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Abstract

Using data on the portfolio holdings and income of millions of U.S. retirement investors, I
find that positive and persistent shocks to income lead to a significant increase in the equity
share of investor portfolios, while increases in financial wealth due to realized returns lead
to a small decline in the equity share. In a standard homothetic life-cycle model with human
capital and constant risk aversion, the portfolio responses to these two wealth shocks should
be of equal magnitude and opposite sign. The positive net effect in the data is evidence for
risk aversion that decreases in total wealth. I estimate a structural life-cycle consumption
and portfolio choice model that accounts for inertia in portfolio rebalancing and matches the
reduced-form estimates with a significant degree of non-homotheticity in risk preferences, such
that a 10% permanent income growth leads to an average decrease in risk aversion by 1.7%.
Decreasing relative risk aversion preferences concentrate equity in the hands of the wealthy
and double the share of wealth at the top of the wealth distribution.
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1 Introduction

Does relative risk aversion decrease with wealth? The relation between wealth and risk aversion
is a key ingredient in any portfolio choice model or macro-finance model that deals with the
dynamics of saving and investment over the life cycle or with cross-sectional differences between
households. Traditional portfolio choice models and macro-finance models typically assume
constant relative risk aversion (CRRA) preferences. An alternative that has gained popularity
is decreasing relative risk aversion (DRRA) preferences. In portfolio choice theory, DRRA
preferences offer a potential explanation for stylized facts of the data: a relatively flat or even
upward-sloping equity share profile over the life cycle and a positive cross-sectional correlation
between wealth and equity shares (see, for example, Carroll, 2002; Wachter and Yogo, 2010). In
macro finance, models where risk aversion changes with wealth have had success in matching
asset pricing moments (Constantinides, 1990; Bakshi and Chen, 1996; Campbell and Cochrane,
1999; Wachter, 2006; Verdelhan, 2010) and explaining the joint dynamics of asset prices and
business cycle fluctuations (Jermann, 1998; Boldrin, Christiano, and Fisher, 2001).

Measuring the relationship between wealth and risk aversion in micro data is challenging.
First, due to unobserved heterogeneity across investors, this relationship needs to be identified
from individual changes over time, which places high demands on the data. Prior findings on
the effect of financial wealth on risk taking have been mixed, and depend on the instrument for
financial wealth that is used.1 Second, the effect of financial wealth on risk taking is in itself
not informative about DRRA (Wachter and Yogo, 2010). Since the riskiness of human capital
affects optimal portfolio choice, the relative proportion of human capital to financial wealth is
a confounding factor. Even with CRRA preferences, changes to financial wealth therefore lead to
changes in optimal asset allocations. Finally, to the extent that there is reduced-form evidence that
is suggestive of DRRA preferences, it is an open question what the quantitative implications of
non-homothetic preferences are in a life-cycle model that matches empirical magnitudes.

In this paper, I use detailed panel data on changes in financial profiles for the same individuals
over time to test for non-homothetic risk preferences. I find that positive and persistent shocks to
income lead to a significant increase in the equity share of investor portfolios, while increases in
financial wealth due to realized returns lead to a small decline in the equity share. The positive
net effect of these two wealth shocks is consistent with risk aversion that decreases in total
wealth. Second, I use these portfolio responses to estimate the parameters of a structural life-cycle
consumption and portfolio choice model that accounts for inertia in portfolio rebalancing. The
model matches the reduced-form estimates with a significant degree of non-homotheticity in
risk preferences, such that a 10% permanent income growth leads to a decrease in risk aversion
by 1.7%. Third, I find that decreasing risk aversion has important quantitative implications for

1Brunnermeier and Nagel (2008) and Chiappori and Paiella (2011) do not reject the absence of an effect of financial
wealth on risk taking. On the other hand, Calvet, Campbell, and Sodini (2009), Calvet and Sodini (2014), and
Paravisini, Rappoport, and Ravina (2017) find evidence in support of a positive relation between financial wealth and
risk tolerance. I review these findings below.
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wealth inequality. Since wealthier households select riskier positions, they have higher average
returns. Due to this heterogeneity in expected returns to financial wealth, the wealth share of the
top 1% in the model nearly doubles. The model also implies that rising income inequality in the
U.S. over the past three decades has led to an increase in demand for equity that is equivalent to
a 15% decline in the equity premium.

How can the relation between wealth and risk aversion be estimated from micro data?
Households face two main types of wealth shocks: income growth and returns on financial assets.
By observing the portfolio responses to these two wealth shocks, the effects of changes in the
composition in wealth can be separated from the effects of changes in the overall level of wealth.
In a homothetic life-cycle model where risk aversion is constant, only the composition of wealth
matters for optimal allocations and not the level of wealth. This means that the relevant state
variable is the ratio of human capital to financial wealth. In that case, the portfolio responses to
income growth and portfolio returns exactly offset each other – up to log-linear approximation
– and therefore add up to zero. A positive net effect is evidence for DRRA preferences. Thus,
DRRA can be detected by measuring the joint effects of income growth and realized portfolio
returns on portfolio allocations.

To measure these portfolio responses, I use a dataset that contains individual portfolio
holdings, trades, income, and demographic characteristics of millions of U.S. retail investors with
trillions of dollars in investable wealth. The sample covers annual observations between 2006
and 2018 and therefore spans various market conditions. I restrict attention to a subsample that
is representative of the data and a subset of the overall U.S. population: Retirement Investors
(RIs), which are “typical” American investors that have retirement assets in the middle 80% of the
age-adjusted redistribution of retirement wealth, and for whom retirement savings are the main
form of investable wealth.

In response to an increase in income growth, retirement investors increase their allocation
towards equity, and reduce allocations to bonds and cash-like securities. This relation is driven
by investor-driven portfolio changes through trading, not by ex-ante differences in portfolios
and market fluctuations, and is robust to including various sets of demographic controls and
employer-year fixed effects. While the variation in the data is predominantly coming from income
changes within jobs, I find similar effects for the subset of investors that had a job change. The
effects of income growth on equity share changes are long-lasting – portfolio allocations do not
revert back to the initial composition. As a result, there is a cross-sectional correlation between
income levels and equity shares.

Theory predicts that investors should respond differently to persistent income shocks than
to transitory income shocks. Indeed, the positive relation between income growth and equity
share changes is stronger over longer horizons, where persistent shocks are a relatively bigger
component of total income growth. I measure the effect of persistent income growth on portfolios
by instrumenting income growth by the long difference of lead income and lag income. The effect
of persistent income growth on portfolio equity shares is more than double the effect of overall
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income growth. The coefficient does not change when controlling for employer-year fixed effects
or annual effects by observable characteristics. Although the relation between income growth and
changes in portfolio equity shares is highly statistically significant, the magnitude of the effect is
modest, even when focusing on persistent income growth. The baseline estimate implies that a
ten percent increase in the persistent component of labor income leads to an increase in equity
share by 0.4 percent.

I find considerable heterogeneity in the effect of income growth on equity shares due to
infrequent portfolio adjustment. It is well known that many investors irregularly update their
portfolios, in particular in retirement accounts. A large share of the sample stick with the default
allocation and only a small percentage of the sample rebalance their portfolio in any given year.
First, I find that investors without initial portfolios at the default allocation have a much stronger
response to income shocks. Second, the effects are driven by a small share of the sample that
reallocate their portfolios. Conditional on having a significant portfolio turnover, a ten percent
increase in persistent income leads to an increase in equity share by 3.0 percent. Third, the
effect size is strongly increasing in the number of web visits that investors make during the year,
suggesting that inattention might be an important channel through which infrequent adjustment
arises.

To quantify the effect of income on targeted equity holdings and to separate the effects of
asset fluctuations from investor reallocation decisions, I estimate a partial adjustment model
similar to Calvet et al. (2009). The model quantifies the speed of adjustment in portfolios and
changes in desired portfolio allocations. In line with baseline statistics on trading behavior, I find
that the asset return-driven component captures over 80 percent of overall portfolio changes.
Controlling for the effects of infrequent adjustment and for aggregate market movements, the
effect of idiosyncratic portfolio returns on risk taking is slightly negative. The positive net effect of
income growth and portfolio returns on equity shares conflicts with the prediction of a standard
homothetic life-cycle model and is consistent with risk aversion that decreases in total wealth.

In a second step, I investigate the quantitative implications of these findings by specifying
and estimating a realistic life-cycle consumption and portfolio choice model. In the model,
agents receive labor income subject to uninsurable idiosyncratic shocks during their working life
and allocate their savings towards a risky and a riskless asset. The model has three important
ingredients: a preference specification that generalizes CRRA preferences and can account for
non-homothetic risk preferences, human capital with countercyclical tail risk in permanent
income, and infrequent portfolio rebalancing. Since in the data I find that trading activity is
largely determined by outside factors – the predictive power of changes in financial circumstances
on investor reallocation activity is low and the hazard function of portfolio adjustment is flat, I
model rebalancing to be time dependent rather than state dependent.2 The parameters of the
model that are estimated through indirect inference are the rate of time preference, baseline risk
aversion, non-homotheticity in risk aversion, and the frequency of portfolio rebalancing. To match

2Giglio, Maggiori, Stroebel, and Utkus (2019) arrive at a similar conclusion for the effect of beliefs.
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the additional empirical fact that permanent-income rich households save disproportionally more
than poor households and therefore the cross-sectional relation between consumption and
permanent income is concave (Straub, 2019), I allow for heterogeneity in discount factors that
is correlated with permanent income levels. The model is able to fit the regression evidence on
portfolio changes in response to wealth shocks, jointly with the age profile of savings to income
and the average equity share at age 50 from SCF. Key to this result are a significant elasticity of
risk aversion with respect to wealth and a model of human capital that accounts for cyclicality in
high order moments of income growth.

Third, I find that the model has important long-run implications for inequality and asset
prices. Since risk aversion decreases in wealth, richer households choose to invest a larger share
of their portfolios in equity than poorer households. Wealthier households therefore have higher
returns on average. This positive correlation between wealth and average portfolio returns
matches empirical patterns (Fagereng, Guiso, Malacrino, and Pistaferri, forthcoming).3 The
estimated non-homotheticity in risk preferences thus implies a two-way relation between wealth
and equity demand that has important implications for inequality. The range of expected returns
by net worth, conditional on age, nearly spans the full equity premium: households in the lowest
percentile of the net worth distribution invest the majority of their financial wealth in the risk-free
asset, while households in the top of the net worth distribution invest only in equity. By targeting
the within-person portfolio responses to wealth shocks and the cross-sectional relation between
consumption and permanent income, the model generates an (untargeted) wealth distribution
with large inequality: the wealth share of the top 1% is 37.0%. An important contributor to this
large wealth inequality is that equity holdings are concentrated in the hands of the rich. In an
alternative estimation of the model, I show that if risk preferences were CRRA, the top 1% wealth
share would only be 20.4%.4

Finally, I use the model to examine the effects of rising income inequality in the United States
over the past few decades on wealth inequality and asset demand. An important force behind
increased income inequality is an increase in the dispersion of permanent income levels of new
cohorts (Guvenen, Kaplan, Song, and Weidner, 2018). I calibrate the dispersion in initial income
to match the Gini coefficient of income in the SCF and compare simulations of the model with
levels of income inequality in 1989 and 2016. The top 1% wealth share rises from 22.0% to 37.0%.
I calculate the change in the equity premium that offsets the change in demand in the model
such that the aggregate equity share reverts back to its original value.5 The model suggests that
inequality over the past few decades has led to an increased demand for equity that is equivalent
to a decrease in the equity premium of 0.69 percentage points (15% of the equity premium in the
model).6

3Since all agents in the model have access to two assets, a risk-free asset and a stock market index, these patterns
are fully driven by differences in risk-taking behavior as opposed to differences in technologies. Fagereng et al.
(forthcoming) find that average returns to net worth are different even within narrow asset classes.

