Plants in Space

Ezra Oberfield (Princeton) Esteban Rossi-Hansberg (Princeton) Pierre-Daniel Sarte (Richmond Fed) Nicholas Trachter (Richmond Fed)

NBER SI, July 2020

Introduction

- A fundamental part of a firm's production problem is to determine the number, size, and location of its plants
- More plants, closer to consumers, imply lower transport costs but larger fixed and managerial span-of-control costs
 - ► Plants cannibalize each other's markets, particularly if they are close
- There are no general insights on the solution to this problem when locations are heterogeneous
 - Large combinatorial problem, so most of the analysis is purely numerical
 - Solution is known when space is homogeneous
- Important to study this problem to understand firm characteristics as well as consumer access to a firm's output
- In equilibrium, plant location decisions are an essential determinant of local concentration and the distribution of economic activity in space

What We Do

- Propose a model of a firm's location decisions
 - Heterogeneous firms locate multiple plants in heterogeneous locations
 - Firms face transport, span-of-control, and fixed costs
 - ► Key tradeoff: minimize transport cost vs. cannibalization
- Problem of the firm is a large combinatorial discrete-choice problem
- Our contribution is to propose a tractable limit case
 - All key forces and trade-offs remain relevant
 - ► Solution method inspired by central place theory, discrete geometry
 - Amounts to a many-to-many matching problem that can be partially characterized analytically
- Limit case can be embedded in an equilibrium framework
 - Study effect of changes in technology and transport costs on sorting and local characteristics
- \bullet We verify many of the implications using the NETS data set

Related Literature

- Firm with multiple plants
 - ▶ Over time: Luttmer (2011); Cao, et al. (2019); Aghion, et al. (2019)
 - ► Across space: Rossi-Hansberg, et al. (2018), Hsieh and Rossi-Hansberg (2020)
- Multinationals and export platforms
 - Ramondo (2014), Ramondo and Rodriguez Clare (2013), Tintelnot (2017), Arkolakis, et al. (2018)
- Solutions to plant location problem
 - ► Homogeneous space: Christaller (1933), Fejes Toth (1953), Bollobas (1972)
 - Numerical: Jia (2008), Holmes (2011), Arkolakis and Eckert (2018), Hu and Shi (2019)
- Assignment in space
 - Firm location: Gaubert (2018), Ziv (2019)
 - Worker location: Behrens, et al. (2014), Eeckhout et al. (2014), Davis and Dingel (2019), Bilal and Rossi-Hansberg (2019)

The Environment

- Customers distributed across locations $s \in \mathcal{S} = [0,1]^2 \subset \mathbb{R}^2$
- Each location s characterized by
 - Exogenous local productivity, B_s
 - Residual demand, $D_s(p) = D_s p^{-\varepsilon}$, with $\varepsilon > 1$
 - * Later, D_s a function of local price index and exogenous amenities
 - ▶ Wage rate, W_s
 - ▶ Commercial rent, R_s
- Firms take local equilibrium as given

Firms

- Each firm $j \in J$ produces a unique variety
- Chooses set of locations $O_j \in S$ where to produce
 - Let $N_j = |O_j|$, denote the number of locations where j produces
- Firm productivity in location $o \in O_j$ is $B_o Z(q_j, N_j)$
 - where q_j is an exogenous component of firm productivity
 - ▶ and $Z_N(q_j, N_j) < 0$ and $Z(q_j, 0) < \infty$ (Span-of-control costs)
- $\bullet\,$ Each plant takes ξ units of commercial real estate, with rental cost R_s per unit of space
- Iceberg cost, $T(\delta)$, to deliver good to customer at distance δ

The Firm's Problem

• Minimal cost of delivering one unit to s is $\Lambda_{js}(O_j) \equiv \min_{o \in O_j} \frac{W_o T(\delta_{so})}{B_o Z(q_j, N_j)}$

