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Abstract

The FDIC resolves insolvent banks using an auction process in which bidding is
multidimensional and the rule used to evaluate bids along the different dimensions
is proprietary. Uncertainty about the scoring rule leads banks to simultaneously
submit multiple differentiated bids. This resolution mechanism typically results
in considerable losses for the FDIC—$90 billion during the global financial crisis.
Our objective is to see whether the mechanism could be improved. To do so, we
propose a methodology for analyzing auction environments where bids are ranked
according to multiple attributes chosen by bidders, but where there is uncertainty
about the scoring rule used to evaluate the different components of the bids. Using
this framework, which extends structural estimation techniques for combinatorial
auctions, and FDIC data summarizing bids, we back out the underlying preferences
of banks for failed institutions. With these we perform counterfactuals in which we
eliminate uncertainty and/or multiple bidding. Our findings suggest that the FDIC
could reduce the cost of resolution by around 17% by eliminating uncertainty about
the scoring rule before bidding begins.
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1 Introduction

In response to the global financial crisis, regulators have taken steps to increase financial
stability by minimizing the risks associated with “too-big-to-fail” institutions and by
developing more effective resolution processes in cases of bank failure. In the U.S., bank
resolution is the purview of the Federal Deposit Insurance Corporation (FDIC). The most
common resolution method is a Purchase & Assumption (P&A) transaction, in which the
FDIC auctions off failing institutions to healthy banks. These auctions typically result in a
cash transfer from the FDIC to the acquiring institution. During the global financial crisis
the number and size of failures were so elevated that the FDIC’s Deposit Insurance Fund
lost nearly $90 billion (Davison and Carreon (2010)). Faced with losses, the FDIC must
(i) increase insurance premiums to healthy banks, (ii) levy special assessments, or (iii)
borrow from the U.S. Treasury. These actions can introduce distortions into the banking
system and are particularly problematic in the middle of a banking crisis.1 Furthermore,
auction outcomes might have implications for local market power for banking services,
since a failing bank’s market share is effectively transferred to the auction winner.

This paper examines the incentives induced by the FDIC’s current resolution mecha-
nism in order to determine (i) the mechanism’s role in explaining losses, (ii) whether it
could be improved, and (iii) its impact on local market structure. The current resolution
process has the following key features. First, the FDIC permits bidding to be multi-
dimensional. Healthy banks are encouraged to submit bids consisting of a continuous
component representing a dollar value for the assets and liabilities of the failed bank, and
four discrete components of the acquisition agreement. For example, a bank can specify
that its bid includes a loss-sharing provision whereby the FDIC shares in future losses (all
components are described in Section 2). The result of this setting with multi-dimensional
bids is a scoring auction.

The second feature is uncertainty about the FDIC’s scoring rule in each auction. Since
the passage of the FDIC Improvement Act (FDICIA) in 1991, the FDIC is required to

1Davison and Carreon (2010) document the procyclicality of assessment rates. As illustrated in the
following article, some banks have taken extreme measures to highlight how these costs are passed on
to consumers: https://www.bankrate.com/financing/banking/banks-pass-along-fdic-fee/. There is an
extensive literature on the bank lending channel and the impact of bank failures on local markets. See,
for example, Bernanke (1983) and Ashcraft (2005).
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select the least-cost bid (subject to a systemic risk exemption), so long as it is superior to
its estimated cost of liquidation (i.e., directly reimbursing deposit holders). Importantly,
bidders are uncertain about the exact nature of the rule used to score the different bid
components. Although the basic structure of the rule is known by bidders, they are
uncertain about the FDIC’s projection about recovery rates and losses on assets of the
failed bank. This uncertainty implies that, from the perspective of bidders, there is a
distribution of possible costs associated with using the different components.2 Moreover,
different configurations of the components can affect the administrative expenses borne
by the FDIC, by introducing complexity into the acquisition agreement, which could
lead to uncertainty if bidders are unaware of the FDIC’s operational constraints and/or
human-resources cost structure.

Finally, uncertainty over how the FDIC scores bids gives banks an incentive to submit
multiple bids for the same failing institution. Since they do not know how each component
will affect the FDIC’s estimate of the resolution cost, banks can submit multiple bids to
protect against different eventualities. Importantly, bidding is sealed and simultaneous,
so multiple bidding occurs in these auctions because of uncertainty about the scoring rule
and not as a reaction to changes in information availability.

We are interested in quantifying the impact of uncertainty about the least-cost rule
on auction outcomes. To do so it is important to understand why the FDIC might not
reveal the exact nature of the scoring rule. In our setting, uncertainty about how bids
are scored influences bidding behavior, including whether prospective buyers engage in
multiple bidding.3 Uncertainty introduces noise into the auction process such that the
probability of winning a given auction depends, to some extent, on randomness. The
implications of this fact may be heterogeneous across bidders. For instance, from the
perspective of high-valuation bidders, the auction might seem more competitive than
it otherwise would, since randomness could favor the component(s) chosen by lower-
valuation bidders. We call this the noise effect, and it will generally lead to less bid shading

2Conversations with regulators and with banking industry insiders confirmed that there is indeed
uncertainty over the FDIC’s scoring rule from the perspective of acquiring banks.

3We are not the first to consider the role of endogenous information structures resulting from infor-
mation provision by the auctioneer. See Milgrom and Weber (1982), Bergemann and Pesendorfer (2007),
Ganuza (2004), Ganuza and Penalva (2010), and Board (2009). These papers mostly focus on the provi-
sion of information about bidder valuation and the trade-off between efficiency (since the object up for
sale is more likely to be allocated to the highest-valuation bidder) and informational rents.
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(i.e., more aggressive bidding) among high-valuation bidders and more bid shading among
low-valuation bidders. For its part, multiple bidding generates two conflicting incentives.
First, the increased number of bids stemming from multiple bidding could make an auction
appear more competitive—since each bidder now best responds to a larger number of
outside bids—leading to a reduction in bid shading. We label this the competition effect.
Alternatively, multiple bidding can lead to increased bid shading if bidders internalize the
effect of each of their bids on their other own bids, since only one bid can be the winner.
We refer to this as the substitution effect.

In order to evaluate the cost of the FDIC’s P&A mechanism and the relative impor-
tance of the noise, competition and substitution effects on bidder behavior, we develop a
methodology for analyzing auction environments where the auctioneer ranks bids accord-
ing to multiple attributes (components) chosen by bidders, but where there is uncertainty
about the FDIC’s perception of the cost of each component. This setting extends the
environments considered in Takahashi (2018) and Krasnokutskaya et al. (2018). Like us,
Krasnokutskaya et al. (2018) allow for uncertainty about the scoring rule; however, in
their setting the non-price components of the bid are set exogenously. In our context,
bidders make choices over all components of the bid without knowing the FDIC’s cost per-
ception for each one. In Takahashi (2018), bidders choose price and quality, but there is
uncertainty over how the latter will be evaluated. Weights on price and quality are known,
but each bidder receives an individual-specific shock to quality. This is in contrast to our
setting, where, due to regulation (enforced by the Office of Inspector General), there is no
concern that components will be evaluated differently across bidders, but weights across
components are unknown to all bidders. Moreover, in both Krasnokutskaya et al. (2018)
and Takahashi (2018), bidders are only allowed to bid once, while in many environments
featuring uncertainty bidders are allowed to make multiple submissions.4

We develop a structural model of bidding to recover healthy banks’ underlying valua-
tions for failing banks and each of the different components of the acquisition agreement.
Since bidding is multidimensional, we cannot apply standard techniques for recovering val-

4Greve (2011) models a multidimensional auction where agents compete in price and quality and the
weights placed by the auctioneer on quality are unknown. The result is an excessive amount of quality.
There is also a large literature on multidimensional scoring auctions, but this literature assumes no
uncertainty over the scoring rule. See Che (1993), Branco (1997), Asker and Cantillon (2008), Asker and
Cantillon (2010), Athey and Levin (2001), Bajari et al. (2014), and Bajari and Lewis (2011).
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uations. Instead, we note that the decision to bid on each of the components is discrete
and that the sum of decisions across components plus the continuous dollar portion of
the bid can together be thought of as a “package.” With this perspective, we draw on the
combinatorial auctions literature (see Crampton et al. (2006)) and employ a similar mod-
eling approach to Cantillon and Pesendorfer (2006), who extend the first-order-condition
method developed by Guerre et al. (2000) (henceforth GPV) to the case of package auc-
tions. In Cantillon and Pesendorfer (2006) bus routes are auctioned off and bidders can
place bids for single routes or combinations thereof (i.e., packages). They show that one
can estimate bidder valuations in this environment by using the first-order condition(s)
for optimally chosen bids. Rather than bids being characterized by a single first-order
condition, there is a set of first-order conditions, one for each possible package. These
hold with equality for packages that are bid on, and are inequalities otherwise. Our set-
ting is similar except that there can be only one winner of each auction and bidders are
uncertain about the scoring rule. Our main methodological contribution, therefore, is to
show how the distribution of bidder valuations can be recovered even when the scoring
rule is unknown and bidders can place multiple bids.

In our setup, healthy banks can make one or more bids for a failing bank. Heterogeneous
bidders each have a (one-dimensional) private signal about the idiosyncratic value of
taking over the failing bank on an as-is basis. Our assumption of private values is based on
the idea that acquiring banks are primarily concerned with how the failing bank’s portfolio
will contribute to their individual business models. That is, we assume that, conditional
on observables, acquiring banks base their bidding strategies primarily on considerations
such as (i) how the composition and size of the failing bank’s assets (e.g., business versus
consumer loans) complement their own portfolio, (ii) how the size and composition of the
failing bank’s depositor base will affect their local market share for banking services and
credit, and (iii) how the failing bank’s physical locations will integrate with their own
existing physical network. Given its private valuation for an as-is acquisition, a bidding
bank computes its valuation for each possible package using adjustments for including
each of the four discrete components based on the failing bank’s observables.

As in GPV, we use a bidder’s first-order conditions to link observed bids with the
unobserved private values for each package; in order to do so, we need an estimate of
the win probability. This is complicated in our setting for three reasons. The first is
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uncertainty over the scoring rule. The second is that bidders submit multiple bids and
know the other bids that they themselves submit. Finally, bidders are uncertain about the
set of competitors. To overcome the first of these complications, we estimate the scoring
rule. To address the second two, we adapt the techniques of Hortaçsu and McAdams
(2010) for bid-resampling. Using the estimated scoring rule, we can rank resampled bids
to determine the probability of winning with a given bid.

Using this approach and publicly available data from the FDIC summarizing bidding
behavior, we estimate private valuations for failing institutions. With these in hand, we
compute bidders’ optimal strategies under alternative scoring rules and conduct coun-
terfactuals to estimate the impact of scoring-rule uncertainty on auction outcomes. We
estimate the FDIC’s reduction in losses under the counterfactual scenario that it an-
nounces its least-cost scoring rule before bidding begins (thereby removing uncertainty).
We are further able to isolate the substitution effect of multiple bidding. For this we
construct a counterfactual in which multiple bidding is forbidden, but where the number
of bids is kept constant (i.e., we suppose each bid is associated with a separate bidder).
The sets of acquirers that win the failing banks under these alternative scoring rules can
also be compared. This allows us to understand how uncertainty can act as a subsidy
towards certain types of acquirers based on their size, portfolio, or physical locations.

Although on average uncertainty is bad from the FDIC’s perspective, we find that for
low-cost failures the noise effect can dominate the substitution effect, with high-valuation
bidders engaging in less bid shading to protect against bad shocks. This is not the case
for high-cost failures. The value to the FDIC of maintaining uncertainty on the scoring
rule therefore depends on the characteristics of the failed bank.

We also compare the set of winners under the current regime to the set that arises
under regimes without uncertainty or multiple bidding. Given the amount of heterogene-
ity in preferences across packages, there may be ex-ante concern that the current rule
favors certain banks and results in less competition than would a more transparent rule.
However, we find that removing uncertainty leads to only small changes in the traits of
auction winners and therefore in market structure. The main reason for this is that, in
equilibrium, uncertainty impacts the amount of bid shading, with strong bidders adjust-
ing their bids so that the identity of the winner is likely unchanged. Having a transparent
rule would lower FDIC costs by decreasing bid shading by high-valuation bidders, but
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not by altering the distribution of winners.

In addition to the literature on multidimensional auctions mentioned above, our study
is also related to an extensive literature on bank failures, mostly focused on the Savings
and Loan (S&L) crisis and the wave of bank failures of the 1980s and early 1990s (see for
instance James and Wier (1987), James (1991), and Cochran et al. (1995), to list only
a few), but increasingly centered on the more recent set of failures following the global
financial crisis (see for instance Granja (2013), Kang et al. (2015), Igan et al. (2017),
Granja et al. (2017), and Vij (2018)). None of these papers explicitly model the auction
process to determine whether it could be improved.

The closest papers to ours from this set are Kang et al. (2015) and Granja et al. (2017).
The latter provides descriptive evidence that the losses stemming from bank failures can
in part be attributed to poor capitalization of acquiring banks. The authors document
that acquisitions are predominantly by well-capitalized banks from the same county as
the failed institution, and with similar portfolios. They interpret their results through
the lens of a theory model, but they do not structurally estimate it. Importantly, the
model does not allow for uncertainty in the scoring rule or for multiple bids. Kang et al.
(2015) estimate a structural model, but focus on the regulator decision of whether and
when to close a troubled bank in order to understand the factors that lead to closure. Our
paper complements these articles by focusing on the auction process and incorporating
key features, namely uncertainty and multiple bidding.

2 Institutional details

Figure 1 plots the number and size of bank failures going back to 1980. Most years
feature few, if any, bank failures. For instance, since the start of 2017 just fourteen
banks have failed, costing the FDIC just over $1.3 billion. However, in periods of crisis
the number of bank failures can become elevated. During the S&L crisis, nearly 1,300
financial institutions failed. Our focus is on the most recent crisis, during which 510 banks
failed between 2007 and 2014. The combined assets of failed banks during the crisis were
over $700 billion, and FDIC losses totalled nearly $90 billion.

The current rules governing the resolution of failing banks were established in 1991 with
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Figure 1: U.S. bank failures since 1980
This graph plots the number (blue, round) and size (orange, diamond) of U.S. bank failures
between 1980 and 2018.

the passage of the FDICIA. The enactment followed the S&L crisis and the subsequent
undercapitalization of the FDIC. Prior to 1991, the FDIC was able to employ discretion
when reviving/selling/liquidating failing banks. Today, the resolution process is more
transparent and the FDIC is required to resolve troubled institutions at the lowest cost
possible.5

Details on the resolution process can be found in FDIC (2014). In summary, a troubled
bank’s regulator first informs the FDIC of pending failure. The FDIC then determines
the liquidation value of the bank, generates a list of potential buyers who will be invited
to evaluate the failing institution, and decides on the set of assets that will be included
when each of the discrete components is activated. A subset of those invited look at what
is being offered. Fewer still conduct due diligence. Finally, some of those who have chosen
to conduct due diligence choose to submit one or more bids.6

To construct the list of potential buyers, the FDIC considers well-capitalized banks and
subjects them to a size constraint that depends on geographic proximity to the failed

5Guidelines are provided in the rules of the FDICIA, outlined in OCC (2001). Troubled banks are
those that are critically undercapitalized or have assets less than obligations. See Shibut (2017). The
FDICIA also instituted prompt corrective action provisions in order to limit regulatory forbearance, and
established risk-related assessment rates. A number of legislative changes have been made since 1991,
notably 1996, 2005, and 2008, revising risk-based rates. c.f. Pennacchi (2009).