4Similarly, in a version of the model where the equity premium is set to zero, the top 1% wealth share is 19.4%.
5Catherine (2019) runs a similar exercise to calculate the effects of cyclical skewness in income growth on risk premia.
6Evidence on changes in the equity risk premium over this period is mixed. Pástor and Stambaugh (2001), Fama
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Literature. Portfolio choice theory prescribes how investors should allocate their financial
wealth across asset classes under a wide set of assumptions on preferences, human capital
endowments, and other constraints or financial characteristics. In the absence of non-tradable
labor income, the optimal equity share of a CRRA investor is constant (Samuelson, 1969; Merton,
1969). With human capital, what matters is the relative proportion of human capital to financial
wealth; the overall level of wealth plays no role. Risk-free human capital implies that the demand
for equity in investment portfolios should increase in the share of human capital in total wealth.
As human capital diminishes with age and as financial wealth grows, the share of financial
wealth invested in equity decreases over the life cycle (Jagannathan and Kocherlakota, 1996).
This insight extends to many quantitative life-cycle models where human capital has limited
stock-like properties.7 Empirical findings on investor portfolios pose several challenges to these
theoretical predictions. First, the portfolio equity share of investors that participate in financial
markets tends to be relatively flat or even upward sloping over the life cycle (Guiso, Haliassos,
and Jappelli, 2002; Ameriks and Zeldes, 2004). Second, the average portfolio equity share of
participants is relatively low compared to optimal allocations in a model with bond-like human
capital and moderate risk aversion. Third, it has been well documented that there is a positive
relation between wealth and risk taking in the cross section of households (see e.g. Heaton and
Lucas, 2000; Carroll, 2002). Two important variations on the traditional setup of life-cycle models
that address these facts and have been studied extensively are deviations from CRRA preferences
and alternative properties of human capital.

First, Wachter and Yogo (2010) show the appeal of DRRA preferences for matching equity
share profiles over the life cycle and the cross-sectional relation between wealth and asset prices.
However, empirical evidence on the link between wealth and risk preferences is mixed. Since
cross-sectional differences in portfolios could be due to differences in risk tolerance, influenced
for instance by socioeconomic status, this link cannot be estimated in a simple cross-sectional OLS
regression. Several papers have looked at the effects of financial wealth on risk-taking behavior
in panel data. Chiappori and Paiella (2011) use Italian data to regress changes in risky shares
on changes in wealth and find support for a CRRA specification. To address measurement error
in the joint measurement of financial wealth and portfolio allocations, Brunnermeier and Nagel
(2008) instrument wealth growth by income growth and find a negative relation between wealth
changes and risky portfolio shares, while Calvet et al. (2009) instrument wealth changes with
return realizations and find a positive effect of wealth growth on portfolio risk taking. Calvet and
Sodini (2014) use a different identification strategy by running a cross-sectional regression of risk
taking on financial wealth in a dataset of Swedish twin investors and controlling for twin fixed

and French (2002), and Jagannathan, McGrattan, and Scherbina (2000) found that the equity premium decreased in the
decades leading up to the 2000s. Duarte and Rosa (2015) and Caballero, Farhi, and Gourinchas (2017) argue that the
equity premium has increased over the most recent decades.

7See e.g. Bertaut and Haliassos (1997), Heaton and Lucas (1997), Gakidis (1998), Viceira (2001), Campbell, Cocco,
Gomes, and Maenhout (2001), Cocco, Gomes, and Maenhout (2005), Gomes and Michaelides (2005), Gomes, Kotlikoff,
and Viceira (2008), and many others.
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effects.8 They find that portfolio shares in risky assets are strongly increasing in financial wealth.
Lastly, Paravisini et al. (2017) find that risk aversion increases in response to a negative housing
wealth shock. By looking at the reduced-form effect of financial wealth on risk-taking behavior,
these papers do not explicitly make the distinction between (1) the effect of overall wealth on
risk-taking behavior, and (2) the effect of a changing composition of total wealth. Only Calvet
and Sodini (2014) have important evidence on portfolio risk taking by both financial wealth and
human capital, identified from twin regressions. They find an effect of human capital on risky
asset allocations that is positive and significant for identical twins. However, the measured effect
of human capital is much smaller in magnitude than the effect of financial wealth. These findings
are hard to reconcile with a portfolio choice model that matches the empirical properties of labor
income risk. In contrast, I find a strongly significant positive effect of labor income on equity
shares and a smaller negative effect of portfolio returns.

Second, several papers have argued that human capital has more stock-like properties than
what is implied by the low correlation between income growth and stock returns. Benzoni, Collin-
Dufresne, and Goldstein (2007) document cointegration between wages and dividends and show
that this cointegration alters the life-cycle profile of equity shares. Other papers have explored
variation in idiosyncratic income risk. Storesletten, Telmer, and Yaron (2007) and Lynch and Tan
(2011) consider countercyclical variation in volatility, which is absent in U.S. administrative data
(Guvenen, Ozkan, and Song, 2014). Catherine (2019) explores the role of cyclical skewness in labor
income and finds that a model with large countercyclical tail risk can generate an upward-sloping
age profile of equity shares.9 I show that accounting for tail risk in labor income is important for
matching micro evidence on individual portfolio changes. However, only in combination with
a significant degree of non-homotheticity in risk preferences can the model match the empirical
findings.

Finally, since panel data on portfolios is scarce, the portfolio choice literature has primarily
relied on cross-sectional (survey) evidence on investor portfolios to calibrate or estimate life-cycle
model parameters from differences across investors with different ages and other characteristics.
Recent papers by Fagereng, Gottlieb, and Guiso (2017) and Calvet, Campbell, Gomes, and Sodini
(2019) improve on identification by using detailed administrative panel data to estimate structural
preference parameters of life-cycle models. These papers assume constant risk aversion and target
age profiles of wealth accumulation and equity shares. I contribute to this literature by allowing
for wealth-dependent risk aversion and targeting individual portfolio changes in response to
wealth shocks.

8A caveat is that even with perfect controls for background heterogeneity, cross-sectional regressions in levels
potentially suffer from reverse causality.

9Countercyclical tail risk in non-diversifiable income risk also has important asset pricing implications. These
implications are studied by Constantinides and Ghosh (2017) and Schmidt (2016).
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2 Motivation of Empirical Analysis

This section motivates the empirical analysis in Sections 4 and 5 by illustrating the implications
of portfolio choice theory for changes in risky asset holdings in response to wealth changes. The
objective is to show how the combined effects of income growth and asset returns on portfolios
are informative about risk preferences while accounting for human capital endowments. I review
a stylized two-period model and discuss how the insights of the stylized model extend to a more
general life-cycle portfolio choice model.

2.1 Stylized Model Setup

I analyze a simple two-period model that builds on Campbell and Viceira (2002). A household is
endowed with financial wealth W at time t = 0 that can be invested in a risky and a risk-free asset.
Consumption takes place at time t = 1, when all wealth W1 is consumed. The household chooses
its portfolio to maximize expected utility at t = 1:

max
E0
[
(W1 − X1)

1−γ
]

1− γ
, (1)

where γ is the curvature of the utility function and X1 is a minimum subsistence or habit level.
When X1 = 0, preferences are CRRA. The case of X1 > 0 implies that risk aversion decreases in
wealth.

Denote the time-1 stochastic gross return on the risky asset by Re. The risk-free asset pays a
fixed return R f . At time t = 1, households also receive labor income P1.10 Let φ be the correlation
between labor income and the return on the risky asset. In addition, assume for simplicity here
that human capital only loads on aggregate risk and is not subject to idiosyncratic risk:11

P1 = P(φRe + (1− φ)R f ), (2)

where P is the present value of labor income.

2.2 Portfolio Choice

Investors decide at time t = 0 on the share of financial wealth W that is invested in the risky asset,
θ. Terminal wealth is given by

W1 = W(R f + θ(Re − R f )) + P1. (3)

Since labor income is tradable and portfolios are unconstrained, the problem can be reduced to an
investment decision on the allocation of total wealth W + P – the optimal allocation of financial

10For consistency with the rest of the paper, P1 is interpreted as permanent income.
11The presence of idiosyncratic income risk does not affect the results here since the focus is on deriving a simple

log-linearized solution. Idiosyncratic risk will play a key role in the full quantitative life cycle model in Section 6.
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wealth then follows trivially from the desired allocation of total wealth by adjusting for the relative
proportion of human capital to financial wealth.

I derive an approximate expression for the optimal portfolio allocation θ using a log-linear
approximation to the Euler equation. Let µe = E[log Re], r f = log R f , and σ2

e = Var[log Re].

Proposition 1. The optimal portfolio share as a fraction of financial wealth is, up to a log-linear
approximation, given by

θ = ᾱ + (ᾱ− φ)
P
W
− ᾱ

(
1 +

P
W

)
X

W + P
, (4)

where ᾱ =
µe−r f +

1
2 σ2

e
γσ2

e
.

The proof is in Appendix A.1. A benchmark case is the model without human capital (P = 0)
and with constant relative risk aversion preferences (X = 0), which yields the seminal result
from Samuelson (1969) and Merton (1969) that the portfolio equity share satisfies the “myopic”
allocation ᾱ. With risk-free labor income (φ = 0), the optimal portfolio share is increasing in the
ratio of permanent income to financial wealth. More generally, the portfolio is tilted towards risky
assets when human capital is safer than the optimal allocation of total wealth (ᾱ > φ), and tilted
towards risk-free assets when human capital is riskier (ᾱ < φ). A positive subsistence level X
increases effective risk aversion and therefore lowers the optimal allocation towards equity, since
a larger share of the portfolio is devoted towards insurance against the fixed subsistence level X.

2.3 Wealth Shocks and Portfolio Allocations

For a fixed subsistence level X, the optimal portfolio at t = 0 is function of the state variables W
and P. To guide the empirical analysis on dynamic portfolio choice, I derive comparative statistics
of the portfolio share at t = 0. Suppose that at time t = 0, cash on hand is given by

W = WRp f + P, (5)

where Rp f is the return on a pre-determined portfolio that is realized at t = 0.
Let X = XR f and P = PRp, where X and P are present values of claims to X and P prior

to t = 0, respectively, and Rp is the realization of permanent income growth at t = 0. Another
log-linearization around Rp f = Rp = R f generates an expression for the effects of income and
realized portfolio returns on portfolio allocations.

Proposition 2. The optimal portfolio is, up to a log-linear approximation, given by

log θ = const + (κ1λ1 + (1− κ2)λ2︸ ︷︷ ︸
b1

) log P + (−κ1λ1 + κ2λ2︸ ︷︷ ︸
b2

) log Rp f , (6)
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where κ1, κ2 ∈ (0, 1), and

λ1 = c1(ᾱ− φ), c1 > 0 (7)

λ2 = c2X̄, c2 > 0. (8)

It follows that b1 + b2 = 0 if X̄ = 0

b1 + b2 > 0 if X̄ > 0.
(9)

The coefficients b1 and b2 capture the effects of income growth and portfolio returns on equity
allocations, respectively. Both types of wealth shocks affect optimal allocations through two
channels: a human capital channel and a risk aversion channel. The effect of human capital is
determined by λ1 and is driven by the equity exposure of human capital, φ. With relatively safe
(risky) human capital, λ1 > 0 (λ1 < 0). The effect of DRRA preferences is determined by λ2 and is
driven by the degree of non-homotheticity X̄. With CRRA preferences, X̄ = 0 and hence λ2 = 0.
Figure 1a plots the coefficients b1 and b2 by φ, for X = 0. The coefficient b1 is decreasing in φ,
while b2 increases in φ.

Equation (9) provides a restriction of homothetic preferences on the joint portfolio effects of
income growth and portfolio returns. Under homothetic preferences, only the human capital
channel is active. This channel generates offsetting implications of human capital and financial
wealth on the equity share – up to log-linear approximation – and therefore the two coefficients
add up to zero. With DRRA preferences, the net effect is positive.

