

Scalable Expertise

David Argente
Penn State

Sara Moreira
Northwestern

Ezra Oberfield
Princeton

Venky Venkateswaran
NYU Stern

NBER SI, July 2020

Introduction

Enormous differences in firm size and scale

- Renewed attention of late (rise in concentration, superstar firms)

This paper: 1. New facts

- Larger firms 'respond' more to common (i.e. sector-wide) 'shocks'
- Changes in scope (Num. of units/products/locations) key to this heterogeneity

Introduction

Enormous differences in firm size and scale

- Renewed attention of late (rise in concentration, superstar firms)

This paper: 1. New facts

- Larger firms 'respond' more to common (i.e. sector-wide) 'shocks'
- Changes in scope (Num. of units/products/locations) key to this heterogeneity

2. A theory of firm size

- Scope and size endogenously determined
- Key ingredient: **scalable expertise**

Introduction

Enormous differences in firm size and scale

- Renewed attention of late (rise in concentration, superstar firms)

This paper: 1. New facts

- Larger firms 'respond' more to common (i.e. sector-wide) 'shocks'
- Changes in scope (Num. of units/products/locations) key to this heterogeneity

2. A theory of firm size

- Scope and size endogenously determined
- Key ingredient: **scalable expertise**

3. Model vs data

- A direct measure of scalability based on detailed product-level data
- Model's predictions consistent with patterns in the data

Introduction

Enormous differences in firm size and scale

- Renewed attention of late (rise in concentration, superstar firms)

This paper: 1. New facts

- Larger firms 'respond' more to common (i.e. sector-wide) 'shocks'
- Changes in scope (Num. of units/products/locations) key to this heterogeneity

2. A theory of firm size

- Scope and size endogenously determined
- Key ingredient: **scalable expertise**

3. Model vs data

- A direct measure of scalability based on detailed product-level data
- Model's predictions consistent with patterns in the data

4. Implications beyond heterogeneity

- Link scalability to diffusion of knowledge → Potential amplification mechanism

Firm Size and Responsiveness to Shocks

Data:

- Two datasets
 - Establishment-level data (NETS)
 - Product-level data (Nielsen)
- Three demand shocks.
 - Change in home prices 2001-2006
 - Change in home prices 2007-2011
 - Change in Chinese import penetration, 2006-2015

Specification:

$$\Delta \ln(\text{Size}_{ijt+\tau}) = \beta \Delta \text{Shock}_{ijt} \ln(\text{Size}_{ijt}) + \alpha \Delta \text{Shock}_{ijt} + \gamma \ln(\text{Size}_{ijt}) + \sigma_{j\tau} + \epsilon_{ij\tau}$$

Results: Multi-establishment firms (NETS)

Fact 1: Larger firms respond by more to shocks

	$\Delta \ln(\text{Size})$	$\Delta \ln(\text{Size})$	$\Delta \ln(\text{Size})$
$\Delta \text{Shock} \times \ln(\text{Size})$	0.049*** (0.001)	0.047*** (0.001)	0.191*** (0.049)
Obs.	580,946	569,328	34,583
Sector FE	Y	Y	Y
Shock	Housing	Housing	China
Period	2001-2006	2007-2011	2006-2015
Data	NETS	NETS	NETS

$$\Delta \ln(\text{Size}_{ijt+\tau}) = \beta \Delta \text{Shock}_{ijt} \ln(\text{Size}_{ijt}) + \alpha \Delta \text{Shock}_{ijt} + \gamma \ln(\text{Size}_{ijt}) + \sigma_{j\tau} + \epsilon_{ij\tau}$$

Results: Multi-establishment firms (NETS)

Fact 1: Larger firms respond by more to shocks

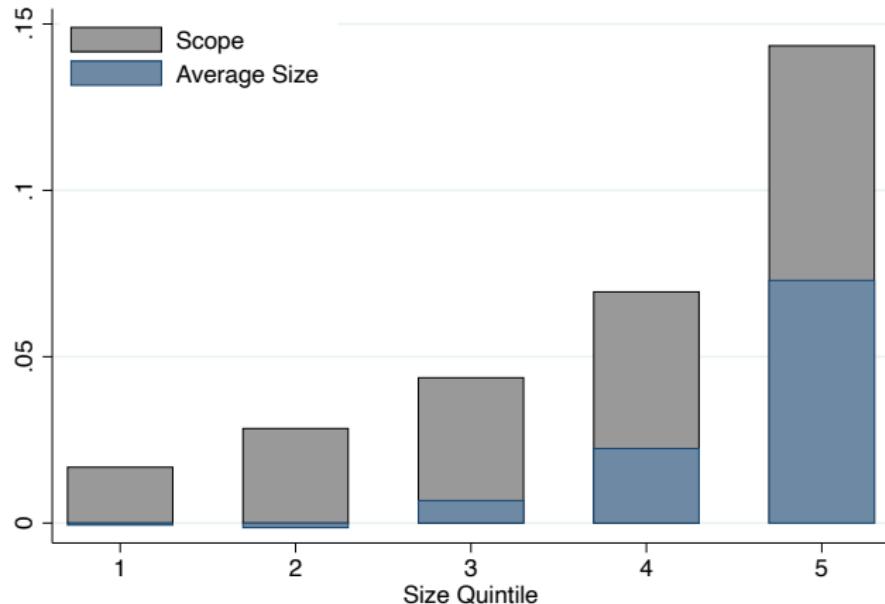
Fact 2: Heterogeneous changes to scope play a significant role

	$\Delta \ln(\text{Size})$	$\Delta \ln(\text{Scope})$	$\Delta \ln(\text{Size})$	$\Delta \ln(\text{Scope})$	$\Delta \ln(\text{Size})$	$\Delta \ln(\text{Scope})$
$\Delta \text{Shock} \times \ln(\text{Size})$	0.049*** (0.001)	0.031*** (0.000)	0.047*** (0.001)	0.025*** (0.001)	0.191*** (0.049)	0.036 (0.023)
Obs.	580,946		569,328		34,583	
Sector		Y		Y		Y
Shock		Housing		Housing		China
Period		2001-2006		2007-2011		2006-2015
Data		NETS		NETS		NETS

$$\Delta \ln(\text{Size}_{ijt+\tau}) = \beta \Delta \text{Shock}_{ijt} \ln(\text{Size}_{ijt}) + \alpha \Delta \text{Shock}_{ijt} + \gamma \ln(\text{Size}_{ijt}) + \sigma_{j\tau} + \epsilon_{ij\tau}$$

$$\Delta \ln(\text{Scope}_{ijt+\tau}) = \beta \Delta \text{Shock}_{ijt} \ln(\text{Size}_{ijt}) + \alpha \Delta \text{Shock}_{ijt} + \gamma \ln(\text{Size}_{ijt}) + \sigma_{j\tau} + \epsilon_{ij\tau}$$

Heterogeneous Response to Demand Shocks by Size Quintile



Note: $\Delta \text{Scope}_{ij} = \sum_{q=1}^5 \beta_q d_{q,ij} \times \Delta \text{Shock}_{ij} + \sum_{q=1}^5 \alpha_q d_{q,i} + \gamma_j + \epsilon_{ij}$, where $d_{q,i}$ is a dummy for the size quintile (within industry).