6According to the FDIC, a typical auction has, on average, 380 banks invited to participate. Roughly,
200 banks “look” at what is being offered, 4 to 5 conduct due diligence, and 3 to 4 place bids.
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bank. Due diligence is conducted either in person or through the FDIC’s virtual data
room (VDR). Subject to confidentiality agreements, the documents available in the VDR
provide detailed financial and legal information regarding the target institution’s loans,
deposits, general ledger, and operations. Potential bidders are provided an opportunity
to do their own due diligence as well as to view research conducted by the FDIC. The
VDR also provides auction-specific information about the packages. Participants do not
observe who has been invited to the VDR. They can, however, infer when there is at least
one other participant based on the fact that the FDIC posts answers to any questions to
the VDR. The reason for doing so is to limit asymmetric information across participants.

Based on this we assume that the FDIC and potential bidders all have equal information
about the assets of the failed institution.7 Using this information the FDIC and each
potential bidder comes up with a valuation of the assets. These differ across individuals
and the FDIC because of portfolio complimentarities, business lines, market timing, and
heterogeneous abilities to manage asset recovery.

As mentioned, the FDIC estimates a liquidation value for the failing institution. Liqui-
dation occurs if the FDIC estimates this to be less costly than any of the options presented
at the auction. Liquidation involves paying off insured depositors up to the current in-
sured amount and disposing of assets (deposit payout). Although liquidation is not the
norm, since resolution costs are typically lower through an auction, the liquidation value
can be thought of as the FDIC’s reserve price. This price is typically not revealed. Po-
tential bidders do, however, know the distribution of liquidation values, which we plot in
Figure 2. We incorporate this distribution of losses into our analysis in Section 6.

The auction is for all insured deposits, and, in practice, for most uninsured deposits.
Occasionally some uninsured deposits are excluded from the transaction. For instance,
brokered deposits are sometimes excluded. Stockholders are wiped out. In most cases
general creditors realize little or no recovery out of the proceeds of the sale.

7A failing bank’s assets are stratified by class (single-family residential, commercial real estate, com-
mercial loans, etc.), and loans are then sampled from each category. Cumulative losses of all loans in the
sample are estimated assuming that they are held to maturity. The FDIC also produces a market value
for each asset, which is its estimate of the secondary market cash value.
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Figure 2: Loss in deposit payout
Data on estimated losses from insured deposit payouts are provided by the FDIC. In all auctions the bids
are compared against the estimated cost of an insured deposit payout as part of the least-cost test. The
direct estimated cost is divided by the total assets of the failed bank plotted on the x-axis. The y-axis
represents the empirical frequency from a total of 26 resolutions by insured deposit payout.

2.1 Bidding

Bids made by healthy banks at the auction stage specify a continuous dollar component for
the value of assets and liabilities of the failed bank, and four other discrete components of
the acquisition agreement: (i) loss share (LS), (ii) nonconforming (NC), (iii) partial-bank
purchase (PB), and (iv) value appreciation instrument (VAI).

2.1.1 The four discrete components of bids

Loss sharing: A loss-share agreement is one where the bidder assumes only a fraction
of future losses on specific asset classes. In its Resolutions Handbook, the FDIC lists
the following main reasons for favoring loss share: (i) it lowers risk for the acquiring
institution, (ii) it reduces the FDIC’s need for immediate funding, and (iii) assets remain
in the private sector. The cost to the acquiring institution is increased oversight and
reporting.8 For the most part, loss-sharing agreements conformed to an FDIC-proposed
rule where the FDIC takes 80% of losses and the acquirer takes 20% up to a threshold,

8One might be concerned that awarding loss share would induce greater risk taking on loans covered
by loss share. Implicitly we are assuming that the FDIC internalizes this when estimating the value of
loss share and also why there are increased oversight and strict reporting requirements. Related, we might
be concerned that removing uncertainty about the loss-share valuation could lead to adverse selection.
We would be missing this positive impact of uncertainty in our estimation.
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after which the split was 95% and 5%.9 The FDIC shares in recoveries in the same
percentages. In our full sample (322 auctions) we observe 864 bids that include loss
share, and a loss-share bid won 65% of the time.

Nonconforming: A bid is considered nonconforming if it stipulates adjustments to the
criteria set out by the FDIC in its marketing strategy. Because of the obligation to resolve
at the least cost, these bids must nevertheless be considered by the FDIC (if they can
be priced). Nonconforming bids are most often combined with an LS agreement or occur
when a potential acquirer carves out certain assets that they do not wish to buy. Some
examples of discrete options include the exclusion of brokered deposits, the exclusion of
other real estate assets, or the inclusion of a branch-purchasing option. A total of 349
bids in our sample are nonconforming, and a nonconforming bid won 20% of the time.

Partial bank: In a modified or partial-bank (PB) agreement a bidder proposes to buy
only certain assets (as well as all deposits). The FDIC Handbook explicitly states that it
encourages auction participants to purchase the maximum amount of a failed institution’s
assets. The composition of the PB option is determined prior to the auction by the FDIC
as part of its marketing strategy. Typically, riskier assets such as non-performing loans,
development and construction loans, land, and owned real estate (ORE) are excluded
from the sale. Assets that are not acquired at auction have to be liquidated by the FDIC
following the auction. Figure 3 presents a histogram of the percentage of assets acquired
in a PB bid. There is substantial variation across auctions. In our sample, fewer than
10% of auctions include a PB bid, and a PB bid won 11% of the time.

Value appreciation instrument: A VAI is a warrant that grants the FDIC the right
to purchase an amount of common stock at a fixed price, or to receive cash representing
the appreciation of the buyer’s stock above the exercise price. This allows the FDIC to
take advantage of the stock-price increase that typically follows the announcement of an
FDIC-assisted acquisition (James and Wier (1987)). The VAI format depends on bidder
size and public-listing status, but is calculated using standard formulas (Barragate et al.
(2011)). We abstract from differences in VAI characteristics across auctions. There are

9As of June 2010, consumer loans were no longer covered in loss-sharing agreements, and bidders were
asked to choose a coverage percentage of up to 80% on single-family residential (SFR) and commercial
loans. Finally, in September 2010 a three-tier structure for SFR and/or commercial loans was adopted,
where bidders chose coverage levels separately for each tier. Figure 5 in Appendix B shows that, despite
the permitted flexibility, in most cases banks bid according to the original 80/20 rule.
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Figure 3: Partial-bank acquisitions
Histogram of the percentage of a failed bank’s assets acquired in partial-bank bids

89 VAI bids in the full sample, and 6% of the winning bids include VAI.

2.1.2 Packages

Table 1 presents the frequencies with which we observe each package. In nearly 16% of
cases we observe only a cash bid for the assets and deposits, with no components switched
on. By far the most common active component is loss sharing, often by itself. There are
two package options that we never observe, each involving a combination of PB and VAI.

By offering options, the FDIC hopes to attract competitive bids from banks that would
otherwise not be interested/able to compete for the whole bank. This expansion can make
an auction more competitive and lead to lower costs. To see how, consider a bidder who
has a high value for the deposit franchise but does not want to acquire assets that might
contribute risk to their portfolio. If restricted to bidding on the whole bank, the institution
may have to ask for a large amount of cash to be able to maintain their capitalization.
With partial bank, they can exclude some riskier assets, thus minimizing the impact on
their risk-weighted capital, allowing them to bid more aggressively.
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Table 1: Probability of observing different packages

This table provides the observed frequency of each package ranked by frequency, in all 322 auctions and
in auctions with multiple bidding (MB) and without (No MB). Columns sum to 100%.

Package Percent of Bids
Nonconforming Loss Share Partial Bank VAI All MB No MB
No Yes No No 42.79 38.05 56.66
No No No No 15.60 16.49 13.00
Yes Yes No No 12.69 14.16 8.36
Yes No No No 8.51 10.99 1.24
No No Yes No 3.86 2.22 8.67
Yes No Yes No 2.76 3.07 1.86
Yes Yes No Yes 2.76 3.38 0.93
No Yes Yes No 4.96 5.07 4.64
No Yes No Yes 3.62 3.91 2.79
Yes Yes Yes No 0.95 0.74 1.55
Yes No No Yes 0.55 0.74 0.00
No Yes Yes Yes 0.55 0.63 0.31
No No No Yes 0.24 0.32 0.00
Yes Yes Yes Yes 0.16 0.21 0.00
No No Yes Yes 0.00 0.00 0.00
Yes No Yes Yes 0.00 0.00 0.00

2.2 The least-cost rule

The method for calculating the cost of a bid is described in Cowan and Salotti (2015)
and the FDIC Resolutions Handbook. The basic formula is presented in equation (1).
A positive value represents a loss (cost) to the FDIC. The first step is for the FDIC to
calculate the transaction equity, or the difference in book value between the set of liabilities
and assets included in the bid. The asset and deposit premiums are then added.10 Finally,
receivership expenses are included. Bidders are aware of the structure of the scoring rule
given in equation (1), which is an accounting relationship between bids and costs.

Cost = Takeover Bid + Expenses

= Transaction Equity + Asset premium + Deposits premium + Expenses.
(1)

10The deposit premium is submitted as a percentage, which is translated into a dollar amount by
dividing by 100 and multiplying by assumed deposits.
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In order to illustrate how the cost rule works, consider a simple example where a failed
bank has $1,000,000 of deposits and has issued $500,000 worth of outstanding loans, but,
due to unforeseen circumstances, their book value is now only $250,000. Finally, the bank
has $500,000 of cash remaining from its deposits, meaning that its total assets amount to
$750,000 and its total liabilities amount to $1,000,000 (i.e., its obligations to depositors).
Assume, for simplicity, that an acquisition agreement is executed on an as-is basis (ie.
with no components switched on). Transaction Equity is the difference between assets
and liabilities, which must be paid out by the FDIC in order to make the acquiring bank
whole, relative to the book value of the failed bank’s assets. In this example, that would
be $250,000. Suppose the acquiring bank were only willing to assume the failed bank’s
loans at a dollar value of $130,000; this would imply an Asset Discount (an additional
cash infusion from the FDIC) in the amount of $120,000. Suppose further that the
acquiring bank were willing to pay a Deposit Premium of $100,000 in order to acquire the
failed bank’s depositors as its new customers, and that the FDIC accumulates internal
resolution administrative Expenses of $25,000. Therefore, the FDIC’s total costs in this
simple example would be

$295, 000 = $250, 000 + $120, 000− $100, 000 + $25, 000.

The LS, NC, PB, and VAI components operate by affecting Transaction Equity and
Expenses. Continuing with our example, a bid with LS specifying that the FDIC will
take on 80% of future losses on 50% of assets, would imply that its Transaction Equity
losses may increase by up to $100,000 (=0.8 x 0.5 x $250,000) in expectation. The FDIC’s
backlog of pending LS contracts shift its own internal opportunity cost of accepting an
additional LS contract in the current auction, by varying its level of total exposure over
time. This internal state of operational constraints regarding LS contracts is known only
to the FDIC, and implies that from the perspective of bidders, there is a distribution
of possible costs associated with proposing LS as part of a takeover contract. Similar
logic also applies to the other three discrete components.11 This represents the first

11 While it is also possible that bidding banks’ expectations on the size of future losses may differ some-
what from the FDIC’s expectation, we assume that these are close to within a first-order approximation,
meaning this is not an important source of cost function uncertainty. We believe this is a reasonable
assumption, given the wealth of information on the failed bank and aggregate market conditions available
to both the FDIC and bidding banks at the time of the auction. If the FDIC and bidding banks interpret
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source of uncertainty faced by bidders. A second source stems from the fact that different
configurations of the discrete components can alter the administrative expenses borne by
the FDIC, by introducing complexity into the acquisition agreement—e.g., time required
by its lawyers and accountants. These examples could result in uncertainty if bidders are
unaware of the FDIC’s current and/or expected future human resources cost structure.

3 Data

We study bank failures from 2009 to 2013 using publicly available auction information.
Our sample period starts in 2009, since that is when the FDIC began making bid data
available. It ends in 2013 because of the diminished number of failures starting at this
time, and a move by the FDIC towards offering optional loan pools and linked bids.12

For each auction, the FDIC releases a summary of bids, which includes information on
the cash transfer component and each of the discrete components. See Appendix B for one
example of a bid summary sheet. The bid summaries provide the identity of the winning
and cover (second-highest) bidders as well as a list of bank names for all other bids, but
do not specify the names associated with each bid. The FDIC also releases their estimate
of the cost to the Deposit Insurance Fund on the date of the auction from the transaction.
This information is available only for the winning bid, but we know that other bids did
not win the auction and therefore were deemed costlier by the FDIC. The FDIC does not
publish information on the set of banks invited to participate in the auction.

The full sample includes 322 auctions. In 153 of these at least one bidder submits
multiple bids. In total, 359 healthy banks bid in at least one of the 322 auctions, generating

this information in such a way as to produce substantially different expectations of future losses, then this
would imply a common-values structure. In Section 4.3 and Appendix C we discuss results of formal tests
which either reject the common-values null hypothesis or fail to reject the null of independent private
values.

12Auctions are linked when they have the same closing date and the FDIC allows bidders to express
complementarities in preferences across them. Since this introduces a combinatorial problem across and
within auctions, and because of the additional choice involved in scheduling the auctions under this rule,
we drop these cases. Loan pools allow healthy banks to bid for deposits and cash, cash equivalents,
and marketable securities but also bid on pools (groups) of loans. Bids are submitted and evaluated
separately for each loan pool, and bidders have the option to link bids on different pools to their bid
for the institution. As in the case of linked auctions, this allows bidders to express a wider set of
complementarities, but substantially complicates the analysis.
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814 unique bidder-failure pairs and 1,269 bids. We also construct a restricted sample,
since in order to estimate and identify valuations, we must be able to identify bidders,
and bidder identities are revealed only for the two best bids in each auction. Therefore,
to estimate valuations we restrict attention to all auctions featuring one or two bidders,
and to three-bidder auctions where we can link bidders and bids. Our restricted sample
contains 193 auctions, 42 of which involve some multiple bidding.

3.1 Summary statistics

Table 2 presents summary statistics for the full sample. Table 10 in Appendix B provides
the same information for our restricted sample. Summary statistics are similar in the
restricted sample. We match the auctions data with bank balance-sheet information
from quarterly call reports (SDI), and location information from the annual summary of
deposits (SOD). Our balance-sheet and physical-distance measures were constructed as
in Granja et al. (2017). We present characteristics of the failed banks in the top panel.
Bidder characteristics are provided in the second panel, while the third compares failing
banks to bidders. We also highlight some auction characteristics and point to several
measures of market concentration that are meant to capture the degree of competition in
the market for loans and deposits. The set of bidders for which we report traits includes
only the actual bidders at auction.

The main takeaways from Table 2 (and Table 10) are the following. First, failing banks
are relatively small and bidders are relatively large. Failing banks also have much larger
real-estate loan portfolios than do bidders, with the portfolios of the former being on
average close to 60% and for the latter about 48%. In addition, the Tier 1 capital ratio
for failing banks is very low—close to 1, compared to bidders for whom, on average, it is
above 15. Also, not surprisingly, the return on assets (ROA) for failed banks is negative,
whereas bidders have healthy ROA. There is also heterogeneity in the distances between
the branch networks of failed and healthy banks, where the pairwise branch distance
ranges from 20 miles at the 10th percentile to 838 miles at the 90th.