Importantly, the individual effects of fluctuations in either component of total wealth are not
informative about risk preferences. Panel 1b plots the coefficients b1 and b2 by X, for human
capital that is mostly bond-like (low φ) as in typical empirical estimates. Note that b2, the effect of
changes in financial assets, can be negative even when risk aversion decreases in wealth (Wachter
and Yogo, 2010). Similarly, Figure 1a illustrates that a positive relation between asset returns and
equity shares can be generated in a model with CRRA when human capital is sufficiently risky. In
order to test for DRRA and identify the key parameters of a life-cycle portfolio choice model, it is
therefore crucial to measure the effects of both income growth and financial returns in the data.

2.4 Extension to Dynamic Model

The basic implications from the stylized two-period model carry over to a general life-cycle
framework. I now introduce three assumptions that are met by many standard life-cycle models
and generate a homothetic value function. In that case, the effects of income shocks and asset
returns on optimal portfolio allocations offset each other (to an approximation).

Assumption 1 (Homothetic preferences). Agents have Epstein-Zin preferences with a constant
elasticity of intertemporal substitution ψ and coefficient of relative risk aversion γ. The value function at
death, capturing bequest motives, is proportional to cash on hand Wit.
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Figure 1: Coefficients in Stylized Model

(a) Coefficients by φ (X = 0)
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(b) Coefficients by X (small φ)
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Notes: This figure illustrates the coefficients b1 and b2 on income and portfolio returns, respectively, in the
stylized model, as a function of the riskiness of human capital φ and non-homotheticity in risk preferences
X.

Assumption 2 (Income with permanent and transitory shocks, linear taxes). Pre-tax income Yit

can be written as product of a deterministic component in age Gt, a permanent component Pit, and
an idiosyncratic component eεit . In retirement, agents receive an income that is a constant fraction of
permanent income in the final pre-retirement period. Income taxes are linear: Ypost

it = (1− τ)Yit.

Assumption 3 (Constant investment opportunities). Investors allocate financial wealth to financial
assets that have i.i.d. returns, so that investment opportunities are constant over time. There is either no
borrowing constraint, or a borrowing constraint of zero.

Under these three assumptions, the problem admits a homothetic solution where the level of
total wealth is irrelevant for saving rates and portfolio choice, and only the proportions of financial
wealth and human capital matter. Thus, the state variables in the homothetic model are age t and
cash on hand relative to permanent income, wit ≡ Wit

GtPit
. The law of motion for wit is given by

wi,t+1 = (wit − cit)Rp f
i,t+1

GtPit

Gt+1Pi,t+1
+ (1− τ)eεi,t+1 , (10)

where cit ≡ Cit
GtPit

is normalized consumption.
Let the optimal portfolio be given by θit = Θ(wit, t). I consider a log-linear approximation to

again find the coefficients b1 and b2 on income growth and portfolio returns.12

Proposition 3. Under assumptions 1–3, the optimal portfolio in the homothetic dynamic model is, up to a

12Note that in a dynamic model, these coefficients depend on state variables at time t. I suppress the dependence of
the log-linearization constants on time-t information here. In empirical work and for identifying the parameters of the
structural model, I will mainly focus on the average values of these coefficients.
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log-linear approximation, given by

log θi,t+1 = k + b1∆ log Pi,t+1 + (−b1︸︷︷︸
b2

) log Rp f
i,t+1 + b3εi,t+1. (11)

The approximate restriction b1 + b2 = 0 under homothetic preferences thus extends to a
dynamic life-cycle model. As in the stylized model, b1 is positive and b2 is negative in the
traditional calibration of the model where income is mostly bond-like (see e.g. Wachter and Yogo,
2010). My empirical strategy will focus on measuring these coefficients b1 and b2 in the data. I will
then estimate a structural model that targets these empirical moments and quantifies the degree
of non-homotheticity in risk preferences.

3 Data

3.1 Description

I analyze the portfolio behavior of a large sample of individual investors in the United States.
For this analysis, I use a dataset of account-level administrative data on financial holdings,
transactions, and investor characteristics from a large U.S. financial institution. The data cover
anonymized information on all taxable and non-taxable accounts of individual investors at the
firm. For these accounts, all balances and security-level portfolio holdings are available at an
end-of-year frequency between 2006 and 2018, as well as all inflows, outflows, and transactions at
a daily frequency. The data span millions of investors with trillions in financial wealth.

In addition to detailed information on financial portfolio compositions and trades, the data
contain information on investor demographics and employment-related variables. The main
demographic variables that are covered in the data are age, gender, marital status, and zip code.
Employment-related information is available for a subsample of the client base that have an
active employment relationship. For this subset, I observe an anonymized employer indicator,
employer industry (3-digit NAICS code), employment tenure, and, importantly, gross annual
wage income. I annualize all income observations by scaling up part-year incomes to a full-year
equivalent. I drop annualized incomes that are below the annual minimum wage at 20 hours per
week ($7540 from 2010). All variables are constructed at the individual level.13

To characterize portfolio allocations, all fund and individual security holdings are divided
into four main asset categories: equity, fixed income, cash and cash-like assets, and alternative
assets. Multi-asset class funds (e.g. target date funds) are split between equity and fixed income
in proportion to the observed equity share of the fund. I also compute the market betas of all assets

13While the data include household identifiers that allow spouses to be linked, in most cases only one spouse is
observed. Requiring income to be observable, as I do in this paper, further tilts the sample towards households with
full information for only one person. For transparency, I therefore run the analysis at the individual level. Where there
are multiple individuals that co-own an account, the account is assigned to a single individual by selecting the (oldest)
owner with the highest total assets. This yields a unique mapping from accounts to individuals. The results do not
change when running the analysis at the household level.
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by regressing fund and security excess returns on the market excess return, requiring at least 24
months of return observations. These asset characteristics are complemented by other security-
level information, such as international exposures. Appendix A.2 contains additional details on
the data construction.

3.2 Sample Selection

While the dataset used for this analysis provides a rare opportunity to study detailed portfolio
allocations of a large sample of U.S. retail investors, there are two potential limitations of this
data. First, even though the data cover a significant share of American retail investors, the sample
is obviously selected by holding an investment account at this firm. In particular, most investor
wealth is in retirement accounts and few investors have very high net worth. Second, investors
may have other investable wealth in accounts at another firm. To address these issues, I follow
an approach similar to Meeuwis, Parker, Schoar, and Simester (2019) by restricting the analysis to
a subsample of investors that is reasonably representative of “typical” American investors with
some retirement savings. To that end, I impose sampling restrictions on age and retirement wealth.

First, I select a sample of investors that are between 30 and 58 years of age. I exclude younger
and older investors for two reasons: (i) the youngest age group typically has low levels of
investable wealth, while retired investors are underrepresented due to attrition from the sample.
I select age 58 as the upper bound because penalty-free withdrawals from retirement accounts
can be taken from age 59.5. And (ii), standard life-cycle models are best equipped to capture the
wealth accumulation and investment behavior of households at middle ages and tend to perform
worse at young age and at retirement.

The second restriction I impose is on retirement wealth. I particular, I focus on investors with
moderate levels of retirement wealth, labeled as retirement investors (RIs). Specifically, RIs are
investors without extremely high or low retirement wealth, defined as all wealth in retirement
saving accounts of all types (excluding defined benefit plans and Social Security). The cutoffs are
determined using the 2016 SCF. For the sample of working age investors with positive retirement
wealth, I run quantile regressions of the log of retirement wealth on a third-order polynomial in
age. The 10th and 90th percentiles by age form the cutoffs for selection into the sample. Within the
set of investors of age 30 to 58, the sample of RIs captures 40% of the population, 51% of retirement
wealth, and 44% of household investable wealth, where investable wealth is defined as the total
of money market funds, non-money market funds, individual stocks and bonds, certificate of
deposits, quasi-liquid retirement wealth, and other managed accounts.

Finally, estimating the effect of income on portfolio allocations is a key part of the empirical
analysis in this paper. I therefore require individuals in the sample to have an active employment
relation where income is observable.14 In particular, I select RIs into the sample in year t when
income is observed at {t− 1, t, t + 1}. There are two main reasons for requiring the lead and lag of
income to be observable. First, this restriction limits the impact of measurement error in full-year

1441% of the full RI sample has an income observation. This subsample still spans millions of investors.
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Figure 2: Individual Retirement Wealth Distribution
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Notes: This figure plots the distribution of individual retirement
wealth in the sample of RI investors versus the distribution of
individual retirement wealth for RI investors in the SCF.

incomes inferred from part-year income observations. Second, I use lead and lag observations of
income as instruments when estimating the effects of persistent income growth. As a consequence
of this restriction, the final dataset used for the empirical analysis runs from t = 2007 to t = 2017.

Figure 2 shows that the distribution of retirement wealth in the sample of RIs lines up well with
the distribution of retirement wealth for retirement investors in the SCF. Since RIs typically have
most or all of their investable wealth in retirement accounts (see Appendix A.3.1), this large sample
of RIs provides a good overview of how the investable wealth of typical U.S. retail investors is
allocated. However, the analysis of investment portfolios misses some of the other sources of
wealth that households hold – in particular, housing wealth and bank accounts. Appendix A.3.1
provides statistics on the composition of wealth of RIs in the SCF and discusses robustness of the
portfolio results.

3.3 Summary Statistics

Table 1 reports summary statistics on the sample of RIs with income observations. The average age
is 44, 42% of the sample is female, and 71% is married.15 Partly due to the selection requirements
on consecutive income observations that the empirical strategy requires, investors in the sample
are relatively well off in terms of income: the median income is $79K, and the average income is
$106K. Figure 3 compares the distribution of income to RIs in the SCF, where income is measured
at the household level. When restricting both samples to single (unmarried) individuals, it is clear
that sample is tilted towards higher-income population. Investors in the sample also tend to have
relatively stable jobs: the median tenure is 8.6 years.

The average equity share of investor portfolios is 77%. The remaining portfolio assets are

15Appendix Figure A.7 plots the age distribution and shows that the sample is balanced by age.
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Table 1: Summary Statistics

Variable Mean SD P10 P25 P50 P75 P90

Age 44.10 8.36 32 37 44 51 56
Female 0.42 0.49 0 0 0 1 1
Married 0.72 0.45 0 0 1 1 1
Income 105,640 153,101 38,457 53,103 79,186 119,691 181,264
Employment tenure (years) 10.48 8.19 2.00 3.87 8.58 15.29 21.94
Investable wealth 112,236 236,763 7,393 16,742 48,347 136,018 296,147
Retirement wealth 105,063 145,973 7,334 16,557 47,523 132,527 285,499
Portfolio shares

Equity 0.77 0.21 0.54 0.70 0.84 0.89 0.97
Fixed income 0.19 0.18 0.01 0.09 0.14 0.25 0.38
Cash 0.03 0.14 0.00 0.00 0.00 0.00 0.03
Alternative 0.01 0.04 0.00 0.00 0.00 0.00 0.00

Market beta of portfolio 0.80 0.23 0.55 0.73 0.85 0.93 0.99
Market beta of equity 1.00 0.11 0.95 1.00 1.00 1.01 1.06
Default investor 0.43 0.49 0.00 0.00 0.00 1.00 1.00
Share in TDFs 0.53 0.44 0.00 0.00 0.56 1.00 1.00
Share in auto rebalancing funds 0.03 0.13 0.00 0.00 0.00 0.00 0.01
Share in individual stocks 0.05 0.14 0.00 0.00 0.00 0.00 0.16
International share of equity 0.06 0.12 0.00 0.00 0.00 0.07 0.25
Investor-initiated trade 0.22 0.41 0 0 0 0 1
Portfolio turnover 0.13 0.51 0.00 0.00 0.00 0.00 0.30
Months with web login 4.03 4.00 0 0 3 7 11

Notes: This table presents summary statistics on demographics, wealth, portfolio allocations,
and engagement of the sample of retirement investors as of December 31, 2016.

largely invested in fixed income, with an average share of 19%. Only a small fraction of the sample
hold cash or other assets. There is substantial heterogeneity in portfolio allocations: the cross-
sectional standard deviation of equity shares is 21%. Market betas of investor portfolios tend to
be slightly above equity shares, with a dispersion that is similar to the variation in equity shares.
Most investors hold an equity portfolio that has a market beta close to one, and bear limited
idiosyncratic risk. On average, only 5% of portfolio assets are invested in individual stocks.

