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Introduction

A fundamental part of a firm’s production problem is to determine the
number, size, and location of its plants

More plants, closer to consumers, imply lower transport costs but larger
fixed and managerial span-of-control costs

I Plants cannibalize each other’s markets, particularly if they are close

There are no general insights on the solution to this problem when
locations are heterogeneous

I Large combinatorial problem, so most of the analysis is purely numerical

I Solution is known when space is homogeneous

Important to study this problem to understand firm characteristics as well as
consumer access to a firm’s output

In equilibrium, plant location decisions are an essential determinant of local
concentration and the distribution of economic activity in space
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What We Do

Propose a model of a firm’s location decisions

I Heterogeneous firms locate multiple plants in heterogeneous locations

I Firms face transport, span-of-control, and fixed costs

I Key tradeoff: minimize transport cost vs. cannibalization

Problem of the firm is a large combinatorial discrete-choice problem

Our contribution is to propose a tractable limit case

I All key forces and trade-offs remain relevant

I Solution method inspired by central place theory, discrete geometry

I Amounts to a many-to-many matching problem that can be partially
characterized analytically

Limit case can be embedded in an equilibrium framework

I Study effect of changes in technology and transport costs on sorting and local
characteristics

We verify many of the implications using the NETS data set
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The Environment

Customers distributed across locations s ∈ S = [0, 1]2 ⊂ R2

Each location s characterized by

I Exogenous local productivity, Bs

I Residual demand, Ds(p) = Dsp
−ε, with ε > 1

F Later, Ds a function of local price index and exogenous amenities

I Wage rate, Ws

I Commercial rent, Rs

Firms take local equilibrium as given
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Firms

Each firm j ∈ J produces a unique variety

Chooses set of locations Oj ∈ S where to produce

I Let Nj = |Oj |, denote the number of locations where j produces

Firm productivity in location o ∈ Oj is BoZ(qj , Nj)

I where qj is an exogenous component of firm productivity

I and ZN (qj , Nj) < 0 and Z(qj , 0) <∞ (Span-of-control costs)

Each plant takes ξ units of commercial real estate, with rental cost Rs per
unit of space

Iceberg cost, T (δ), to deliver good to customer at distance δ
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The Firm’s Problem

Minimal cost of delivering one unit to s is Λjs (Oj) ≡ mino∈Oj
WoT (δso)
BoZ(qj ,Nj)

Optimal price is then maxpjs Ds(pjs) (pjs − Λjs)

Total profit of firm j is then given by

πj = max
Oj


∫
s

max
pjs

Dsp
−ε
js (pjs − Λjs (Oj)) ds−

∑
o∈Oj

Roξ


= max

Oj

Z (qj , Nj)
ε−1 (ε− 1)ε−1

εε

∫
s

Ds max
o∈Oj

(
Bo/Wo

T (δso)

)ε−1

ds−
∑
o∈Oj

Roξ
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Catchment Areas

Given plant locations, catchment areas only depend on T (δso) and Bo/Wo

CA(o) =

{
s ∈ S for which o = arg max

õ∈Oj

{
Bõ/Wõ

T (δsõ)

}}
Example: T (δso) = 1 + δso

Bo/Wo = 1 ∀ o Bo/Wo vary with o
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A Limit Case

In general, placement of plants in space is a hard problem
I Catchment areas depend on local characteristics of plant locations
I Plant locations depend on the whole distribution of demand across space

Our approach is to study a limit case in which firms choose to have many
plants, with small catchment areas

I Consider an environment indexed by ∆, in which

ξ∆ = ∆2

T∆(δ) = t

(
δ

∆

)
Z∆(q,N) = z(q,∆2N)

I Study limit case as ∆→ 0

Tradeoffs between the fixed and span-of-control costs of setting up plants
and the cost of reaching consumers remain relevant

I Plants continue to cannibalize each other’s customers
I But forces will apply at local level
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The Core Result

Proposition

Suppose that Rs, Ds, and Bs/Ws are continuous functions of s. Then, in the
limit as ∆→ 0,

πj = sup
n:S→R+

∫
s

[
xsz

(
qj ,

∫
ns̃ds̃

)ε−1
nsg (1/ns)−Rsns

]
ds

where xs ≡ (ε−1)ε−1

εε Ds (Bs/Ws)
ε−1 and where g(u) is the integral of t (·)1−ε

over the distances of points to the center of a regular hexagon with area u.