- Optimal price is then $\max_{p_{js}} D_s(p_{js}) \left(p_{js} \Lambda_{js} \right)$
- Total profit of firm j is then given by

$$\pi_{j} = \max_{O_{j}} \left\{ \int_{s} \max_{p_{js}} D_{s} p_{js}^{-\varepsilon} \left(p_{js} - \Lambda_{js} \left(O_{j} \right) \right) ds - \sum_{o \in O_{j}} R_{o} \xi \right\}$$
$$= \max_{O_{j}} \left\{ Z \left(q_{j}, N_{j} \right)^{\varepsilon - 1} \frac{\left(\varepsilon - 1 \right)^{\varepsilon - 1}}{\varepsilon^{\varepsilon}} \int_{s} D_{s} \max_{o \in O_{j}} \left(\frac{B_{o} / W_{o}}{T(\delta_{so})} \right)^{\varepsilon - 1} ds - \sum_{o \in O_{j}} R_{o} \xi \right\}$$

Catchment Areas

• Given plant locations, catchment areas only depend on $T(\delta_{so})$ and B_o/W_o

$$CA(o) = \left\{ s \in \mathcal{S} \text{ for which } o = \arg \max_{\tilde{o} \in O_j} \left\{ \frac{B_{\tilde{o}}/W_{\tilde{o}}}{T\left(\delta_{s\tilde{o}}\right)} \right\} \right\}$$

• Example:
$$T(\delta_{so}) = 1 + \delta_{so}$$

লী	ক্ত	ரீ
লঁ	đ	ரு
ð	ð	ð

 B_o/W_o vary with o

$$B_o/W_o = 1 \ \forall \ o$$

A Limit Case

- In general, placement of plants in space is a hard problem
 - Catchment areas depend on local characteristics of plant locations
 - Plant locations depend on the whole distribution of demand across space
- Our approach is to study a limit case in which firms choose to have many plants, with small catchment areas
 - \blacktriangleright Consider an environment indexed by $\Delta,$ in which

$$\begin{split} \xi^{\Delta} &= \Delta^2 \\ T^{\Delta}(\delta) &= t\left(\frac{\delta}{\Delta}\right) \\ Z^{\Delta}(q,N) &= z(q,\Delta^2 N) \end{split}$$

- Study limit case as $\Delta \to 0$
- Tradeoffs between the fixed and span-of-control costs of setting up plants and the cost of reaching consumers remain relevant
 - Plants continue to cannibalize each other's customers
 - But forces will apply at local level

The Core Result

Proposition

Suppose that $R_s,\,D_s,$ and B_s/W_s are continuous functions of s. Then, in the limit as $\Delta\to 0,$

$$\pi_{j} = \sup_{n: \mathcal{S} \to \mathbb{R}^{+}} \int_{s} \left[x_{s} z \left(q_{j}, \int n_{\tilde{s}} d\tilde{s} \right)^{\varepsilon - 1} n_{s} g \left(1/n_{s} \right) - R_{s} n_{s} \right] ds$$

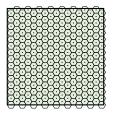
where $x_s \equiv \frac{(\varepsilon-1)^{\varepsilon-1}}{\varepsilon^{\varepsilon}} D_s \left(B_s/W_s \right)^{\varepsilon-1}$ and where g(u) is the integral of $t(\cdot)^{1-\varepsilon}$

over the distances of points to the center of a regular hexagon with area u.

- x_s combines local demand and effective labor costs
- $\kappa(n) \equiv ng\left(\frac{1}{n}\right)$ represents the local efficiency of distribution
- In the limit:
 - Maximum profits are attained by placing plants so that catchment areas are, locally, uniform infinitesimal hexagons
 - ► Firm's problem is one of calculus of variations which is much simpler

Elements of the Proof

- When economic characteristics are uniform across space solution is known
 - Fejes Toth (1953) shows that if number of plants grows large, catchment areas are uniform regular hexagons



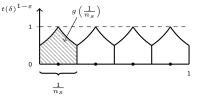
- We show that logic can be generalized to heterogeneous space
 - Construct upper and lower bounds for π_j in original problem for all Δ
 - Use hexagons for the bounds, as $\Delta \downarrow 0$
 - Upper and lower bound approach the same limit value. Thus, so does π_j