Since retirement accounts form an important part of the sample, many investors have
significant allocations to target date funds (TDFs). The average TDF share of portfolio assets in
the sample is 53%. An important reason for the prominence of TDFs is default allocations. For
almost all investors, the default allocation is a TDF. I define a default investor to be someone who
has 100% of assets invested in the default fund in an employment-based account, or at least 90%
in TDFs in a personal retirement account and the remainder in cash. Default investors cover 43%
of the sample.

Many investors are not actively engaged with their portfolios. I define an investor-initiated
trade to be a trade or exchange that is not associated with an account inflow or outflow. Just 22%
of people in the sample have an investor-initiated trade over the year. As another measure of
portfolio rebalancing, I define portfolio turnover as one half times the sum of absolute value of
investor trades divided by beginning-of-year financial wealth. The average portfolio turnover is
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Figure 3: Income Distribution
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Notes: This figure plots the distribution of individual income in the sample of RI investors versus the
distribution of household income for RI investors in the SCF. Panel (a) plots the full distribution. Panel
(b) restricts the sample to individuals (heads) that are unmarried.

13%. To measure engagement, I calculate in each year the number of months with at least one
web login. On average, retirement investors have four months with web visits during the year.
There is substantial heterogeneity in engagement: the bottom 10% have no web logins, while the
top 10% log in at least once in nearly every month.

4 Income and Portfolio Allocations

As emphasized by the stylized model in Section 2, the joint portfolio responses to changes in
human capital and to financial wealth are informative about risk preferences. I start the empirical
analysis by zooming in on the effects of income growth on changes in equity allocations in investor
portfolios – the full estimation of b1 and b2 requires a model of rebalancing behavior and is the
focus of Section 5. Motivated by the stylized model, the objective here is to estimate the following
system of equations:

∆h log θit = bp
1 ∆h pit + δ′Xi,t−h + ηit (12a)

yit = git + pit + εit + eit, (12b)

where log income y is decomposed into a predictable component g, a persistent component p, a
transitory component ε, and measurement error e. Assume that predictable income growth is of
the form ∆hgit = λ′Zi,t−h, where Z is a vector of deterministic life-cycle characteristics that are
included in the controls Xi,t−h.

First, in Section 4.1, I test whether portfolio risk taking varies with overall income in a baseline
OLS regression. Second, Section 4.2 makes the distinction between persistent and transitory
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income shocks and estimates the effect of persistent income growth on equity share changes.
Third, Section 4.3 discusses the effects of portfolio frictions, in particular infrequent rebalancing.
Appendix A.3 contains additional details and robustness checks.

4.1 Income Growth and Equity Share Changes

First, I analyze the basic relation between income and portfolio allocations. Since cross-sectional
variation in income and portfolio compositions is correlated with many sources of heterogeneity
across investors, I use panel data to measure the impact of changes in income on changes in the
equity share of investor portfolios.

Regression setup. As a first pass, consider an OLS regression of changes in log equity shares,
∆h log θit, on income growth ∆hyit, where ∆h is the h-year difference operator:

∆h log θit = by
1∆hyit + δ′Xi,t−h + ηit. (13)

I control for ex-ante differences in demographics and financial profiles by including a basic set of
controls Xi,t−h. As illustrated by Appendix Figure A.8 that plots the average change in portfolio
equity share as a function of the initial equity share, portfolio shares are mean reverting: low
initial equity shares are associated with subsequent increases in equity shares, and vice versa.
This effect is partly mechanical, since portfolio shares are bounded between 0 and 1. To account
for the observed mean reversion in portfolio shares, I include the initial equity share as a control.

The vector Xi,t−h of controls further includes a second-order polynomial in age, gender, marital
status, a second-order polynomial in employment tenure, log income, and the log of financial
assets, all measured at t − h. In addition, I control for fixed effects by year. For the purpose of
running OLS regressions, I limit the sample to 90% of the range of wage changes by trimming
income growth at the 5th percentile and 95th percentile.16

The main outcome variable is the change in log equity share. There are two main reasons for
using the logarithm of the equity share. First, if the expected return µe and volatility σe of equity
are constant, a basic power utility investor with risk aversion γi chooses a constant equity share
equal to µe−r f

γiVar[Re]
(Samuelson, 1969; Merton, 1969). Hence, when taking the difference of the log

equity share, we can control for static heterogeneity in beliefs. Second, I assume that the equity
share of total financial wealth is a multiple of the measured equity share, with a scaling factor that
is independent of wealth fluctuations after controlling for predictable variation in observables.17

16This trimming reduces the effect of outliers in income growth on the measured portfolio responses, for example
due to measurement error from part-year income observations. Section 4.2 formally addresses measurement error.

17Note that the data only cover wealth in investment accounts, mainly through retirement accounts. For a large part
of the U.S. population, quasi-liquid retirement wealth is the main component of investable wealth. However, this misses
other forms of financial wealth, predominantly consisting of bank accounts and other non-equity holdings. Therefore,
a reasonable approximation for the typical Retirement Investor is that the equity share of total financial wealth is
θ

f
it = φitθit, where θit is the observed equity share of investable wealth and φit ∈ (0, 1] is the share of investable wealth

in total financial wealth. I assume that ∆h log φit is independent of wealth changes after controlling for Xi,t−h. Under
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Table 2: Income Growth and Equity Share Changes – OLS

∆h log equity sharet

h = 1 year h = 2 h = 3 h = 5

(1) (2) (3) (4) (5) (6)

∆h log incomet 0.0191 0.0167 0.0125 0.0174 0.0208 0.0252
(0.0009) (0.0009) (0.0009) (0.0010) (0.0011) (0.0015)

Year FE Y Y
Log equity sharet−h Y Y Y Y Y
Demographic controls Y Y Y Y Y
Employer × year FE Y Y Y Y

R-squared 0.022 0.142 0.169 0.229 0.272 0.361
Share of individuals 92.7% 92.7% 92.7% 70.2% 53.4% 33.6%

Notes: This table presents the results of an OLS regression of changes in log equity
shares on income growth, measured over several horizons. The demographic controls
include a second-order polynomial in age, gender, marital status, a second-order
polynomial in employment tenure, log income, and the log of financial assets, all
measured at t− h. Standard errors are clustered at the individual level.

OLS results. Table 2 presents OLS regression estimates for various sets of controls and horizons.
The regressions show a positive and significant relation between income growth and portfolio
equity share changes in all specifications. The estimated effect is slightly smaller but still highly
significant when including employer–year fixed effects, thereby controlling for any variation at
the employer level that may be correlated with changes in asset menus.

Columns (4)–(6) report the results for longer horizons. The magnitude of the effect increases
with the horizon. We would expect the coefficient to increase with the horizon if investors
respond more to persistent income growth than to transitory income growth, since the variance
of persistent income growth increases with the horizon while the variance of transitory income
growth does not. In Section 4.2, I directly measure the effects of persistent income growth.

Nonlinear effects. Figure 4 shows a binscatter plot of the relation between income growth
and log equity share changes at one-year and five-year horizons, after taking out the effects
of demographic differences and ex-ante differences in portfolios. Not surprisingly, the cross-
sectional variance of income growth greatly increases with the horizon. The relation between
income growth and changes in log equity shares is S-shaped: the elasticity is largest when income
growth is relatively close to zero. This variation could either be due to a different sensitivity of
portfolios to small versus large shocks in income, or due to the role of different components of
income growth: if small income shocks are more likely to be persistent, we would expect to find a
larger elasticity of equity shares to income for small income shocks. The results in Appendix A.3.3
suggest that most of the heterogeneity in effect size by different magnitudes of income shocks can
be explained by the differences in the responses to persistent and transitory income shocks.

this assumption, using θit as a proxy for θ
f
it does not lead to a bias when using the change in logs as outcome variable.
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Figure 4: Income Growth and Equity Share Changes

(a) One-Year Horizon
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(b) Five-Year Horizon
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Notes: This figure shows binscatter plots that illustrate the OLS regression of changes in log equity shares
on income growth, measured over a one-year and five-year horizon. The variables on both axes are
orthogonalized with respect to the basic set of demographic controls and the initial log equity share. The
demographic controls include a second-order polynomial in age, gender, marital status, a second-order
polynomial in employment tenure, log income, and the log of financial assets, all measured at t− h.

Long-term effects. Income growth is positively related to changes in equity shares. A
homothetic model with CRRA predicts that there should be an offsetting effect of portfolio
returns, but in Section 5 I show that there is no such offsetting effect in the data. The positive
relation between income growth and equity share changes is therefore evidence of non-homothetic
risk preferences. There are several important models of financial behavior that generate a negative
relation between wealth and risk aversion. The stylized model in Section 2 has a subsistence
level to generate DRRA. A closely related alternative is the habit model. Habits have similar
implications to a subsistence level when they are slow moving, as is typically the case in finance
models (e.g. Campbell and Cochrane, 1999). Another alternative that generates DRRA preferences
is consumption commitments (Chetty and Szeidl, 2007, 2016). Finally, rich households could be
a consuming a different bundle of consumption goods, with a lower curvature over “luxury”
goods. This luxury good may be wealth itself, as in models with a “spirit of capitalism” (Bakshi
and Chen, 1996; Carroll, 2000, 2002).

Distinguishing these different theories is challenging with the available data. However, one
important test is whether the portfolio changes are temporary or long lasting. Are the previous
findings about temporary changes in risk aversion (e.g. macro habits) or about level effects of
wealth on risk preferences? I estimate the effects of income growth on equity shares at future
horizons. I estimate the following regression equation at future horizon j:

∆h+j log θi,t+j = by
1∆hyit + δ′Xi,t−h + ηit. (14)

Figure 5 plots the coefficients of equity share changes over all horizons on three-year income
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Figure 5: Long-Run Effects of Three-Year Income Growth

(a) Changes in Log Equity Share
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(b) Changes in Equity Share
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Notes: This figure plots the coefficients of an OLS regression of changes in equity shares, measured over
several horizons, on three-year income growth. Panel (a) shows the coefficients when the outcome is the
change in log equity shares and panel (b) shows the coefficients when the outcome is the change in the
level of the equity share. The regressions control for the initial equity share, a second-order polynomial
in age, gender, marital status, a second-order polynomial in employment tenure, log income, and the log
of financial assets, all measured at t− 3. Standard errors are clustered at the individual level.

growth, both when using the equity share in logs and in levels.18 There is no evidence that the
equity share reverts back to the original level. These results suggests that the effects of income on
equity shares are long lasting, consistent with a model where risk tolerance depends on the level
of wealth, e.g. through a subsistence level or bequest motive.19 While estimates using log equity
shares in panel (a) suggest that the effect of income growth on changes in equity shares does not
further increase in magnitude more than one year in the future, the estimated effect of income
growth increases monotonically with the horizon when using levels of equity shares in panel (b).
This finding is consistent with a model of infrequent portfolio adjustment that is (mostly) driven
by external factors, which will be a key focus of the later analysis.