xs combines local demand and effective labor costs

κ(n) ≡ ng
(
1
n

)
represents the local efficiency of distribution

In the limit:
I Maximum profits are attained by placing plants so that catchment areas are,

locally, uniform infinitesimal hexagons
I Firm’s problem is one of calculus of variations which is much simpler
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Elements of the Proof

When economic characteristics are uniform across space solution is known

I Fejes Toth (1953) shows that if number of plants grows large, catchment areas
are uniform regular hexagons

We show that logic can be generalized to heterogeneous space

I Construct upper and lower bounds for πj in original problem for all ∆

I Use hexagons for the bounds, as ∆ ↓ 0

I Upper and lower bound approach the same limit value. Thus, so does πj
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The Local Efficiency of Distribution

We can write the firm’s problem in the limit case as

πj = sup
Nj ,nj :S→R+

∫
s

[
xsz(qj , Nj)

ε−1xsκ(njs)−Rsns
]
ds, s.t. Nj =

∫
s

njsds

The local efficiency of distribution, κ(n) ≡ ng
(
1
n

)
, is

I κ(0) = 0

I Strictly increasing and strictly concave

I limn→∞ κ(n) = 1 (Saturation)

I 1− κ(n) ∼
n→∞

n−1/2 (Asymptotic power law)

If, additionally, limδ→∞ T (δ)δ−4/(ε−1) =∞, then

g
(

1
ns

)
t(δ)1−ε

1

1

0

−

1
ns

I κ′′(0) = 0

I κ′(0) <∞ (No INADA condition)
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FOCs and Span-of-Control Costs

The problem in the limit case is

πj = sup
Nj ,nj :S→R+

∫
s

[
xsz(qj , Nj)

ε−1xsκ(njs)−Rsns
]
ds, s.t. Nj =

∫
s

njsds

Differentiating with respect to the number of plants in s, njs, we obtain

xsz(qj , Nj)
ε−1κ′(njs) ≤ Rs + λj , with “ = ” if njs > 0

Differentiating with respect to the total number of plants, Nj , we obtain

λj = −dz(qj , Nj)
ε−1

dNj

∫
s

xsκ(njs)ds

I where the Lagrange multiplier of the constraint, λj , can be interpreted as the
marginal span-of-control cost of firm j
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Sorting

The FOC implies that more productive firms have larger span-of control costs

I That is, if z1 < z2 then λ1 < λ2, in fact λ1

zε−1
1

< λ2

zε−1
2

This implies that firms sort in space according to rents, namely,

Proposition
If z1 < z2, there is a unique cutoff R∗(z0, z1) for which R∗(z1,z2)+λ2

R∗(z1,z2)+λ1
=

zε−1
2

zε−1
1

.

If Rs > R∗(z1, z2) then n2s ≥ n1s, with strict inequality if n2s > 0

If Rs < R∗(z1, z2) then n1s ≥ n2s, with strict inequality if n1s > 0.

If Rs = R∗(z1, z2) then n1s = n2s.

R*

Low productivity firm

High productivity firm

R

Measure of plants

Firms also sort based on local profitability, xs
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Sorting and Span-of-Control

In virtually all existing models, more productive firms enter more marginal
markets

Here, less productive firms have more plants in worse locations. Why?

I Productive firms have more profits per plant, but also larger effective fixed
costs

xsz
ε−1
j κ′(njs) = Rs + λj︸ ︷︷ ︸

effective fixed cost

I High productivity firms are less sensitive to rents since

λj ↑ ⇒
d ln(Rs + λj)

d lnRs
↓

so they sort into high-rent locations
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Equilibrium

We specify the rest of the economy as follows:

Locations characterized by exogenous amenities, As, and productivity, Bs

Mass L of workers

I Freely mobile across s, live and work at same location, supply labor inelastically
I Preferences from consumption and housing are given by u(c, h, a) = Ac1−ηhη