The Local Efficiency of Distribution

• We can write the firm's problem in the limit case as

$$\pi_j = \sup_{N_j, n_j: \mathcal{S} \to \mathbb{R}^+} \int_s \left[x_s z(q_j, N_j)^{\varepsilon - 1} x_s \kappa(n_{js}) - R_s n_s \right] ds, \quad \text{s.t. } N_j = \int_s n_{js} ds$$

- The local efficiency of distribution, $\kappa(n) \equiv ng\left(\frac{1}{n}\right)$, is
 - $\kappa(0) = 0$
 - Strictly increasing and strictly concave
 - $\lim_{n\to\infty} \kappa(n) = 1$ (Saturation)
 - ► $1 \kappa(n) \underset{n \to \infty}{\sim} n^{-1/2}$ (Asymptotic power law)
- If, additionally, $\lim_{\delta\to\infty}T(\delta)\delta^{-4/(\varepsilon-1)}=\infty,$ then
 - $\kappa''(0) = 0$
 - $\kappa'(0) < \infty$ (No INADA condition)



FOCs and Span-of-Control Costs

• The problem in the limit case is

$$\pi_j = \sup_{N_j, n_j: \mathcal{S} \to \mathbb{R}^+} \int_s \left[x_s z(q_j, N_j)^{\varepsilon - 1} x_s \kappa(n_{js}) - R_s n_s \right] ds, \quad \text{s.t. } N_j = \int_s n_{js} ds$$

• Differentiating with respect to the number of plants in s, n_{js} , we obtain

$$x_s z(q_j, N_j)^{\varepsilon - 1} \kappa'(n_{js}) \le R_s + \lambda_j,$$
 with "=" if $n_{js} > 0$

• Differentiating with respect to the total number of plants, N_j , we obtain

$$\lambda_j = -\frac{dz(q_j, N_j)^{\varepsilon - 1}}{dN_j} \int_s x_s \kappa(n_{js}) ds$$

- where the Lagrange multiplier of the constraint, λ_j , can be interpreted as the marginal span-of-control cost of firm j

Sorting

- The FOC implies that more productive firms have larger span-of control costs
 - ▶ That is, if $z_1 < z_2$ then $\lambda_1 < \lambda_2$, in fact $\frac{\lambda_1}{z_1^{\varepsilon-1}} < \frac{\lambda_2}{z_2^{\varepsilon-1}}$
- This implies that firms sort in space according to rents, namely,

Proposition

If $z_1 < z_2$, there is a unique cutoff $R^*(z_0, z_1)$ for which $\frac{R^*(z_1, z_2) + \lambda_2}{R^*(z_1, z_2) + \lambda_1} = \frac{z_2^{z-1}}{z^{z-1}}$.

- If $R_s > R^*(z_1, z_2)$ then $n_{2s} \ge n_{1s}$, with strict inequality if $n_{2s} > 0$
- If $R_s < R^*(z_1, z_2)$ then $n_{1s} \ge n_{2s}$, with strict inequality if $n_{1s} > 0$.

• If
$$R_s = R^*(z_1, z_2)$$
 then $n_{1s} = n_{2s}$.

Sorting and Span-of-Control

- In virtually all existing models, more productive firms enter more marginal markets
- Here, less productive firms have more plants in worse locations. Why?
 - Productive firms have more profits per plant, but also larger effective fixed costs

$$x_s z_j^{\varepsilon - 1} \kappa'(n_{js}) = \underbrace{R_s + \lambda_j}_{}$$

effective fixed cost

High productivity firms are less sensitive to rents since

$$\lambda_j \uparrow \Rightarrow \frac{d\ln(R_s + \lambda_j)}{d\ln R_s} \downarrow$$

so they sort into high-rent locations

Equilibrium

We specify the rest of the economy as follows:

- Locations characterized by exogenous amenities, A_s , and productivity, B_s
- \bullet Mass ${\cal L}$ of workers
 - ▶ Freely mobile across *s*, live and work at same location, supply labor inelastically
 - Preferences from consumption and housing are given by $u(c, h, a) = Ac^{1-\eta}h^{\eta}$
 - * with c Dixit-Stiglitz with elasticity ε
 - Budget constraint is $P_s c + R_s^H h \leq W_s + \Upsilon$
 - $\star\,$ where Υ are the mutual fund proceeds from land and firms
 - Hence, $D_s = \mathcal{L}_s c_s P_s^{\varepsilon}$
- Unit measure of land in each location
 - Competitive developers rent land to firms and workers
 - $H_s + \mathcal{N}_s \leq 1$, where $H_s = h_s \mathcal{L}_s$ and $\mathcal{N}_s = \int_j n_{js} dj$

Aggregation

In equilibrium we can define local productivity as

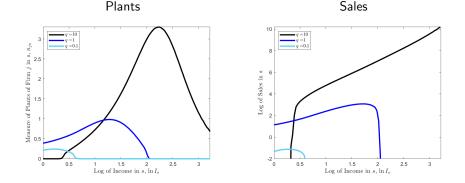
$$\mathcal{Z}_s \equiv \left(\int_j z_j^{\varepsilon - 1} \kappa(n_{js}) dj\right)^{\frac{1}{\varepsilon - 1}}$$

- Then, the consumption bundle is given by $c_s = B_s Z_s$
- the price index by $P_s = \frac{\varepsilon}{\varepsilon 1} \frac{W_s}{B_s Z_s}$
- ▶ local profitability by $x_s = \frac{1}{\varepsilon 1} \frac{W_s \mathcal{L}_s}{Z_s^{\varepsilon 1}}$
- and the share of labor in location s is then

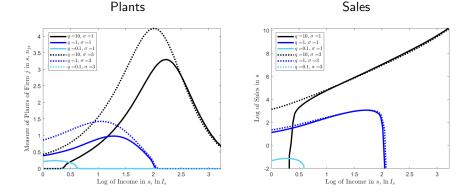
$$\frac{\mathcal{L}_s}{\mathcal{L}} = \frac{\left[A_s B_s^{1-\eta} \mathcal{Z}_s^{1-\eta} H_s\right]^{1/\eta}}{\int_s \left[A_{\tilde{s}} B_s^{1-\eta} \mathcal{Z}_{\tilde{s}}^{1-\eta} H_s\right]^{1/\eta} d\tilde{s}}$$

Numerical Illustration: Industry Equilibrium

- Continuum of industries and symmetric Cobb-Douglas preferences
- Total income, I_s , is truncated Pareto and $R(I_s) = e^{\log(I_s)^2}$
- Productivity, q_j , is also truncated Pareto with $z(q, N) = qe^{-N/\sigma}$
- Transportation costs are given by $t(\delta;\phi)=e^{\gamma/\sqrt{\phi}}$



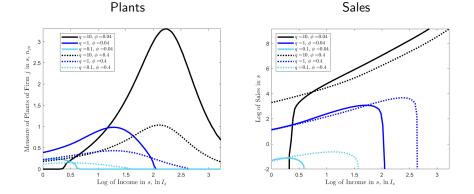
Improvements in Span-of-Control: $z(q, N) = qe^{-N/\sigma}$



• Top firms expand to low income locations

- Also, contract presence in top locations due to competition
- Worse firms exit

Improvements in Transportation: $t(\delta; \phi) = e^{\gamma/\sqrt{\phi}}$



• Increase in catchment areas reduces effective fixed cost of new plants

- ► Top firms suffer more from increased cannibalization and competition
- Worse firms benefit disproportionately from lower fixed costs

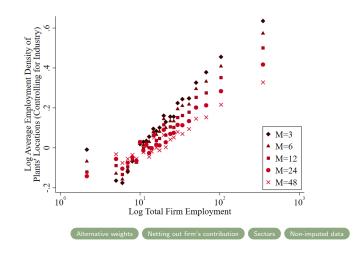
Empirical Evidence

- We use the National Establishment Time Series (NETS) dataset in 2014
 - Private sector source of business microdata (Dunn & Bradstreet)
 - We have establishment's precise location, employment, and link to parent company
 - * Drop plants with less than 5 employees
 - Definition of a location is a square of resolution M miles $\times M$ miles
- In the data we do not observe
 - ▶ Firm productivity: Monotone in total employment if $z(q, N) = qe^{-N/\sigma}$
 - Location 'quality' index, $A_s B_s^{1-\eta}$: Monotone in population density
- In Zillow data rents are increasing in population density

