if K̃c,t is either in the bottom quartile

(K̃c,t ∈ (0, 0.25)) or in the top quartile (K̃c,t ∈ (0.75, 1)) of the distribution of exposure across

commuting zones.22.

Figure 5 shows a bin-scatter plot of the relationship between local specialization at the

beginning of the period (t − 1), S̃c,t−1, and the likelihood of experiencing high exposure to

22Results are robust to using more stringent cutoffs, e.g. 0.1− 0.9 or 0.05− 0.95
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Figure 5: Cities specialization

Notes: Cities specialization is positively correlated to high exposure to technology cycle. The bin-
scatter plot is residualized with respect to the full set of controls of equation (3)

the technology cycle, Expc,t, once the full set of controls of equation (3) and the indicators

for the local count of patents are included. The scatter reveals a strong positive correlation

between specialization and large exposure to technology cycles. This correlation reflects the

fact that a higher local diversification makes it more likely that negative shocks to some sector

are counterbalanced by positive shocks to other sectors, making diversified cities more insulated

from changes in the aggregate technological environment.

Second, we explore whether diversification of the local portfolio of innovation makes cit-

ies more resilient to technology cycles by facilitating the reallocation of resources away from

declining sectors and towards newly expanding fields. If this intuition is correct, we should

observe that patenting per capita in a given class-group responds more strongly to changes in

the corresponding PageRank in diversified cities compared to specialized ones. To test this

intuition, we estimate a regression model of this form:

∆ log

(
Patc,s,t
Popc,t

)
= βS̃c,t−1 + γS̃c,t−1 ×∆WPRs,t + δXc,t + µd,t + νc + ωs,t + ζc,s,t. (5)

In (5), a negative estimate of the parameter of the interaction between local specialization

(S̃c,t−1) and the technology shock (measured as the change in the PageRank, ∆WPRs,t) implies

that more specialized cities respond to technology cycles by reallocating less resources towards

expanding fields, and by shifting fewer resources away from declining sectors.

The results of the OLS regression are reported in Table 3. The estimate of γ is consistently
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Table 3: Exposure to Technology Cycles

Growth rate of patents per capita

(1) (2) (3) (4)

Specialization (lagged) .016 .014 .075*** .073***
(.020) (.021) (.025) (.027)

Specialization (lagged) × ∆WPRs,t -4.96*** -4.97*** -5.00*** -5.01***
(1.43) (1.46) (1.45) (1.47)

Human capital .022 .004
(.043) (.048)

Lags of population (0-2) yes yes yes yes

Patent count indicators yes yes yes yes

Class-group × decade FE yes yes yes yes

Census Division × Decade FE yes yes yes yes

Commuting Zone FE no no yes yes

# Obs. 119,000 118,560 119,000 118,560

R2 0.28 0.28 0.29 0.28

Notes: CZ × class-group level regression, 1860-2010. Standard errors clustered at the Census Division
× decade, commuting zone, and class-group × decade level in parenthesis. ***p < 0.01; **p < 0.05;
*p < 0.1.

negative and statistically significant across specifications. The magnitude of the coefficient

in column (4) implies that cities with the highest degree of specialization (i.e., S̃c,t−1 = 1)

respond by increasing patenting per capita towards expanding fields (at the 90th percentile of

the distribution of ∆WPRs,t) by 5.54 percentage points less than cities with the highest degree

of diversification (i.e., S̃c,t = 0). The corresponding figure for declining fields (at the 10th

percentile of the distribution of ∆WPRs,t) implies that the most specialized cities decrease

patenting by 5 percentage points less than diversified cities.

Taking stock Taken together, the results of this section paint a picture consistent with the

view that the technology cycle affects the evolution of population growth. Both the extent of

city specialization and diversification across sectors appear to have a significant and sizable

effect on subsequent city growth. To interpret these facts, we develop in the next section a

model with location choice, frictional idea diffusion and endogenous specialization patterns.

The model allows us to make explicit the role of the technology cycle on workers’ productivity

and its effect on migration decisions. Moreover, it allows us to quantify the importance of our
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mechanism for city growth and conduct counterfactual analysis.

4 Model

In this section, we develop a quantitative, spatial, endogenous growth model to rationalize the

relationship between city size and their innovative activity documented in Section 3. We build

on the recent literature of idea diffusion and growth (e.g., Buera and Oberfield, 2016) and

extend them into a spatial setting.23 The central theme of our theory is that the evolution of

the network of knowledge and idea diffusion across cities and sectors drive cities’ productivity

and population.

4.1 Environment

We consider a discrete-time overlapping-generations economy of innovators and workers, who

make migration and occupational choices over locations and technological sectors. The economy

comprises a finite set N of locations and a finite set S of sectors. In what follows, we refer to

N and S as both the sets of locations and sectors, and their cardinality.

4.1.1 Preferences, endowments and demographics

Individuals live for three periods. We refer to an individual in the first, second, and third

periods of their life as ”child,” ”youth,” and ”old.” An agent i in her youth and old periods is

endowed with one unit of inelastically-supplied labor and has labor productivity levels (qyi , q
o
i ).

We discuss the evolution of agents productivity in detail below.

Every child is born in the location of their parents. At the end of childhood, the agent

makes her migration and occupational choice by selecting which location n she migrates to and

which sector s she specializes in. This choice is irreversible, so each agent spends the youth and

old period in the same location-sector. In other words, denoting by Lyn,s,t and Lon,s,t the mass

of young and old agents, the following identity holds:

Lon,s,t ≡ Lyn,s,t−1. (6)

After the migration and occupational choices have been made, each youth in period t has

ft children. Denoting by Lkn,t the mass of children born in location n at time t, we have that

Lkn,t ≡ ft
∑
s∈S

Lyn,s,t. (7)

23See Buera and Lucas (2018) for an excellent review. These models either consider an economy without
space or are embedded in a trade setting.
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Migration and occupational choices are made to maximize expected lifetime utility, subject

to migration costs and idiosyncratic utility draws that affect the individual desirability of each

location-sector pair. Specifically, before entering the youth period, each individual i receives a

full set of stochastic utility draws, one for each location-sector in the economy:

xi = {xn,s,i}(n,s)∈N×S.

Each value xn,s,i is a random draw from a Fréchet distribution with shape parameter ζ > 1.

Individuals then choose the location-sector pair (n, s) that provides them with the highest

expected lifetime utility. Utility of individual i born in location m is given by

Um
n,s,t(xi) = un

xn,s,i (c
y
n,s,i,t)

β (con,s,i,t+1)1−β

µmn,t
, (8)

where un is the level of amenities in city n, µmn,t represents moving costs (expressed in utility

terms) of moving from m to n at time t, cyn,s,i,t and con,s,i,t+1 denote consumption in the youth

and the old period, and β ∈ (0, 1) is the weight on consumption during youth in lifetime utility.

4.1.2 Production and Innovation Technologies

Young and old agents produce the final good using their unit of time according to their idion-

syncratic productivity q. Thus, total output in the economy is given by a linear aggregator

over individual productivity across all locations and sectors

Yt =
∑
n∈N

∑
s∈S

(
Lyn,s,tE[qyn,s,t] + Lon,s,tE[qon,s,t]

)
,

where E[qyn,s,t] and E[qon,s,t] denote the average productivity of young and old agents in location-

sector (n, s).

How individual productivity is determined differs between young and old agents. Young

agents benefit from a local learning externality that makes their productivity depend linearly

on the average productivity of old agents

qyn,s,t = Ay E[qon,s,t],

where Ay is a positive constant that will be set to replicate a measure of the experience premium.

This formulation can be interpreted as reflecting the prevailing conditions in a local segmented

labor market, in which the wage is an increasing function of the average quality of local ideas.

During their youth period, individuals acquire skills, knowledge, and ideas that they later

convert into their productivity when old. Specifically, every young agent before becoming old
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receives a full set of idiosyncratic, independently distributed draws:

zn,s,i =
{
zln,s,i, {zxm,r,i}m,r∈N×S

}
. (9)

The first term in Equation (9), zln,s,i, represents a random draw from the distribution of pro-

ductivity among the old in the same location-sector pair of the youth, whose cumulative dis-

tribution is denoted by Fi,s,t(q). This draw can be interpreted as knowledge that individual i

learns from their teacher, mentor, or manager, and can be imitated and adopted directly in

production.24 If the agent chooses to adopt this idea in production, their productivity in the

old-period is

qon,s,i,t+1 = zln,s,i.