Results: Multi-product firms (Nielsen)

Fact 1: Larger firms respond by more to shocks

Fact 2: Heterogeneous changes to scope play a significant role

	$\Delta \ln(\text{Size})$	$\Delta \ln(\text{Scope})$	$\Delta \ln(\text{Size})$	$\Delta \ln(\text{Scope})$
$\Delta \text{Shock} \times \ln(\text{Size})$	0.666*** (0.145)	0.066* (0.036)	0.126** (0.012)	0.011*** (0.004)
Obs.	27,930		23,812	
Sector	Y		Y	
Shock	Housing		China	
Period	2006-2011		2006-2015	
Data	Nielsen		Nielsen	

$$\Delta \ln(\text{Size}_{ijt+\tau}) = \beta \Delta \text{Shock}_{ijt} \ln(\text{Size}_{ijt}) + \alpha \Delta \text{Shock}_{ijt} + \gamma \ln(\text{Size}_{ijt}) + \sigma_{j\tau} + \epsilon_{ij\tau}$$

$$\Delta \ln(\text{Scope}_{ijt+\tau}) = \beta \Delta \text{Shock}_{ijt} \ln(\text{Size}_{ijt}) + \alpha \Delta \text{Shock}_{ijt} + \gamma \ln(\text{Size}_{ijt}) + \sigma_{j\tau} + \epsilon_{ij\tau}$$

Model

- A continuum of firms (index: i) in a continuum of sectors (index: j)
- Firm i has a continuum of 'products' $s \in [0, \mathcal{N}_{ij}]$
- Linear production function $C_{ij}^s = G_j \mathcal{Z}_{ij}^s L_{ij}$ and fixed costs $\mathcal{F}(\mathcal{N}_{ij})$
- CES aggregation within (elasticity ϵ) and across (elasticity θ) firms

$$C_{ij}^s = \left(\frac{P_{ij}^s}{P_{ij}} \right)^{-\epsilon} \left(\frac{P_{ij}}{P_j} \right)^{-\theta} C_j$$
$$(P_{ij})^{1-\epsilon} = \int^{\mathcal{N}_{ij}} (P_j^s)^{1-\epsilon} ds \quad (P^s)^{1-\theta} = \int (P_i^s)^{1-\theta} di$$

- Profits of firm i are given by

$$\Pi_{ij} = \int_0^{\mathcal{N}_{ij}} \left(P_{ij}^s - \frac{W}{G_j \mathcal{Z}_{ij}^s} \right) C_{ij}^s ds - \mathcal{F}(n_{ij})$$

- Sector subscript j suppressed in what follows

Expertise

Productivity of product s of firm i as a function of expertise

$$Z_i^s = \left(x_i^{\frac{\sigma-1}{\sigma}} + (y_i^s)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \quad 1 < \sigma < \bar{\sigma}$$

where $x_i \equiv$ scalable expertise

$y_i^s \equiv$ product-specific expertise

Cost of acquiring expertise: $\mathcal{C}_i(x_i, \{y_i^s\}_{s \in [0, N_i]})$

Interpretations

- Precision in firm-wide and product-specific operations ▶ Details
- Products as bundles of useful ‘services’ or ‘features’

Special case: $\theta = \epsilon = 2$, $\mathcal{F}(N_i) = FN_i$ \mathcal{C}_i = Capacity constraint

$$\max_{N_i, x_i, y_i} N_i(GZ(x_i, y_i) - F) \quad \text{subject to} \quad \frac{x_i}{a_i^x} + \frac{N_i y_i}{a_i^y} \leq Q$$

FOC x_i :

$$\underbrace{N_i GZ_x(x_i, y_i)}_{mpx} = \frac{\lambda_i}{a_i^x}$$

y_i :

$$\underbrace{GZ_y(x_i, y_i)}_{mpy} = \frac{\lambda_i}{a_i^y}$$

N_i :

$$\underbrace{GZ(x_i, y_i) - F}_{mpn} = y_i \frac{\lambda_i}{a_i^y}$$

$$\boxed{\frac{d \ln N_i}{d \ln G} = \frac{1}{2 - \sigma} \left(\frac{Z_i}{Z_i - 1} \right)}$$

Firms with low rev/product adjust scope by more in response to the same shock

- Fixing (x_i, y_i, N_i) , $G \uparrow \rightarrow mpx, mpy \uparrow$ proportionately
- but, $mpn \uparrow$ more than proportionately \rightarrow scope rises (and $Z \downarrow$)
- effect stronger if $GZ(x_i, y_i) - F$ small $\rightarrow N$ rises by more if Z is low

Special case: $\theta = \epsilon = 2$, $\mathcal{F}(N_i) = FN_i$ \mathcal{C}_i = Capacity constraint

$$\max_{N_i, x_i, y_i} N_i (GZ(x_i, y_i) - F) \quad \text{subject to} \quad \frac{x_i}{a_i^x} + \frac{N_i y_i}{a_i^y} \leq Q$$

FOC x_i :

$$\underbrace{N_i GZ_x(x_i, y_i)}_{mpx} = \frac{\lambda_i}{a_i^x}$$

y_i :

$$\underbrace{GZ_y(x_i, y_i)}_{mpy} = \frac{\lambda_i}{a_i^y}$$

N_i :

$$\underbrace{GZ(x_i, y_i) - F}_{mpn} = y_i \frac{\lambda_i}{a_i^y}$$

$$\boxed{\frac{d \ln N_i}{d \ln G} = \frac{1}{2-\sigma} \left(\frac{Z_i}{Z_i - 1} \right)}$$

$$\boxed{\frac{GZ_i - F}{GZ_i} = \frac{mpy}{apy} = \left(\left(\frac{x_i}{y_i} \right)^{\frac{\sigma-1}{\sigma}} + 1 \right)^{-1}}$$

Firms with scalable expertise are less profitable (on a per-product basis)