In our sample the average bidder participated in 2.4 auctions, while the 90th percentile
participation rate was 4 auctions. Therefore, even though there are many auctions, most
healthy banks participate in very few. This is different than in procurement or securities
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auctions, where the same bidders are observed repeatedly. In our sample of auctions
there are, on average, 3.96 bids per auction. The average cost of resolution to the FDIC
is approximately $98 million per failure or 24% of failing banks’ assets.

We also present information on the structure of the market (HHI) in which the failure
occurs, and the impact of the acquisition on concentration. To do this we calculate the
average percentage change in concentration across markets where the failed bank is active.
If both the failing bank and the acquirer are active in a county, then concentration will
increase, while in cases where the acquisition permits the acquirer to enter a new market,
concentration remains unchanged. At the county level, the average impact of a bidder
winning the auction is an increase in concentration levels of roughly 4.39% in the deposit
market and roughly 3.59% as measured by branch presence. The impact on the loan
market is an increase in concentration of about 0.3%.

Table 2: Summary statistics

We report balance-sheet information for failed banks and bidders separately using data from the SDI
for the quarter pre-failure. SDI labels are in parentheses. Variables include Total Assets (asset), Total
Deposits (dep), Insured Deposits (depins). Variables Commercial Real Estate (lnrenses), Commercial
and Industrial (lnci), Consumer (lncon), Single-Family Residential (lnreres), All Real Estate (lnre) are
the shares of lending in each sector. Core Deposits is the share of total funding that is stable. ROA is
return on assets and measures profitability. Tier 1 Ratio, is a measure of financial health. Book Value
Equity is the difference between the total assets and the total liabilities as a percentage of failed-bank
assets as of the quarter before failure. The portfolio percentage differences are the absolute value change
in portfolio shares for the failed bank and bidder bank in each bidder-failed bank pair. Average pairwise
distance is calculated using the average distance over all branch combinations of the failed and bidding
bank. Multiple bidding is an indicator if an auction featured more bids than bidders. The cost to the
FDIC is the estimated loss from the press release data made on the date of failure. The bid premium is
the transfer amount calculated using equation 1 divided by the total assets of the failed institution. HHI
is calculated for both deposits and branches. The loan HHI is calculated using information on mort-
gage lending from HMDA. A total of 88 failed banks and 72 bidders did not report any lending in HMDA.

N Mean SD P10 P50 P90
Failed Bank Traits
Total Assets ($ Millions) 322 628.39 1944.55 48.86 193.44 1009.15
Total Deposits ($ Millions) 322 531.85 1561.12 45.77 181.64 919.61
Insured Deposits ($ Millions) 322 478.50 1322.45 41.88 167.29 915.48
Commercial Real Estate (%) 322 24.59 12.37 10.43 23.31 43.31
Commercial and Industrial (%) 322 8.00 6.79 1.52 6.18 17.37

Continued on next page
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continued from the previous page N Mean SD P10 P50 P90
Consumer (%) 322 1.52 2.16 0.10 0.80 3.71
Single-Family Residential (%) 322 18.41 13.21 3.71 16.34 35.71
All Real Estate (%) 322 59.90 12.34 44.87 60.83 74.27
Core Deposits (%) 322 77.37 15.56 56.09 79.00 94.74
ROA 322 -6.81 6.95 -12.90 -5.04 -1.72
Tier 1 Ratio 322 1.17 3.46 -1.79 1.48 3.58
Book Value Equity (%) 322 13.93 15.24 -0.29 11.25 31.82
Bidder Traits
(Avg. over participated auctions)
Total Assets ($ Millions) 359 13900 122000 171.94 725.54 8791.93
Total Deposits ($ Millions) 359 9841 83700 147.05 587.23 6638
Insured Deposits ($ Millions) 359 5575 42200 121.88 481.89 5221
Commercial Real Estate (%) 359 20.75 11.03 7.92 19.66 33.98
Commercial and Industrial (%) 359 9.99 7.07 3.29 8.51 18.81
Consumer (%) 359 3.39 4.72 0.30 1.70 8.36
All Real Estate (%) 359 48.23 14.32 30.84 47.96 65.63
Single-Family Residential (%) 359 17.18 11.95 5.94 14.51 30.86
ROA 359 1.34 2.00 0.17 1.01 3.01
Tier 1 Ratio 359 15.46 8.13 10.69 13.51 21.70
Nbr of Auctions participated in 359 2.40 3.43 1.00 1.00 5.00
Portfolio % Differences
Commercial Real Estate 814 10.65 9.40 1.57 8.04 23.74
Commercial and Industrial 814 6.21 5.96 0.82 4.40 14.38
Consumer 814 3.03 5.09 0.15 1.21 7.72
Single-Family Residential 814 9.68 9.84 1.21 6.92 20.94
All Real Estate 814 15.31 11.63 2.21 12.93 32.34
Avg. Pairwise Distance (miles)

814 306.88 412.78 20.39 140.01 838.49
Auction characteristics
Number of Bids 322 3.96 3.79 1.00 3.00 8.00

Continued on next page
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continued from the previous page N Mean SD P10 P50 P90
Multiple Bidding 322 0.48 0.50 0.00 0.00 1.00
Cost to FDIC ($ Millions) 322 134.25 347.78 9.00 41.60 77.64
Bid Premium 1269 -0.24 -0.26 -0.76 -0.14 -0.04
% ∆ in HHI from Acquisition
Branches
Zip Code 217 11.79 12.38 2.11 9.07 24.36
County Code 360 3.59 7.19 0.00 0.55 11.60
Deposits
Zip Code 217 11.45 16.41 0.13 4.91 31.73
County 360 4.39 10.83 0.00 0.25 1.17
Loans
County 262 0.30 1.52 0.00 0.00 0.47

3.2 Multiple bidding

From Table 2 we can see that in 48% of auctions, at least one bank submits multiple
bids. Table 3 examines multiple bidding in more detail. In panel A we plot the number
of bidders against the number of bids per auction. In approximately one third of auctions
there is only one bidder and one bid, but even in single-bidder auctions there are mul-
tiple instances with two bids. In panel B we present the number of bidders against the
number of bids per auction in our restricted sample of auctions, which we use to estimate
valuations.13 Restricting attention to auctions in which all identities are known narrows
the maximum number of bidders to three.

13We can also proceed by matching the identities of the remaining bidders using an unsupervised
assignment algorithm. We do not allow bidders to place bids dominated by one of their existing bids
and group together any bids with identical asset premiums. When none of these rules applies, random
assignment is used. This results in 75% of the bids being non-randomly matched to a bidder. Performing
the estimation on this sample produces similar results to the restricted sample.
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Table 3: Number of bidders and bids per auction

We plot the number of bids (horizontal) given a fixed number of bidders (vertical). Panel A is the
full sample and Panel B is the restricted sample where we can link all bids with all bidders.

Panel A Nb. Bids
Nb. bidders 1 2 3 4 5 6 7 8 9 10+ Total

1 104 9 0 0 0 0 0 0 0 0 113
2 0 42 13 5 7 1 2 0 0 0 70
3 0 0 19 16 6 3 4 4 2 4 58
4 0 0 0 11 10 6 7 2 3 0 38
5 0 0 0 0 1 4 6 1 2 4 18
6 0 0 0 0 0 4 1 2 2 4 13
7 0 0 0 0 0 0 0 1 2 6 9
8 0 0 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 0 0 0 1 0 1
10 0 0 0 0 0 0 0 0 0 1 1

Panel B
1 103 9 0 0 0 0 0 112
2 0 42 11 1 3 1 1 59
3 0 0 18 4 0 0 0 22

4 Model

In this section we develop a structural model of bidding that allows us to recover healthy
banks’ underlying valuations for failing banks and each of the different components of the
acquisition agreement. Bidding is multidimensional, so standard techniques for recovering
valuations cannot be applied. Instead, we note that the decision to bid on each of the
components is discrete and that the sum of decisions across components plus a bid’s
continuous portion can together be thought of as a “package”. With this perspective, we
draw on the combinatorial auctions literature and employ a similar modeling approach
to Cantillon and Pesendorfer (2006), who extended the nonparametric method of Guerre
et al. (2000) to handle package bidding.

Our setting has several unique characteristics relative to standard combinatorial auc-
tions. All bids must involve taking on all the deposits of the failed bank. As a result,
there can only be one winner in each auction. This greatly simplifies the combinatorial
problem. On the other hand, our problem is more complicated because our bidders are
subject to an auction-specific, noisy scoring rule, which shifts the auctioneer’s utility of
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allowing a winner under different configurations of the acquisition agreement.

Our setup is the following. Failed banks vary by a vector of characteristics Zj, and
bidders vary according to some observable traits denoted byW i. There areNj asymmetric
bidders, indexed by i, who participate in the auction for a particular failed bank j.
However, Nj is not observed by bidders at the time when they formulate their bids,
so from the perspective of their decision process it is a random variable. Note also
that the bidders in the auction are asymmetric in the sense that they all have different
characteristicsW i, but they do not observe the characteristics of their competitors prior
to bidding. Rather, they are aware of the distribution of bidder characteristics, FW (W ).

From the auctioneer’s perspective, the auction-to-auction variation in total number of
bidders Nj is characterized by probability mass function πN(n|Zj), but from bidder i’s
perspective, conditional on itself being part of the auction, the number of its competitors
is a slightly different random variable, Mj ≡ Nj − 1, which has probability mass function
πM(m|Zj) = πN(m+ 1|Zj) (m+1)

E[N |Zj ] .
14

Conditional on observables, bidders draw privately known valuations for the full bank
(in absence of any discrete components of the acquisition agreement) as iid realizations
from the following distribution:

V ij ∼ Fv(V ij|X ij),

where X ij contains both Zj and W i, as well as interaction terms. In what follows we
drop the “j” subscript for the auction unless needed for additional clarity. Conditional
on the full bank valuation, v̄i, each bidder has valuation vik for acquiring the failed bank
under package k:

vik = v̄i + vLSi dLSk + vNCi dNCk + vPBi dPBk + vV AIi dV AIk , (2)

where vsi is the valuation for switch s ∈ {LS,NC, PB, V AI} and dsk indicates that switch
s is turned on in package k. The switches are loss share (LS), nonconforming (NC), partial
bank (PB), and value appreciation instrument (VAI). We assume that the switch valua-
tions follow a joint distribution (V LS

i , V NC
i , V PB

i , V V AI
i ) ∼ Fs(·, ·, ·, ·), and that package-

14This subtle fact was proven by Myerson (1998). Bodoh-Creed et al. (2019) were the first to incorpo-
rate it into a structural model of Poisson games.
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specific valuations are additive in the discrete switch components.15

For each auction, the FDIC draws a baseline reservation value R ∼ FR(·) representing
its cost of directly reimbursing depositors without holding an auction for the failed bank’s
assets. It also draws an auction-specific Γ ∈ R4 as an iid (across auctions) realization from
a joint distribution FΓ(·|Zj), representing its evaluation of the impact of each discrete
component on its cost structure. This can be thought of as its expected future losses
from an LS-agreement in the case of loss share, the value of selling the remaining assets in
separate loan sales for PB, the value of the VAI option, and/or the difference in expected
losses due to a nonconforming modification.

We denote the set of bids offered by bidder i by oi = {(bi1,d1), . . . , (bi16,d16)}, where
bik ∈ R is the dollar component of the bid stemming from the asset/deposit premium, and
dk ∈ {0, 1}4 is the set of switches associated with package k. Denote Li = {k : bik > bk}
the set of meaningful bids, where bk is a cutoff point for the kth package, below which no
bid on that package can result in a win. The notation Li is convenient because it allows
us to keep track of meaningful bids, rather than all bids. Finally, let bi = (bi1, . . . , bi16)
denote the vector of dollar components of each bid, with bik = bk for k /∈ Li.

The failed bank is allocated to the healthy bank offering the least-cost bid, evaluated
according to the rule defined in equation (1). We restrict the least-cost rule to be linear
in bids and package characteristics and rewrite it as follows:

cik = bik + Γkdk + δik + u. (3)

The δik term is a bid-specific shock representing the FDIC’s evaluation of package k for
bidder i in auction j.16 The second error term uj represents the auction-level unobserved
cost component, which includes expenses for the FDIC incurred during liquidation.

The bidder’s information set includes the distribution of baseline valuations, the distri-
bution of switch valuations, the distribution of FDIC reservation values, the distribution
of FDIC component weights, and the probability that a rival bidder shows up with a given
set of traits. In other words, bidders do not know the exact weights in the scoring rule.

15In principle we can allow for switch valuations vs
i and vs′

i to interact with each other. We experimented
with this general form and found that the data did not support a meaningful role for interaction terms.

16For example, δik could capture the FDIC’s belief that selling to bidder i (as opposed to bidder i′ 6= i)
under package k could improve the future value of the failed bank’s assets under an LS or VAI agreement.

21



This is the source of uncertainty.

Given the information that they have, and their other own bids, for each package k bid-
der i derives a win probability function G(bik|Li, bi,Zj) ≡ Pr[win with k|bik, Li, bi,Zj],
which may also depend on auction characteristics Zj. In what follows, we will drop the
conditioning on Zj for notational simplicity, unless needed for clarity. In order for bidder
i to win with a bid bik on package k, several things have to happen at once: bik must
imply a lower resolution cost than (i) the (ex ante unknown) reserve price r, (ii) i’s own
bids on packages other than k, and (iii) all bids submitted by all other bidders (whose
types and actions are ex ante unknown to player i). Moreover, whether or not these
things happen is a function of three separate factors: (a) the realization of the number
of competitors, (b) their competitors’ observables and private-value draws, and (c) the
realized FDIC component weights Γ.

Once bidders infer the equilibrium win probability function, they choose their profile of
continuous bids bi to solve:

max
bi

∑
k∈Li

(vik − bik)G(bik|Li, bi). (4)

The first-order conditions are the following. For each k ∈ Li we have:

(vik − bik)
∂G(bik|Li, bi)

∂bik
+

∑
k′∈Li, k′ 6=k

(vik′ − bik′)∂G(bik′|Li, bi)
∂bik

= G(bik|Li, bi),

while for each k /∈ Li we have:

(vik − bk)
∂G(bk|Li, bi)

∂bk
+

∑
k′∈Li, k′ 6=k

(vik′ − bik′)∂G(bik′ |Li, bi)
∂bk

≤ G(bk|Li, bi).

Given the FOCs we can invert bids into values as in Guerre et al. (2000). For k ∈ Li:

vik = bik +
G(bik|Li, bi)−

∑
k′∈Li, k′ 6=k(vik′ − bik′)∂G(bik′ |Li,bi)

∂bik
∂G(bik|Li,bi)

∂bik

, (5)
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and for k /∈ Li:

vik ≤ bk +
G(bk|, Li, bi)−

∑
k′∈Li, k′ 6=k(vik′ − bik′)∂G(bik′ |,Li,bi)

∂bk
∂G(bk|Li,bi)

∂bk

. (6)

4.1 Existence

Existence of an equilibrium of this game is assured using arguments similar to those
from Lemma 1 in Cantillon and Pesendorfer (2006) but with the addition of scoring-rule
uncertainty, which simplifies the argument of the proof by eliminating the possibility of
mass points in the bid distribution.