The second set of terms in Equation (9), {zxm,r,i}j,r∈N×S, represents a full vector of random

draws from each productivity distribution among the old of all locations and sectors in the

economy, all with corresponding cumulative distributions {Fm,r,t}m,r∈N×S. Note that this full

set of draws includes local ones (i.e., m = n and r = s). These draws can be interpreted as

knowledge that the agent acquires by various channels of transmission, such as books, radio,

television, internet, or via casual interactions with local or non-local individuals. Although

these ideas cannot be imitated and adopted directly in production, they can be used as an

input for innovation. In particular, an agent currently employed in (n, s) can use an idea zm,r,i

drawn from (m, r) to innovate and achieve old-period productivity

qon,s,i,t+1 = qyn,s,i,t
ξn,s,tαr,tz

x
m,r,i

dn,sm,r,t
. (10)

In (10), the term αr,t represents an economy-wide technological shock to the centrality of sector

r in the innovation landscape. The higher the value of αr,t, the more effectively can knowledge in

sector r be developed into innovation for any sector. The term dn,sm,r,t captures the geographical

and technological frictions that discount the effectiveness of knowledge transmission between

the idea origin (j, r) and the idea destination (i, s). We discuss in the next section how we

parametrize these costs.

The term ξn,s,t is a term that captures the current effectiveness of innovation in (n, s) and

is common to all innovators in this location-sector pair. This term is the product of two

24de la Croix et al. (2017) develop a model in which the institutions controlling the effectiveness of knowledge
transmission between journeymen and apprentices contribute to explain differences across countries in long-run
growth.
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components:

ξn,s,t =
E[qon,s,t]

E[qon,s,t−1]︸ ︷︷ ︸
Absorptive capacity

× εn,s,t︸︷︷︸
Structural residual

. (11)

The ”Absorptive capacity” term captures the fact that places with higher rates of innovation

in the past period (resulting in higher productivity growth) are better equipped at receiving

knowledge and developing new ideas in the current period. That is, conditional on having

the same idea quality z, being in a location with higher absorptive capacity improves the

final productivity of an agent’s innovation. For example, the same idea draw z in IT yields

today a more productive innovation in the commuting zone of San Jose, CA, whose patenting

rate in class-group G1 was 11.2 grants per 1,000 people in 1990, than in Lincoln, NE, whose

patenting rate in the same class-group was 0.62 per 1,000 people. The ”Structural residual”

term includes all the residual factors that affect the productivity of the local sector but are

not explicitly included in (10), such as the opening of production facilities, universities, and

research centers.25

4.1.3 Markets

We assume that agents live hand-to-mouth. That is, there is no market to smooth consumption

intertemporally. Thus, each agents’ consumption of final good is given by her production of

final good at each point in time.26

4.2 Equilibrium

4.2.1 Diffusion of knowledge

Entering the old age, agent i in (n, s) chooses whether to imitate or innovate to maximize her

old-period productivity given her set of idiosyncratic idea draws zn,s,i.

qon,s,i,t+1 = max

{
zln,s,i, max

{
qyn,s,i,t

ξn,s,tαr,tz
x
m,r,i

dn,sm,r,t

}
m,r∈N×S

}
(12)

Equation (12) shows how this process can be divided in two steps. First, the agent chooses

the best innovative idea available to her. Then she compares this best innovative idea with her

imitation draw, and picks the one that yields higher productivity for her.

The following assumption will play an important role in keeping our theory tractable:

25Part of these factors can also capture endogenous research effort, which we plan to show in a model extension.
26We have also used an alternative setup with linear preferences over consumption across periods where we

allow for intertemporal allocation of consumption, obtaining very similar results.
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Assumption 1. The initial productivity distributions {Fn,s,0(q)}(n,s)∈N×S across all sector-city

pairs are given by independently distributed Fréchet distributions with shape parameter θ > 1

and scale parameters λn,s,0 > 0,

Fn,s,0(q) = e−λn,s,0q
−θ
. (13)

A multivariate Fréchet distribution with common shape parameter is max-stable. This

implies that, under Assumption 1, the resulting distribution over the max of Fréchet draws is

also Fréchet with the same shape parameter.27 Combining (12) with (13), we find that the

old-period productivity at any time t ≥ 0 is distributed Fréchet with shape parameter θ > 1

and with scale parameter evolving according to the following law of motion:

λn,s,t+1 = λn,s,t︸︷︷︸
Imitation

+λn,s,t
∑
m∈N

∑
r∈S

λm,r,t

(
ξn,s,tαr,t
dn,sm,r,t

)θ
︸ ︷︷ ︸

Innovation

. (14)

Equation (14) summarizes the growth dynamics implied by our model. The scale parameter

of the old generation at t+1 corresponds to the previous generation scale parameter augmented

by a second term which captures innovation in the city-sector (n, s). This second term in

Equation (14) is composed of the previous period scale parameter augmented by the sum of

scale parameters across all sector-locations weighted by their applicability to city-sector (n, s).

This applicability term comprises technological and physical distance dn,sm,r,t between city-sector

pairs, changes in the importance of each field of knowledge αr,t and idiosyncratic effectiveness

of innovation in (n, s), ξn,s,t.

Moreover, Equation (14) also implies that conditional on innovating, the probability that

an inventor in location-sector (n, s) builds upon an idea from any location sector (m, r) at time

t can be expressed as follows:

ηn,sm,r,t =
λm,r,t

(
αr,t
dn,sm,r,t

)θ
∑

l,z λl,z,t

(
αz,t
dn,sl,z

)θ . (15)

Knowledge and Productivity Dynamics across Cities and Sectors Before turning to

the analysis of the rest of the equilibrium, we discuss the implications of our model for knowledge

and productivity dynamics. Rearranging (14), we have that the growth in the Fréchet scale

parameter is

gn,s,t ≡
λn,s,t+1 − λn,s,t

λn,s,t
=
∑
m∈N

∑
r∈S

λm,r,tδ
n,s
m,r,t (16)

27The same degree of tractability can be achieved without assuming independence, as in Lind and Ramondo
(2019).
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where δn,sm,r,t ≡
(
ξn,s,tαr,t
dn,sm,r,t

)θ
summarizes the applicability of knowledge from city-sector (m, r) to

(n, s). This implies that the ”step-size” increase in labor productivity in city-sector (n, s) is

E[qon,s,t+1]

E[qon,s,t]
= (1 + gn,s,t)

1/θ . (17)

These results underscore the central role of knowledge and idea diffusion in our model. The

growth rate of the the Fréchet scale parameters also governs the growth rate of city-sector

productivity and, ultimately, migration and city growth.

To gain intuition on the model dynamics, we begin by discussing two extreme cases. First,

suppose that applicability considerations are irrelevant and δn,sm,r,t = 1, so that all ideas in all

locations are equally applicable in all city-sectors. We have that

λn,s,t+1 = λn,s,t(1 + gt), (18)

where the growth rate is constant across all city-sector pairs and satisfies the autonomous

equation gt+1 = gt(1 + gt), where g0 =
∑

s∈S,n∈N λn,s,0.28 In this case, knowledge grows at a

constant rate that is common in all city-sectors. As a result, relative productivity would be

constant across cities, implying full persistence of initial conditions.

Next, consider the case in which knowledge from one field of knowledge is not useful for any

other field, but there are no applicability concerns across cities within a field of knowledge. In

other words, suppose that δn,sm,r,t is one if r = s and zero otherwise. In this case, we have that

λn,s,t+1 = λn,s,t (1 + gs,t) , (19)

where gs,t+1 = gs,t(1+gs,t) and gs,0 =
∑

n∈N λn,s,0. At first sight, this case appears similar to the

first example for the diffusion of knowledge. Each sector grows at a common rate. Thus, the

relative knowledge across cities within a field of knowledge is again constant and determined

by the initial conditions. However, the growth rate of knowledge can be heterogeneous across

fields of knowledge. To the extent that cities differ in their pattern of specialization on fields

of knowledge, this heterogeneity in sectoral growth implies dynamics for city productivity and

population growth that are substantially different from the first example. Indeed, if some sector

grows at a faster rate than another, more agents will choose to specialize in the sector. As a

result, productivity growth is going to be driven by the faster-growing sectors and cities with

a higher initial stock on knowledge in the sector are going to receive population inflows.