- $mpy \equiv Z_y \rightarrow$ incentives to $\uparrow y$ (and therefore, Z)
- $apy \equiv \frac{Z}{y} \rightarrow$ incentives to $\uparrow N$ (since every new product requires y)
- $\frac{mpy}{apy}$ declines with $\frac{x}{y}$ (since $\sigma > 1$) \rightarrow **Z is decreasing in scalability**

The general case

$$\max \quad GN_i^\phi \left[\left(x_i^{\frac{\sigma-1}{\sigma}} + y_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \right]^\psi - FN_i^\omega - \left(\frac{x_i^\mu}{a_i^x} + \frac{N_i y_i^\mu}{a_i^y} \right)^\gamma \cdot H$$

- Earlier, special case with $\phi = \omega = \psi = \mu = 1, \gamma = \infty$
- Within-firm elasticity > across-firm elasticity $\Rightarrow \phi < 1$
- Fixed costs convex in number of products $\Rightarrow \omega > 1$
- Curvature in cost of expertise $\Rightarrow 1 < \gamma < \infty$
- $$\frac{\psi}{\phi\mu} \leq 1 \leq \left(1 - \frac{\psi}{\mu\gamma}\right) \frac{\omega}{\phi} \leq \mu\omega \frac{\sigma}{\sigma-1} - \omega$$
 → quasi-concave objective
 - sufficient complementarity between x and y (i.e. σ not too high)
 - sufficient convexity in costs (i.e. $\frac{\omega}{\phi}$ and $\frac{\mu\gamma}{\psi}$ not too low)

Proposition

The elasticity of scope with respect to G is

- decreasing in revenue/product, conditional on scope.
- increasing in scope, conditional on revenue/product.
- increasing in scalability.

Model vs Data: Effect of demand shocks on scope

$$\Delta n_{ij\tau} = \alpha + \beta_0 \Delta g_{ij\tau_0} + \beta_1 (\Delta g_{ij\tau} \times n_{ij\tau_0}) + \beta_2 (\Delta g_{ij\tau} \times z_{ij\tau_0}) + \gamma_1 n_{ij\tau_0} + \gamma_2 z_{ij\tau_0} + \Gamma_j + \epsilon_{ij\tau}$$

- Conditional on rev/product, firms with **higher** scope adjust scope by **more** ($\beta_1 > 0$)
- Conditional on scope, firms with **higher** revenue/product adjust scope by **less** ($\beta_2 < 0$)

	(1)	(2)	(3)	(4)	(5)
Δn					
$\Delta g \times n$	0.022*** (0.000)	0.018*** (0.000)	0.060*** (0.013)	0.104*** (0.039)	0.035*** (0.004)
$\Delta g \times z$	-0.001 (0.000)	-0.003*** (0.001)	-0.016 (0.026)	0.048 (0.035)	-0.015*** (0.004)
Observations	580,946	569,328	34,577	28,137	23,812
R^2	0.121	0.114	0.127	0.087	0.137
Sector	Y	Y	Y	Y	Y
Shock	Housing	Housing	China	Housing	China
Period	2001-2006	2007-2011	2006-2015	2006-2011	2006-2015
Data	NETS	NETS	NETS	Nielsen	Nielsen

Measuring Scalability using Product-level Data: An example

Product Module: Lamps, incandescent

Firm	Product	Attribute	
		Style	Use
General Electric	1	Clear	Nite Fixture
General Electric	2	Halogen	Appliance
General Electric	3	Clear	Bath & Vanity
General Electric	4	Clear	Ceiling Fan
General Electric	5	Frost	Chandelier

Style:
$$SI_{Style, GE} \equiv 1 - \frac{\text{Distinct Characteristics}}{\# \text{ of Products}} = 1 - \frac{3}{5} = 0.4$$

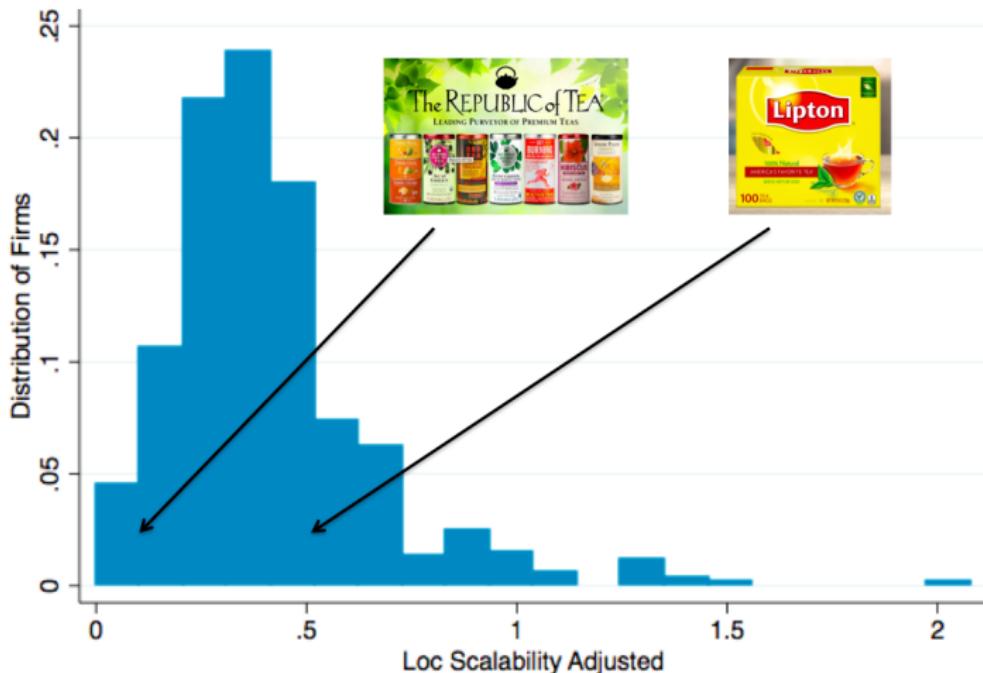
Use:
$$SI_{Use, GE} \equiv 1 - \frac{\text{Distinct Characteristics}}{\# \text{ of Products}} = 1 - \frac{5}{5} = 0$$

Module:
$$SI_{GE}^{Lamps} \equiv 1 - \frac{\text{Distinct Characteristics}}{\# \text{ of Products} \times \text{Attributes}} = 1 - \frac{5 + 3}{5 + 5} = 0.2$$

$$S_{GE}^{Lamps} \equiv \frac{x_i^m}{y_i^m} \equiv \frac{SI_{GE}^{Lamps}}{1 - SI_{GE}^{Lamps}} = \frac{0.2}{1 - 0.2} = 0.25$$