Rents and Density

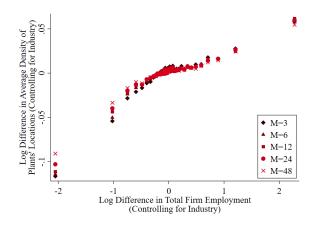
Sorting in the Data: Average Density and Firm Size

- Compute average weighted population density of plant locations of firms
 - In the baseline we use share of plants as weights



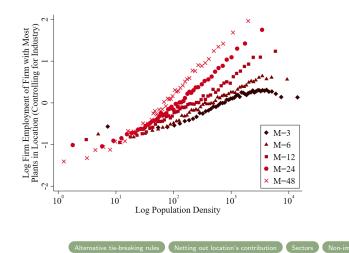
Sorting in the Data: Changes over Time

- Calculate change in firm's plant location density between 2000 and 2014
 - In both years, use 2000 local density levels
- Calculate change in total firm size between 2000 and 2014
- Subtract industry fixed effects from both variables



Sorting in the Data: National Size of the Top Firm in Town

• For each location and industry, find firm with most plants



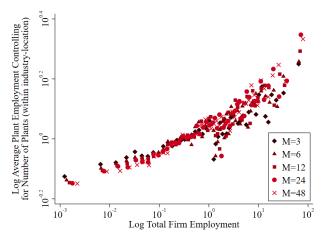
The Role of Span-of-Control in the Data

• If two firms with different z_j have the same n_{js}

▶ Low z_j , low λ_j , firm's n_{js} is limited by low productivity

• High z_j , high λ_j , firm's n_{js} is limited by high span-of-control cost

• Since firm size rises with z_j , large firms have larger plants, given n_{js}



Saturation in the Data

- The local size of a firm's plants is given by $l_{js} = (\varepsilon 1)z_j^{\varepsilon 1} \frac{x_s}{W_s} \kappa(n_{js})/n_{js}$
 - \blacktriangleright Remember, $\kappa(n_{js})$ is increasing, convex, and converges to 1
- The more saturation, the more cannibalization, and so the more plant size declines with extra plants
 - Important to control for firm and location fixed effects

	(1) $\Delta \ln l_{is}$	(2) $\Delta \ln l_{is}$	(3) $\Delta \ln l_{is}$	(4) $\Delta \ln l_{is}$	(5) $\Delta \ln l_{js}$		
	j a			• ja			
$\ln n_{js,2000}$	-0.0792***	-0.0467***	-0.0402***	-0.0634***	-0.0661***		
30,2000	(0.0260)	(0.0169)	(0.0136)	(0.0115)	(0.0101)		
$\Delta \ln n_{is}$	0.0729***	0.0460**	0.0768***	0.0610***	0.0639***		
	(0.0262)	(0.0190)	(0.0157)	(0.0135)	(0.0126)		
$\ln n_{js,2000} \times \Delta \ln n_{js}$	-0.0954***	-0.00369	-0.0194	-0.0192**	-0.0225***		
J J -	(0.0308)	(0.0203)	(0.0132)	(0.00970)	(0.00787)		
Observations	20,230	30,583	41,246	49,888	56,170		
R-squared	0.628	0.621	0.604	0.589	0.571		
SIC8-location FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
SIC8-firm FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
М	3	6	12	24	48		
Standard errors in parentheses							
*** .0.01 ** .0.05 * .0.1							

*** p<0.01, ** p<0.05, * p<0.1

Local Characteristics and Plant Growth in the Data

- Suppose local profitability in s, x_s , increases, which makes rents, R_s , rise
- Remember the FOC, $x_s z(q_j, N_j)^{\varepsilon 1} \kappa'(n_{js}) \leq R_s + \lambda_j$
- $\bullet\,$ Hence, conditional on $n_{js}\textsc{,}$ and firm and local fixed effects
 - Nationally large firms expand the number of plants more when x_s rises
 - Rents are a smaller part of large firms' fixed costs, $R_s + \lambda_j$