In practice, the stark assumptions of the previous two examples are not realistic, and the

28ote that if the initial growth rate is sufficiently small, i.e. gt � 1 so that gt+1 = gt + g2t ' gt, we have that

the system grows at an approximately constant rate and λn,s,t = λn,s,0
(
1 +

∑
m∈N

∑
r∈S λm,r,0

)t
.
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applicability term, δn,sm,r,t, will capture the other forces controlling innovation and productiv-

ity dynamics. First, although there is some degree of geographical transmission and cross-

fertilization, the flow of ideas across cities and fields of knowledge is not frictionless. This

effect is captured through the ”distance” term dn,sm,r,t. Second, the degree to which knowledge

in a given field can be used as an input in innovation varies over time and across fields and is

captured by the term αr,t. Finally, sector-city pairs differ in their ability to absorb new ideas

and effectively convert them into productive uses. This variation is encapsulated in the idio-

syncratic term ξn,s,t, which incorporates ”absorptive capacity” (places with higher innovation

rates in the previous period are in a better position to innovate in the current period) as well

as a residual term that may subsume exogenous or endogenous forces, such as the endogenous

effort in research and development that agents may do to further develop their ideas.

Substituting the structure of the effectiveness of innovation ξn,s,t from Equation (11) in (14),

we can express the growth rate of λi,s as

λn,s,t+1 − λn,s,t
λn,s,t

=
λn,s,t
λn,s,t−1

ε̃n,s,t
∑
m,r

λm,r,t

(
αr,t

di,sm,r,t

)θ

, (20)

where we have used the fact that E[qoi,s,t] ∝ λ
1
θ
i,s,t and defined ε̃i,s,t ≡ εθi,s,t.

4.2.2 Migration and occupational choice

All the variables that enter lifetime utility (8), with the exception of old-period consumption

con,s,t+1, are known by agents at the time in which migration and occupational choices are made

(upon entry in the youth-period). In particular, an agent i born in location m moving to

location-sector pair (n, s) has expected lifetime utility equal to

E
[
Um
n,s,t(xi)

]
= unA

β
y

xn,s,i λ
β
θ
n,s,t E

[
(qon,s,t+1)1−β]

µmn,t
. (21)

In equilibrium, qoi,s,t+1 is distributed Fréchet with shape parameter θ and scale parameter λi,s,t+1,

which can be inferred at time t via the law of motion (14). Hence, the term (qoi,s,t+1)1−β is itself

distributed Fréchet with shape parameter θ
1−β and scale parameter λi,s,t+1, so that

E
[
(qoi,s,t+1)1−β] = Γ

(
1− 1− β

θ

)
λ

1−β
θ

i,s,t+1,

where Γ(·) denotes the gamma function. This implies that the probability of an individual born

in location m to select city-sector (n, s) is
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πmn,s,t =

(
un

Λn,s,t+1

µmn,t

)ζ
∑

l∈N
∑

r∈S

(
ul

Λl,r,t+1

µml,t

)ζ , (22)

where we define

Λn,s,t+1 ≡ λ
β
θ
n,s,tλ

1−β
θ

n,s,t+1.

Thus, the following accounting identity between children and young holds for all cities and

sectors

Lyn,s,t ≡
N∑
m=1

πmn,s,tL
k
m,t−1. (23)

4.2.3 Equilibrium Definition

We now have all the ingredients to define an equilibrium of the model.

Definition 1. For a given set of initial conditions

{
un, λn,s,0, L

k
n,0, L

y
n,s,0, L

o
n,s,0

}
n,s∈N×S ,

and a given path for the exogenous variables

{ft, αs,t, εn,s,t}n,s∈N×S, t≥0 ,

an equilibrium is a path for the endogenous variables

{
λn,s,t, {πmn,s,t}m∈N , Lkn,t, L

y
n,s,t, L

o
n,s,t

}
n,s∈N×S, t≥0

that satisfies the following conditions:

1. Migration probabilities {πmn,s,t}m,n,s∈N×N×S, t≥0 satisfy equation (22).

2. The path for {λmn,s,t}n,s∈N×S, t≥0 satisfies the law of motion of equation (14).

3. Population by age and sector,
{
Lkn,t, L

y
n,s,t, L

o
n,s,t

}
n,s∈N×S, t≥0

, satisfies the transition iden-

tities (6), (7), and (23).

All equilibrium conditions have an explicit solution. Hence, it is straightforward to see

that a unique equilibrium exists and can be written in closed form for any given set of initial

conditions and any given path for the exogenous variables.
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5 Model Quantification

In this section, we show how we bring the model to the data to infer the key structural paramet-

ers and the unobserved exogenous variables. The model has a recursive structure that allows

to estimate these values sequentially by making a limited set of transparent assumptions on

how to map the model’s objects into data on population, income, and patenting by sector. We

then show that the quantified model is successful at capturing key features of the data that

have not been directly targeted.

We set a time period to be 20 years, so that agents’ life is divided into three periods,

corresponding to ages 0-19, 20-39, and 40-59. In the notation, we denote model periods by the

central year of a 20-year window (for example, the period 1990 refers to the window 1980-1999).

We interpret locations in the model as 1990 commuting zones.29 We remind the reader that we

restrict attention to commuting zones that, in all decades since 1880, have hosted at least 0.02%

of the US population. This gives a subset of N = 425 locations that we use in the quantitative

analysis. Sectors are defined by the technological class-groups introduced in Section 3, with

3-digit IPC classes grouped into S = 20 main sectors, as detailed in Table 8.

We assume that aggregate population growth is entirely driven by fertility. This is equivalent

to assuming that, for new cohorts of immigrants, the probability of first settling in a given

location is proportional to current youth-period population.30

To set the ground for the estimation of the model, we take 1880-1899 (which we express as

t = 1890) to be the starting period. We assume that the economy is initially in its long-run

steady state, so that αs,1890 = 0 for all sectors s ∈ S. In the initial steady state, the distribution

of productivity for each sector is constant. Although migration still takes place, and is governed

by the transition probabilities πmn,s, population is determined as the fixed point of the identities

(6), (7), and (23), so that the mass of individuals by age, city and sector is fixed.31

We start by calibrating two of the structural parameters externally. We set the weight

of youth-period consumption in lifetime utility β equal to 0.60, implying an average yearly

discount factor of 0.98 over a 20 years period. We set the parameter Ay to 0.80, which implies an

experience premium within each location-sector equal to 1.24.32 We summarize these parameter

value choices in Table 6.

29Consistently with the results in Section 3, we keep this definition over decades.
30The model can be easily extended to account for migration from foreign countries being skewed into par-

ticular cities.
31Although this assumption is not critical to any of our results, it facilitates the assessment of the model’s

performance since it implies that, in the absence of aggregate shocks, the economy would not depart from its
steady state. An alternative calibration strategy is to use two consecutive periods, e.g. 1880 and 1900 to calibrate
the model parameters and not impose an initial stead-state condition. By and large, both methodologies give
similar results.

32This figure is obtained from the Panel Study of Income Dynamics as the average premium of workers of
age 45-54 over workers of age 25-34 for the year 1985-1994.
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5.1 Gravity representations for migration and knowledge flows

The first step of the model’s quantification entails recovering the parameters controlling migra-

tion and knowledge transmission costs.

Migration flows Recall from Section 4.1.1 that migration costs enter the lifetime utility

of individuals and hence affect the probability of bilateral migration between each pair of

commuting zones. We assume migration costs to be an exponential function of geographical

distance and include a fixed cost of migration:

µmn,t = eµ
0
t1{i6=j}+µ

1
t τn,m , (24)

where τn,m is the distance in kilometers between locations n and m. Note that we allow

the parameters that control migration costs to depend on time to account for the substantial

changes in transportation costs that have occurred in the US over the 20th century.

Denoting the sum over all sectors in each location πn,t ≡
∑

s∈S πs,n,t, we can combine the

transition probabilities in Equation (22) with the functional form in (24) to obtain a linear

gravity representation for bilateral migration flows:

log(πmn,t) = ψ0
m,t + ψ1

n,t − ζµ0
t1{i 6=j} − ζµ1

t τj,i, (25)

where ψ0 and ψ1 represent origin and destination - time fixed effects, respectively. This equa-

tion illustrates that the logarithm of each bilateral migration probability depends linearly on

geographical distance and on the fixed cost of migration, with the coefficients of this relationship

corresponding to the composite parameters ζµ0
t and ζµ1

t .