► More examples

Distribution of \mathcal{SI} : An example



Model predictions w.r.t. scalability

Cross-section

- Scalability is **negatively** related to revenue/product, conditional on scope
- Scalability is **positively** related to scope, conditional on revenue/product

Demand shock and scope

- Firms with **higher** scalability adjust scope by **more**

Demand shock and scalability

- Firms with **higher** scalability adjust scalability by **more**
- Firms with **higher** rev/product adjust scalability by **less**, conditional on scope
- Firms with **higher** scope adjust scalability by **more**, conditional on rev/product

▶ Diffusion

Model vs Data: Scalability in the Cross-section

- Scalability is **negatively** related to revenue/product, conditional on scope ($\beta_1 < 0$)
- Scalability is **positively** related to scope, conditional on revenue/product ($\beta_2 > 0$)

In Scalability	(1)	(2)	(3)
<i>z</i>	0.19*** (0.002)		-0.02*** (0.002)
<i>n</i>		0.49*** (0.002)	0.50*** (0.002)
Observations	293,013	293,151	293,013
R-squared	0.155	0.324	0.324
Period × Sector	Y	Y	Y

$$s_{ijt} = \alpha + \beta_1 z_{ijt} + \beta_2 n_{ijt} + \Gamma_{jt} + \varepsilon_{ijt} .$$

Model vs Data: Response of Scope to the China shock

- Firms with **higher** scalability adjust scope by more ($\beta_1 > 0$)

Δn	(1)	(2)	(3)
Δg	0.026** (0.012)	0.036*** (0.004)	
$\Delta g \times s$		0.024*** (0.004)	0.024** (0.009)
Observations	22,822	18,125	18,125
R-squared	0.002	0.031	0.074
Sector	N	N	Y

$$\Delta n_{ij\tau} = \alpha + \beta_0 \Delta g_{j\tau} + \beta_1 (\Delta g_{j\tau} \times s_{ij\tau_0}) + \gamma s_{ij\tau_0} + \Gamma_j + \epsilon_{ij,\tau}$$

▶ Diffusion

Model vs Data: Response of Scalability to the China Shock

- Firms with **higher** scalability adjust scalability by **more** ($\beta_1 > 0$)
- Firms with **higher** revenue/product adjust scalability by **less** ($\beta_2 < 0$), conditional on scope
- Firms with **higher** scope adjust scalability by **more** ($\beta_3 > 0$), conditional on rev/product

$\Delta \ln \text{Scalability}$	(1)	(2)	(3)
Δg	0.017*** (0.002)		
$\Delta g \times s$		0.006*** (0.001)	
$\Delta g \times z$			-0.008*** (0.003)
$\Delta g \times n$			0.006** (0.002)
Observations	16,077	16,076	16,076
R-squared	0.003	0.313	0.083
Sector	N	Y	Y

$$\Delta s_{ij\tau} = \alpha + \beta_0 \Delta g_{j\tau} + \beta_1 (\Delta g_{j\tau} \times s_{ij\tau 0}) + \gamma s_{ij\tau 0} + \Gamma_j + \epsilon_{ij\tau}$$

$$\Delta s_{ij\tau} = \alpha + \beta_0 \Delta g_{j\tau} + \beta_2 (\Delta g_{j\tau} \times z_{ij\tau 0}) + \gamma_1 z_{ij\tau 0} + \beta_3 (\Delta g_{j\tau} \times n_{ij\tau 0}) + \gamma_2 n_{ij\tau 0} + \Gamma_j + \epsilon_{ij\tau}$$

Robustness

Theory

- Dynamics (potentially with adjustment costs)
 - results hold for a firm in steady state
- Preference for variety → reduces the benefit of scalable expertise
 - changes level of $Z(x, y)$; results depend on elasticities

Empirical

- Choice of time horizon, aggregation etc.
 - Results robust to annual differences, firm-level, normalization
- Endogeneity of import penetration
 - Use ΔIP_j for other countries as instruments

SCALABLE EXPERTISE AND DIFFUSION

Scalable Expertise and Diffusion

Hypothesis: Diffusion within the firm \rightarrow diffusion outside the firm ($\beta > 0$)

For a new feature c introduced by firm i at time t , define

$$\mathcal{DI}_{c,m,i,t,\tau} \equiv \frac{\text{Num. of new products introduced by other firms between } t \text{ and } t + \tau \text{ with } c}{\text{Num. of new products introduced by other firms between } t \text{ and } t + \tau}$$

	(1)	(2)	(3)	(4)
Diffusion				
SI	0.0599*** (0.000)	0.0097*** (0.001)		
\widetilde{SI}			0.1326*** (0.000)	0.0282*** (0.001)
n	-0.0292*** (0.000)	-0.0057*** (0.000)	-0.0013*** (0.000)	-0.0028*** (0.001)
Observations	3,319,518	3,234,863	3,269,030	3,183,439
R-squared	0.808	0.914	0.812	0.913
Firm-Attribute-Module	N	Y	N	Y
Attribute-Module-Time-Age	Y	Y	Y	Y

$$\mathcal{DI}_{cmit\tau} = \alpha + \beta SI_{amit-1} + \gamma n_{mit} + \lambda_{amt\tau} + \theta_{ami} + \epsilon_{amit\tau}$$

$$\mathcal{DI}_{cmit\tau} = \alpha + \beta \widetilde{SI}_{amit-1} + \gamma n_{mit} + \lambda_{amt\tau} + \theta_{ami} + \epsilon_{amit\tau}$$

The China Shock and Diffusion

Hypothesis: Higher demand \Rightarrow more scalable expertise \Rightarrow diffusion \uparrow ($\beta_2 > 0$)

	(1)	(2)	(3)
Δ Diffusion			
Δs	0.201*** (0.039)	0.100*** (0.038)	0.100*** (0.038)
Observations	8,433	8,433	8,432
Sector	N	N	Y
Controls	N	Y	Y
Shock	China	China	China
Estimator	IV	IV	IV

$$\Delta s_{ij\tau} = \alpha + \beta_0 \Delta g_{j\tau} + \beta_1 \Delta g_{j\tau} \times s_{ij\tau_0} + \gamma s_{ij\tau_0} + \Gamma_j + \epsilon_{ij\tau}$$

$$\Delta \ln \mathcal{D}I_{ij\tau} = \alpha + \beta_2 \Delta \widehat{s}_{ij\tau} + \gamma_1 z_{ij\tau_0} + \gamma_2 \Delta g_{j\tau} \times z_{ij\tau_0} + \Gamma_j + \epsilon_{ij\tau}$$

Conclusion

A tractable model of scope, size and productivity

- key: scalability of knowledge

Cross-sectional predictions consistent with product-level data

- next: aggregate implications?