F with c Dixit-Stiglitz with elasticity ε

I Budget constraint is Psc+RHs h ≤Ws + Υ

F where Υ are the mutual fund proceeds from land and firms

I Hence, Ds = LscsP εs
Unit measure of land in each location

I Competitive developers rent land to firms and workers

I Hs +Ns ≤ 1, where Hs = hsLs and Ns =
∫
j
njsdj
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Aggregation

In equilibrium we can define local productivity as

Zs ≡
(∫

j

zε−1j κ(njs)dj

) 1
ε−1

I Then, the consumption bundle is given by cs = BsZs
I the price index by Ps = ε

ε−1
Ws
BsZs

I local profitability by xs = 1
ε−1

WsLs
Zε−1
s

I and the share of labor in location s is then

Ls
L =

[
AsB

1−η
s Z1−η

s Hs
]1/η∫

s

[
As̃B

1−η
s̃ Z1−η

s̃ Hs
]1/η

ds̃
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Numerical Illustration: Industry Equilibrium

Continuum of industries and symmetric Cobb-Douglas preferences

Total income, Is, is truncated Pareto and R(Is) = elog(Is)
2

Productivity, qj , is also truncated Pareto with z(q,N) = qe−N/σ

Transportation costs are given by t(δ;φ) = eγ/
√
φ

Plants Sales
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Improvements in Span-of-Control: z(q,N) = qe−N/σ

Plants Sales

Top firms expand to low income locations
I Also, contract presence in top locations due to competition

Worse firms exit

Effect on λj and xs
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Improvements in Transportation: t(δ;φ) = eγ/
√
φ

Plants Sales

Increase in catchment areas reduces effective fixed cost of new plants

I Top firms suffer more from increased cannibalization and competition

I Worse firms benefit disproportionately from lower fixed costs
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Empirical Evidence

We use the National Establishment Time Series (NETS) dataset in 2014

I Private sector source of business microdata (Dunn & Bradstreet)

I We have establishment’s precise location, employment, and link to parent
company

F Drop plants with less than 5 employees

I Definition of a location is a square of resolution M miles × M miles

In the data we do not observe

I Firm productivity: Monotone in total employment if z(q,N) = qe−N/σ

I Location ‘quality’ index, AsB
1−η
s : Monotone in population density

In Zillow data rents are increasing in population density

Rents and Density
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Sorting in the Data: Average Density and Firm Size

Compute average weighted population density of plant locations of firms

I In the baseline we use share of plants as weights

Alternative weights Netting out firm’s contribution Sectors Non-imputed data
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Sorting in the Data: Changes over Time
Calculate change in firm’s plant location density between 2000 and 2014

I In both years, use 2000 local density levels

Calculate change in total firm size between 2000 and 2014

Subtract industry fixed effects from both variables
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Sorting in the Data: National Size of the Top Firm in Town

For each location and industry, find firm with most plants

Alternative tie-breaking rules Netting out location’s contribution Sectors Non-imputed data
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The Role of Span-of-Control in the Data
If two firms with different zj have the same njs

I Low zj , low λj , firm’s njs is limited by low productivity

I High zj , high λj , firm’s njs is limited by high span-of-control cost

Since firm size rises with zj , large firms have larger plants, given njs
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Saturation in the Data

The local size of a firm’s plants is given by ljs = (ε− 1)zε−1j
xs
Ws
κ(njs)/njs

I Remember, κ(njs) is increasing, convex, and converges to 1

The more saturation, the more cannibalization, and so the more plant
size declines with extra plants

I Important to control for firm and location fixed effects

(1) (2) (3) (4) (5)
∆ ln ljs ∆ ln ljs ∆ ln ljs ∆ ln ljs ∆ ln ljs

lnnjs,2000 -0.0792*** -0.0467*** -0.0402*** -0.0634*** -0.0661***
(0.0260) (0.0169) (0.0136) (0.0115) (0.0101)

∆ lnnjs 0.0729*** 0.0460** 0.0768*** 0.0610*** 0.0639***
(0.0262) (0.0190) (0.0157) (0.0135) (0.0126)

lnnjs,2000 ×∆ lnnjs -0.0954*** -0.00369 -0.0194 -0.0192** -0.0225***
(0.0308) (0.0203) (0.0132) (0.00970) (0.00787)