We estimate (25) using data on lifetime migration from the 1940 historical Census and the

1990 IPUMS. In particular, we focus on individuals of age 20-59, for which we observe both

the state of birth and either the commuting zone (for the 1940 sample) or the PUMA33 (for

the 1990 sample) of residence. Under the assumption that out-of-state migration probabilities

are equal for all commuting zones within each state, we can construct full matrices of bilateral

migration flows for both samples. We then use these matrices to estimate the gravity equation

in (25) by OLS, separately for the 1940 and 1990 samples. The results are displayed in Table

4. Our estimates indicate that migration costs decline slightly over time but remain in the

same order of magnitude. In the calibrated model, we use the estimates in the 1940 column

for all periods up and including 1950, and the estimates in the 1990 column for the following

periods.34

33We map PUMAs to commuting zones using a crosswalk based on the intersecting areas.
34We set observations where πmn,t = 0 equal to the minimum positive value in the sample.
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Table 4: Gravity equations for migration flows

log(πmn,t)

1940 1990

Fixed cost of migration (ζµ0
t ) -3.257*** -2.867***

(.067) (.084)

Geo distance, 1000 km (ζµ1
t ) -1.916*** -1.473***

(.006) (.007)

origin CZ FE yes yes

destination CZ FE yes yes

# Obs. 180,625 180,625

R2 0.65 0.51

Notes: ***p < 0.01; **p < 0.05; *p < 0.1.

Knowledge flows In addition to a gravity representation for migration flows, our model also

delivers a gravity representation for knowledge flows, that we can estimate using patent citation

data across cities and technological fields. Recall from Section 4.1.2 that the effectiveness of

knowledge diffusion between each combination of origin and destination location-sectors is

limited by a transmission cost dn,sm,r,t. We assume this transmission cost to have the following

exponential form:35

dn,sm,r,t = eν
0
n,s,t+ν

1
t 1{n 6=m}+ν

2
t τn,m+νDn,m,t+ν

S
s,r,t , (26)

where τn,m represents geographical distance in km and ν1
t is a fixed cost of drawing ideas

outside of an individual’s own location, that can be interpreted as the cost of not having

access to serendipitous interactions. The expression also includes origin-destination Census

Division fixed effects (νDn,m,t), to account for geographical non-linearities in the frictions to

knowledge diffusion,36 as well as origin-destination technological sector fixed effects (νSs,r,t) that

flexibly capture frictions in knowledge diffusion across and within sectors. Finally, we include

a destination fixed effect (ν0
n,s,t) that we will set so that average transmission costs have a

35The assumption that diffusion frictions decay exponentially with distance is also used by Desmet and
Rossi-Hansberg, 2014.

36For example, it is reasonable to assume that, despite their exceptional geographical distance, knowledge
transmission links between New England and Southern California can be stronger than links between other
areas of the country.
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constant average across locations and sectors.37 This normalization is inconsequential for our

purposes, since it does not rule out the possibility of systematic differences across receiving

location-sectors in their ability to acquire external ideas for innovation, but rather it bundles

those differences with the structural error term εn,s,t. As in the expression for migration costs,

we allow knowledge transmission costs to depend on time.

Using the functional form for dn,sm,r,t in combination with the expression for the bilateral

probability of acquiring ideas (15), we derive a linear gravity equation for citation flows for any

idea origin (m, r) - destination (n, s) pair:

log
(
ηn,sm,r,t

)
= φ0

m,r,t + φ1
n,s,t − θν1

t 1{i 6=j} − θν2
t τn,s − θνDn,m,t − θνSs,r,t (27)

where φ0 and φ1 represent idea origin and idea destination - time fixed effects, respectively. This

equation illustrates that the logarithm of each bilateral citation probability depends linearly

on geographical distance, on the of fixed cost of migration, and on the set of fixed effects, with

the coefficients of this relationship corresponding to the composite parameters θν1
t , θν2

t , θνDn,m,t,

and θνSs,r,t.

We estimate (27) by OLS using data on bilateral citation probabilities for each combination

of origin and destination location-sectors. Since citations in patents are rare before 1950, we

estimate (27) separately for all patents up to 1959, and then for the periods 1960-1979, 1980-

1999, and 2000-onward.38

Table 5 reports the OLS estimates of (27) for the three time periods. Although the effect

of distance appears to be stronger in later periods compared to 1970, the estimates are not

directly comparable because of the inclusion of origin-destination Census division fixed effects,

that capture a significant amount of the variation in geographical distance. The heatmaps of

Figure 16 display a graphical illustration of the estimated bilateral fixed effects across each pair

of sectors in the four sample periods.39

5.2 Fertility, productivity, and amenities

The second step of the quantification of the model requires to back up the shape parameters of

the Fréchet distributions of utility draws, ζ, and productivity, θ, as well as the variables that

control the evolution of population over the period covered by the quantitative analysis. The

evolution of population is determined by aggregate fertility ft and by the transition probab-

37Specifically, we impose
∑
m,r

(
1

dn,s
m,r,t

)θ
= 1 for all (n, s) ∈ N × S, (m, r) ∈ N × S, and all t

38We set observations where ηn,sm,r,t = 0 equal to the minimum positive value in the sample.
39Note that the inclusion of origin and destination fixed effects, φ0m,r,t and φ1n,s,t, implies that only relative

values of νDn,m,t and νSs,r,t are identified in (27). Since the expression for transmission costs includes a term ν0n,s,t,
that will be normalized to a constant average across all sector-city pairs, these relative values are sufficient for
our quantification.
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Table 5: Gravity equations for knowledge flows

log
(
ηn,sm,r,t

)
pre-1950 1970 1990 2010

Fixed cost (θν1
t ) -0.443*** -0.786*** -1.668*** -1.708***

(.001) (.002) (.003) (.005)

Geo distance, 1000 km (θν2
t ) -.016*** -.027*** -.041*** -.033***

(.001) (.001) (.001) (.001)

Class-CZ-cited FE yes yes yes yes

Class-CZ-citing FE yes yes yes yes

Division-division FE yes yes yes yes

Class-class FE Heatmap Heatmap Heatmap Heatmap

# Obs. 72,250,000 72,250,000 72,250,000 72,250,000

R2 0.10 0.13 0.20 0.20

Notes: Gravity equations estimated with the 20 main IPC classes. ***p < 0.01; **p < 0.05; *p < 0.1.

ilities πmn,s,t. These probabilities only depend on the path of λn,s,t, the value of time-invariant

residential amenities un, as well as the value of Fréchet shape parameters ζ and θ.

Fertility Consider first the fertility shocks ft. These shocks can be backed up sequentially

using aggregate data on population. Specifically, given population by age in period t − 1,

fertility at time t can be written as the following identity:

ft ≡
Lt − Lt−1 + Lot−1

Lkt−1

, (28)

where Lt is total population, which is observed, and Lt−1, Lot−1, and Lkt−1 denote total, old-

period, and childhood-period population in the previous period.

Productivity distribution Consider now the scale parameters of the productivity distribu-

tion of each location-sector, λn,s,t. These objects are at the core of our quantitative analysis:

Higher values of λn,s,t imply higher local income, higher ability to attract population (due to

the migration probabilities (22)), and higher potential to innovate and grow more in the future

(due to the law of motion (14)).

In this step of the quantification, we postulate a direct mapping between the relative stock
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of patents in a given location-sector and the relative value of λn,s,t. Specifically, we assume

that, at any point in time, λn,s,t is equal to a geometric function of current and past patenting:

λn,s,t = Gt ×
[
(Patn,s,t)

γ (Patn,s,t−1)1−γ]σ , (29)

where Patn,s,t denotes the total number of patents filed at time t in location-sector (n, s),

and Gt is a time-variant factor.40 The parameter γ controls the weight of current patenting

on the local stock of knowledge. We set this weight equal to 0.5. Note that none of the

parameters appearing in Equation (29) is sector specific. In principle, richer functional forms

and parametrizations of (29) are possible. However, we find that this parsimonious functional

form provides a good fit.