Dynamic Model: Expertise as Precision

Firm's operations modeled as a tracking problem (expertise = more precision)

Dynamic Model: Expertise as Precision

Firm's operations modeled as a tracking problem (expertise = more precision)

- Each product j has a 'target' action with 2 ind components

$$\tilde{v}_{it}^* = \underbrace{v_{it}^*}_{\text{Firm-wide}} + \underbrace{v_{ist}^*}_{\text{Product-specific}}$$

Dynamic Model: Expertise as Precision

Firm's operations modeled as a tracking problem (expertise = more precision)

- Each product j has a 'target' action with 2 ind components

$$\tilde{v}_{it}^* = \underbrace{v_{it}^*}_{\text{Firm-wide}} + \underbrace{v_{ist}^*}_{\text{Product-specific}}$$

- Firm chooses actions $\{v_{it}, v_{ijt}\}$ and operating profit of product j

$$\Pi_{ist} = \frac{G_t}{\mathbb{E} [((v_{it} + v_{ist}) - (v_{it}^* + v_{ist}^*))^2]} = G_t \ Z_{ist} \quad \text{where}$$

$$Z_{ist} \equiv \underbrace{\left(\frac{1}{x_{it}} + \frac{1}{y_{ist}} \right)^{-1}}_{\text{Expertise}}$$

$$x_{it} \equiv \underbrace{\frac{1}{\mathbb{E} [(v_{it} - v_{it}^*)^2]}}_{\text{Scalable}}$$

$$y_{ist} \equiv \underbrace{\frac{1}{\mathbb{E} [(v_{ist} - v_{ist}^*)^2]}}_{\text{Non-scalable}}$$

Dynamic Model: Expertise as Precision

Firm's operations modeled as a tracking problem (expertise = more precision)

- Each product j has a 'target' action with 2 ind components

$$\tilde{v}_{it}^* = \underbrace{v_{it}^*}_{\text{Firm-wide}} + \underbrace{v_{ist}^*}_{\text{Product-specific}}$$

- Firm chooses actions $\{v_{it}, v_{ijt}\}$ and operating profit of product j

$$\Pi_{ist} = \frac{G_t}{\mathbb{E} [((v_{it} + v_{ist}) - (v_{it}^* + v_{ist}^*))^2]} = G_t Z_{ist} \quad \text{where}$$

$$Z_{ist} \equiv \underbrace{\left(\frac{1}{x_{it}} + \frac{1}{y_{ist}} \right)^{-1}}_{\text{Expertise}}$$

$$x_{it} \equiv \underbrace{\frac{1}{\mathbb{E} [(v_{it} - v_{it}^*)^2]}}_{\text{Scalable}}$$

$$y_{ist} \equiv \underbrace{\frac{1}{\mathbb{E} [(v_{ist} - v_{ist}^*)^2]}}_{\text{Non-scalable}}$$

Total profit of the firm $\Pi_{it} \equiv \int_0^{N_{it}} (G_t Z_{ist} - F_t) dj$

▶ Details

- No cannibalization within or across firms (for now)

▶ Back

Dynamic Model: Expertise as Precision

Target actions $\{v_{it}^*, v_{ist}^*\}$ are mean-reverting Gaussian processes

Firm chooses number of signals $q_{it}^x, \{q_{ist}^y\}$ at a cost $C_i(q_{it}^x, \{q_{ist}^y\}; x_{it}, \{y_{ist}\})$

Special case

$$\frac{1}{a_i^x} q_{it}^x + \frac{1}{a_i^y} \int q_{ist}^y ds \leq 1$$

where a_i^x and a_i^y are (firm-specific) skill parameters

Dynamic Model: Expertise as Precision

Target actions $\{v_{it}^*, v_{ist}^*\}$ are mean-reverting Gaussian processes

Firm chooses number of signals $q_{it}^x, \{q_{ist}^y\}$ at a cost $C_i(q_{it}^x, \{q_{ist}^y\}; x_{it}, \{y_{ist}\})$

Special case

$$\frac{1}{a_i^x} q_{it}^x + \frac{1}{a_i^y} \int q_{ist}^y ds \leq 1$$

where a_i^x and a_i^y are (firm-specific) skill parameters

Evolution of expertise (in continuous time),

$$\dot{x}_{it} = -\delta x_{it} + q_{it}^x$$

$$\dot{y}_{ist} = -\delta y_{ist} + q_{ist}^y$$

Dynamic Model: The Special Case

Assume

- $\theta = \epsilon = 2, \sigma = 0.5, \mathcal{F}_t(n_{it}) = F_t n_{it}, C_i(\cdot) \rightarrow$ capacity constraint

$$\begin{aligned} \max_{n_{it}, x_{it}, \{y_{ist}\}} \quad & \int_0^\infty e^{-rt} \left[\int_0^{n_{it}} (G_t Z_{ist} - F_t) ds \right] dt \quad \text{s.t.} \\ & \frac{q_{it}^x}{a_i^x} + \frac{\int q_{ist}^y dj}{a_i^y} \leq 1 \\ Z_{ist} = & \left(\frac{1}{x_{it}} + \frac{1}{y_{ist}} \right)^{-1} \quad \dot{x}_{it} = -\delta x_{it} + q_{it}^x \quad \dot{y}_{ist} = -\delta y_{ist} + q_{ist}^y \end{aligned}$$

Dynamic Model: The Special Case

Assume

- $\theta = \epsilon = 2, \sigma = 0.5, \mathcal{F}_t(n_{it}) = F_t n_{it}, C_i(\cdot) \rightarrow$ capacity constraint

$$\begin{aligned} \max_{n_{it}, x_{it}, \{y_{ist}\}} \quad & \int_0^\infty e^{-rt} \left[\int_0^{n_{it}} (G_t Z_{ist} - F_t) ds \right] dt \quad \text{s.t.} \\ & \frac{q_{it}^x}{a_i^x} + \frac{\int q_{ist}^y dj}{a_i^y} \leq 1 \\ Z_{ist} = & \left(\frac{1}{x_{it}} + \frac{1}{y_{ist}} \right)^{-1} \quad \dot{x}_{it} = -\delta x_{it} + q_{it}^x \quad \dot{y}_{ist} = -\delta y_{ist} + q_{ist}^y \end{aligned}$$

- interior optima \Rightarrow reduces to a sequence of static problems

$$\begin{aligned} (n_{it}^*, x_{it}^*, y_{it}^*) &= \arg \max_{n, x, y} n(G_t Z(x, y) - F_t) , \\ \text{subject to} \quad & \frac{x}{a_i^x} + \frac{ny}{a_i^y} \leq \frac{1 - e^{-\delta(t - \tau_i)}}{\delta} \equiv Q_{it} \end{aligned}$$

Data Description

- Two interpretations of scope: **establishments** and **products**

Data I: Establishments (NETS)

- Establishment-level longitudinal microdata covering universe of U.S. businesses.
- Each establishment has a DUNS identifier, a HQ number, and a sector.
- Average of 8 and 19 million each year, 1990-2017
- Information on sales, employment, industry, and location.
 - Given certain restrictions NETS mimics official employer data sets.