Theorem 1. Consider the private value combinatorial first-price auction with package
constraints described above with an unknown reserve price and scoring-rule uncertainty.
If, in any equilibrium in which bidders bid at or below their valuations, the following
conditions hold, then an equilibrium exists:

1. bidders are indifferent about the way in which ties that occur with positive probability
are resolved,

2. bidders’ expected equilibrium payoffs are continuous at their equilibrium bids,

3. there are no mass points in the distribution of equilibrium bids.

A proof of this theorem is presented in Appendix E.

4.2 Model discussion

We are interested in understanding the impact of multiple bidding and uncertainty on
bidding behavior. In the Introduction we described three influences on bidding behavior
arising in our setting. Uncertainty led to a noise effect, while multiple bidding generated
substitution and competition effects.

In general, bidders will not be indifferent between winning with each of the bids they
submit. Rather, each bidder submits the set of meaningful bids that maximizes their
expected profits. Moreover, this set will not usually consist of bids for each of the packages.
To fix ideas, consider the problem of a bidder deciding whether to place a meaningful bid
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on an additional package. An additional bid will strictly increase a banks’ probability of
winning, but will lower its probability of winning with any of its existing bids, one of which
may yield higher profits. This can be seen in the second term of the numerator of equation
(5). This term is not present in the first-order conditions of a standard first-price auction.
It is always negative, generating additional shading, which leads to a substitution effect.
The larger it is, the larger the difference between the valuation and bid. This argument,
however, does not account for the adjustment through G, which is an equilibrium object
and depends on the strategies employed.

Also built directly into G is the competition effect. The increased number of bids
stemming from multiple bidding could make an auction appear more competitive, with
bidders now best responding to a larger number of rival bids. Holding fixed the average
level of each bid, a larger number of them will naturally tend to reduce bid shading.
Of course, as described above, the substitution effect reduces the mean value of each
competitor’s submitted bids, such that the overall effect on bid shading is ambiguous.

For the noise effect, if one bid is ranked above another in bid space, it may still lose
due to randomness if bids correspond to different packages. Holding packages and bidder
identities fixed, the greater the continuous difference between the bids, the higher the
probability that the higher bid will win. Bidders can gauge this probability using the
distribution of FΓ, which may lead them to shade more or less, and will be captured in
the function G.

4.3 Modeling choices

In this section we discuss a number of modeling choices made in Section 4 and explain
how they are motivated by our institutional setting and the data at hand.

4.3.1 Independent private values for failing banks

In the model we assume that, conditional on public information, bidders have indepen-
dent private values (IPV) for the failing bank. Alternatively, it could be that there is a
‘true’ value of the failing bank, which is common across bidders, and that bidders receive
different signals about this value. The IPV assumption is supported if the environment
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is characterized by (i) heterogeneity in extent of synergies between the acquirer and ac-
quiree’s portfolios, (ii) limited resale opportunities for the failed bank, in whole or in part,
and (iii) lack of ex-ante asymmetry of information about ex-post value. We discuss each
of these in turn.

The evidence suggests that the charter value of a failing institution depends on the iden-
tity of the winner. There are important management idiosyncrasies (Bertrand and Schoar
(2003)), regulator differences (Agarwal et al. (2014), Oktay et al. (2015)), heterogeneity
in the benefits from geographic diversification (Acharya et al. (2006) and Aguirregabiria
et al. (2016)), and balance-sheet complementarities (Granja et al. (2017)), that sug-
gest the ongoing value of an institution depends on who owns it. Due to these portfolio
complementarities, in their theory model of failed-bank acquisitions Granja et al. (2017)
assume IPV, consistent with our modeling choice.

The other concern with the IPV assumption is that if bidders break up the acquired
bank and sell the pieces on a secondary market, there could be a common element. In
practice, this turns out to be minor. First, the FDIC promotes continuity of ownership as
evidenced by its 2009 imposition of an anti-flipping constraint on private equity bidders.
Under the new rules private equity firms had to hold the acquired bank for a minimum
of three years. Second, the FDIC imposes constraints on branch closures within the
first year of acquisition. Third, for those assets that do trade on the secondary market,
bidders can condition on the public price and any differences in valuation across bidders
are IPV. For instance, if a failing bank holds a portfolio of Fannie Mae mortgage-backed
securities (MBS), potential acquirers can condition their bids on publicly-known prices.
Finally, as Kastl (2016) points out, the crucial assumption for IPV is that bidders do not
have asymmetric information about ex-post values. In our context this seems the most
reasonable view, given that the FDIC allows bidding banks to access all of the failed
bank’s financial and legal records before the auction occurs.

Given this, we believe that the IPV assumption is the right one in this context. Nev-
ertheless, to confirm the validity of our modeling choice we consider tests based on the
relationship between the number of bidders and bidding behavior. The typical approach
used in the literature for testing between CV and IPV settings is based on detecting
bidders’ rational responses to changes in the extent of the winner’s curse, which does
not arise in IPV settings. Gilley and Karels (1981) propose studying the sign of the
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correlation between bids and the number of bidders. Giliberto and Varaiya (1989) test
for these competing assumptions using failing-bank auctions pre-FDICIA and they reject
that bidders are adjusting for the winner’s curse in a CV setting. We have reproduced
their analysis, updated to our later sample period. Results are presented in Appendix C
and show that the CV assumption can be rejected in our case. However, this approach,
studying the correlation between bids and the number of bidders, was shown by Pinkse
and Tan (2004) to be unable to distinguish CV from IPV models in first-price auctions,
since in equilibrium, bids can increase or decrease in the number of bidders under either
model. Haile et al. (2006) propose a modified test using the expected value conditional
on winning, rather than actual bids. We have also performed the Haile et al. (2006) test
and our findings, reported in Appendix C, suggest that IPV cannot be rejected.

4.3.2 Independence across auctions

In the model developed in Section 4, we also assume independence across auctions. This
would be problematic if there were (i) learning across auctions, (ii) complementarities
across auctions, or (iii) banks had dynamic capacity constraints, in the sense that winning
one auction limited future participation. Regarding learning, since the impact of each of
the discrete components is different across auctions, bidders could never learn the exact
scoring rule even if they participated in multiple auctions. It is possible, though, that
bidders are initially uncertain about the distribution of cost shifts stemming from each
component, in which case they might learn this over time. There is some evidence from
pre-FDICIA auctions consistent with learning: Zhang (1997) showed that repeat bidders
faced reduced competition in the auctions where they won, made lower bids, and were
more likely to have positive abnormal returns in the days just after winning, which he
interpreted as evidence of learning.

Regarding complementarities, when multiple banks are closed on the same day, the
FDIC often allows linked bidding so that bidders can express connections. This suggests
the existence of within-period complementarities. We drop auctions with linked bidding,
and therefore need only be concerned about complementarities across closing dates.

Finally, one might also be concerned about the fact that some of the auctions are run
simultaneously or within a short period of one another and so, because of some sort of
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capacity constraints, bidders may take into account possible outcomes from other auctions
when bidding in a given auction. Moreover, Granja et al. (2017) show that when local
bidders are poorly capitalized, resolution costs increase. Although there are many reasons
why bidders may be poorly capitalized, this result suggests that small, local bidders may
be capacity constrained.

In Appendix D we discuss these concerns in detail and test for the presence of these
sources of dependence. Table 13 presents regression results demonstrating that learning,
complementarities over time, and strategic bidding due to capacity constraints are not
features of the auctions we study and so we do not incorporate them into our model.

5 Identification

In this section we describe our identification approach. Our first challenge is that the
FDIC’s proprietary algorithm for computing its least-cost scoring rule is not publicly ob-
served and varies across auctions. Therefore, our first step is to show that the distribution
of the scoring rule can be identified from the available observables. Then, we apply similar
arguments as in Cantillon and Pesendorfer (2006) to show that the valuation distributions
of bidders’ private information are identified, or set identified for packages where they do
not place bids. Finally, we show that our additively separable valuation structure allows
us to separately identify baseline valuations from component-specific valuations.

5.1 Least-cost scoring rule

Recall from our discussion of equation (1) the basic structure of the least-cost calculation.
With this, the functional form for equation (3) can be rewritten as follows:

costijk = bijk + 1(LSijk = 1)(%LSj)(εj) + 1(V AIijk = 1)(ψj) (7)

+ 1(NCijk = 1)(κj) + 1(PBijk = 1)(%PBj)(νj) + δijk + uj,

where 1(·) is an indicator function. In order to achieve identification of the stochas-
tic least-cost scoring model, it is sufficient to impose a single parametric restriction on
the distribution of the bidder-package-specific shock, while leaving the remaining shock
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distributions unrestricted:

Assumption 1. The bidder-package-specific shock δijk follows a mean-zero normal dis-
tribution Φ(δ; 0, σ2

δ ), with variance σ2
δ .

Assumption 2. The least-cost scoring rule shocks δijk, uj, εj, ψj, κj, and νj are pair-wise
independent.

Theorem 2. Under Assumptions 1 and 2, the bidder-package shock variance σ2
δ and the

distributions of the remaining shocks uj, εj, ψj, κj, νj from the least-cost scoring rule are
semi-parametrically identified from the published resolution cost of the winning takeover
bid, without functional form restrictions on the distributions of uj, εj, ψj, κj, or νj.

A formal proof is in Appendix E; however, the intuition is straightforward. Consider
the set of single-bid auctions that specify no discrete component. In this case, the only
uncertainty when trying to map observed bids to observed losses stems from uj + δijk.
Therefore, the distribution of this convolution is identified from single-bid auctions. We
then make use of auctions with multiple bids having the same switches turned on, but
different dollar amounts to compare the probability that bids with different-sized bid
premiums win. For any difference in bid premiums, we observe from raw data across
multiple auctions the probability that the winning bid beats any other bid with the same
switch configuration Pr(bid1 + δ1jk ≥ bid2 + δ2jk). This is equivalent to the probability
that the difference of the bid-specific unobserved evaluation shocks is smaller than the
difference in bid amounts. Thus the distribution of the difference δijk−δljk is also observed.
Unfortunately, this does not allow for nonparametric identification of the distribution of
δ. Therefore, we assume δ has a mean-zero normal distribution, allowing us to identify its
variance from the distribution of the differences. Standard deconvolution techniques can
then be applied to recover the distribution of u. As for the component-shock distributions
ε, ψ, κ, and ν, similar logic holds by applying deconvolution techniques to subsamples of
auctions where the winning bid varies from some losing bid by a single discrete component.

5.2 Valuation distribution

To recover the distribution of bidders’ underlying valuations, we impose the following
assumption.
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Assumption 3. Component utilities satisfy vsij = vs(X ij) = X ijβ
s, for each

s ∈ {LS, PB, NC, V AI}. Moreover, component utilities enter vijk in an additively
separable way as in equation (2).

Theorem 3. Under Assumption 3, βLS, βPB, βNC, βV AI , and the distribution of v are
identified from observed bids and bidder identities, without a priori restrictions on the
distribution of v.

For convenience we define a component utility matrix β ≡ [βLS βPB βNC βV AI ].
The basic inversion result of GPV shows how a bidder’s private value could be directly
recovered from knowledge of the distribution of opposing bids and their own bid, seen as
a best response to the former. Using a similar strategy, we can recover a package-specific
valuation vijk for each bidder that submits a non-trivial bid, provided that a consistent
estimate of the win probability function G(bijk|Li, bij,Zj) can be obtained. The main
concern here is selection of bidders based on auction characteristics Zj. We discuss this
issue in further detail in Section 6.2.

A final challenge arises from measurement error: in practice, when estimating the com-
ponent utility parameters β with a finite sample of data, the econometrician does not
observe actual bidder-package valuations but, rather, estimated pseudo-valuations v̂ijk.

v̂ijk = vijk + ξijk

= vij +X ijβdk + ξijk,
(8)

where ξijk derives from finite sample variability in previous stages of estimation. How-
ever, in order to separately identify each bidder’s baseline valuation and their discrete
component valuations vsij, s ∈ {LS, PB, NC, V AI}, we take advantage of the within-
bidder panel structure of multiple bids submitted by the same bidder, while treating vij
as a bidder fixed effect. Note that v̂ijk converges in probability to the true value vijk
as the number of auctions in the sample approaches infinity. This is a useful fact, since
the within-bidder panel length is small, being bounded above by the number of unique
packages (24).
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5.3 FDIC reserve price distribution

While the auction-specific reserve price is not observed, the distribution of the losses from
deposit payouts is. The deposit payout occurs in auctions where the FDIC cannot find
any interested participants or receives no satisfactory bids. This is the outside option for
the auctioneer, i.e., their reserve price. This distribution is directly observed and so is
nonparametrically identified.

6 Estimation

As in GPV, we observe participants’ sets of bids, oi; therefore, we can retrieve valuations
as a function of bids and the probability that a given bid wins (G). There are a number
of challenges, however, for estimating bidder valuations in our case. For the estimation
of the win probability, (i) the scoring rule is unknown, (ii) there is uncertainty about the
set of asymmetric competitors a bidder faces, and (iii) the FDIC allows multiple bidding.
Moreover, valuations are only observed for packages that are bid on, and the valuations
for different packages are related for a given bidder. We take a three-step approach to
address these challenges. First, we estimate the parameters of the least-cost scoring rule.
Next, we estimate G and compute package-specific valuations, and finally, we decompose
each package-specific valuation into component-specific and baseline pieces.

6.1 Least-cost rule

For tractability in estimating the parameters of the least-cost scoring rule, we impose the
additional assumption that the component shocks u, ψ, ε, κ, ν are normally distributed,
each with their own mean (µu, µψ, µε, µκ, µν) and variance parameters (σ2

u, σ
2
ψ, σ

2
ε , σ

2
κ, σ

2
ν).

Let θ represent a vector containing the set of parameters to be estimated, including the
means and variances above, and the variance of the bidder-package-specific shock σ2

δ .

The first challenge we encounter is a missing data problem. Although we model the
LS and PB options as discrete from the bidders’ perspectives, we want to capture the
empirical fact that there is some exogenous variation across auctions in the percentage of
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assets covered/included for these components.17 The difficulty is that we only observe the
amount of assets included in the PB or covered by the LS agreement when it is part of the
winning bid package. As a result, the percentage of assets covered/included is unobserved
in two scenarios. These occur when the winner turns PB or LS off and at least one loser
turns that same switch on. We use the observed percentages of assets covered/included
under winning bids with LS and/or PB to estimate their distributions, and we correct for
missing information, where applicable, by integrating over these distributions.18 Relative
to the ideal dataset where we observe the PB and LS percentages for every auction, this
problem leads to lower statistical power but does not introduce bias into our estimates.
For simplicity of notation, we abstract from the missing information problem in our
subsequent discussion of the estimator.

We take a simulated maximum likelihood approach by solving for the parameters of the
least-cost scoring rule that maximize the probability that winning bids lead to their re-
spective observed costs and that they dominate their respective competing bids. Formally,
the problem is to maximize the likelihood function given by

max
θ

J∏
j=1

∫
u

∫
ε

∫
κ

∫
ν

∫
ψ
φ
[
(cTj − ĉwinnerj ); 0, σ2

δ

]

×
Ij∏
i=1

∏
k∈Lij

Φ
[
(cTj − ĉijk); 0, σ2

δ

]1−wijk
dFψdFνdFκdFεdFu,

(9)

where cTj is the observed cost in the jth auction; ĉijk is the cost assigned to i’s bid on
package k (according to equation (7)), holding fixed a value of (u, ε, κ, ν, ψ) but excluding
the bidder-package-specific shock δijk; ĉwinnerj is an analogous quantity for the winning
package bid; wijk is a dummy variable indicating whether bidder i won auction j with a
bid on package bid k; Ij is the number of bidders at auction j.