The parameter σ represents the elasticity of λn,s,t to the observed patenting stock. The pur-

pose of this elasticity is to convert the variation in the local stock of patenting into meaningful

variation in average productivity across cities. The identification of σ is complicated by the

fact that average local productivity is proportional to λ
1
θ
n,s,t, and θ has not yet been estimated.

However, using (29) in combination with the transition probabilities (22), it is immediate

to see that predicting the evolution of population only requires knowledge of λn,s,t and θ via

the following composite variables:

λ̃n,s,t = λ
1
σ
n,s,t

θ̃ =
θ

σ
,

The first composite term, λ̃n,s,t, is observed, via (29), up to the proportionality constant G̃t =

G
1
σ
t . We calibrate this constant for each t to induce an aggregate growth in income per capita

of 2% per year. As for the second composite term, θ̃, we calibrate it at this stage to match

the standard deviation of income per capita across cities in 1990, which is equal to 0.18 in our

sample of 425 cities. We choose units of the final good so that the geometric average of λ̃n,s in

the initial steady state is equal to one.

Amenities and preference draws To calibrate local amenities un and the shape parameter

of the distribution of utility draws ζ, we proceed as follows. First, given values for ζ, θ̃, and

λ̃n,s,t, we calibrate local amenities to exactly match population by city in the initial steady

state (1890).41 The value of ζ is calibrated to match a ratio of lifetime migration over total

population in 1990 of 82.3%. The identification of ζ using total migration probabilities is

40We add one to patenting in each sector-city pair to assign a meaningful value to cases in which patenting
is zero.

41We normalize amenities to have a geometric mean of one.
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simple: The higher the value of ζ, the lower the dispersion of utility draws among potential

movers. Hence, a higher value of ζ will induce lower aggregate gross migration flows.42

Discussion This procedure delivers values for θ̃ and ζ of 8.75 and 6.3, respectively. Panels

(a) and (b) of Figure 17 in Appendix show graphically how matching the dispersion of income

across cities and the ratio of lifetime movers to total population identifies these parameters

uniquely. Using the moving costs µmn,t, the estimated parameters θ̃ and ζ, and the aggregate

shocks ft and G̃t, in combination with the inferred amenities un and composite productivity

levels λ̃n,s,t, we can simulate the model forward starting from the initial steady state (1890)

and predict the evolution of local population in all the following periods until 2010. We will

present and discuss these results in Section 6.

There are three key aspects of this calibration strategy that are worth further discussion.

First, the mapping of λn,s,t to the stock of patenting includes a size effect in which larger cities

have, other things being equal, higher average productivity. The existence of a correlation

between size and productivity is a well-known empirical regularity (see e.g. Glaeser and Got-

tlieb, 2009) that can emerge as the result of a range of theoretical mechanisms (e.g., sorting,

variety, local learning productivity spillovers, higher availability of productive inputs, etc...).

While our model is silent on the underlying mechanism behind this correlation (besides the fact

that more productive cities will attract more population) what is crucial for the quantitative

performance of our model is that the resulting relationship between population and income

per capita is empirically accurate. Figure 6 shows a binscatter of the relationship between

log-population and log-income in 1990, both in the model and in the data. Although this

correlation is not targeted, the model captures it closely.43

Second, our choice of limiting the stock of local patents in (29) to include grants in the

current and in the past period can be motivated by postulating that ideas created more than

40 years earlier become commonly known and do not contribute to explaining variation in the

stock of knowledge across cities, and would, as such, be captured by the constant Gt.
44

Third, in quantifying the model we assume that residential amenities are time-invariant.

This assumption is crucial for the identification of the shape parameter ζ but comes at the

cost of not matching population by city exactly outside the steady state. However, for given

values of the structural parameters, allowing for time-varying residential amenities would be

an immediate extension of the model.45 As we show in Section 6, even in the absence of time-

42This identification of the dispersion of idiosyncratic preference draws follows the same intuition as in Peters
(2019).

43The slope of the regression line is 0.12 both in the data and in the model.
44Notice also that, since the quantitative analysis starts in the period 1880-1899, allowing for multiple time

periods in the aggregator (29) would induce an unavoidable truncation of the measure in the early periods.
45A further extension would be to allow for amenities that combine endogenous and exogenous components.

A simple formulation would impose un,t = vn,t × Lωn,t, where vn,t is the exogenous component, and ω is the
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Figure 6: Population and Income: Model vs. Data

Notes: The binscatter plot compares the relationship between log population and log income in 1990
in the data and in the model.

varying amenities, the model goes a long way in fitting population growth by city over the last

century.

5.3 Technology cycles and structural residuals

Up to this point in the calibration, we have treated λ̃n,s,t as observable objects that can be

inferred directly from data on local patenting by sector. In the third step of the quantification,

we use these observed values in combination with their model-based law of motion (equation

14) and network of citations (equation 15) to estimate the aggregate shocks that control the

technology cycles, αs,t, and to derive the structural residual term, εn,s,t. This step also allows to

estimate separate values for the structural parameters θ and σ (recall that the steps of Section

5.2 only allowed to identify the composite parameter θ̃ = θ
σ
).

For a given combination of values of σ, θ, transmission costs dn,sm,r,t, and aggregate techno-

logy shocks αs,t, the equilibrium conditions allow to back up, via equation (15), the citation

probabilities for each origin and destination sector-city pair. This implicitly defines a network

of citations akin to the one used for the empirical results of Section 3. In particular, within

this network of citations we can define the PageRank of each of the sectors in S by applying

the formula in equation (1).

From the citation probabilities (15) it is evident that relative values of the technology shocks

αs,t control the centrality of each sector in the overall network of citations. Hence, we can set

elasticity of amenities to local population, that can account for congestion forces in the case ω < 0.
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the relative values of αs,t within each period to exactly replicate the empirical centrality of

sectors over time. When a sector gains importance in the technological landscape, its empirical

PageRank will increase and, in the context of the model, this will be reflected in higher relative

shocks αs,t.

A caveat of this procedure is that it can only successfully identify relative values for αs,t.

This follows directly from the fact that a proportional shift to the value of all αs,t’s would

induce an increase in aggregate growth but would leave the citation probabilities unaltered,

and would not have any effect on the PageRank. In order to pin down the magnitude of the

technology shocks αs,t, we first recognize that, given values of those shocks, structural residuals

ε̃n,s,t can be backed up uniquely by inverting the law of motion for λn,s,t (equation 14). So,

any restriction on the average of the structural residuals will directly imply a condition on the

average magnitude of the technology shocks. Specifically, we impose structural residuals to

have a weighted average of 1 in the aggregate:46

E [ε̃n,s,t] = 1. (30)

This condition requires that aggregate growth in the long-run can only be explained by the

endogenous process of knowledge creation and diffusion, while idiosyncratic residuals can only

affect the distribution of economic activity across space and sectors. It is important to em-

phasize that we do not make any assumption on the nature and properties of the structural

residuals, including on whether they are stochastic or deterministic, what is their spatial and

temporal correlation, and whether they are systematically correlated with the other terms in

the law of motion (14). We elaborate more on this point in Section 6.

The last step requires to separate the parameters θ and σ. Given an estimated value for

θ̃ = θ
σ
, panel (c) of Figure 17 shows that σ is well identified by the share of innovators in the

economy. To pin down the value of σ we target a measure of the share of innovators in the US

economy in 1990. Formulating a sensible estimate of this number is not a trivial task. We set

this share to be equal to 38%, as a compromise between a strict interpretation of innovators as

members of the “Creative Class” as defined by Florida (2014), who estimates that the share of

individuals in occupations with highly creative content is around 30% of the US labor force in

1990, and a broader definition that includes the share of the US labor force with at least some

college or an associate degree, that, according to BLS estimates is around 50% of the labor

force in 1992.47 This leads to an estimate for σ of 0.14, and implies θ = 1.22.

46Weights are given by the mass of young agents in a given sector-city pair.
47See the Bureau of Labor Statistics report available at https://www.bls.gov/spotlight/2017/educational-

attainment-of-the-labor-force/pdf/educational-attainment-of-the-labor-force.pdf
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Table 6: Parameter values and targets

Assigned Parameters

Parameter Value Target
β 0.60 Annual discount factor 0.98
Ay 0.80 Experience premium 1.24

Calibrated Parameters

Parameter Value Target Model Data
ζ 6.3 Gross migr. to pop ratio, 1990 0.82 0.82
θ 1.22 Std. log-income across cities, 1990 0.18 0.18
σ 0.14 Share of innovators, 1990 0.38 0.38

5.4 Taking stock

Table 6 presents a summary of the estimated parameters with the corresponding targets. In

the following section, we will assess the ability of the model to account for the variation in

population growth across cities over the last century. There are two key aspects that are

necessary for the model to generate an accurate description of the data. First, the growth in

local productivity λn,s,t induced by the law of motion in (14) should correlate well with the one

obtained through the empirical patenting-based measure in (29). Second, the average growth

rate of λn,s,t for each sector must correlate well with changes in its centrality.