Data II: Products (Nielsen Retail Measurement Services scanner dataset)

- 2006-2015, covers CPG sector ($\approx 4.4\%$ of Agg Consumption)
- Matched to firms using GS1 codes, $\approx 34K$ active during sample ▶ Statistics
- Products uniquely identified by a 12-digit Universal Product Code (UPC)
 - 100 product groups (e.g. toasters, light bulbs, razors, milk, etc)
 - 300K active every quarter
 - Information on attributes: color, style, size, flavor, etc.

The 'China shock'

Extend framework to include imported varieties

- Sectoral import prices $\rightarrow G^s$

The 'China shock'

Extend framework to include imported varieties

- Sectoral import prices $\rightarrow G^s$

Following Autor et. al (2013) and Acemoglu et. al. (2015)

- Change in import penetration ratio in sector j at period τ : ◀ Details

$$\Delta IP_{j\tau} = \frac{\Delta M_{j\tau}}{Y_{j\tau_0} + M_{j\tau_0} - E_{j\tau_0}} \quad \text{where}$$

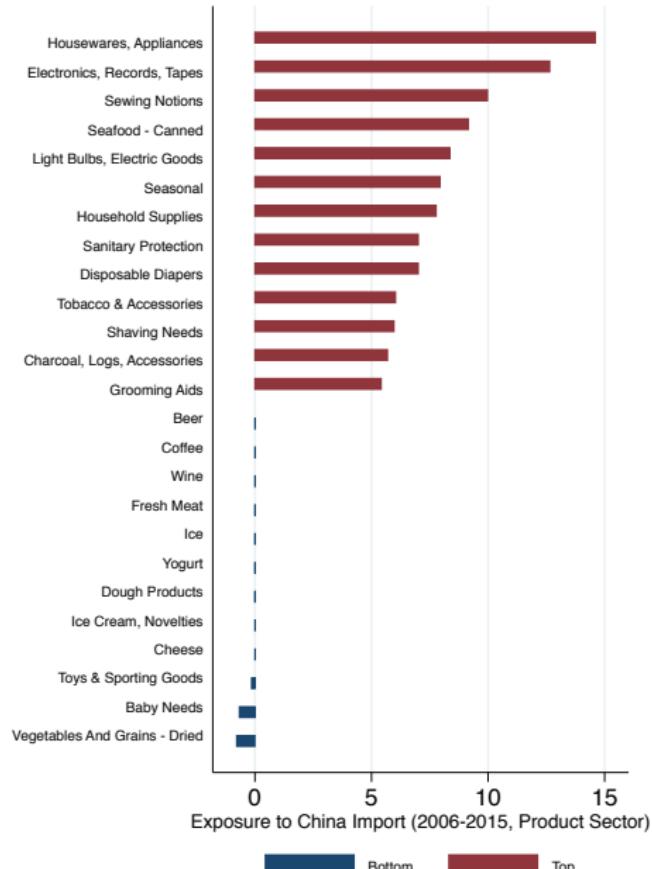
$$\Delta M_{j\tau} \equiv \text{change in imports from China in period } \tau$$

$$Y_{j\tau_0} + M_{j\tau_0} - E_{j\tau_0} = \text{industry shipments} + \text{imports} - \text{exports (base year)}$$

- Assumption: Higher $\Delta IP_{j\tau} \Rightarrow$ lower $\Delta \ln G_{j\tau}$
- Map sectors to Nielsen product groups – follow Bai and Stumpner (2019)

The 'China shock': NETS

The 'China shock': Nielsen



Measuring Scalability: Bootstrap-adjusted

Concern

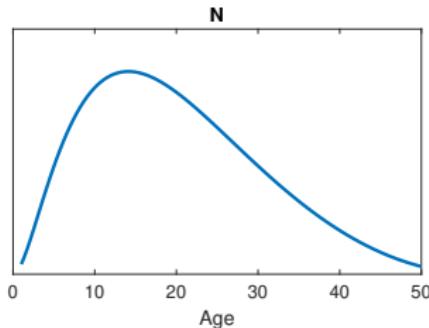
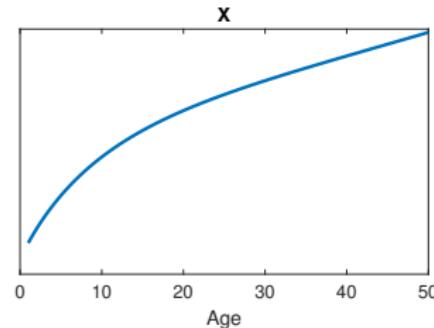
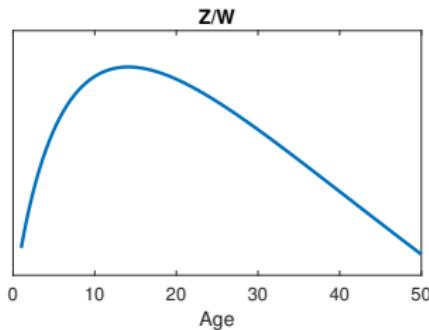
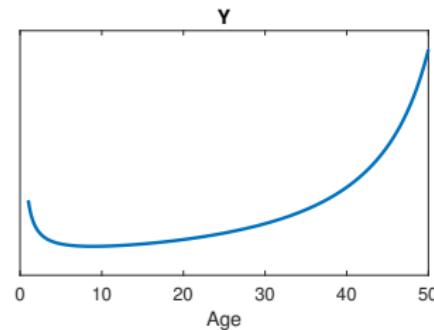
- Mechanical relationship between size and our scalability measure