4.2 Persistent Income Shocks

Portfolio choice theory predicts a notable difference in the portfolio effects of persistent and
transitory income growth. Transitory income shocks have an impact on cash on hand in the
current period, but do not change the present value of future labor income. In contrast, persistent
income shocks change both the amount of resources available in the current period and total

18The corresponding regression estimates are in Appendix Table A.10.
19Unless endogeneity in the cross-sectional relation between income and risk taking offsets the positive effect within

individual, we would expect a positive relation between level of equity share and level of income. Columns (5)–(6) in
Appendix Table A.10 display the results of a cross-sectional regression of the log equity share on log income. Indeed,
there is a positive correlation between income and the portfolio equity share even within employer. The estimated
elasticity is similar to the estimate from running the regression in first differences. The estimated elasticity is somewhat
larger for investors without a default allocation.
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human capital. Recall that we are interested in the effect of persistent income growth on
portfolios:

∆h log θit = bp
1 ∆h pit + δ′Xi,t−h + ηit.

I use an IV approach to consistently estimate the effect of persistent income growth on equity
shares. In particular, I use lead and lag observations of income to filter out transitory shocks and
measurement error (Guiso, Pistaferri, and Schivardi, 2005; Blundell, Pistaferri, and Preston, 2008).
To introduce this approach, make the following assumptions: first, all innovations are i.i.d. across
investors i. Second, controls X are uncorrelated with p, ε, e, and η. Third, income measurement
error eit is i.i.d. and uncorrelated with residual portfolio changes η. Fourth, future and past income
innovations are uncorrelated with ηit: Cov(pi,t−h−j, ηit) = Cov(pi,t+j, ηit) = Cov(εi,t−h−j, ηit) =

Cov(εi,t+j, ηit) = 0 for all j > 0.

OLS bias. If portfolio equity shares respond differently to transitory income shocks than to
persistent income shocks or when there is measurement error in income, the OLS regression of
equity changes on income growth will give a biased estimate of bp

1 :

bOLS
1 =

Cov(∆h log θit, ∆hyit)

Var(∆hyit)
= bp

1 −
(

bp
1 −

Cov(∆hεit, ηit)

Var(∆hεit) + Var(∆heit)

)
Var(∆hεit) + Var(∆heit)

Var(∆hyit)
.

(15)
The OLS estimate of the effect of income growth on portfolio allocations suffers from an
attenuation bias due to measurement error in income, and is further biased downwards if the
portfolio response to transitory income shocks is smaller than to persistent income shocks.

IV approach. To address the OLS bias and separate the effects of persistent income shocks from
transitory income shocks, I use lead and lag observations of income for identification (Guiso
et al., 2005; Blundell et al., 2008). To estimate the effect of persistent shocks, I instrument income
growth by income growth over a wider horizon. Specifically, I use the long difference ∆+

h yit ≡
yi,t+1 − yi,t−h−1 as an instrument for ∆hyit. Under the above assumptions, this IV approach yields
a consistent estimate of bp

1 :

bIV
1 =

Cov(∆h log θit, ∆+
h yit)

Cov(∆hyit, ∆+
h yit)

= bp
1

Cov(∆h pit, ∆+
h pit)

Cov(∆h pit, ∆+
h pit)

= bp
1 . (16)

The fourth assumption requires that past income is uncorrelated with current portfolio
changes. Since portfolio adjustment is sluggish, this assumption is likely to be violated.
Therefore, I add the lag of log financial wealth and the lag of log income to the controls X, where
yi,t−1 is instrumented by yi,t−2. I assume that these controls appropriately capture the effects of
past income growth on current portfolio changes.

Figure 6a shows a binscatter plot for the first stage, using the same set of controls Xi,t−h as
before. Figure 6b shows a binscatter plot for the reduced form. Like the baseline OLS specification,
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Figure 6: Income Growth and Equity Share Changes, IV Specification

(a) First Stage
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(b) Reduced Form
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Notes: This figure shows binscatter plots that illustrates the IV regression of changes in log equity
shares on income growth. Panel (a) illustrates the first stage and panel (b) illustrates the reduced-form
specification. The variables on both axes are orthogonalized with respect to the basic set of demographic
controls and the initial log equity share. The demographic controls include a second-order polynomial in
age, gender, marital status, a second-order polynomial in employment tenure, log income, and the log of
financial assets, all measured at t− 1.

the reduced-form scatter plot shows a positive relation between income growth and changes in log
equity shares. As expected when there are no anticipation effects, the reduced-form specification
has a flatter slope than the OLS specification.

IV results. Table 3 presents the results for IV regressions of log equity share changes on income
growth, where income growth is instrumented by the long difference ∆+yit of log income. Column
(1) shows the estimate with time fixed effects as the only control. The specification in column (2)
includes the basic set of demographic controls, the initial log equity share, and the interaction of
demographic controls with the initial log equity share. The estimated coefficient implies that a
10% income growth leads to an increase in equity share of 0.42%.

The remaining columns in Table 3 show that the results are robust to including various
additional sets of controls. In column (3), I interact all controls by yearly dummies to account
for possible heterogeneity over time, for instance due to varying market conditions. Column (4)
includes zip code by year fixed effects and shows that the relation between income growth and
equity share changes is not driven by geographical variation.

The final sets of controls highlight that the results are driven by the effect of individual changes,
not by changes at the employer level. Employer-driven changes are a possible confounding factor,
for example through employer actions in retirement portfolios or due to the effect of employer-
wide changes on investment opportunities. In column (5), I include 3-digit NAICS fixed effects
interacted by yearly dummies to control for employment industry effects. Column (6) controls for
employer–year fixed effects, and, ultimately, column (7) has employer by income bin by year fixed
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Table 3: Income Growth and Equity Share Changes – IV

∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7)

∆ log incomet 0.0404 0.0417 0.0433 0.0409 0.0428 0.0428 0.0482
(0.0014) (0.0013) (0.0013) (0.0014) (0.0013) (0.0014) (0.0016)

Year FE Y Y Y
Log equity sharet−1 Y Y Y Y Y
Demographic controls Y Y Y Y Y
Log equity sharet−1 × year FE Y
Demographic controls × year FE Y
Zip code × year FE Y
Industry × year FE Y
Employer × year FE Y
Employer × income bin × Y

year FE

Income instrumented Y Y Y Y Y Y Y

R-squared 0.021 0.144 0.155 0.165 0.147 0.170 0.182
Share of individuals 96.7% 96.7% 96.7% 93.5% 96.3% 96.7% 96.4%

Notes: This table presents the results of an IV regression of one-year changes in log equity shares on
income growth. The demographic controls include a second-order polynomial in age, gender, marital
status, a second-order polynomial in employment tenure, log income, and the log of financial assets,
all measured at t − 1. Log income at t − 1 and t is instrumented by log income at t − 2 and t + 1,
respectively. Standard errors are clustered at the individual level.

effects. The coefficients in these specifications are not meaningfully different from the baseline
estimate.

4.3 Portfolio Frictions

The empirical results so far have shown a positive relation between income growth and changes
in portfolio equity shares. Although this relation is highly statistically significant, the economic
magnitude of the effect is modest, even when measuring the effect of persistent income growth
that is more than double the effect of overall income growth. The relatively low effect size could
either be evidence of a weak overall relation between income and desired portfolio allocations, or
could arise from frictions that limit the transmission from risk preferences to portfolios. I consider
three such frictions: infrequent portfolio adjustment, tax implications, and portfolio bounds.

Infrequent portfolio adjustment. The main portfolio friction that constrains portfolio choice
is infrequent portfolio rebalancing. I find that the average effect of income growth on equity
share changes is driven by a relatively small number of investors that make significant changes
to their portfolios. It is well known that many investors are passive in selecting and rebalancing
their portfolios, in particular among retirement accounts (e.g. Madrian and Shea, 2001; Agnew,
Balduzzi, and Sunden, 2003). As a result, not all changes in desired portfolio allocations are
reflected by realized portfolio rebalancing.
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Table 4: Income Growth and Equity Share Changes – Alternative Specifications

∆ log equity sharet ∆ equity sharet

(1) (2) (3) (4) (5) (6) (7)

∆ log incomet 0.0385 0.0397 0.0494 0.0300 0.0229 0.0227 0.0211
(0.0013) (0.0013) (0.0042) (0.0068) (0.0005) (0.0005) (0.0005)

Year FE Y Y Y Y Y Y Y
Portfolio measuret−1 Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y

Income instrumented Y Y Y Y Y Y Y

Sample / measure Price- Retirement Retirement, Non- All Interior Price-
constant non-ret retirement equity constant

portfolios owners share portfolios

R-squared 0.124 0.144 0.177 0.125 0.121 0.138 0.091
Share of individuals 97.1% 96.6% 12.8% 7.7% 100.0% 91.5% 99.9%

Notes: This table presents the results of an IV regression of one-year changes in log equity shares on income
growth for various subsamples and alternative equity share measures. Column (1) has the price-constant portfolio
log equity share change as outcome variable. These hypothetical price-constant portfolios are constructed by
starting from beginning-of-period asset holdings, assuming that there are no price changes, and adding to these
holdings all inflows and outflows at the asset level. The price-constant log equity share change is the difference
between the log equity share of the price-constant portfolio and the initial log equity share. In columns (2) and
(3), the outcome variable is the log equity share change of retirement assets. Column (3) limits the sample to
non-retirement account owners. Column (4) has the log equity share change of non-retirement assets as outcome
variable. Columns (5) and (6) focus on the change in the level of the equity share, where column (6) restricts
the sample to interior initial equity shares. Column (7) has the price-constant equity share change as outcome
variable. The demographic controls include a second-order polynomial in age, gender, marital status, a second-
order polynomial in employment tenure, log income, and the log of financial assets, all measured at t − 1. Log
income at t− 1 and t is instrumented by log income at t− 2 and t + 1, respectively. Standard errors are clustered
at the individual level.

First, I establish that the elasticity of equity shares to income is in fact driven by investor
reallocation decisions. Infrequent portfolio rebalancing means that portfolio allocations are
sensitive to fluctuations in asset prices. While the portfolio regressions control for aggregate
effects, a correlation between individual income growth and idiosyncratic portfolio returns
combined with infrequent portfolio rebalancing could create a spurious relation between income
growth and observed equity shares. I therefore track hypothetical price-constant portfolios that
are constructed as if there were no changes in valuations, by adding security-level trades to
positions at the beginning of the year. I continue to use the IV specification that was introduced
in the previous subsection. Columns (1) and (7) of Table 4 illustrate that the estimated effect of
income growth on equity shares of price-constant portfolios almost fully captures the effect on
overall portfolios.

Second, I find that the responses to income growth are bigger for investors that do not hold the
default retirement fund allocation. A robust and important feature of retirement portfolio choice is
that default allocations are very sticky. Choi, Laibson, Madrian, and Metrick (2004) find that more
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Table 5: Income Growth and Equity Share Changes – Heterogeneity in Portfolio Adjustment

∆ log equity sharet

(1) (2) (3)

∆ log incomet 0.0260
× Default investor (0.0015)
∆ log incomet 0.0495
× Non-default investor (0.0021)

∆ log incomet -0.0033
× Turnovert = 0 (0.0009)
∆ log incomet 0.0642
× Turnovert ∈ (0, 25%] (0.0036)
∆ log incomet 0.2955
× Turnovert > 25% (0.0081)

∆ log incomet 0.0087
×Months with web visitst ≤ 1 (0.0013)
∆ log incomet 0.0499
×Months with web visitst ∈ [2, 6] (0.0023)
∆ log incomet 0.0809
×Months with web visitst >= 7 (0.0034)

Year FE Y Y Y
Log equity sharet−1 Y Y Y
Demographic controls Y Y Y

Income instrumented Y Y Y

R-squared 0.155 0.267 0.166
Share of individuals 82.3% 96.7% 96.7%

Notes: This table presents the results of an IV regression of one-
year changes in log equity shares on income growth interacted
by various indicators. The demographic controls include
a second-order polynomial in age, gender, marital status, a
second-order polynomial in employment tenure, log income,
and the log of financial assets, all measured at t− 1. Log income
at t− 1 and t is instrumented by log income at t− 2 and t + 1,
respectively. Standard errors are clustered at the individual
level.

than half of automatically enrolled participants stick with the default allocation even after three
years. Since investors with default allocations have never made an active decision to rebalance,
we would expect the elasticity of equity shares to income growth to be smaller for this sample.
Column (1) of Table 5 confirms that the coefficient on income changes is nearly twice as large for
investors without a default allocation.