Simulated integration is used because the component shocks are constant for all bids
17As discussed in Section 2.1.1 the FDIC stipulates the nature of the PB option (e.g., excluding

commercial loans) so that bidders’ only decision is whether or not to bid under the FDIC’s offered option.
For an LS option, the FDIC typically stipulates the set of assets covered, and an 80% reimbursement on
future losses of asset value (relative to book value at time of resolution).

18The empirical distribution of the percent of assets included in a PB transaction is indistinguishable
from a uniform distribution on [0, 100] under a Kolmogorov-Smirnov test. Therefore, for convenience
we model the distribution of PB percentage as uniform, while the distribution of the percent of assets
covered by an LS agreement is assumed to follow its empirical distribution.
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within an auction but occur in various combinations depending on the set of packages
for which opposing bids are received. The resulting analytic integral is therefore too
complicated in settings with many bidders and a variety of packages. This equation
can also be estimated while allowing a variety of control variables to shift the means or
variances; results are similar. We use 5,000 simulated draws, which are held fixed during
run time, and standard errors are calculated using the empirical Hessian estimator.

6.2 Win probabilities

The second step of estimation concerns win probabilities, G(bijk|Li, bij,Zj). To control
for heterogeneity across auctions as well as bidder asymmetry, we apply a resampling
approach similar to the one used by Hortaçsu and McAdams (2010). Intuitively, the
win probability is the likelihood of encountering a set of competitors with lower bids than
one’s own, so we re-sample repeatedly from the set of all competitors across all failed bank
auctions in the data set. However, our sampling procedure needs to account for possible
selection of bidders based on auction characteristics. Therefore, we adopt a weighted re-
sampling estimator (described below) wherein, for a given auction win probabilities are
estimated from a sample where bidders from similar auctions are more likely to appear.

The win probability function also depends on the scoring rule and the ex ante unknown
reserve price, which behaves much like an additional competing bid. Holding fixed each
resampled set of competitors, we simulate repeatedly from the distribution of the reserve
price r and from the distributions of the scoring rule shocks. For each of these, we compute
a binary variable indicating whether a fixed bid (b,d) would have won. After resampling
repeatedly from sets of competitors (using sample weights), and simulating repeatedly
from the reserve price and shock distributions, we are able to compute empirical win
frequencies at various levels of bids b and at various switch configurations d.

A final challenge is to cope with the fact that bidders do not observe the number or
characteristics of their competitors prior to bidding.19 Hickman et al. (2017) show that
identifying the probability mass function of the number of a bidding bank’s competitors,
Mj, is sufficient to achieve identification of the win probability function in private values

19Previous theory work has explored bidding in auctions with unknown competitors (McAfee and
McMillan (1987) and Harstad et al. (1990)).
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auctions. This idea is manifest in our resampled estimator through simulation from the
empirical distribution πM(mj|Zj). This is useful because we are able to directly observe
(Nj,Zj) pairs in our data, from which we can consider the distributions of competitors
as known objects.

To summarize, the four steps of our resampling procedure are the following:

1. For a given (bk, L, b,Z) quadruple, and for t = 1, . . . , T , simulate an iid draw mt

from the empirical distribution of competitors π̂M(·|Z), where T is a pre-specified
number of outer simulations.

2. Perform weighted resampling (with replacement) of mt draws from the set of all
bidders across the data set. Each sampled bidder is stored with its complete set of
observed bids {Lti}mti=1.

3. Holding t fixed, perform inner simulation as follows for h = 1, . . . , H, where H is
the number of prespecified inner simulations:

(a) Simulate iid draws from the distribution of reserve prices to get {rth}Hh=1.
(b) For each h, simulate from the bidder-package-specific shock distribution to get

a sample {δthk}k∈L for the own bids paired with bk, and {{δthik}k∈Lti}
mt
i=1 for

simulated competitor bids.
(c) Simulate from the FDIC component weight shock distributions to get a sample
{(uth, εth, κth, νth, ψth)}Hh=1.

4. For each t and h pair, use the information in the hth inner simulation to compute
the FDIC resolution cost associated with bk, the costs associated with other own
bids in b, and the costs associated with each of the mt resampled competitor bid
sets. Finally, compute a full set of binary outcomes wth, indicating whether in
simulation (t, h) the bid bk (on the kth package) won the auction (by being the
FDIC’s lowest-cost option), and calculate Ĝ(bk|L, b,Z) = ∑T

t=1
∑H
h=1

wth
TH

.

Note that an equivalent way to think about Ĝ described above is that it represents the
CDF of the distribution of the lowest competing cost.20 With this intuition in mind, it
follows that a similar process can be used to obtain an estimate of the derivative of G,

20Specifically, one could have computed a sample consisting of the lowest simulated competing cost for
each (t, h) pair and then represented Ĝ as the empirical CDF of this sample.
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g(bk|, L, b,Z). We use boundary-corrected kernel density estimation with the resampled
draws to obtain an estimate ĝ so as to avoid the need for sample trimming.21

6.2.1 Practical issues

In constructing our re-sampling estimator for the win probability function Ĝ(b|L, b,Z),
we need to develop a set of sampling weights (based on auction characteristics Z) that
reflect how informative the behavior of bidders in auction A is for the expected behavior
of bidders in auction B. For each failed bank up for bids in our dataset, we observe a rich
set of nine different indicators describing aspects of asset portfolio heterogeneity: total
asset portfolio size; percentage of outstanding loans in commercial real estate; percentage
of outstanding loans in (non-real-estate) commercial and industrial applications; tier-1
capital ratio; leverage ratio; percentage of assets at 90 days or more past due; percentage
of outstanding loans in non-commercial real-estate, percentage of outstanding loans as
consumer debt; and total return on assets. Although it is impossible to formally test for
additional selection on other characteristics which are potentially observable to bidders
but not to the econometrician, the rich set of observables for each failed bank auction
mitigates this concern significantly.

A more salient concern in our case is the curse of dimensionality: conditioning Ĝ on
a nine-dimensional Z in a fully non-parametric way given our sample size is both com-
putationally and statistically infeasible. To cope with this problem, we compute the
sampling weights using a dimension-reduction strategy based on principal components
analysis. Specifically, we compute a full set of principal components of the failed bank
covariates, denoted PCp, p = 1, . . . , 9. Results are described in Table 11 of Appendix
B. The percentage of total variance explained by the first principal component, PC1, is
roughly 30%, while PC2 and PC3 account for 19% and 14%, respectively. PC1 seems to
largely represent capitalization and bank performance, while the factor loadings for PC2

and PC3 represent the size and area of portfolio concentration.22

21One problem with this approach is that for the highest and lowest draws the observations come
mainly from one side, decreasing the estimated probability at these points. This can be corrected for
using boundary correction methods as in Hickman and Hubbard (2015).

22Note that we do not include measures of location in our PCA. The reason is that the PCA determines
the weights used in the resampling and so in the case of geographically isolated failures we would be
resampling from only a very limited set of bids from the bidders located nearby the failed bank, which
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We compute weights for our resampling scheme in the following way. First, using
only the first principal component, for each auction j we compute sample weights by
centering a standard Gaussian kernel φ over PC1j and choosing bandwidth hp1 according
to Silverman’s optimal rule. Sampling weights for all other auctions j′ are then computed
as

ωj,j′ = ω1
j,j′ = φ

(
PC1j′ − PC1j

hp1

)

and then normalized to sum to one. Adopting these as sampling weights for determining
the win probabilities that bidders in auction j faced means that the other auctions j′

in our dataset are re-sampled at a frequency that is proportional to their similarity (in
terms of PC1) to auction j. This dimension-reduction strategy based on the first principal
component of our set of nine failed bank portfolio indicators leads to a feasible estimator of
the win probability function Ĝ, but a question remains about whether there is additional
systematic selection by bidders on failed bank information that is not well-proxied by the
first principal component PC1. In order to test for sensitivity to more flexible sample
weighting schemes, we also computed normalized kernel function weights relative to the
first three principal components.23 After estimating baseline pseudo-values using only
PC1, call them v̂1

ijk, and then re-estimating pseudo-values using the first three principal
components in this expanded way, call them v̂3

ijk, we found that our results were very
close. The correlation between the two estimates was 0.94 and that regressing v̂ijk on
v̂PC3
ijk resulted in an R2 of 0.88. Given the higher computational cost of the expanded
method using the first three principal components, we opted for the method using only
PC1 as our baseline specification.

Before the resampling estimator is used, however, we must first estimate the reserve
price. In all of the resampling equations we include the FDIC as a bidder, where they
draw a random reserve price as their submitted bid. The reserve price distribution is
estimated using the auctions where no sale occurred and deposits were paid out. This

would distort the estimation of the bid distributions. The assumption is that local banks near failure j
are similar to the local banks near failure j′.

23The resulting sample-weight formula was as follows:

ωp
j,j′ = φ

(
PCpj′ − PCpj

hp
p

; 0, 1
)
, p = 1, 2, 3; ωj,j′ =

ω1
j,j′ + ω2

j,j′ + ω3
j,j′∑

j′ 6=j

∑3
p=1 ω

p
j,j′

.
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is always the default outside option for the FDIC. This distribution is plotted in Figure
2. Since we always observe the cost of deposit payout when it occurs, this distribution
is directly identified. The empirical distribution is plugged in to the estimation directly.
Note that under our counterfactual scenarios, this (secret) reserve price distribution will
remain fixed. Finally, recall that earlier we assumed away measurement error arising from
the fact that the amount of assets included (covered) in a PB (LS) agreement is not always
observed. In these cases, for the estimation of the win probability we fix the percentage
of assets included at the average percentage from the auctions where it is observed.24

6.3 Decomposition of values

Once G is estimated, solving the system of equations (5)-(6) is relatively simple. The
solution gives a set of pseudo-valuations for each package with a bid as well as bounds
for valuations on all packages not bid on. Moving forward, we follow the convention of
denoting both our estimated pseudo-value levels (using equation (5) for packages that are
bid on) and our estimated pseudo-value bounds (using equation (6) for packages that are
not bid on) as v̂ijk.

In order to eventually compute counterfactuals in the absence of uncertainty, we need
to learn each bidder’s exact value for each package. To do so, we estimate the component
utility matrix β and the distribution of bidder-specific fixed effects, v̄ij. We rely on
equation (8), but recall that the left-hand side (i.e., bidder-package pseudo-values v̂ijk)
is only observed for packages that are actually bid on; for packages that are not bid
on, (8) becomes an inequality. Recall also from above our assumption that the error
term ξijk represents sampling variability in pseudo-values derived from the estimated win
probability function Ĝ.25 This assumption means that there is no censoring problem in
the error distribution as in the usual Tobit model, as these errors are not observed by
the bidders and do not influence their choices. This also means that even with our fixed

24This “error” is observed by the bidder but not the econometrician; therefore, ideally an expectation
would be taken over the estimated valuations calculated given the possible draws of this unobserved share,
but this is computationally demanding. Point estimates calculated using the integration are similar to
the main specification for both the baseline valuations and component shifts.

25After estimating equation (8), we find that the variance of ξijk accounts for only 13% of the total
variation in estimated pseudo-values v̂ijk. We believe this relatively low number lends credibility to our
assumption that the error term in equation (8) represents sampling variability in pseudo-values derived
from the estimated win probability function Ĝ.
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“panel length” (i.e., there are only 16 possible packages to bid on within each bidder), the
parameters in β can be consistently estimated since the noise in our estimate Ĝ becomes
smaller as the number of auctions in the sample increases.

We estimate the parameters in β and vij using a GMM approach, where the inequality
is used as an over-identifying moment condition.

arg max
β,vij

J∑
j=1

N∑
i=1

16∑
k=1

(
v̂ijk − vij −X ijβdk

)2
max

{
1(k ∈ Li),1 (v̂ijk − vij −X ijβdk < 0)

}
.

(10)
In the objective function above, the final multiplicative term determines how the in-
equality information is incorporated into the objective function. Whenever we have level
information for any pseudo-value v̂ijk, the first indicator function equals one and the cor-
responding residual is included in the objective function. For a particular value of (β, vij)
and for pseudo-values where we only have bound information, if the argument for the
second indicator function is non-negative, then the corresponding inequality is satisfied
and both indicator functions take on a value of zero such that the relevant residual is
omitted from the objective function. On the other hand, if the argument of the second
indicator function is negative, then the corresponding bound is violated for that given
value of (β, vij), and we add a relevant squared residual term to the objective function.
In this way our estimator finds a best fit relative to the equality information, while also
minimizing violations of the bound information.

Following the estimation of equation (8), we want to understand the traits of a bidder
that influence the baseline valuation vij. In order to obtain these correlations, we regress
the estimated baseline valuations on bidder traits:

v̂ij = X ijα+ wij. (11)

7 Results

We start by presenting our estimates of the least-cost scoring rule. We then highlight how
different discrete components are valued depending on bank characteristics. Finally, we
present three counterfactual exercises to separately decompose the roles of uncertainty
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and multiple bidding on auction outcomes.

7.1 Least-cost scoring rule estimation

Our estimates of equation (7) are presented in Table 4 for three different specifications. We
estimate the mean and variance parameters associated with the discrete components and
the common shock, as well as the variance of the idiosyncratic shock. In specifications
(2)-(3) we allow the LS and PB means to be linear functions of observable traits and
location and year effects. We do not have a sufficient number of bids with NC and VAI
to allow for this additional flexibility. Specifications (2) and (3) also include quarter fixed
effects on the auction-specific mean. Estimation is based on the 322 auctions in our full
sample. In total there are 1,267 observations.26

We concentrate our analysis on column (1), which we use to construct our win prob-
ability measure. Results are qualitatively similar across the other specifications. The
coefficients can be interpreted in terms of percentage asset discount. The coefficient on
LS is -29.8. Recall from equation (7) that this shock is interacted with the actual percent-
age of assets covered by the loss-share agreement. Therefore, by multiplying -29.8 by the
average percentage of assets specified by the FDIC in our sample (74%), we get an average
percentage asset-discount equivalent of 22.05 using LS. To get a sense of the magnitude of
this effect, consider a failed bank with $1 million in assets. In this case the FDIC would
be indifferent between a bid with no asset discount and a LS agreement covering 74% of
assets, and a bid with an asset discount of $220,500 and no LS specified. The coefficient
associated with the LS standard deviation indicates that there is a substantial amount of
uncertainty in the FDIC’s valuation of this component.

The coefficients for the mean and standard deviation of PB can be interpreted similarly.
The coefficient on the mean is 42.87, and the average share of assets included in PB
transactions as specified by the FDIC is 68%, such that the average percentage asset-
discount equivalent to using PB is -29.15. For the same $1 million failure as above, the
acquirer will take on $680,000 in assets, leaving the FDIC with $320,000. The FDIC
would be indifferent between a bid for a PB agreement with no asset discount, and a bid

26Results are similar if we estimate the least-cost rule based on the restricted sample and available
upon request.
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without PB with an asset discount of $226,720 (=$320,000 x (1-0.2915)).