As for the first point, Figure 18 plots the correlation between the patenting-based measures

and the model-based prediction (without structural residuals) of the growth rate of λn,s,t for

all the 20 sectors in the model between 1990 and 2010 (the picture for the other decades is

similar). The law of motion in (14) has a strong predictive power with respect to changes in

λn,s,t inferred by observed local patenting.48 As for the second point, Figure 19 plots the change

in each sector’s PageRank and the corresponding average growth rate of λn,s,t for each period

between 1910 and 2010. The two measures are strongly correlated in all time periods, possibly

with the exception of t = 1950, where the correlation appears to be slightly negative mostly

for the presence of an outlier.

To summarize, the endogenous mechanism of innovation and knowledge diffusion closely

tracks the evolution of local productivity as inferred from local patenting by sector, and, on

average, the change in the centrality of each sector is a strong predictor of that sector’s pro-

ductivity growth. These two observations will be key ingredients for the model to generate the

results of the following section.

48By construction, introducing the structural residual would induce a perfect fit.
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6 Quantitative results

In this section, we explore the ability of the model to account for the variation in population

growth across US cities in the period 1890-2010 in response to technology cycles. We start

by showing that the interaction between changes in the technological environment and the en-

dogenous mechanism of knowledge creation and diffusion closely predicts the long-run growth

rate of cities. We then examine the importance of this mechanism in accounting for the two

most striking episodes of technological and geographical transformation in the last century:

The extraordinary rise of manufacturing-intensive cities in the early decades of the 20th cen-

tury and their later decline as cities specialized in knowledge-intensive sectors, such as IT and

pharmaceuticals, gained prominence. These two episodes illustrate that sectoral shocks, inter-

acting with frictions to knowledge diffusion, can explain at the same time path dependence

and reversal of fortune in the growth trajectory of cities. The model allows to separate the

contribution of endogenous innovation and knowledge diffusion to the overall effect from the

one of structural residuals. This exercise highlights in which cases residual factors amplify or

dampen the effect of technology cycles on city growth. Finally, we use our model to predict

how the economic geography of the US is likely to evolve in the coming decades in response to

three plausible scenarios on changes in the technological environment.

6.1 Model Fit

Figure 7 illustrates the performance of the model in explaining the variation in the growth of

cities between the initial steady state (1890) and the last period of the analysis (2010). The

graph plots the 1890-2010 difference in the log-population of our sample of commuting zones in

the data (horizontal axis) and in various versions of our model (vertical axis). The black lines

correspond to the economy in the absence of any shocks (which will remain in the steady state

by construction), and the 45-degree line (perfect fit).49

The blue line and circles correspond to the complete model with both aggregate technology

cycles, αs,t, and structural residuals εn,s,t. The size of each circle is proportional to initial

population, that we also use to weight the regression line. The slope of the line is 0.50 and

the weighted correlation is 64%. This correlation can be interpreted as the predictive power of

the path of local patenting by sector (encapsulated in the values of λn,s,t via equation (29)) on

population growth across cities.

The red line and circles correspond to the case where we feed the model with the full set of

shocks in the first period after the steady state (1910), after which we only provide aggregate

technology cycles αs,t. In this case, we fix the structural residuals to εn,s,t = 1 for all sector-city

49Recall that the model does not replicate the data exactly because residential amenities are fixed at the
initial steady state.
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Figure 7: Population: Model vs. Data

Notes: The graph plots the 1890-2010 difference in the log-population of our sample of com-
muting zones in the data (horizontal axis) and and the model (vertical axis). The horizontal
black line corresponds to the economy in the absence of any shocks (which will remain in the
steady state by construction), while the dotted line corresponds to the 45-degree line (perfect
fit). The blue line shows the population obtained in the full model (with structural residuals
and technology cycles), whereas the red line in a model in which the structural shocks are kept
constant.

pairs, and we let the path for λn,s,t to be determined by the endogenous law of motion in (14),

which reflects the interaction between the state variables in 1910 and the gradual unfolding

of the technology cycles over time. The predictive power of the model declines but remains

significant: The slope of the line is 0.23, while the weighted correlation is 45%. This correlation

can be interpreted as the contribution of the technology cycles, interacting with the endogenous

process of innovation and knowledge diffusion, in explaining the variation in population growth

over the last century.

Figure 20 shows the predictive power of the model over single periods between 1950 and

2010. Specifically, for each of the displayed model periods T , we first compute the model with

the full set of shocks until the previous period T − 1, and then look at city population growth

over the specified period by providing only fertility shocks (black line), by adding technology

cycles shocks αs,t (red line), and by feeding the full set of shocks (blue line). Contrary to the

case of Figure 7, since the model is now not in steady state, cities preserve some persistence

in their dynamics, which explains the positive slope of the black line. However, the red line is

consistently above the black one, and, depending on the period considered, it closes the gap

between the slopes of the black and the blue lines by 18% to 54%.
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We now look specifically at how the calibrated model can account for the two most striking

episodes of transformation of the economic geography of the US in the last century: The

extraordinary rise of manufacturing-intensive cities in the early 20th century, and followed by

their decline and contemporaneous rise of knowledge-intensive urban areas. We focus on the

exemplary cases of cities that have been notoriously exposed to those transformations (some of

which introduced in Section 3) and, for each of those cases, we analyze the role of the endogenous

mechanism of knowledge creation and transmission in driving their growth trajectory, and the

amplifying or dampening effect of the residual factors.

6.2 The rise of manufacturing-intensive cities

In Figure 8 we plot the evolution of population in the first half of the 20th century for an

illustrative subset of cities in the United States. The experiment is as follows. For the two

initial periods, we simulate the model with the full set of shocks. Starting from t = 1930, we

follow the evolution of each city under three different scenarios. First, we only provide the model

with fertility shocks. In this case, since the technological frontier is constant, the economy is

only driven to converge towards a new steady state. We take this case as our baseline and

normalize it to zero in every period. Second, we compute the model by feeding both shocks

to fertility and to technology cycles αs,t, and plot in red population in log-deviations from the

baseline. Third, we compute the model by feeding the full set of shocks (fertility, technology

cycles, and structural residuals), and plot in blue the resulting log-deviations from the baseline.

The plots show that both Detroit and Cleveland, the largest urban centers of what would

later be known as the Rust Belt not only were favorably exposed to the technology cycle in the

early part of the century, but were also subject to forces outside of our model that significantly

contributed to drive their growth. Consider the red line first. According to the model, the

interaction between their exposure in 1910 with the technology shocks αs,t in 1930 and 1950 in-

duced an increase in population of 4% in Detroit and 8.5% in Cleveland, compared to a scenario

with no technology shocks. Consider now the blue line, that plots the evolution of population

in the model with the full set of shocks. These shocks include the structural residuals, that

capture the combination between factors that evolve endogenously to the cities responses to the

technology cycle (such as the opening of new factories and the induced local externalities) and

exogenous forces that affect population growth by boosting local innovation and productivity

(such as investment in infrastructure uncorrelated with other local disturbances). Although a

systematic exploration of those factors goes beyond the scope of this paper, our model allows

us to infer, for each episode, whether those forces amplified or dampened on net the effect of

the technology cycle. In this scenario, Detroit and Cleveland are 38% and 29% larger in 1950

compared to the baseline.
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Figure 8: Growth Decomposition: 1890-1950

Notes: The plots show the growth trajectories of Detroit, Cleveland, Boston, Austin, Silicon Valley,
and Seattle as deviations from a model without shocks. The blue line shows the growth trajectory
of these six cities in the full model (with structural residuals and technology shocks). The red line
represents the growth obtained in a model in which the structural shocks are kept constant.