Strategy

- Assign products randomly to firms within a product group $\rightarrow S^{bootstrap}$
- Adjusted scalability measure: $\frac{S}{S^{bootstrap}}$

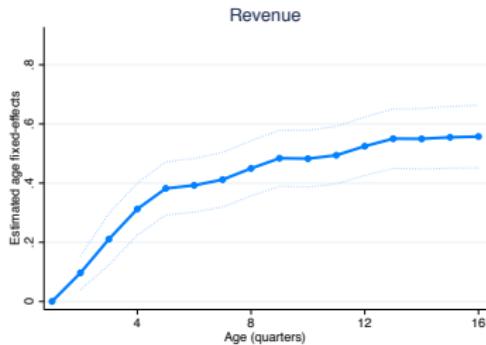
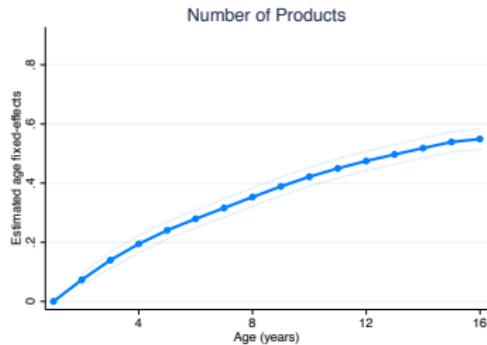
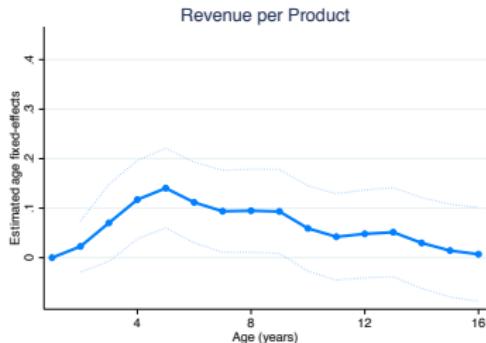
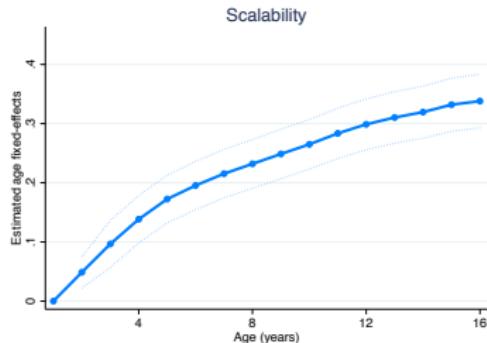
◀ Back

Expertise and replication over the life cycle



- Firms start small, grow by increasing both expertise and scope
- Eventually, $n \downarrow$, but Z continues to \uparrow , though slower than W

Life-Cycle of the Firm



▶ Details

▶ Alt: Including Left-Censored

▶ Alt: By Duration

▶ Alt: Other defs of n

Summary Statistics of Firm × Groups by Censoring

[◀ Back](#)

	All	By Censoring Type			By Sample	
		Complete	Right	Left	Right&Left	Balanced
Total # of firms	65,525	8,154	15,812	17,341	24,218	6,213
average	6.7	3.7	5.2	4.8	10	7.3
less than 1y	13	31	16	19	0	0
less than 4y	41	83	56	64	0	0
above 7y	42	0	11	10	100	22
Revenue (quarterly, \$1,000)						
mean	2,241	23	38	292	5,821	412
25th percentile	.6	.1	0	1.4	9.1	3.1
median	8.8	.7	.6	11	68	19
75th percentile	92	6.2	7.2	72	566	105
90th percentile	765	31	43	372	3,943	543
95th percentile	2,760	82	121	979	14,329	1,376
Products (quarterly)						
mean	11	1.9	2.6	4.6	23	5.8
25th percentile	1	1	1	1	2	1.4
median	2.3	1	1.5	2	5.1	2.7
75th percentile	5.7	2	3	4.7	14	5.6
90th percentile	16	4	5.2	9	41	11
95th percentile	32	5	7.6	14	79	18

Estimation of the life cycle profile of firms

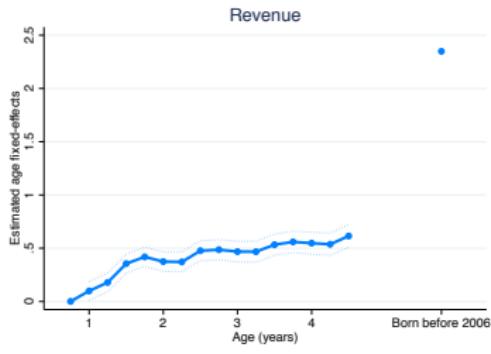
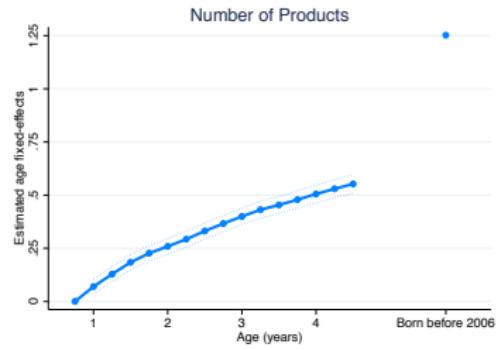
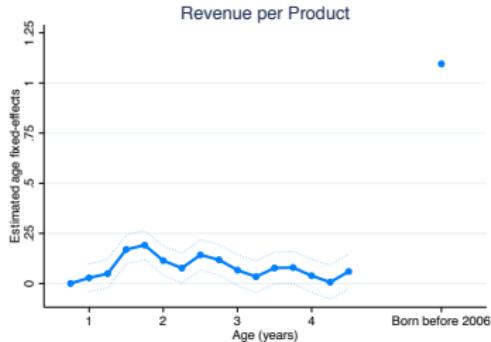
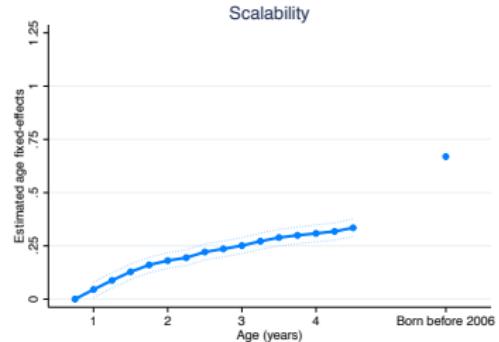
- **age**: time since a firm first appeared on the market.
- Estimation using **age-period-cohort** empirical model
 - *Baseline*: outcome of interest Y of firm i in sector j at time t , as function of age (a), sector-period (jt) and cohort (c) effects:

$$\ln Y_{ijt} = \alpha + \sum_{a=2}^A \beta_a D_a + \lambda_{jt} + \tilde{\theta}_c + u_{ijt}$$