Third, I show that portfolio responses to persistent income growth are substantially higher for
people that actively rebalance their portfolios. Recall from the summary statistics in Section 3.3
that trading activity and portfolio turnover is low across the sample. This means that even for
investors that have opted out of the default allocation or have chosen an initial allocation in a
personal account, portfolio reallocation is infrequent. To estimate the effect of income growth
on equity shares for the subsample of investors that rebalance their portfolios, I split the set of
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investors in three groups based on portfolio turnover over the year. Column (2) of Table 5 shows
that the portfolio responses to income growth are strongly increasing in portfolio turnover. The
elasticity for those investors that have no portfolio turnover based on their own actions is zero. The
effect of income growth on equity share changes is roughly 50% larger than the baseline estimate
for investors with some portfolio turnover (below 25%), and the elasticity is as high as 0.3 for
investors with a portfolio turnover above 25% (denoted by “active turnover”). These estimates
suggest that infrequent portfolio rebalancing is a key driver behind the low sensitivity of portfolio
allocations to wealth changes. Section 5 quantifies these effects.

Fourth, I argue that limited attention is a likely explanation for the low average elasticity of
portfolio shares due to infrequent trading. I split the sample of investors by the number of months
with at least one web login over the year. Column (3) shows that the elasticity of equity shares
is strongly increasing in the number of months with web activity. Investors that frequently log
into their account adjust their portfolios on average by almost ten times as much as investors that
rarely log into their account. I therefore conclude that limited attention is likely to be an important
driver behind the small average effect of income growth on equity share changes.

Tax burden. The second portfolio friction I consider is limited portfolio adjustment due to
tax implications. When capital gains are taxable, investors may be reluctant to rebalance their
portfolios in response to wealth shocks in order to avoid realizing a capital gain. The sample
of investment accounts consists of both taxable and non-taxable accounts. Retirement accounts
are not subject to capital gains and dividend tax, while individual non-retirement accounts are
taxable. I examine heterogeneity in the elasticity of equity shares to income by account type.
In column (2) of Table 4, the sample is restricted to retirement accounts. The estimated effect is
similar to the full sample. Columns (3) and (4) report results for the subsample of investors with
non-retirement accounts. Column (3) shows that the estimated effect in retirement accounts is
larger for this type of investors, that may be more active in monitoring their portfolios. Column
(4) reports a lower coefficient for the same subsample in their non-retirement accounts. This
finding suggests that tax considerations play some role in limiting portfolio adjustment in taxable
accounts.

Corner solutions. Finally, since retail investors generally do not have access to a margin account
and cannot short assets, portfolio shares are bounded by 0 and 1. This raises two potential
concerns on the analysis of portfolio changes. First, running the regression in logs requires a
strictly positive equity share. This restriction drops 4.5% of the sample that hold no equity. If very
risk averse investors in fact choose an allocation of zero, the measured effect of income growth
might be downward biased. Second, the boundaries of 0% and 100% may lower the sensitivity
of equity shares to income changes because the least and most risk-averse investors cannot take
more extreme positions when they get hit with a shock. Column (5) of Table 4 reports that the
positive relation between income growth and equity share changes carries over to the specification
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in levels rather than logs. Column (6) shows that the results are almost identical when restricting
the sample to interior equity shares in (0, 1). Thus, I conclude that the results are not sensitive to
portfolio boundaries.

5 Market-Driven Portfolio Fluctuations and Rebalancing Behavior

In this section, I address two key points that arise from the analysis in Section 4. First, many
people only rebalance their portfolios infrequently. For most individuals in the U.S., retirement
wealth is the main form of investable wealth. Retirement wealth is notoriously “sleeply”, as is
well known from the literature on retirement investment. Only 20–25% of households in the full
sample of RIs reallocate money across assets in a given year. This means that the measured relation
between wealth shocks and portfolio changes likely understates the impact of wealth fluctuations
on desired portfolios.

Second, recall from the stylized model that only the combined portfolio responses to income
growth and financial returns are informative about non-homotheticity in risk preferences.
Infrequent rebalancing induces a mechanical correlation between portfolio returns and portfolio
allocation changes. To estimate the effects of portfolio returns on desired allocations, it is therefore
crucial to account for fluctuations in portfolios due to irregular portfolio adjustment.

5.1 Hazard Rate of Trading

A relatively low percentage of the sample update their portfolios in any given year. The effects of
changes in investor financial profiles on risk preferences need to be inferred from this subsample
of investors that make an active reallocation decision. For dealing with selection issues and for
modeling rebalancing behavior, it is therefore important to understand who trades, and why.

Figure 7a plots the probability of having at least one investor-driven trade over the year as a
function of income growth in that year, using 20 bins for income growth. Figure 7b repeats this
analysis on the probability of active portfolio turnover (more than 25% of initial assets over the
year).20 Both plots show a hazard rate of rebalancing activity that is nearly flat in income growth.
Hence, while the earlier empirical analysis highlighted that income growth affects the intensive
margin of trading, there is little effect on the extensive margin. Appendix Table A.8 presents
estimates of an OLS regression of rebalancing activity on the magnitude of income growth and
portfolio equity returns. While there is a clear statistical relationship between the magnitude
of these shocks and the probability of portfolio adjustment, the incremental R-squared of both
income growth and equity returns is nearly zero and the economic magnitudes are limited. For
example, an additional 10% positive or negative income growth only increase the probability of
trading in the current year by 0.3 percentage points.

20These plots are constructed from the same subsample that is used in the remainder of this section, as described in
5.2. Investors in this subsample have a somewhat higher trading intensity than in the full sample.
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Figure 7: Income Growth and Rebalancing Activity

(a) Share of Sample with Trading Activity
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(b) Share of Sample with High Turnover
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Notes: Panel (a) plots the probability of having an investor-driven trade during the year as a function of
income growth in that year, using 20 bins for income growth. Panel (b) plots the probability of having a
high portfolio turnover (at least 25% of initial assets) as a function of income growth, again using 20 bins
for income growth.

I conclude that trading activity is largely consistent with a model of random, time-dependent
adjustment where rebalancing does not vary (much) with changes in observable factors. Giglio
et al. (2019) arrive at a similar conclusion in the context of subjective beliefs. Similarly, Meeuwis
et al. (2019) find that a small share of investors make large portfolio adjustments in line with their
political affiliation in response to the outcome of the 2016 U.S. national election.

5.2 Decomposition of Portfolio Changes

Definition of passive equity share. When portfolios are not continuously rebalanced, changes in
asset allocations are driven both by investor reallocation actions and by realized asset returns. Due
to asset return-driven fluctuations, portfolio equity shares will typically rise under good equity
market conditions, and decline in a bear market. In order to decompose portfolio changes into
appreciation-driven changes and investor reallocation decisions, I calculate the passive equity
share of investor portfolios. The passive equity share is defined as the equity share at the end
of the year in the absence of any trades during the year. Let ωi,j,t−1 be the portfolio holdings of
investor i in asset j at the beginning of year t. It is straightforward to calculate the passive portfolio
weight ω

p
ijt on security j from the realized gross return Rjt in year t: ω

p
ijt ≡ ωi,j,t−1Rjt. The passive

equity share θ
p
it can then be computed as the equity share of a portfolio with weights ω

p
it.

The passive equity share change ∆pθit is the change in equity share over year t if the investor
does not make any trades during that year: ∆pθit ≡ θ

p
it − θi,t−1. The passive equity change is zero

for investors that start with a portfolio that is either 100% or 0% invested in equity. Since the
market component captures a large part of the variation in returns on risky assets, the average
passive change as a function of initial equity share is inverse U-shaped in years with positive
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Figure 8: Decomposition of Portfolio Changes

(a) Equity Share Changes in 2008

−0.10

−0.05

0.00

0.05

0.10

0.00 0.25 0.50 0.75 1.00

Initial Equity Share

C
ha

ng
e 

in
 E

qu
it

y 
Sh

ar
e

Total Change Passive Change

(b) Equity Share Changes in 2013
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Notes: This figure plots the average total change in portfolio equity share and the average passive change
in portfolio equity share as a function of the initial equity share. Panel (a) shows this decomposition for
2008 (a bear market) and panel (b) shows this decomposition for 2013 (a bull market).

market returns, and U-shaped in years with negative market returns. For illustration, Figure 8
plots the average total change and passive change in equity shares as a function of initial equity
share, in a bear market (2008) and bull market (2013). The residual change θit − θ

p
it in equity

shares is the change in the portfolio that does not mechanically follow from realized returns
and is due to rebalancing. Consistent with the earlier analysis in Section 4, I will run the main
empirical specifications in logs. The log passive change in equity shares is analogously defined by
∆p log θit ≡ log θ

p
it − log θi,t−1.

Sample. The variation that passive portfolio changes due to fluctuations in asset prices induce
on investor portfolios provides an opportunity to quantify the extent of portfolio rebalancing.
Necessary for this decomposition is that investors hold a portfolio that is sensitive to asset
fluctuations. I therefore restrict the sample in this part of the analysis to investors with beginning-
of-period holdings that generate variation in passive changes to equity shares. In particular, I
restrict the sample to investors with an initial equity share between 0.01 and 0.99, and that have
less than 100% invested in blended funds that automatically rebalance their asset mix.21 The
resulting sample is likely to be more active in rebalancing their portfolios than the excluded
investors for whom we do not observe variation in passive equity changes. Recall from the results
in Section 4.3 that there is a consistent but lower effect of income growth on equity shares for
investors with a default allocation (usually a TDF), likely because this subset is less engaged with
their portfolios.

21Note that rebalancing of equity shares in response to market fluctuations is done both by individual investors and
by the fund managers of multi-asset class funds. For the purpose of this analysis, I take the perspective of an individual
investor by treating multi-asset funds as one asset position like any other fund.
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Table 6: Adjustment Model Regression Coefficients

∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7)

Passive change in log equity sharet 0.8284 0.8372 0.9105 0.7646 0.6998 0.7083 0.6841
(0.0057) (0.0059) (0.0087) (0.0080) (0.0088) (0.0120) (0.0128)

∆ log incomet 0.0525 0.0513 0.0576 0.0619 0.0617 0.0648
(0.0021) (0.0023) (0.0044) (0.0039) (0.0045) (0.0079)

Log portfolio returnt -0.0095 -0.0486 0.0459 0.0209 -0.0065 0.0749
(0.0023) (0.0029) (0.0039) (0.0029) (0.0036) (0.0050)

Year FE Y Y Y Y Y Y Y
Log equity sharet−1 (3rd order) × Y Y Y Y Y Y Y

year FE
Demographic controls Y Y Y Y Y Y Y

Income instrumented Y Y Y Y Y Y

Sample Good Bad Indiv stocks Indiv stocks, Indiv stocks,
market market good market bad market

R-squared 0.163 0.163 0.187 0.088 0.111 0.121 0.069
Share of individuals 56.3% 56.2% 51.0% 39.8% 21.2% 19.3% 14.5%

Notes: This table presents regression estimates of the partial adjustment model. The demographic controls include
a second-order polynomial in age, gender, marital status, a second-order polynomial in employment tenure, log
income, and the log of financial assets, all measured at t− 1. Log income at t− 1 and t is instrumented by log income
at t− 2 and t + 1, respectively. The good market years are {2009, 2010, 2012, 2013, 2014, 2016, 2017}; the bad market
years are {2008, 2011, 2015}. Columns (5)–(7) restrict the sample to investors that hold individual stocks in their
portfolios at t− 1. Standard errors are clustered at the individual level.