	(1)	(2)	(3)	(4)	(5)			
	Growth in n_{js}	Growth in n_{js}	Growth in n_{js}	Growth in n_{js}	Growth in n_{js}			
$\ln n_{js,2000}$	0.00438 (0.00646)	-0.00302 (0.00457)	-0.00213 (0.00357)	0.00150 (0.00303)	0.00511* (0.00268)			
$\ln L_{j,2000} \times \Delta \ln \mathcal{L}_s$	0.0100* (0.00540)	0.0126** (0.00522)	0.0171*** (0.00549)	0.0237*** (0.00622)	0.0427*** (0.00717)			
Observations	272,506	360,721	418,772	443,227	442,352			
R-squared	0.793	0.788	0.782	0.780	0.775			
SIC8-firm FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
SIC8-location FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
M	3	6	12	24	48			
Robust standard errors in parentheses								

*** p<0.01, ** p<0.05, * p<0.1

Transport Efficiency and Plants in the Data

- Effect of transport efficiency, ϕ , on n_{js} is ambiguous
 - ▶ Higher transport efficiency enlarges CA but increases L_{js}
- Saturation ($\kappa'' < 0$) implies that cross-effect of L_{js} and ϕ is negative

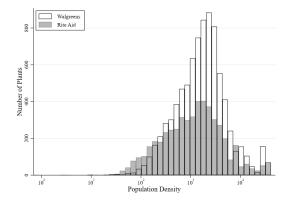
VARIABLES	(1) $\ln n_{js}$	(2) $\ln n_{js}$	(3) ln n _{js}	(4) $\ln n_{js}$	(5) $\ln n_{js}$	(6) ln n _{js}	(7) $\ln n_{js}$	(8) ln n _{js}
$\ln L_{js}$	0.276***	0.244***	0.276***	0.351***	0.129***	0.271***	0.271***	0.272***
X Gini	(0.00145)	(0.00131) -0.151***	(0.00145)	(0.00219)	(0.00555)	(0.00152)	(0.00183)	(0.00150)
X Ellison-Glaeser		(0.00171)	-0.0413*** (0.00607)					
X Consumer Gravity			(0.00007)	- 0.0970*** (0.00150)				
X Freight Cost				(0.00130)	0.0200*** (0.00584)			
X Trade Cost					(0.00504)	0.0250*** (0.00118)		
X Speed Score						(0.00110)	-0.00355*** (0.00131)	
X Travel Time							(0.00101)	0.00881*** (0.00117)
Observations	366,979	366,979	366,979	209,700	8,166	345,771	207,155	323,782
R-squared	0.747	0.769	0.748	0.798	0.692	0.750	0.769	0.753
SIC8-location FE	√.	√.	√.	√	×.	√	 ✓ 	√.
SIC8-firm FE	√ 24	×	√ 24	√ 24	√ 24	√ 24	√ 24	√ 24
М	24	24				24	24	24
				ard errors in pa , ** p<0.05, *				
			··· p<0.01	, ·· p<0.05, *	h<0.1			Robustness

Conclusions

- We propose methodology to analyze the location, number, and size of a firm's plants across heterogeneous locations
 - ► Original problem intractable but limit problem much simpler to analyze
 - Limit problem preserves all the relevant tradeoffs, but locally
 - Easy to incorporate in a quantitative spatial economic framework
- Problem yields multiple insights: Sorting, as well as the role of saturation, span-of-control, and transport technology
 - ▶ We corroborate these implications using U.S. NETS data
- We study numerically the effect of changes in span-of-control and transport technology in a 'small' industry
 - Interesting to study economy-wide or 'large' industry changes
 - In particular the effects of secular changes of technology on economic activity and local competition