During the same period, cities did not uniformly benefit from this transformation in the

technological landscape. The commuting zone of Austin, as we already saw in Section 3, lost

population. The red line shows that part of this decline was due to an unfavorable exposure

to the technology cycle. However, the blue line shows that external forces were even more

penalizing: The Texas Oil Boom created opportunities in the other areas of Texas, further

depressing population growth in Austin. In this period, Boston and San Jose are both negatively

(albeit weakly) exposed to the technology cycle, while residual factors contribute negatively to

the growth of Boston and positively to the one of San Jose. Part of these factors can be

explained as a general expansion of the West at the expense of the North-East.

Finally, the commuting zone of Seattle is positively affected by the technology cycle, as

reflected by the rising importance of technologies related to shipbuilding first and aviation

later between WWI and WWII. However, in this case the model records a smaller amplification

from residual factors than in the cases of Detroit and Cleveland. The history of Seattle in the

interwar period can be informative of the factors that prevented a larger amplification: The

Seattle economy was severely hit by the Great Depression, and the events following the Maritime

Strike of 1934 led to the relocation of major shipping companies to the port of Los Angeles.

Panel (a) of Figure 21 displays the same experiment for an extended set of cities with

comparable characteristics.
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6.3 The emergence of the US knowledge hubs

The experiences of Detroit and Cleveland in the first half of the 20th century were not isolated

cases. Several other cities that specialized in heavy manufacturing and were mostly concen-

trated in what is now known as the Rust Belt witnessed exceptional growth in population. Our

model suggests that part of this growth can be explained by a pre-existing availability of local

ideas in fields that were complementary to the prevailing technology cycles. We now explore

whether the same factors that led to the remarkable growth of manufacturing-intensive cities

contributed to their later decline to the benefit of newly emerging knowledge hubs specialized

in fields such as information technology and pharmaceuticals.

Figure 9 shows the results of an experiment analogous to the one in Figure 8, in which

we provide the model with the full set of shocks until 1970, and then analyze the evolution of

population until 2010 with only fertility shocks (baseline), adding technology cycles αs,t (red

line), and including also the structural residuals (blue line). To provide a sense of the magnitude

of the technological transformation over this period, the centrality of field B4 (”Transporting”)

fell from 0.11 in 1950 to 0.06 in 2010, and the one of field C2 (”Metallurgy”) declined from its

1970 peak of 0.032 to 0.021 in 2010. At the same time, the centrality of fields G1 (”Physics”)

and H1 (”Electricity”) increased from 0.10 and 0.09, respectively, to 0.19 and 0.16.

As a result of this transformation, cities that were heavily exposed to knowledge in declin-

ing fields experienced population declines. The model suggests that, as a direct effect of the

technology cycle (red line), population in Detroit and Cleveland declined by 3% and 5%, re-

spectively, compared to the baseline. At the same time, the residual factors in the evolution of

productivity led to an additional decline of 3% in Detroit and, more dramatically, almost 20%

in Cleveland (blue line). The reason why the structural residual imposes a more severe loss in

the commuting zone of Cleveland compared to Detroit is interesting and worth further invest-

igation. One candidate explanation is that the policy response to the decline of the automotive

industry compressed the amplification mechanisms in Detroit but not in Cleveland.

Throughout the same decade, a handful of cities emerged as modern leading technological

hubs. The commuting zones of Austin and San Jose are archetypal examples of this expansion.

Our model suggests that population in Austin and San Jose increased, relative to the baseline,

by 15% and 22%, respectively, as a direct effect of the technology cycle interacted with their

local characteristics in 1970. However, the amplification effect coming from the structural

residuals is significantly larger for Austin than it is for San Jose. Even more dramatically,

in the commuting zone of Boston, that our model also predicts having a positive exposure

to the technology cycle over this period, structural residuals work in the opposite direction

and prompt a decline (albeit small) compared to the baseline. Why does the contribution of

structural residuals vary so much among these cases? Again, while an exact answer to this
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Figure 9: Growth Decomposition: 1950-2010

Notes: The plots show the growth trajectories of Detroit, Cleveland, Boston, Austin, Silicon Valley,
and Seattle as deviations from a model without shocks. The blue line shows the growth trajectory of
these six cities in the full model (with structural and technology shocks). The red line represents the
growth obtained in a model in which the structural shocks are kept constant.

question is beyond our scope, a candidate explanation can be found in the different constraints

imposed by local taxation and land-use regulation that characterize those commuting zones.

This hypothesis is in line with the evidence in recent studies, such as Glaeser and Ward (2009)

and Hsieh and Moretti (2019), that document the consequences of land-use restrictions on the

misallocation of people across US cities.

Finally, the commuting zone of Seattle appears to be weakly but negatively affected by the

technology cycle, and to receive instead a positive contribution from structural residuals. This

finding is in line with the fact that most of the recent extraordinary growth in the IT sector

in Seattle is a consequence of local events that happened after 1970 (such as the relocation of

Microsoft in to Bellevue in 1979 and the establishment of Amazon in 1994). In fact, it is worth

mentioning that we find a positive direct effect of the technology cycle if we consider the model

with the full set of shocks until 1990, and only provide the technology shocks αs,t in 2010.

It is interesting to note that the effect of technology cycles on Boston’s and Seattle’s pop-

ulation appears to be smaller in magnitude compared to the effect on Austin and San Jose.

The key for this finding lies in the different degrees of diversification and specialization found

in those cities. Boston and Seattle are significantly more diversified, with patents in classes

G1 and H1 (”Physics” and ”Electricity”) making up 46% and 44% of their overall innovation

portfolio in 1990, while the corresponding figures for Austin and San Jose are 78% and 74%,

respectively.
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Figure 10: Counterfactual: Autonomous Vehicles

Notes: The map shows the changes in population over the next four decades if Transportation went
back to its 1950 levels in terms of importance relative to a status-quo scenario. The log deviations are
divided into six quantiles.

Panel (b) of Figure 21 proposes the same experiment for an extended set of comparable

cities.

6.4 Three scenarios for the future

The quantitative model can also be used to predict the evolution of the US economic geography

in the coming decades in response to transformations in the technological landscape. In this

Section, we propose three plausible scenarios for future technology cycles and look at which

cities and regions will be most positively and negatively affected by these changes. Specifically,

we project population flows across cities until 2050 under different assumptions on how the

centrality of fields of knowledge will evolve in the near future, and compare the outcome with

a baseline in which centrality for all sectors is constant to its 2010 values.

In the first scenario, we assume that the centrality of sector B4 (”Transporting”) experiences

a comeback to its 1950 peak, as new advances in transit technologies and autonomous vehicles

induce innovation in transportation to return to a pivotal role.50 The map in Figure 10 visually

illustrates the results. Commuting zones in red (blue) experience a net gain (loss) of population

compared to the baseline. The results indicate that, given the state variables observed in the

50We rescale the centrality of the other sectors uniformly so that the total PageRank adds up to one.
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Figure 11: Counterfactual: Pharmaceuticals and Biotech

Notes: The map shows the changes in population over the next four decades if innovations related
to Pharmaceuticals and Biotech experienced a surge in importance relative to a status-quo scenario.
The log deviations are divided into six quantiles.

last period of our sample (t = 2010), cities in the Rust Belt are still the areas that are best

prepared to take advantage from this transformation. Detroit would experience an increase in

population of 3.5% compared to the baseline. Cities in the North-East and in California, as

well as other technology hubs such as Austin, Denver-Boulder and the North Carolina Research

Triangle would instead experience a relative loss in population.

In the second scenario, we simulate a rise of class A4, that is focused on technologies related

to pharmaceuticals and biotech, as the most central knowledge field,51 possibly in response to

new challenges in global health such as the COVID-19 pandemic. The results are depicted

in the map of Figure 11. The counterfactual suggests that major commuting zones in the

North-East (including Boston, Providence, and New York City) and in California (including

Los Angeles, San Diego, and San Francisco) would experience a net inflow of population, at

the expense of specialized IT clusters such as San Jose (-2.5%) and Austin (-6.1%).

In the third scenario, we assume that class A1, that includes technologies related to ag-

riculture and animal husbandry, experiences a comeback in its centrality to its peak in 1890.