Baseline rebalancing regression. When portfolios are infrequently rebalanced, passive changes
in equity shares due to market fluctuations have an effect on overall portfolio changes. To examine
the relation between passive changes and total changes in equity shares, I run the following
rebalancing regression:

∆ log θit = b0∆p log θit + δ′Xi,t−1 + ηit. (17)

The coefficient b0 is inversely related to the speed of portfolio adjustment: with full adjustment,
b0 = 0. When adjustment is partial, we should find b0 to be between 0 and 1. I run the
regression (17) with controls for log initial equity share and the same set of basic demographic
characteristics as before.22 Column (1) of Table 6 reports that the coefficient b0 on the passive
portfolio change is 0.83. This translates to a speed of adjustment of 17% at an annual basis.23

22Running an OLS regression is problematic here due to measurement error in the equity share of multi-asset
class funds that introduces a correlation between ∆p log θit and ηit. Therefore, I instrument passive changes by the
counterfactual passive change where the equity share of multi-asset class funds is set to the beginning-of-year value.
This construction has little effect on the estimation results.

23The estimated speed of adjustment is considerably lower than the adjustment speed of 64% in Calvet et al. (2009).
This difference is likely caused by sampling differences – Retirement Investors may be more passive than the typical
individual that holds risky assets outside of retirement accounts.
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5.3 Partial Adjustment Model

To quantify the effects of wealth shocks on desired portfolio allocations, I estimate a model of
partial portfolio adjustment in the spirit of Calvet et al. (2009).

Setup. To be able to infer the effects of wealth shocks on desired portfolio allocations from
changes in observed equity shares, while accounting for infrequent portfolio rebalancing, I make
three assumptions on portfolios and rebalancing behavior.

First, assume that the realized log equity share of the portfolio is a linear combination of the
log passive share log θ

p
it and the log desired equity share log θd

it:

log θit = (1− χ) log θ
p
it + χ log θd

it + ηit, (18)

where the residual ηit is i.i.d., reflecting idiosyncratic variation in individual investor portfolios.
Subtracting the lagged equity share log θi,t−1 from both sides yields

∆ log θit = (1− χ)∆p log θit + χ(∆ log θd
it + log θd

i,t−1 − log θi,t−1) + ηit. (19)

Note that χ determines the speed of adjustment towards the target allocation θd
it. When χ = 1, the

realized log equity share is equal to the log target share plus a residual component. For χ ∈ (0, 1),
changes in portfolios are driven by both market fluctuations and portfolio rebalancing.

Second, assume that the change in log desired equity share is a linear combination of portfolio
factors Dit and lagged investor characteristics Xi,t−1:

∆ log θd
it = λ′dDit + λ′xtXi,t−1, (20)

where Dit and Xi,t−1 are independent of ηit. The factors in Dit capture innovations to investor
financial profiles that lead to changing in desired allocations, such as wealth shocks. Desired
allocations can also change based on ex-ante differences in Xi,t−1, such as age, with an effect that
may vary by year.

Third, assume that the initial distance from the target is

log θd
i,t−1 − log θi,t−1 = ζ ′tXi,t−1. (21)

This assumption does not require that desired portfolios take a common form across investors,
but imposes the less restrictive condition that the distance of the initial portfolio from the targeted
equity share is proxied by observables Xi,t−1.

Combining these three assumptions leads to the following reduced-form specification:

∆ log θit = b0∆p log θit + b′Dit + δ′tXi,t−1, (22)

where the coefficients of this specification are related to the underlying structure as follows: b0 =
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1− χ, b = χλd, δt = χλxt + χζt.

Adjustment model estimates. I estimate (22) in the data. The main object of interest is λd, which
captures the effects of characteristics Dit on desired portfolio allocations. In particular, I specify
Dit to include income growth and the portfolio return. Note that 1 − b0 captures the speed of
adjustment, and we can recover λd from the estimated regression coefficients via b/(1− b0).

Table 6 presents the regression estimates. In the baseline estimation of the adjustment model
in column (2), the controls include the basic set of demographics characteristics, year fixed effects,
and a third-order polynomial in beginning-of-year log equity share interacted by yearly dummies
to take out the systematic component of returns and portfolio changes. In this specification,
the coefficient of the total change in log equity shares on the passive change is 0.837. Similar
to the results from Section 4, the estimated coefficient on (persistent) income growth is 0.053.
This estimate translates into a structural effect on changes in the desired log equity share of
0.053/(1 − 0.837) = 0.323. After controlling for the mechanical relation between returns and
portfolio allocations due to infrequent rebalancing, I find a negative effect of portfolio returns on
changes in the log equity share, with a point estimate of −0.010. This estimate translates into a
structural effect of −0.010/(1− 0.837) = −0.058 on desired portfolios. The estimated effect of
portfolio returns is substantially closer to zero than the income growth effect. As a result, the
combined effect is that b1 + b2 > 0, which is evidence of non-homothetic risk preferences.

Next, I examine the variation in estimates by market conditions. Recall that the sample period
of portfolio changes is 2007–2017 and therefore spans a range of market conditions. I split the
sample in years with a good market return – above the historical average – and years with a
bad market return. The good market years are {2009, 2010, 2012, 2013, 2014, 2016, 2017}; the bad
market years are {2008, 2011, 2015}. Columns (3) and (4) present the estimation results for these
two samples. The estimated effect of income is stable across market conditions. In contrast, the
coefficient on idiosyncratic portfolio returns varies considerably by sample. Consistent with the
sample in Calvet et al. (2009), the effect of portfolio returns is positive in years with a bad market
return. However, we get an opposite effect in years with a good market return. Pooled across
all market conditions, the overall result is a small negative effect of portfolio returns on equity
shares. Columns (5)–(7) show that the results are similar for the subsample of investors that hold
individual stocks and therefore have more idiosyncratic variation in portfolio returns.

6 Life-Cycle Portfolio Choice Model

In this section, I present a discrete time life-cycle model that can account for the empirical features
of portfolio choice. The model builds on workhorse models of saving and portfolio choice (Cocco
et al., 2005) and has three non-standard features: non-homothetic risk preferences, a distribution
of idiosyncratic labor income shocks that incorporates countercyclical tail risk, and infrequent
portfolio adjustment.
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6.1 Preferences

Households have finite lives and live from model age t = 1 (actual age 23) to a maximum age
of TD = 78 (actual age 100). The life cycle consists of a working phase and a retirement phase.
Households work until age TR = 43 (actual age 65), after which they retire. The probability that
the household survives until the next year conditional on being alive at age t is denoted by πt. I
set the survival probability during the working phase to one. The age-dependent probabilities of
survival during retirement are obtained from U.S. mortality tables.

Households have Epstein-Zin utility over a single consumption good with constant elasticity
of intertemporal substitution (EIS) ψ:

Vit =

{
(1− βi)C

1− 1
ψ

it + βi

(
J−1 (Et

[
πt J(Vi,t+1) + (1− πt)J(Wi,t+1/b̃)

]))1− 1
ψ

} 1
1− 1

ψ , (23)

where Cit is consumption of household i in year t, b̃ captures the strength of the bequest motive,
Wit is cash on hand at beginning of period, and J is a certainty equivalent aggregation function.

Risk preferences. The typical choice for J in an Epstein-Zin framework is power utility: J(v) =
v1−γ0−1

1−γ0
. In this form, relative risk aversion is constant and equal to γ0. I consider a generalized

case of non-homothetic risk preferences, where J is defined by the ODE24

− J′′(v; β) · v
J′(v; β)

= γ0
(
v/κβ

)−γ1 . (24)

Note that J takes the form of power utility when γ1 = 0. The case with γ1 > 0 is a reduced-form
way to capture cross-sectional and time series variation in risk aversion. The coefficient of relative
risk aversion decreases as the value function that enters the certainty equivalent calculation
increases. Richer households with higher lifetime expected utility therefore have a lower risk
aversion. Such a relation can be generated in a multiple good setting with non-homotheticities
across goods, e.g. basic versus luxury goods (Wachter and Yogo, 2010) or consumption versus
bequests (Carroll, 2000, 2002). Dew-Becker (2014) considers a similar modification of standard
Epstein-Zin preferences by choosing a habit-formation utility form for J.

The purpose of the scaling factor κβ in (24) is to normalize risk aversion and eliminate
mechanical heterogeneity in risk aversion through differences in the rate of time preference across
investors. I choose κβ to be proportional to the value function of a benchmark investor in the
model with fixed CRRA preferences and discount rate β, and such that average risk aversion is
approximately equal to γ0 in model simulations.25

24This ODE does not have a closed-form solution. I solve for J numerically when solving the life-cycle model.
Appendix Figure A.9 plots this parameterization of J for different values of γ1.

25Note that the scaling factor in (24) varies by the rate of time preference β. As discussed below, I introduce
heterogeneity in time discounting across agents i to match cross-sectional statistics on saving rates. But since local risk
aversion depends on the value function, variation in β across individuals leads to variation in risk aversion through
the value function. I therefore allow the scaling factor to be β-specific. This approach is conservative by eliminating
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Time discounting. Since a full exploration of the cross-sectional distribution of preferences is
outside the scope of this paper, I assume constant values of the EIS ψ and risk-aversion parameters
γ0 and γ1. However, I do allow for cross-sectional heterogeneity in time preferences βi. I assume
that discount factors are correlated with initial permanent income. This heterogeneity allows me
to capture cross-sectional saving patterns in the data, namely that income-rich households tend
to have higher saving rates than poor households (see discussion below in Section 7.1). I use a
simple functional form for βi where the discount rate is a logistic function of initial permanent
income. Let βi = β(Pi1; β0, β1), where β(·) is given by

β(P1; β0, β1) = 1− (1− β0)
2

1 + Pβ1
1

, (25)

with baseline discount rate β0 and a slope β1 that captures the dependence of the discount factor
on initial permanent income. Appendix Figure A.10 plots this parameterization for β as a function
of initial permanent income for different values of β1. When β1 = 0, the discount rate is constant at
β0. A positive slope parameter β1 implies that discount factors are increasing in initial permanent
income P1. Discount rates range between 2β0 − 1 and 1.

6.2 Income

Working life. During their working life, households earn wage income that is subject to
idiosyncratic risk. Gross income consists of three components: a deterministic age component G,
permanent income P, and a transitory income shock eε. The process for gross income Yit is given
by

log Yit = log Gt + log Pit + εit (26)

log Pit = log Pi,t−1 + ηp,xxt + ξit, (27)

with aggregate permanent shock xt and idiosyncratic permanent shock ξit.
Agents pay income taxes over their wage income. I use a parametric form for after-tax

income as a function of pre-tax income that captures progressivity in income taxes and is used
in the literature by Benabou (2000), Heathcote, Storesletten, and Violante (2017), and others. In
particular, after-tax income is given by Ypost

it = (1− τ)Y1−ρ
it . Taxes are progressive when ρ > 0

and neutral when ρ = 0.

Retirement. In retirement, agents receive Social Security benefits. These payments are modeled
according to the formulas of the Social Security’s Old-Age, Survivors, and Disability Insurance
program. Retired households receive a percentage of the economy-wide average wage (equal to
$74K in the SCF and normalized to 1) based on their historical average earnings, subject to a cap.

an additional source of heterogeneity in risk aversion in the cross section that cannot be identified from within-person
changes and would further amplify the cross-sectional effects of non-homothetic risk preferences in the model.
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Let ȲitR be average (capped) earnings over the working life at retirement:

ȲiTR =
∑TR

t=1 min(Yit, 1.60)
TR

. (28)

The schedule for replacement income is given by

f soc(Ȳ) = 0.9 min(Ȳ, 0.14) + 0.32 max(min(Ȳ, 0.83)− 0.14, 0)

+ 0.15 max(Ȳ− 0.83, 0).
(29)

Since Social Security replacement income is based on average income over the working
life, it would be necessary to keep track of the history of labor income to calculate individual
retirement benefits. To save one state variable and limit the computational burden, I instead
predict agents’ Social Security benefits in retirement based on the terminal value of permanent
income at retirement.26

6.3 Asset Markets

Agents can invest in two assets: one-period risk-free bonds and a risky asset. Investment
opportunities are constant over time. The risk-free asset pays a fixed gross return R f . The risky
asset has return Re

t = Reeνt , where Re is the average gross return to equity. Return shocks are
given by

νt = −
1
2

σ2
ν + ην,xxt + ut. (30)

The macro risk variable xt is i.i.d. normally distributed: xt ∼ N(0, σ2
x). The purely financial shock

ut is also normally distributed: ut ∼ N(0, σ2
u). The total variance of log stock market returns is

σ2
ν = η2

ν,xσ2
x + σ2

u .