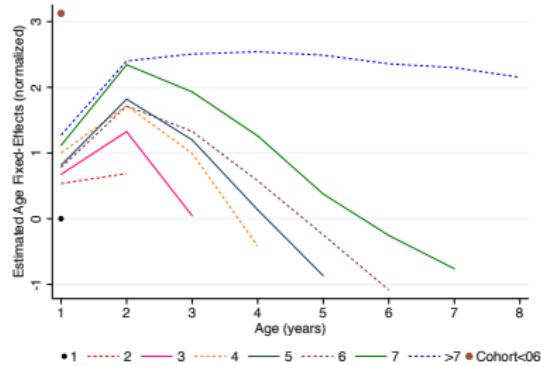
We use a balanced sample of cohorts of firms born between 2006q2 and 2011q4, that have at least 16 quarters of activity.

- *Alternative*: accounting for selection by allowing for β_a 's to vary with the duration of a firm.

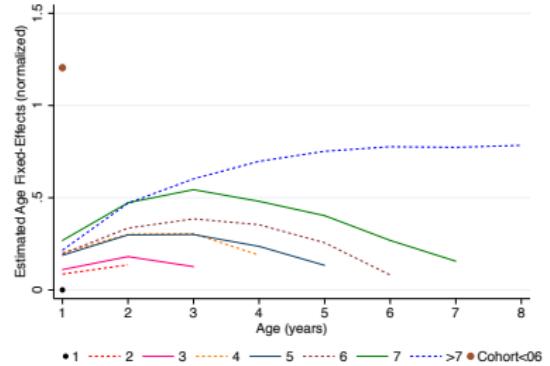
Life-Cycle of the Firm: Including Left-Censored Firm



Life-Cycle of the Firm: by Firm Age



(a) Revenue



(b) Products

▶ Back

Measuring Scalability: An example

Group: Razors, disposable

Firm	Product	Type	Skin Type
Procter & Gamble	1	Razor	Sensitive
Procter & Gamble	2	Razor	Dry
Procter & Gamble	3	Shaver	Normal
Procter & Gamble	4	Razor/Shave Cream in Handle	Ultra Sensitive
Procter & Gamble	5	Shaver/Shave Cream in Handle	Normal to Dry

Style:

$$S_{Type, PG} \equiv 1 - \frac{\text{Distinct Characteristics}}{\# \text{ of Products}} = 1 - \frac{4}{5} = 0.2$$

Use:

$$S_{SkinType, PG} \equiv 1 - \frac{\text{Distinct Characteristics}}{\# \text{ of Products}} = 1 - \frac{5}{5} = 0$$

Firm level:

$$S_{PG} \equiv 1 - \frac{\text{Distinct Characteristics}}{\# \text{ of Products} \times \text{Attributes}} = 1 - \frac{5 + 4}{5 + 5} = 0.1$$

▶ Back

Lamps and light bulbs

Philips Lighting

Indoor Luminaires

- Suspended
- Recessed
- Surface mounted
- Wall mounted
- Free standing
- See all 15 product types

Outdoor Luminaires

- Road and Urban Lighting
- Architectural floodlighting
- Sports and Area floodlighting
- Tunnel and Underpass light...
- Solar
- See all 7 product types

Conventional Lamps and Tubes

- Halogen Lamps
- Fluorescent Lamps and SL...
- Compact Fluorescent Inte...
- Compact Fluorescent Non...
- Compact High Intensity Di...
- See all 9 product types

LED lamps and tubes

- LED tubes
- LED spots
- LED HID replacement
- LED bulbs
- LED PL lamps
- See all 7 product types

Lighting Electronics

- HID
- Fluorescent
- Halogen electronic transi...

Lighting Controls

- Dimmer
- Indoor Accessories
- Installer Based Smart Syst...
- Luminaire Based Systems
- Outdoor Lighting Manage...
- See all 7 product types

Jasco

CAFE LIGHTS

LANDSCAPE LIGHTS

UNDER CABINET LIGHTS

NIGHT LIGHTS

LANTERNS

LIGHTING CONTROLS

- $\text{Scope}_{\text{Philips,2006}} \approx \text{Scope}_{\text{Jasco,2006}}$
- $\text{Scalability}_{\text{Philips,2006}} < \text{Scalability}_{\text{Jasco,2006}}$
- $\text{Expertise}_{\text{Philips,2006}} > \text{Expertise}_{\text{Jasco,2006}}$
- $\text{Scope}_{\text{Philips,2015}} > \text{Scope}_{\text{Jasco,2015}}$

Scalable Expertise and Diffusion: Bootstrap adjusted

Hypothesis: Diffusion within the firm → diffusion outside the firm

$$D_{c,a,i,t,\tau} \equiv \frac{\text{Num. of times } c \text{ introduced by firm } i \text{ appears in products by } -i \text{ between } t \text{ and } t + \tau}{\text{Num. of products introduced by } -i \text{ between } t \text{ and } t + \tau}$$

Scalable Expertise and Diffusion: Bootstrap adjusted

Hypothesis: Diffusion within the firm → diffusion outside the firm

$$D_{c,a,i,t,\tau} \equiv \frac{\text{Num. of times } c \text{ introduced by firm } i \text{ appears in products by } -i \text{ between } t \text{ and } t + \tau}{\text{Num. of products introduced by } -i \text{ between } t \text{ and } t + \tau}$$

	(1)	(2)	(3)	(4)
Diffusion				
In $\frac{\text{Scalability}}{\text{Scalability}_{\text{Bootstrap}}}$	0.013*** (0.000)	0.0020*** (0.000)		
In $\frac{\text{Scalability(alt)}}{\text{Scalability(alt)}_{\text{Bootstrap}}}$			0.0474*** (0.000)	0.0071*** (0.000)
Total Products	-0.0290*** (0.000)	-0.0077*** (0.000)	-0.0243*** (0.000)	-0.0053*** (0.000)
Observations	2,176,553	2,128,543	3,061,259	2,969,366
R-squared	0.800	0.8938	0.808	0.890
Firm-Attribute	N	Y	N	Y
Attribute-Time-Horizon	Y	Y	Y	Y

$$D_{c,a,i,t,\tau} = \alpha + \beta S_{a,i,t-1,\tau} + \gamma n_{i,t-1} + FE + \epsilon_{c,a,i,t,\tau}$$

Cross-section