This is a plausible scenario that can emerge as a result of tightening regulatory constraints and

shifting demand towards sustainable farming, possibly in response to global challenges such

51Specifically, we assign to class A4 the PageRank of the most central class in 2010 (G1), and rescale all the
other values so that the PageRank adds up to one.
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Figure 12: Counterfactual: Agriculture

Notes: The map shows the changes in population over the next four decades if Agriculture experienced
a surge in importance relative to a status-quo scenario. The log deviations are divided into six
quantiles.

as climate change. Results are in the map of Figure 12. Under this scenario, the economic

geography of the US experiences a pronounced shift away from the coasts and the Rust Belt,

towards the Central States. Among the major commuting zones, Des Moines (IA) receives the

highest net gain (+12.8%). This scenario would represent a significant convergence force in

relative population across commuting zones: A regression of log-population in 2010 with the

log-deviation from the baseline in 2050 delivers a coefficient of -0.9%, implying that population

would mostly relocate away from larger commuting zones and towards low-population ones.

7 Conclusion

The economic geography of countries is in constant evolution. Some cities remain large and

important throughout long time spans, while some others experience sharp episodes of growth

and decline. We explore and quantify the hypothesis that the pattern of specialization of cities

across different technologies, coupled with the constantly evolving technological landscape, af-

fects the trajectory of city growth. Our theory rests on the idea that there are geographical and

sectoral frictions in the diffusion of ideas. This implies that upon a change in the technological

landscape, some cities are better positioned to reap the benefits of new innovation possibilities.
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Thus, these frictions in idea diffusion make city growth trajectories sensitive to the rise and

fall of the their fields of specialization. We also argue that diversification can make cities more

resilient by insulating them from this source of volatility.

For the empirical analysis, we exploit a novel dataset of historical US patents that covers

the period 1836-2010. The information contained in these data allows us to construct a proxy

of the network of knowledge using different patent technology fields, and document the changes

in the technology landscape over the last 160 years. Moreover, we use the geocoded patents to

infer the pattern of city specialization across different fields of knowledge over the same time

span.

We provide evidence supportive of our hypotheses using both a reduced-form and a struc-

tural approach. We first show in a reduced-form exercise that the technology cycles have an

effect on city growth. This effects depends on the pre-existing city pattern of specialization

across fields of knowledge. We find that the effect is substantial in magnitude: up to 24.3%

of the variation in city growth in our sample can be attributed to differential exposure to the

technology cycle across cities. We also document that cities with a more diversified portfolio,

tend to experience less volatile growth.

To interpret these reduced-form findings, we develop a parsimonious dynamic spatial-

equilibrium model with endogenous innovation and frictional knowledge diffusion across cities

and fields of knowledge. The model can be solved in closed form and it implies gravity equa-

tions for migration flows and idea diffusion, which facilitate its quantification. We incorporate

sectoral technology shocks to match the changes in the network of knowledge that we observed

in the data. We find that our proposed mechanism accounts for 45% of the overall variation in

city growth in the last century. Moreover, the model features a structural error term in city-

sector innovation that encompasses unmodeled city-sector specific shocks (e.g., placed-based

policies, endogenous R&D effort by innovators, etc.). Including the structural error the model

increases its predictive power substantially, up to 64% of the overall city growth over the same

time span.

We then use the calibrated model to analyze some important episodes of transformation of

the US economic geography observed in the 20th century. Our calibrated model can account for

the rise in manufacturing-intensive cities in the Rust Belt, driven by the increase in centrality

of transportation technologies, and the recent emergence of modern knowledge hubs, driven by

the increase in the centrality of fields related to physics and electricity. Finally, we use our

model to speculate on how the US economic geography will evolve under different technological

scenarios, such as a come back of transportation and agriculture and a further rise in the

centrality of medical sciences.

In our model, the structural residual contributes significantly to the dynamics of local

innovation and to the variation in population growth. Our framework allows us isolate the
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direct effect of the technology cycle on city growth via innovation and knowledge diffusion, and

does not require to make specific assumptions on the nature of this residual. In a current model

extension, we partly endogenize this error term by allowing innovators to exert effort to improve

their ideas in the spirit of an endogenous growth theory with expanding varieties as in Jones

(2005). Other endogenous forces that can enter the residual include congestion and pecuniary

externalities on local assets, and the response of policy to local shocks. Understanding how

these factors contribute to amplifying or dampening the effects of technology cycles is the next

step of our agenda.
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A Additional Tables

Table 7: Summary Statistics

Variable Obs. Mean Std. Dev. Min Max

Decade 5,950 N/A N/A 1880 2010

Population 5,950 349,985.4 858,144.6 62.24 1.79e+07

Log Population 5,950 11.98 1.11 4.13 16.70

Population Growth 5,525 0.13 0.19 -0.31 2.79

Population Growth (wins.) 5,525 0.12 0.16 -0.14 0.85

Tot. Patents (CZ/decade) 5,950 822.80 3,339.41 0 92,309

Log Tot. Pats. 5,928 4.68 1.84 0 11.43

Patents per capita (CZ/decade) 5,950 0.001 0.002 0 0.039

Log Pats. per capita 5,928 -7.30 1.15 -11.95 -3.26

HHI 5,950 0.16 0.10 0 1

Human Capital (rank) 5,928 0.48 0.28 0.001 1

Tech Class Importance 5,950 0.00 0.018 -0.42 0.58

Tech Class Importance (rank) 5,950 0.50 0.29 0.002 1

Specialization 5,950 0.26 0.14 0 1.08

Specialization (rank) 5,950 0.50 0.29 0.002 1

54



Table 8: IPC Classes Groups

Class ID Class Group IPC Class Range Label

1 A1 A01 Agriculture

2 A2 A21-A24 Foodstuffs; Tobacco

3 A3 A41-A47 Personal or Domestic Articles

4 A4 A61-A99 Health; Life-Saving; Amusement

5 B1 B01-B09 Separating; Mixing

6 B2 B21-B33 Shaping

7 B3 B41-B44 Printing

8 B4 B60-B68 Transporting

- B5 B81-B99 Microstructural Technology; Nanotechnology

9 C1 C01-C14 Chemistry

10 C2 C21-C30 Metallurgy

- C3 C40-C99 Combinatorial Technology

11 D1 D01-D07 Textiles or Flexible Materials Not Otherwise Provided For

12 D2 D21-D99 Paper

13 E1 E01-E06 Building

14 E2 E21-E99 Earth or Rock Drilling; Mining

15 F1 F01-F04 Engines or Pumps

16 F2 F15-F17 Engineering in General

17 F3 F21-F28 Lighting; Heating

18 F4 F41-F99 Weapons; Blasting

19 G1 G01-G16 Physics

- G2 G21-G99 Nuclear Physics; Nuclear Engineering

20 H1 H01-H99 Electricity

Notes: This table provides label and a mapping to the original IPC classes for the class groups used
for the quantitative analysis of this paper. Groups B5, C3, and G2 are excluded from our sample since
they cover knowledge, such as nuclear physics, that was acquired only later in our sample.
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B Additional Figures
0

10
20

30
40

D
en

si
ty

-.2 0 .2 .4 .6
importance_cz_diff_pgrk

(a) Exposure

0
1

2
3

4
D

en
si

ty

0 .2 .4 .6 .8 1
spec_relative

(b) Diversity

Figure 13: Distribution of Main Variables

Notes: The two histograms show the distribution of the exposure measure (left) and log diversity
(right).
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Figure 14: Temporal Robustness

Notes: Point estimates of the exposure parameter obtained when dropping decades to the right and
to the left.
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Figure 15: Spatial Robustness

Notes: Point estimates of the exposure parameter obtained when dropping one commuting zone at a
time.
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Figure 16: Citation Intensity Between Classes

Notes: Heatmap citing/cited IPC classes by decade
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Figure 17: Parameters Identification
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Figure 18: Growth in λn,s,t: Data VS Model, 1990-2010
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Figure 19: Average growth growth in λn,s,t and change in PageRank of the 20 sectors
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Figure 20: Population Growth Period by Period

Notes: The blue line corresponds to the full model, the red line corresponds to the model with only
technology cycles, the black line is the model with no shocks.
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Figure 21: Growth Decomposition

Notes: The plots show the growth trajectories of Chicago, Pittsburgh, Gary (IN), Raleigh-Durham,
Denver-Boulder, and Portland as deviations from a model with only fertility shocks. The blue line
shows the growth trajectory of these six cities in the full model (with structural residuals and techno-
logy shocks). The red line represents the growth obtained in a model in which the structural shocks
are kept constant.
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