At first glance the fact that the asset-discount equivalent to PB is negative might seem
surprising since one would assume that the FDIC has a preference for selling the bank
whole. However, a PB bid results in a large transfer to the bidder at closing, as they

Table 4: Scoring rule estimates

This table presents estimates for the least-cost scoring rule (equation 7) based on the 322 auctions in
our sample. There are 1,267 observations. The last row reports McFadden’s R-squared. Column (2)
included Florida and Georgia fixed effects and year fixed effects for 2009, 2010, and 2011–2013 grouped
together interacted with individual packages. See Table 2 for definitions and summary statistics on the
included variables. Statistical significance: ∗ ∗ ∗p<0.01, ∗ ∗ p<0.05, ∗p<0.1.

(1) (2) (3)
Variables Param. SE Param. SE Param. SE
Common (u) Mean

Constant -4.406∗∗∗ 1.269 -0.4327 0.9816 -0.356 1.061
Book value of Equity -0.945∗∗∗ 0.038 -0.955∗∗∗ 0.033
Quarter Fixed Effects No Yes Yes

Common (u) Sd 19.562∗∗∗ 0.574 5.333∗∗∗ 0.741 5.128∗∗∗ 0.926
PB (ν) Mean

Constant 42.872∗∗∗ 3.932 68.763∗∗∗ 8.312 73.033∗∗∗ 1.7086
% CRE -0.061 0.0639 -0.635 0.271
% CI -0.220 0.1513
% NA -0.099 0.1288
T1 ratio -0.234 1.017
Year and State FE No Yes No

PB (ν) Sd 23.954∗∗∗ 7.559 8.071∗∗∗ 5.812 15.951∗∗∗ 6.287
LS (ε) Mean

Constant -29.828∗∗∗ 1.726 -21.108∗∗∗ 1.451 -22.533∗∗∗ 1.214
% CRE -0.815∗∗∗ 0.314 -0.066∗∗∗ 0.051
% CI -0.154 0.434
% NA 1.031∗∗∗ 0.361
T1 Ratio 0.301 0.261
Year and State FE No Yes No

LS (ε) Sd 11.506∗∗∗ 1.057 0.741 1.956 0.717 1.773
NC (κ) Mean -6.128∗∗∗ 2.138 -6.018∗∗∗ 1.448 -5.916∗∗∗ 1.261
NC (κ) Sd 20.206∗∗∗ 1.107 17.799∗∗∗ 1.890 18.062∗∗∗ 1.709
VAI (ψ) Mean -2.212 1.670 -3.810∗∗∗ 1.451 -3.598∗∗∗ 1.214
VAI (ψ) Sd 3.244 2.158 0.4203 3.778 0.028 3.023
Idiosyncratic (δ) Sd 3.52∗∗∗ 0.449 8.268∗∗∗ 0.441 8.318∗∗∗ 0.529
R2 0.1282 0.2137 0.2106
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assume the same amount of liabilities but fewer assets. The size of the transfer increases
through the transaction equity term one for one with the excluded loan volume. The
coefficient on PB therefore represents the FDIC resale value for the retained set of loans
relative to book value, and these tend to be high-risk loans.

An NC bid is equivalent to a 6.13% discount of total assets. The coefficient on the
standard deviation of NC is 20.2%, suggesting that these bids involve a wide range of
modifications and generate a lot of uncertainty. Note also that the use of VAI does not
have a large impact on bid rankings. Finally, note that we estimate the auction-specific
common-shock mean discount to be 4.41% with a standard deviation of 19.56%. This
term represents the receivership expenses of the auction, which Bennett and Unal (2015)
find to be 4.5% on average with a standard deviation of 9%.

7.2 Valuation estimation

We next highlight the way that banks’ observable characteristics shift their valuations of
the whole bank and the four discrete components.

The left-hand panel of Table 5 reports estimates of equation (8), obtained by GMM
(see equation 10). We allow the valuation of each component to be shifted by (i) an
indicator for whether the branch networks of the bidding and failed banks overlap in
at least one zip code (Same zip), (ii) the average pairwise distance between all pairs of
branches (Distance), (iii) an average over the difference in percentage concentrations of
lending in various loan categories for the bidding and failed banks (Portfolio), (iv) the
log of total assets of the failed bank (Size), (v) the bidding bank’s Tier 1 capitalization
(Tier 1), (vi) the portfolio similarity in commercial real estate (%CRE), and (vii) deposit
concentration (HHI). Valuations are in terms of percentage asset discount relative to the
size of the failing bank.

We find evidence that LS is more attractive for larger failures. This could be because the
additional monitoring and reporting costs associated with LS may outweigh the insurance
benefits for smaller failures, or because larger institutions are more complex, such that
only a less complete evaluation of the books is possible in the limited time before the
sale. The magnitude of the size effect on LS is significant. On average using LS increases
bidder valuations by 23.2%. The most important factor in explaining this increase is the
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size of the failing bank. Conditional on using LS, a one percent increase in total assets
(of the failed bank) is associated with an increase in bidder valuation of LS by 2.38%.

The average effect on bidder valuations of using PB is -30.65%, suggesting that, on
average, bidders prefer to acquire all of the failed bank’s assets. Again, size is the most
important factor. Conditional on using PB, a one percent increase in total assets is
associated with an increase in bidder valuation of PB by roughly 5%. This suggests that
bidders for smaller failures are more willing to take on all the failed bank’s assets. PB is
also more attractive when banks are in the same zip code and have more similar portfolios.
Better capitalized bidders also are less inclined to use PB.

The value of nonconforming bids is greater in larger failures and for banks in different
zip codes. VAI is more valuable for smaller failed banks and for cases where the banks’
networks do not overlap and where their portfolios are different.

We also consider the correlations of bidder traits with their estimated baseline valuations
for the whole bank with no components turned on (equation (11)). Results from the
estimation of this equation are presented in the right panel of Table 5. Bidders’ valuations
are positively correlated with the potential increase in deposit market concentration that
would result from a given bidder acquiring the bank and therefore positively related to
the value that it has for the failed bank. Once we have controlled for the market structure
change, being in the same zip code actually has a negative impact on valuations. This
would seem to reflect a desire to use failures to expand geographically.27 Larger failures
and more CRE lending are associated with higher valuations. We also find that portfolio
similarity has a positive effect on valuations.

27A number of papers have studied the geographic diversification motives of banks. See, for example,
Rose (1995), Acharya et al. (2006), Deng and Elyasiani (2008), and Aguirregabiria et al. (2016).
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Table 5: Value shifters

This table provides estimates of the relationship between bidder and failed bank traits on bidder
valuations of failing banks. The LHS panel reports results from the estimation of equation (8), while the
RHS panel presents results for equation (11). Our first measure of distance is an indicator variable equal
to 1 if the acquirer and failing bank have branches in the same zip code. Our second measure of distance
is the average pairwise kilometers between all pairs of branches. In terms of balance sheet, we measure
the distance between the acquirer and the acquired bank’s portfolio shares for various loan categories. %
∆ CRE is the difference of concentration in CRE of the bidding and failed bank. Bidder capitalization
is measured by the Tier 1 capital ratio. Size captures the log of total assets of the failing bank. We also
include the average change in deposit-HHI in zip codes where the failed bank is active that would result
from the acquisition by a particular bidder. The estimates for LS, PB, NC, and VAI along with a set of
fixed effects are estimated jointly, while the parameters in the column v̄ are from a regression of these
traits on the estimated bidder-auction fixed effects. Standard errors are computed via bootstrap over the
estimated sampling variability from the estimation of the scoring function and the resampling estimation.

Component valuations Baseline valuations
Package Variable Param. SE Variable Param. SE

LS

Same Zip -0.3398 0.542 Same Zip -5.304∗∗∗ 0.617
Portfolio 0.0382 0.048 Portfolio -0.218∗∗∗ 0.0420
Size 2.381∗∗∗ 0.226 Size Failed 7.205∗∗∗ 0.435
Tier 1 0.0233 0.028 Tier 1 -0.0192 0.030
Constant -6.518∗∗∗ 2.605 Distance -0.114∗∗∗ 0.0027
Average 23.221 % ∆ CRE 0.108∗∗∗ 0.009

PB

Same Zip 3.571∗∗∗ 1.139 Delta HHI 6.158∗∗∗ 1.349
Portfolio -0.788∗∗∗ 0.061 Constant -91.464∗∗∗ 0.083
Size 4.950∗∗∗ 0.9293 Year FE Yes
T1 -0.282∗∗∗ 0.0259 State(FL,GA) Yes
Constant -82.05∗∗∗ 10.515
Average -30.65

NC

Same Zip -1.368∗∗∗ 0.520
Portfolio -0.011 0.0579
Size 1.213∗∗∗ 0.195
T1 0.028 0.018
Constant -22.376∗∗∗ 2.398
Average -7.47

VAI

Same Zip -4.263∗∗∗ 0.754
Portfolio 0.254∗∗∗ 0.063
Size -0.565∗∗∗ 0.326
T1 0.051∗∗∗ 0.0138
Constant 0.677 4.349
Average -4.724
N 4432 277
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7.3 Counterfactual experiments

We are interested in quantifying the role of uncertainty and multiple bidding on bid shad-
ing and on the set of acquirers. We consider three counterfactuals. First we eliminate
uncertainty, which, as a side effect, removes bidders’ incentives to engage in multiple bid-
ding. Under this counterfactual all three effects (noise, competition, and substitution)
are shut down. Second, we eliminate strategic multiple bidding, while maintaining un-
certainty about the scoring rule. Doing so isolates the subsitution effect. In addition to
these two main counterfactuals, we also consider the case where bidders are forced to bid
for the whole bank with loss share and no other components activated.

In the first counterfactual we remove uncertainty by setting the score function at the
mean of the estimated shock distributions and supposing that bidders know this rule.
To quantify the impact of uncertainty we would want to compare the costs under the
counterfactual scenario to the costs from the actual auctions in our sample. To avoid
confounding the three effects of interest (noise, substitution, competition) with the change
to the mean rule, we compare the counterfactual results to the cost of the winning bid
when the set of original bids is evaluated according to the mean rule.

Note that an alternative approach would be to use the exact auction-specific scoring rule
in counterfactual, and then to compare this to the actual outcomes. Unfortunately this
is not possible because we do not know the exact scoring rule employed in each auction,
but only the distributions of the component shocks.

In our second counterfactual, we eliminate strategic multiple bidding. To do so we
compute equilibrium strategies maintaining uncertainty and holding fixed the number of
bids and the set of packages that we observe in the data, but preventing bidders from
internalizing the effect of each of their bids on their other bids’ win probabilities. In
practice, this is equivalent to assuming that each bid is associated with a distinct bidder,
such that the substitution effect is eliminated but the competition and noise effects remain.

In the third counterfactual we force all bidders to use loss share (in addition to the
continuous-bid component). This is similar to reducing uncertainty over all components
in that it removes the incentive for multiple bidding and the noise effect. It concentrates
all the bids in one package, which increases the perceived level of competition.

To compute the optimal strategy, we cycle through the bidders, updating the best
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response sequentially until the bidders are best responding to the equilibrium Ĝ function,
calculated given the other bidders’ strategies. An additional step is required to choose the
packages for the no-uncertainty counterfactual. The optimal package for a given bidder
can be calculated by comparing a bidder’s vs to Γs as announced by the FDIC. Note that
the problem of computing the equilibrium in the general combinatorial auction is very
difficult, since there are many combinations of packages on which to bid. We therefore
restrict the set of counterfactuals to those for which the set of competitive bids, Li, can be
calculated before the joint solution of strategies and the distribution of opposing bids.28

7.3.1 Counterfactual costs

Table 6 provides point estimates from the three counterfactual experiments. Recall that
our focus is on the restricted sample of 192 bank failures for which we can identify bidders.
For these experiments we also drop the auction of Colonial Bank (Montgomery, Al.)
because it is so much larger than all the other failures in the sample and therefore would
receive too much weight in our levels results (this is not a problem for all of our earlier
results, which are presented as percentage of assets).

The actual cost to the FDIC of resolving the remaining 191 failures was $23.81 billion
($124 million per failure). Using instead the mean scoring rule, we estimate this cost
to be $19.16 billion ($99.79 million per bank). Using the mean scoring rule therefore
slightly underestimates the cost to the FDIC. From column (3) we can see that eliminating
uncertainty, which also removes the incentive for multiple bidding, lowers the cost to the
FDIC relative to bids at the mean scoring rule by $3.26 billion (17%) to $15.90 billion. To
cover these additional costs would require an increase in the deposit insurance assessment
rates of about 3 cents per 100 dollars of insured deposits.29

From column (4) we can see that the cost to the FDIC when strategic multiple bidding is
removed is $17.52 billion. From this we can determine that the substitution effect is $1.64

28In the counterfactual without uncertainty, bids include any components that they value more than the
cost shift announced by the FDIC. For the no-multiple-bidding counterfactual, bids are made on the same
set of packages, which allows us to isolate the substitution effect. In the loss-share-only counterfactual,
we restrict to the loss-share-only package.

29The current baseline assessment rates range from 1.5 cents to 40 cents, see https://www.fdic/gov/
deposit/insurance/calculator.html, accessed August 1, 2019.
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billion (=$19.16 billion - $17.52 billion).30 The combined impact of noise and competition
is therefore $1.62 billion (=$3.26 billion - $1.64 billion). In other words, the benefit of
eliminating uncertainty comes almost evenly through a reduction of the substitution effect
and the noise/competition effect. Bidders shade more when they can bid multiple times,
since their bids compete against each other and they can take advantage of different
auction-specific scoring-rule shocks. Noise also encourages bidders lower in the valuation
distribution to shade more, hoping that a good shock will allow them to win anyway.
These findings suggest that the noise effect overwhelms the competition effect, although
we cannot separately identify these two factors.

In column (5) we show the results from forcing bidders to use loss share. This leads only
to a small benefit to the FDIC relative to column (3). The reason is the following: both
policies increase the perceived level of competition. Low-value bidders have to bid more
aggressively since there is no longer the benefit from uncertainty. As a result, high-value
bidders are also more aggressive. As we show in Section 7.3.2, both policies ultimately
have little impact on who wins the auction. The policies, instead, result in less bid
shading, and therefore lower costs to the FDIC.

Table 6: Impact of uncertainty and multiple bidding on FDIC costs

This table shows the impact of removing (i) uncertainty of the least-cost rule and (2) multiple
bidding. Column (1) is data. Column (2) provides an estimate of losses using bids at the scoring
rule. Column (3) looks at the impact of removing uncertainty. Column (4) is the impact from
removing multiple bidding. Column (5) removes uncertainty by limiting the discrete options to
only loss share. The numbers in parentheses are the cost to the FDIC as a fraction of the failed
banks’ assets. The auction of Colonial Bank, Montgomery Al is dropped.