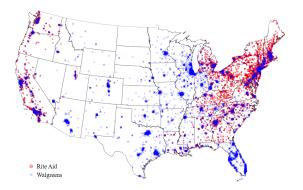
Thank You

Sorting Example: Drug Stores



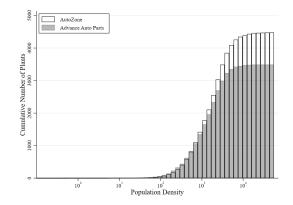
Back to Intro

Sorting Example: Drug Stores

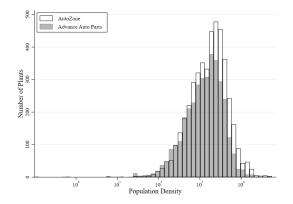


Back to Intro

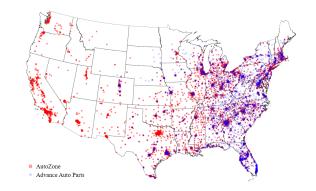
Sorting



Sorting Example: Auto Parts

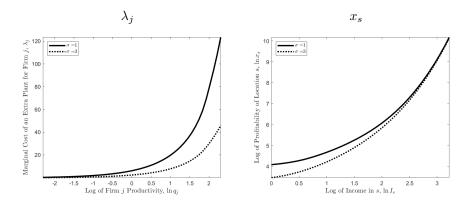


Sorting Example: Auto Parts

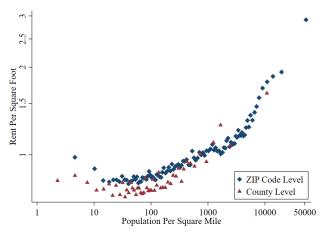


Back to Auto Parts Back to Intro

Improvements in Span of Control: $z(q, N) = qe^{-N/\sigma}$

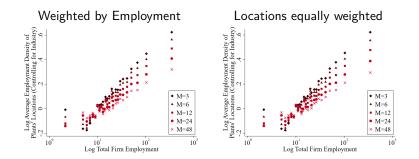


Denser Locations Have Higher Rents



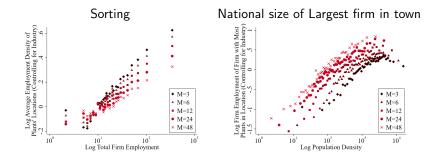
Data source: Zillow

Sorting in the cross-section



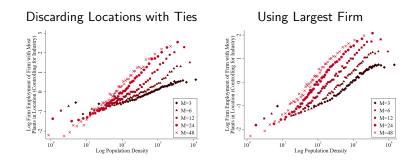
back

(Net) Sorting and National Size



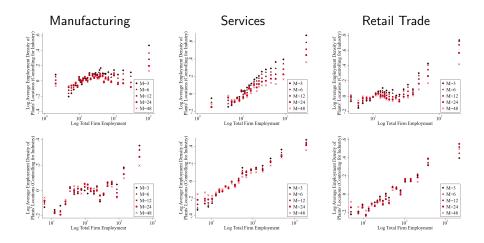
back to sorting back to National Size

National Size, alternative tie-breakers



back to National Size

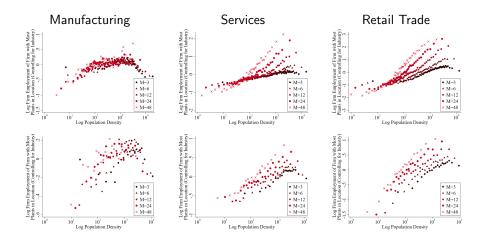
Sorting, by sector



Second row excludes single-plant firms

back to Sorting

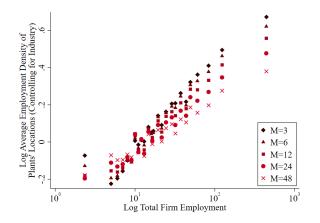
National size, by sector



• Second row excludes single-plant firms

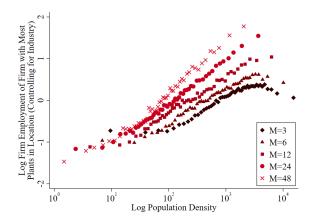
back to National Size

Sorting, non-imputed data



back to sorting

National Size of the Top Firm in Town, non-imputed data



back to National Size

Transportation efficiency, plants, and catchment areas