Observations 20,230 30,583 41,246 49,888 56,170
R-squared 0.628 0.621 0.604 0.589 0.571
SIC8-location FE X X X X X
SIC8-firm FE X X X X X
M 3 6 12 24 48

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Local Characteristics and Plant Growth in the Data

Suppose local profitability in s, xs, increases, which makes rents, Rs, rise

Remember the FOC, xsz(qj , Nj)
ε−1κ′(njs) ≤ Rs + λj

Hence, conditional on njs, and firm and local fixed effects

I Nationally large firms expand the number of plants more when xs rises

I Rents are a smaller part of large firms’ fixed costs, Rs + λj

(1) (2) (3) (4) (5)
Growth in njs Growth in njs Growth in njs Growth in njs Growth in njs

lnnjs,2000 0.00438 -0.00302 -0.00213 0.00150 0.00511*
(0.00646) (0.00457) (0.00357) (0.00303) (0.00268)

lnLj,2000 ×∆ lnLs 0.0100* 0.0126** 0.0171*** 0.0237*** 0.0427***
(0.00540) (0.00522) (0.00549) (0.00622) (0.00717)

Observations 272,506 360,721 418,772 443,227 442,352
R-squared 0.793 0.788 0.782 0.780 0.775
SIC8-firm FE X X X X X
SIC8-location FE X X X X X
M 3 6 12 24 48

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Transport Efficiency and Plants in the Data

Effect of transport efficiency, φ, on njs is ambiguous

I Higher transport efficiency enlarges CA but increases Ljs

Saturation (κ′′ < 0) implies that cross-effect of Ljs and φ is negative

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES lnnjs lnnjs lnnjs lnnjs lnnjs lnnjs lnnjs lnnjs

lnLjs 0.276*** 0.244*** 0.276*** 0.351*** 0.129*** 0.271*** 0.271*** 0.272***
(0.00145) (0.00131) (0.00145) (0.00219) (0.00555) (0.00152) (0.00183) (0.00150)

X Gini -0.151***
(0.00171)

X Ellison-Glaeser -0.0413***
(0.00607)

X Consumer Gravity -0.0970***
(0.00150)

X Freight Cost 0.0200***
(0.00584)

X Trade Cost 0.0250***
(0.00118)

X Speed Score -0.00355***
(0.00131)

X Travel Time 0.00881***
(0.00117)

Observations 366,979 366,979 366,979 209,700 8,166 345,771 207,155 323,782
R-squared 0.747 0.769 0.748 0.798 0.692 0.750 0.769 0.753
SIC8-location FE X X X X X X X X
SIC8-firm FE X X X X X X X X
M 24 24 24 24 24 24 24 24

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Robustness for M
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Conclusions

We propose methodology to analyze the location, number, and size of a
firm’s plants across heterogeneous locations

I Original problem intractable but limit problem much simpler to analyze

I Limit problem preserves all the relevant tradeoffs, but locally

I Easy to incorporate in a quantitative spatial economic framework

Problem yields multiple insights: Sorting, as well as the role of saturation,
span-of-control, and transport technology

I We corroborate these implications using U.S. NETS data

We study numerically the effect of changes in span-of-control and transport
technology in a ‘small’ industry

I Interesting to study economy-wide or ‘large’ industry changes

I In particular the effects of secular changes of technology on economic activity
and local competition
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Thank You
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Sorting Example: Drug Stores
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Sorting Example: Drug Stores
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Sorting

Density Map Back to Intro



Sorting Example: Auto Parts
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Sorting Example: Auto Parts
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Improvements in Span of Control: z(q,N) = qe−N/σ

λj xs
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Denser Locations Have Higher Rents

Data source: Zillow
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Sorting in the cross-section

Weighted by Employment Locations equally weighted
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(Net) Sorting and National Size

Sorting National size of Largest firm in town

back to sorting back to National Size



National Size, alternative tie-breakers

Discarding Locations with Ties Using Largest Firm

back to National Size



Sorting, by sector

Manufacturing Services Retail Trade

Second row excludes single-plant firms

back to Sorting



National size, by sector

Manufacturing Services Retail Trade

Second row excludes single-plant firms

back to National Size



Sorting, non-imputed data
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National Size of the Top Firm in Town, non-imputed data

back to National Size



Transportation efficiency, plants, and catchment areas
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