Actual Bids at No No LS Only
Scoring Rule Uncertainty Multiple Bid

Total -23.8119 -19.1596 -15.8982 -17.516 -15.084
Mean -124.02 -99.7897 -82.8031 -91.2294 -78.56
P10 -315.86 -193.318 -127.18 -178.656 -163.06

(-47.69) (-39.81) (-36.56) (-47.56) (-42.10)
P50 -47.5 -40.6387 -37.7784 -37.7717 -46.86

(-26.12) (-25.83) (-21.08) (-25.16) (-25.30)
P90 -4.48905 -10.94 -10.386 1.677217 -13.23

(-4.08) (-15.65) (-7.92) (2.43) (-12.30)

30Recall that the restricted sample features fewer auctions with multiple bidding than the main sample.
The estimated savings from removing multiple bidding reported here, therefore, are likely conservative.
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Panel A Panel B

Figure 4: Distribution of winning bids for different scenarios
This figure plots, in Panel A, the distribution of winning bids as percentages of the failed bank’s assets
when bids are evaluated at the mean scoring rule (solid blue), and under the no-uncertainty counter-
factual (dashed red) and no-multiple-bidding counterfactual (dash-dotted yellow). Panel B plots the
distribution of winning bids in terms of dollar cost to the FDIC.

Noise in the scoring rule introduces uncertainty in the level of bids. On the one hand,
high-value bidders are close to the upper bound on bids, so favorable shocks to them
provide little benefit. On the other hand, negative shocks could result in a loss to a
lower-value competitor receiving a large positive shock, pushing the high-value bidder to
shade less. Figure 4, Panel A, which plots the distribution of winning bids at the mean
scoring and the two (main) counterfactual distributions, illustrates this phenomenon: the
red dashed line (no uncertainty) is to the left of the solid blue line (winning bids at the
mean scoring rule) at the top of the distribution. This can also be seen by comparing the
counterfactual results for the different percentiles in Table 6.

From Panel A of Figure 4 it is not clear what is the total effect on costs from eliminating
uncertainty, since the results are in terms of percentage of failed-bank assets. Therefore,
without knowing the size of the failed banks in each part of the distribution, we cannot
say anything about costs. To get a better sense of the cost impact, Panel B plots the
distributions of the failure costs to the FDIC in dollar terms. It is clear that the area
between the actual and counterfactual distributions is bigger at the bottom than at the
top, such that the total cost to the FDIC falls under the counterfactual of no uncertainty.
Going back to Panel A, this means that the lower part of the counterfactual distribution
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of percentage of failed-bank assets (i.e., before its crossing with the factual distribution)
includes more large failures.

Uncertainty is beneficial from the FDIC’s point of view in small-bank auctions because
the noise effect dominates the substitution effect. These auctions feature more bidders
and valuation distributions with longer and fatter upper tails. As a result, the role of
high-valuation bidders is magnified; they engage in less bid shading to protect against
bad shocks. Note that the FDIC’s earlier experiences with failures during the S&L crisis
primarily involved small institutions. As a result it had no opportunities to learn about
the impact of uncertainty on resolution costs for large banks. In contrast, the recent crisis
featured many larger failures, and for these the noise effect can actually operate in the
opposite direction such that, overall, uncertainty is bad from the FDIC’s point of view.

7.3.2 Counterfactual set of acquirers

Having shown that uncertainty is costly to the FDIC, we next evaluate the impact of
removing uncertainty on the types of banks that win the auctions. The valuations for
different packages depend on the bidder and failed bank observed traits, so the announce-
ment of a scoring rule may either reduce or increase the asymmetries across bidders.
This may shift the set of winners towards bidders with preferences for packages that the
FDIC penalizes less heavily. Table 7 shows the packages that bidders choose under no
uncertainty, compared to the original set of choices. In the counterfactual scenario, bid-
ders switch on nonconforming less often, such that the package choice most commonly
observed under uncertainty (conforming, no PB, no VAI, LS) is selected even more fre-
quently. This is not surprising, since bidders with low valuations can no longer hope to
benefit from a favorable shock by choosing a less common package.

Table 8 shows the impact of removing uncertainty on the mean and median traits of
the winning bidders. Removing uncertainty has little effect on the size of the winning
bank, but does lead to a slight increase in the distance between the failed bank and
winning bidder. There is little impact of uncertainty in terms of commercial real estate
and loan portfolios. Finally, we investigate the impact of the removal of uncertainty on
the change in market concentration (HHI). Post-financial crisis, there has been renewed
interest in market concentration for deposits and the relationship between the deposit and
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loan markets. In particular, there has been a substantial increase in market concentration
in banking in the last decade. See, for example, Egan et al. (2017), Egan et al. (2017)
and Aguirregabiria et al. (2018). Here we are interested in the role of auction uncertainty
in explaining part of this increase. We do not find large changes in the concentration
from eliminating uncertainty about the scoring rule. The main reason is that the winning
bidder in the counterfactual is only rarely different than in the actual auction. The result
is that uncertainty impacts bid shading, but not the winners.

Table 7: Probabilities for different packages change with uncertainty

This table lists the observed frequency of each package in the subsample of auctions from which we
compute the counterfactual, and the frequency with which that package is bid on in the counterfactual
with no uncertainty. The packages are ranked by popularity.

Package Percent of Bids
Nonconforming Loss Share Partial Bank VAI Original No Uncertainty
No Yes No No 42.70 48.65
No No No No 15.60 39.19
Yes Yes No No 12.69 0.00
No Yes Yes No 8.51 11.15
No No Yes No 3.86 0.68
Yes No Yes No 2.76 0.34
No Yes No Yes 2.76 0.34
Yes No No No 4.96 0.00
Yes Yes Yes No 3.62 0.00
Yes Yes No Yes 0.95 0.00
No Yes Yes Yes 0.55 0.00
Yes Yes Yes Yes 0.55 0.00
Yes No No Yes 0.24 0.00
No No No Yes 0.16 0.00
No No Yes Yes 0.00 0.00
Yes No Yes Yes 0.00 0.00
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Table 8: Removing uncertainty can lead to different winners

This table shows the impact of removing uncertainty on the characteristics of winners. Variable
definitions are as in Table 2. Results are presented for the mean and median values.

Mean Median
Actual No Uncertainty Actual No Uncertainty

Size 8.590 7.773 1.325 1.407
% CRE 21.872 22.759 22.937 22.937
% CI 9.660 9.483 8.887 8.991
Distance 429.051 475.924 203.281 222.088
Tier 1 Capital 16.199 15.721 13.996 14.036
∆ HHI Assets County 0.0283 0.0275 0.000 0.000
∆ HHI Deposits Zip 0.0061 0.0076 0.000 0.000
∆ HHI Deposits County 0.0458 0.0428 0.0370 0.0365
∆ HHI Branches Zip 0.0046 0.0057 0.000 0.000
∆ HHI Branches County 0.0252 0.0238 0.0191 0.0185

8 Conclusion

This paper proposes a methodology for analyzing auction environments where bids are
ranked according to multiple attributes chosen by bidders, but where there is uncertainty
about the weight placed on the different components of the bid. We apply our approach
to the resolution of failing banks in the US, where there is uncertainty about the scoring
rule used by the FDIC. The current structure of the resolution process leads to large losses
to the FDIC, with potentially large spillovers. We study the roles of auction uncertainty
and multiple bidding in the allocation of banks and the revenues raised by the FDIC.

Estimates indicate that uncertainty and multiple bidding increase the competition bid-
ders face in these auctions, but overall, are costly to the FDIC. The set of bidders that
wins the auctions is fairly stable under the current rule and when uncertainty is removed.
The size, distance, and balance-sheet traits of the median winner are comparable under
the two rules, and the mean size and post-auction increase in market structure decrease
only slightly when uncertainty is removed. However, removing uncertainty leads to less
bid shading by large acquirers when acquiring large failing banks, and therefore remov-
ing uncertainty can lower the cost of resolution. In our sample of failed banks, which
cost the FDIC just under $20 billion, eliminating uncertainty would result in savings for
FDIC-members of over $3.2 billion, or 3 cents per 100 dollars of insured deposits.
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A Data Source

Table 9: Source and variable description

The table presents the description of the raw variables used in our analysis. The variable name corre-
sponds to the name in the original data set and the definitions of the variables are those provided by the
FDIC, subject to some editing to conserve space. The data in the Statistics on Depository Institutions is
extracted by the FDIC from banks’ Quarterly Call Reports. The Summary of Deposits provides location
and branch-level information. Additional Latitude/Longitude Information is filled in by zip code using
data from https://www.census.gov/geo/maps-data/data/gazetteer.html
Variable Description Source
asset The sum of all assets owned by the institution including cash, loans,

securities, bank premises, and other assets. Excludes off-balance-sheet
accounts.

SDI

ore Total other real estate owned on a consolidated basis. Includes direct
and indirect investments in real estate. The amount is reflected net of
valuation allowances.

SDI

liabeq Total liabilities, limited-life preferred stock and equity capital. SDI
liab Deposits and other borrowings, subordinated notes and debentures,

limited-life preferred stock and related surplus, trading account liabili-
ties and mortgage indebtedness.

SDI

dep The sum of all deposits including demand deposits, money market de-
posits, other savings deposits, time deposits, and deposits in foreign of-
fices.

SDI

coredep Definition was changed in March 2011. Core deposits held in domestic
offices now includes total domestic office deposits minus (1) time deposits
of more than $250,000 held in domestic offices, (2) brokered deposits of
$250,000 or less held in domestic offices. Prior to March 2010, core de-
posits were calculated as follows: Total domestic office deposits minus
time deposits of $100,000 or more held in domestic offices.

SDI

naasset Total assets, which are no longer accruing interest. Total assets include
real estate loans, installment loans, credit cards and related loans, com-
mercial and all other loans, lease financing receivables, debt securities and
other assets

SDI

rbc1aaj Tier 1 (core) capital as a percent of average total assets minus ineligible
intangibles. Tier 1 (core) capital includes common equity plus noncumula-
tive perpetual preferred stock plus minority interests in consolidated sub-
sidiaries less goodwill and other ineligible intangible assets. The amount
of eligible intangibles (including mortgage servicing rights) included in
core capital is limited in accordance with supervisory capital regulations.
Average total assets used in this computation are an average of daily or
weekly figures for the quarter.

SDI

continued on next page
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Variable Description Source
rbc1rwaj Tier 1 (core) capital as a percent of risk-weighted assets as defined by

the appropriate federal regulator for prompt corrective action during that
time period.

SDI

bkclass A classification code assigned by the FDIC based on the institution’s
charter type, charter agent, Federal Reserve membership status and its
primary federal regulator.

SDI

lnlsgr Total loans and lease financing receivables, net of unearned income. SDI
lnre Loans secured primarily by real estate, whether originated by the bank

or purchased.
SDI

lnrenres Nonresidential loans, excluding farm loans, primarily secured by real es-
tate held in domestic offices. Loans secured by real estate as evidenced
by mortgages or other liens on nonfarm nonresidential properties, includ-
ing business and industrial properties, hotels, motels, churches, hospi-
tals, educational and charitable institutions, dormitories, clubs, lodges,
association buildings, homes for aged persons and orphans, golf courses,
recreational facilities, and similar properties.

SDI

lnreres Total loans secured by 1-4 family residential properties (including revolv-
ing and open end loans) held in domestic offices.

SDI

lnci Commercial and industrial loans. Excludes all loans secured by real es-
tate, loans to individuals, loans to depository institutions and foreign gov-
ernments, loans to states and political subdivisions, and lease financing
receivables.

SDI

lncon Loans to individuals for household, family, and other personal expendi-
tures including outstanding credit card balances and other secured and
unsecured consumer loans.

SDI

zipbr The Zip code associated with the physical address of the branch. SOD
brnum Numerical reference to identify a branch office within one institution. SOD
charter Identifies whether an institution is federally or state chartered. SOD
depsumb Branch office deposits as of June 30. SOD
sims_lat The lattitude of the branch’s physical location. SOD
sims_lon The longitude of the branch’s physical location. SOD
stnumbr The FIPS number of the state in which the branch is physically located. SOD
stalp The state abbreviation of the location of the institution’s headquarters. SOD
cntynumb County number that corresponds to the county in which the branch is

located.
SOD
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B Additional Tables and Figures
Table 10: Summary statistics restricted sample

This table provides descriptive statistics of our restricted sample. We report balance sheet information
for failed banks and bidders separately using data from the SDI for the quarter pre-failure. SDI labels are
in parentheses. Variables include Total Assets (asset), Total Deposits (dep), Insured Deposits (depins).
Variables Commercial Real Estate (lnrenses), Commercial and Industrial (lnci), Consumer (lncon),
Single-Family Residential (lnreres), All Real Estate (lnre), are the shares of lending in each sector. Core
Deposits is the share of total funding that is stable. ROA is return on assets and measures profitability.
Tier 1 Ratio, is a measure of financial health. The portfolio percentage differences are the absolute
value change in portfolio shares for the failed bank and bidder bank in each bidder-failed bank pair.
Average pairwise distance is calculated using the average distance over all branch combinations of the
failed and bidding bank. Multiple bidding is an indicator if an auction featured more bids than bidders.
The cost to the FDIC is the estimated loss from the press release data made on the date of failure.
The bid premium is the transfer amount calculated using equation 1 divided by the total assets of the
failed institution. HHI is calculated for both deposits and branches. The loan HHI is calculated using
information on mortgage lending from the HMDA data set. Eighty-eight failed banks and 72 bidders
did not have any lending to report under HMDA.

N Mean SD P10 P50 P90
Failed Bank Traits
Total Assets ($ Millions) 193 576.12 1961.18 48.86 191.85 1181.17
Total Deposits ($ Millions) 193 492.594 1576.12 45.77 181.64 919.61
Insured Deposits ($ Millions) 193 434.65 1275.35 44.85 164.30 915.48
Commercial Real Estate (%) 193 24.13 11.84 10.26 22.46 41.46
Commercial and Industrial (%) 193 7.73 6.69 1.17 6.06 17.39
Consumer (%) 193 1.65 2.30 0.08 0.88 3.92
Single-Family Residential (%) 193 18.55 13.27 3.03 17.12 37.49
All Real Estate (%) 193 61.00 11.52 48.43 61.73 74.24
Core Deposits (%) 193 74.94 15.03 53.73 76.59 92.94
ROA 193 -7.48 7.67 -12.96 -5.69 -1.87
Tier 1 Ratio 193 1.08 3.39 -1.77 1.47 3.50
Bidder Traits
(Avg. over participated auctions)
Total Assets ($ Millions) 123 5973.8 1960 158.45 837.73 1340
Total Deposits ($ Millions) 123 4352 1360 125.90 666.43 9466
Insured Deposits ($ Millions) 123 3015 8577 108.12 539.73 7507
Commercial Real Estate (%) 123 22.85 12.28 7.21 21.31 39.69
Commercial and Industrial (%) 123 9.36 5.74 3.06 8.86 16.51
Consumer (%) 123 2.33 2.65 0.19 1.51 5.81
All Real Estate (%) 123 50.30 14.43 33.12 50.90 67.84
Single-Family Residential (%) 123 17.34 13.08 3.28 15.60 30.86
ROA 123 1.57 2.46 -0.06 1.07 3.82
Tier 1 Ratio 123 15.46 8.13 10.69 13.51 21.70
Nbr of Auctions attended 343 2.40 3.43 1.00 1.00 5.00
Portfolio % Differences

Continued on next page
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continued from the previous page N Mean SD P10 P50 P90
Commercial Real Estate 277 9.63 8.24 1.45 7.34 21.08
Commercial and Industrial 277 5.73 5.28 0.76 4.08 12.92
Consumer 277 2.36 3.21 0.13 1.32 5.79
Single-Family Residential 277 9.93 10.31 1.19 6.34 23.36
All Real Estate 277 15.31 11.43 2.21 13.57 31.86
Avg. Pairwise Distance (km)

277 487.62 736.13 26.16 206.81 1417.32
Auction characteristics
Number of Bids 193 1.76 1.04 1.00 1.00 3.00
Multiple Bidding 193 0.16 0.363 0.00 0.00 1.00
Cost to FDIC ($ Millions) 193 137 347.55 10.96 48.0 329.0
Bid Premium 340 -0.13 0.30 -0.53 -0.07 0.15
% ∆ in HHI from Acquisition
Branches
Zip Code 76 9.47 9.79 2.13 6.37 17.27
County Code 128 2.84 6.60 0.01 0.41 6.82
Deposits
Zip Code 76 8.88 14.04 0.06 4.21 25.01
County Code 128 3.517 9.70 0.00 0.23 6.11
Loans
County 92 0.25 0.71 0.00 0.01 0.85
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Table 11: Principal component failed bank traits

The table presents the estimated coefficients from a principal component analysis. The variables
are Log Total Assets which is the log of the asset variable from the SDI data. %Commercial Real
Estate (CRE), %Commercial and Industrial (CI), %CON are the percentage commercial real estate
commercial/industrial, and consumer respectively, of the total loans and leases. Tier 1 Capital Ratio
(Tier 1 Ratio) is the Tier 1 risk-based capital ratio. Leverage Ratio is the core capital. ratio. NPL
Ratio is the sum of assets 90 days past due and the nonaccruing assets as a share of the total loans and
leases. OREO Ratio is other real estate owned divided by total assets. ROA is return on assets. Before
computing the principal components, all of these variables are then standardized by subtracting their
mean value then dividing by their standard deviation.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
Log Total Assets 0.023 -0.347 -0.515 -0.417 -0.412 0.184 0.469 0.126 0.005
%CI -0.030 0.423 -0.296 0.530 -0.321 0.576 -0.075 0.108 -0.004
%CON 0.163 0.517 -0.154 -0.115 0.563 -0.011 0.531 0.264 -0.023
%CRE -0.022 -0.465 -0.013 0.705 0.151 -0.154 0.483 -0.074 0.024
%NPL -0.214 -0.397 -0.246 -0.076 0.609 0.512 -0.304 0.064 0.001
%OREO -0.013 -0.065 0.722 -0.141 -0.066 0.567 0.354 -0.051 0.015
ROA 0.483 -0.227 0.165 0.092 -0.063 -0.019 -0.191 0.799 -0.001
Leverage 0.587 -0.062 -0.073 0.007 0.053 0.120 -0.044 -0.363 -0.703
T1 Ratio 0.589 -0.022 -0.090 -0.012 0.068 0.113 -0.054 -0.347 0.710
% of Variance Explained 29.406 18.875 14.458 10.400 8.802 7.635 6.172 3.955 0.297

Figure 5: Loss-sharing agreements
Loss-share agreements for single-family residential mortgages (SFR) and commercial assets during our
sample period. The y-axis is the number of bids made, with the percentages on the x-axis.

58



Figure 6: Example of the FDIC failed-bank list
This is an example of what the FDIC provides in terms of failing banks. There is the failing bank and
the acquirer. In addition, the date of closing, location information, and the last time information on the
acquisition was updated is provided. Information is updated, for example, as the FDIC collects and pays
out dividends stemming from the sale of assets. Source: FDIC
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Bid Summary

Legacy Bank, Scottsdale, AZ

Closing Date: January 7, 2011

Type of 

Transaction

Deposit 

Premium/ 

(Discount) 

%

Asset 

Premium/ 

(Discount) 

$(000) / %

SF Loss 

Share 

Tranche 1

SF Loss 

Share 

Tranche 2

SF Loss 

Share 

Tranche 3

Commercial 

Loss Share 

Tranche 1

Commercial 

Loss Share 

Tranche 2

Commercial 

Loss Share 

Tranche 3

Value 

Appreciation 

Instrument

Conforming 

Bid
Linked

Nonconforming 

all deposit whole 

bank with loss 

share (1)

1.00% $ (9995) 80% 80% NA 80% 80% NA Yes No N/A

All deposit whole 

bank with loss 

share

0.25% $ (21975) 75% 75% N/A 75% 75% N/A No Yes N/A

All deposit whole 

bank with loss 

share

1.00% $ (9525) 80% 80% N/A 80% 80% N/A No Yes N/A

All deposit whole 

bank with loss 

share

0.25% $ (21475) 80% 80% N/A 80% 80% N/A No Yes N/A

All deposit whole 

bank with loss 

share

0.00% $ (22000) 80% 80% N/A 80% 80% N/A No Yes N/A

Nonconforming 

Whole Bank 

P&A (2)

0.00% $ (41679) N/A N/A N/A N/A N/A N/A No No N/A

(1) Deemed nonconforming due to cap placed on Value Appreciation Instrument

(2) Deemed nonconforming since bid excluded all OREO.

Other bid

Notes:

The winning bidder's acquisition of all the deposits was the least costly resolution compared to a liquidation alternative. The liquidation alternative was valued using valuation models to estimate the market 

value of the assets. Bids for loss share, if any, were valued using a discounted cash flow analysis for the loss share portfolio over the life of the loss share agreement. If any bids were received that would have 

been more costly than liquidation they have been excluded from this summary.

The cover bid is the least costly bid after excluding all bids submitted by the winning bidder.

The Other Bidder Names and the Other Bids are in random order. There is no linkage between bidder names and bids, except in the case of the winning bid and the cover bid.

For more information on the bid disclosure policy, see www.fdic.gov/about/freedom/biddocs.html.

Bidder

Winning bid 

and bidder: 

Enterprise 

Bank & Trust, 

Clayton, 

Missouri

Cover - 

Commerce 

Bank of 

Arizona, 

Tucson, 

Arizona

Other bid

Other bid

Other bid

Other Bidder Names:

Commerce Bank of Arizona, Tucson, Arizona

Enterprise Bank & Trust, Clayton, Missouri 

SouthWest Bank, Odessa, Texas

Wedbush Bank, Los Angeles, California

Figure 7: Example of an FDIC failed-bank bid summary
This is an example of Enterprise Bank & Trusts acquisition of Legacy Bank (AZ). The closing date was
January 7, 2011. The list of bidders includes Enterprise Bank & Trust, Commerce Bank of Arizona,
SouthWest Bank, and Wedbush Bank. There were 6 bids in total from these 4 bidders. Source: FDIC.

60



C Testing Independent Private Values
Table 12 presents a formal test for our IPV assumption based on the test proposed by Giliberto
and Varaiya (1989). The result suggests that we reject the null of CV. The coefficient on number
of bidders is negative, implying that bids are more aggressive as the number of bidders increases,
inconsistent with adjustment for the winner’s curse in CV settings.
We also perform the test proposed by Haile et al. (2006). The test is similar in spirit to

Giliberto and Varaiya (1989). In an IPV setting bidders’ own valuations do not depend on their
opponents information, therefore the number of bidders does not affect their expected value
conditional on winning. Unlike Giliberto and Varaiya (1989), however, this test uses bidder
valuations (not bids), and these need to be estimated based on GPV, as in the paper. The one
difference is that to construct the expected value of winning we condition on the observed bids. If
the auction is IPV then the expected value of winning should be uncorrelated with the number
of bidders. We follow the testing procedure described in Section 3.1 of Haile et al. (2006).
The test takes quantile-trimmed means of the estimated values conditional on the number of
bidders. Under the null hypothesis of IPV these conditional means will not vary with the number
of bidders, while under the CV alternative they will be decreasing. Haile et al. (2006) propose
an LR test, in which the covariance-matrix of the quantile-trimmed means is estimated using a
bootstrap and the test statistic is distributed as the weighted sum of chi squared distributions
with simulated mixing weights. We run this on the estimated full-bank valuations. The resulting
p-value is 0.5940, and so we do not reject the null hypothesis of IPV.

Table 12: Relationship between bids and number of bidders

This table provides estimates of the CV versus IPV test from Giliberto and Varaiya (1989) on our
sample. We replicate their specification but replace the fixed effects for the federal reserve districts
that were badly hit by the crisis with fixed effects for the states that were badly hit. Variance of bids
measures the variance of bids within an auction. There are 1,163 observations as all single bidder
auctions are dropped. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

VARIABLES log(bid)

Var bids 0.113
(0.0765)

Nbr Bidders -0.0693***
(0.0231)

Constant 11.57***
(0.144)

State(FL,GA) Yes
Year FE Yes

R-squared 0.077
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D Testing for Independence Across Auctions
In Section 4 we assumed independence across auctions. This would be problematic if there were
(i) learning across auctions, (ii) complementarities across auctions, or (iii) banks had capacity
constraints, in the sense that winning one auction limited future participation. In an attempt
to test for the presence of dependence across the auctions we study, we estimate two sets of
regressions. We first consider a logit regression in which the dependent variable is an indicator
that takes the value of 1 for winning bids. If bidders learn the scoring rule over time, we expect
that increased experience should mean a bidder is more likely to win. If capacity constraints
are present, bidders should bid less aggressively following a winning bid. Winning tightens the
capacity constraints, leaving bidders only able to acquire only at a low price. In the case of
complementarities, we expect to see more aggressive bidding following a win as the value of
the subsequent acquisition is increased. Since these effects are potentially offsetting, we exploit
variation in the tightness of the constraint across bidders and attempt to isolate capacity effects
by comparing large bidders to poorly capitalized bidders. We then run separate regressions to
look at the relationship of experience on the amount bid. Except for learning, which may reduce
the amount bid as bidders learn to manipulate their package choice, the expected signs are the
same. Results are presented in Table 13. In all specifications the number of participants is
controlled for, producing a mechanical effect where the probability of winning is decreasing in
the number of bidders.
Looking first at the logit regressions, the results from column (1) suggest that, in contrast

to Zhang (1997), experience is negatively correlated with the win-probability of a bank. One
possible explanation is that in the pre-FDICIA period studied in Zhang (1997) the FDIC had
discretion to rank offers and might have favored more experienced bidders. In column (2), while
also adding many controls, we aim to separate complementarities and capitalization effects.
None of the variables of interest, size, capitalization, or experience are significant. Column (3)
looks at the effects of experience before or after the first time a bidder wins, and the effects on the
probability of winning are both negative but are also not significant. Columns (4) and (5) look at
the size of bidder premiums. Higher bid premiums are associated with more aggressive bidding.
The coefficients on experience both pre- and post-winning are not significant. Although not
definitive, we do not find substantial effects of experience on bidding behavior. For this reason
(in addition to computational complexity) we do not model learning, complementarities over
time, or strategic bidding due to capacity constraints.
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Table 13: Effect of experience on bidding competition
Columns (1)-(3) present results from a Logit regression with dependent variable Pr(winner = 1), while
(4)-(5) present results for the dollar component of the bid as a percent of total assets. Experience is
the number of auctions in which a bidder has participated. Experience post-win and Experience pre-win
interact Experience with indicator variables for whether the bidder has already or not yet won an
auction, respectively. Large indicates the bidder is above the 75th percentile of all bidders in terms
of total assets, and Low Capital indicates the bidder’s risk-weighted Tier 1 capital ratio is below the
25th percentile. Unreported controls include %CRE, %CI, %SFR, and log(Total Assets). Component
controls indicate if the bid included LS, PC, VAI, or NC options. Specifications (2)-(5) are limited to
the restricted sample. Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.

Variables Winner Bidder premium
(1) (2) (3) (4) (5)

Experience -0.0716*** -0.0751
(0.0140) (0.0832)

Experience pre-win -0.0315 0.0129 0.0113
(0.168) (0.008) (0.00764)

Experience post-win -0.0474 -0.00424 -0.00361*
(0.0473) (0.00352) (0.00196)

Nbr bidders -0.570*** -1.539*** -1.517*** -0.00914 -0.00948
(0.0507) (0.212) (0.209) (0.00847) (0.00840)

Large -0.782 -0.0133
(0.671) (0.0302)

Large x Experience 0.0591 0.00198
(0.0838) (0.0843)

Low Capital -0.277 0.0242
(0.466) (0.0211)

Low Capital x Experienced -0.148 -0.0178**
(0.170) (0.00763)

Component Controls No No No Yes Yes
Failed-Bank Controls No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
Bidder Controls No Yes Yes Yes No
Observations 1,227 305 305 305 305
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E Additional Proofs
Proof of Theorem 1: Equilibrium Existence. Define Γ as a vector containing the FDIC’s draws
of ε, ψ, κ, ν and dk the vector of indicators taking a value of 1 if the component is included in
package k. Define qk as follows:

qk ≡ maxt6=k{R, b−it + Γtdt + δ−i,t, bit + Γtdt + δit} − Γkdk − δik. (12)

We need to show that qk has no mass points or kinks that can induce mass points, in the optimal
bidding strategies. This is trivial compared to Cantillon and Pesendorfer (2006) since we have
assumed normally distributed bid-specific shocks. As in Cantillon and Pesendorfer (2006), the
game satisfies the conditions of Jackson et al. (2002) and an equilibrium exists.

Proof of Theorem 2: Least-cost Identification. Consider the set of bids for whole bank, no loss
share, conforming, and no VAI. The distribution of δ2 − δ1 is observed from the probability
Pr(b1 + δ1 ≥ b2 + δ2) = Pr(b1− b2 ≥ δ2− δ1), which we know from the observed auction results,
and bid levels b.
Rewriting in terms of the characteristic functions gives:

Z(t) = φy(t) = E[exp(it(X)) exp(itX)] = φx(t)φx(t). (13)

However, there are many φx(t) that could give the same Z(t), so we do not have nonparametric
identification. Consider, as an example, x1 ∼ N(µ1, σ

2
1) and x2 ∼ N(µ2, σ

2
2) with µ1 6= µ2.

Using equation (13), we get Z1 = e(it(µ1−µ1)−
σ2

1+σ2
1t

2

2 ) and Z2 = e(it(µ2−µ2)−
σ2

2+σ2
2t

2

2 ). It is clear
that for any µ1, µ2 this Z is the same, and therefore the mean is not identified.
We assume normality, and mean zero for the distribution of δ. Then because the distribution

of the difference is observed, σ is identified.
Now consider all as-is winning bids. For these bids we observe their b and the resulting cost

estimate. This means that the distribution of uj + δi,j is observed from the sample of single-bid
auctions. We represent that as J(·). Let m(t) denote the characteristic function of J and l(t)
the characteristic function of the distribution of u. It must be that l(t) = m(t)e

σ2t2
2 , and l(t) is

identified.
Now consider all the winning bids with one additional component. Without loss of generality,

let the bid only include loss share. Then, the distribution of uj + γij + εj is observed. Call the
characteristic function for this new observed distribution q(t) and for ε r(t). Then q(t) = l(t)r(t),
and since q is observed from the data and l is observed, we can solve for a unique r(t).

Proof of Theorem 3: Identification. By Theorem 1, there exists an equilibrium in this game, and
the equilibrium is monotone in bidders’ private information within a given package. Therefore,
by Theorem 1 in Cantillon and Pesendorfer (2006), the vijk of the player for a given package is
observed if they bid on it. For the packages where they do not bid, we observe only a bound. We
impose the form in Equation 8, and this gives a standard regression formula with bidder-level
fixed effects v. Multiple bidding allows us to identify the fixed effects along with the β terms in
this model as per usual arguments.
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