6.4 Wealth Dynamics

Households enter a period with cash on hand Wit, that is composed of financial wealth and labor
income. They decide on how much to consume, Cit, and how much to invest in stocks, Sit, and in
bonds, Bit. The budget constraint is given by

Cit + Sit + Bit = Wit. (31)

Wealth is accumulated through labor income and returns on asset positions:

Wi,t+1 = SitRe
t+1 + BitR f + Ypost

i,t+1. (32)

26Specifically, I predict the retirement replacement rate by a third-order polynomial in log permanent income. The
R2 of this regression is 96%.
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Following common assumptions in the life-cycle literature, borrowing and short selling are not
allowed, so that

Sit ≥ 0 (33)

Bit ≥ 0. (34)

Let θit ∈ [0, 1] denote the share of the portfolio that is invested in stocks. The budget constraint
can be written in terms of θit as

Wi,t+1 = (Wit − Cit)(R f + θit(Re
t+1 − R f )) + Ypost

i,t+1. (35)

To capture infrequent rebalancing in portfolios, I assume that portfolios can only be updated
with some probability each year. Let χ be the Calvo frequency of portfolio adjustment. Without
rebalancing, the portfolio equity share equals the passive equity share that moves with realized
asset returns. Hence, the equity share θit is given by

θit =

θ
pass
it if no portfolio update at t, with probability 1− χ

θ∗it if portfolio update at t, with probability χ,
(36)

where the passive portfolio equity share is

θ
pass
it = θi,t−1

Re
t

R f + θi,t−1(Re
t − R f )

. (37)

I assume that agents can freely choose their initial portfolio θi1.
The agent’s objective function is to maximize (23) over Cit and θ∗it subject to the budget

constraint (35), the dynamics for asset returns and labor income, and the process for θit. Since an
analytical solution to this problem does not exist, I solve the model through numerical dynamic
programming.

6.5 Calibration

Table 7 reports the parameters that are fixed or estimated outside of the model.

Preferences. I fix the parameter values of the EIS ψ and the bequest motive b̃ at standard values.
First, since investment opportunities are constant over time, it is hard to separately identify the EIS
from the rate of time preference.27 I therefore fix the EIS to a standard value of ψ = 0.5. Second,
because the focus is on pre-retirement behavior, I do not estimate the bequest parameter. I set this

27In recent work, Calvet et al. (2019) show that the EIS can be identified in a standard life-cycle model from
endogenous variation in expected returns due to life-cycle profiles in equity shares and due to mortality risk. They
find a distribution of EIS that is widely dispersed across households.
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Table 7: Calibrated Parameters

Parameter Description Value Source / target

Asset returns
R f risk-free rate 1.02 literature
Re − R f equity premium 0.045 literature
σν equity volatility 0.18 literature

Income process
g0 income profile, constant -4.315

Cocco et al. (2005)
g1 income profile, coefficient on age 0.319
g2 income profile, coefficient on age2/10 -0.058
g3 income profile, coefficient on age3/100 0.003

σξ,1 volatility of center of permanent income shock 0.064

McKay (2017)

λξ,2 probability of left tail of permanent income shock 0.032
µξ,2 mean of left tail of permanent income shock -0.167
σξ,2 volatility of left tail of permanent income shock 0.334
λξ,3 probability of right tail of permanent income shock 0.019
µξ,3 mean of right tail of permanent income shock 0.394
σξ,3 volatility of right tail of permanent income shock 0.334

σx volatility of macro shock 0.124 derived from McKay (2017)
ηp,x exposure of income growth to macro shock -0.237 volatility of aggregate

income growth
ην,x exposure of stock return to macro shock -0.921 correlation of stock returns

and aggregate income growth
σp1 dispersion of initial permanent income 0.812 Gini coefficient of income
τ baseline income tax 0.3 literature
ρ tax progressivity 0.181 Heathcote et al. (2017)

Preferences
ψ elasticity of intertemporal subsitution 0.5 literature
b̃ bequest motive 2.5 Gomes and Michaelides (2005)

Notes: This table summarizes the parameter values that are fixed or estimated outside of the model.

parameter to b̃ = 2.5, similar to Gomes and Michaelides (2005). Appendix A.4.3 shows that the
model conclusions are robust to alternative choices for these two parameters.

Asset returns. I calibrate the moments of asset returns to standard values in the portfolio choice
literature. The real risk-free bond return is set to R f = 1.02 and the equity premium to 4.5% per
year. I set the volatility of stock returns to σν = 18%, so that the Sharpe ratio of equity is 0.25.

Income. The age profile G is given by

log Gt = g0 + g1 · t + g2 · t2/10 + g3 · t3/100. (38)

I use the estimated income profile of college-educated households from Cocco et al. (2005) that
captures the hump-shaped pattern of earnings over the working life. Income is normalized so
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that average income across all working agents in the model is equal to one. I set the baseline
income tax rate to τ = 0.3, and I use the estimated tax progressivity from Heathcote et al. (2017)
with a value of ρ = 0.181.

In the main specification for the distribution of idiosyncratic income shocks, I incorporate
countercyclical tail risk in wage income. I use the specification of permanent idiosyncratic income
shocks from McKay (2017) that fits recent empirical evidence on the cyclicality of skewness in
income growth as reported by Guvenen et al. (2014).28 Most people have a common earnings
change that is drawn from a distribution N(µ1,t, σ2

ξ,1). A fraction λξ,2 of workers receive a large
and persistent earnings loss that is drawn from the distribution N(µ2,t, σ2

ξ,2). Similarly, a fraction
λξ,3 of workers receive a very positive shock with distribution N(µ3,t, σ2

ξ,3). I assume a perfect
correlation between aggregate income shocks and time-varying skewness in idiosyncratic shocks.
Hence, we get the following setup for persistent shocks:

ξit ∼


N(µ1t, σ2

ξ,1) with probability 1− λξ,2 − λξ,3

N(µ2t, σ2
ξ,2) with probability λξ,2

N(µ3t, σ2
ξ,3) with probability λξ,3,

(39)

where the macro shock xt drives the distribution of the tails and idiosyncratic shocks have mean
zero:

µ1t = µ̄t

µ2t = µ̄t + µ2 − xt

µ3t = µ̄t + µ3 − xt

µ̄t = −λξ,2µ2 − λξ,3µ3 + (λξ,2 + λξ,3)xt.

(40)

The skewness process x estimated by McKay (2017) is persistent. I set the volatility of x to match
the unconditional volatility of the skewness process. The resulting value of σx is 0.124. The other
parameter values in the distribution of ξit and εit are directly taken from McKay (2017).

I use the series of average income growth, net of life-cycle effects, from Guvenen et al. (2014) to
set the parameters ηp,x and ην,x. I choose ηp,x to match the volatility of aggregate income growth
of 0.029, and I pick ην,x so that the correlation between aggregate income growth and stock returns
is 0.635. This aggregate correlation leads to a correlation of individual permanent income growth
with stock returns of 0.152, which is very close to the commonly used value of 0.15 as estimated
by Campbell et al. (2001). There is no correlation between transitory shocks and equity returns.
Finally, let initial permanent income be given by log Pi1 ∼ N(0, σ2

p1
). I calibrate the dispersion of

initial log permanent income to match the Gini coefficient of income in the SCF in 2016, which is
0.551.

28The full model of McKay (2017) also includes displacement risk. I abstract from unemployment in the model and
use the distribution of income growth for employed individuals.
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Alternative income process: no tail risk in labor income. As an alternative specification of
idiosyncratic income risk, I consider the traditional setup of the income process from the life-cycle
literature with normally distributed shocks: ξit ∼ N(0, σ2

ξ ) and, as before, εit ∼ N
(
0, σ2

ε

)
. I set

the volatility σξ to match the volatility of permanent idiosyncratic income shocks with cyclical
skewness: σξ = 0.122. This number falls in the range of values typically used in the life-cycle
literature (Gourinchas and Parker, 2002; Cocco et al., 2005). The other parameter values of the
income process follow the baseline calibration.

Alternative government system: proportional transfers and taxes. I also consider a benchmark
case of the model where transfers and taxes are proportional. Many life-cycle models have a
replacement income in retirement that is a constant fraction of permanent income just before
retirement. If in addition income is taxed at a constant rate, the present value of net labor income
is proportional to permanent income P. When γ1 = 0, this means that the value function is
homothetic in P and the problem has one less state variable. In that case, the restriction b1 + b2 = 0
holds, up to a log-linear approximation. As a benchmark, I therefore consider an alternative
specification with proportional government policies: (1) no tax progressivity, i.e. ρ = 0, and (2)
Social Security income is proportional to permanent income in final period, with the same average
replacement rate.

7 Estimation and Model Fit

7.1 Parameter Identification

To examine the quantitative implications of the model, I simulate a sample of 500 000 households
that all receive different aggregate and idiosyncratic shocks. Hence, there are no time series and
cohort effects in simulated data. I structurally estimate the key parameters of the model. Here, I
describe the procedure for estimating these parameters.

SCF profiles. I estimate life-cycle profiles of savings and equity shares in the SCF based on
the available data from ten waves between 1989 and 2016. I restrict the sample to households
with age (of the head) between 25 and 65, with positive income and wealth, and that are not
business owners. Sampling weights are adjusted so that each year gets equal weight. As a
measure of wealth, I use net worth (networth). The equity share is the ratio of equity holdings
to financial wealth (equity/ f in). I normalize wealth by average household income by year, which
is $74K in 2016. To match the earlier empirical analysis, I calculate the age profiles of wealth and
equity shares conditional on owning any quasi-liquid retirement wealth (retqliq > 0). Since these
investors have easy access to stock market investments, I abstract from frictions that limit the
participation in financial markets.

Following Ameriks and Zeldes (2004), I construct three-year age groups. Since the SCF is a
triennial survey, this means that each cohort moves to the next age group in the following survey
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year. It is well known that without additional restrictions, it is impossible to separately identify
age, cohort, and time fixed effects (see e.g. Deaton, 1985; Ameriks and Zeldes, 2004). The reason
is perfect collinearity: time = cohort + age. As in Fagereng, Guiso, and Pistaferri (2018), I solve
this collinearity problem by imposing parametric restrictions on time fixed effects, as proposed
by Deaton and Paxson (1994). In particular, I assume that time effects add up to zero and are
orthogonal to a linear trend. With this restriction, age effects can be estimated in a regression with
controls for cohort fixed effects and restricted time fixed effects.

I run a quantile regression to estimate the profile of median normalized wealth over the life
cycle. As target moments for the model, I include median normalized wealth for the age groups
with midpoints {28, 34, 40, 46, 52, 58, 64}. In addition, the estimated average equity share at age
50 (age group with midpoint 49) is a model target. The standard errors of these moments are
obtained through bootstrapping the procedure. I target the equity share for 50-year old investors
to pin down average risk aversion, but I do not target the life-cycle profile of equity shares that
is estimated from a cross-sectional comparison of investors. Instead, the model targets individual
changes in portfolio allocations in response to wealth shocks. I later use the estimated age profile
of equity shares in the SCF as a test of the implications of the model.

Portfolio regressions. To quantify variation in risk preferences and the degree of inertia in
portfolio rebalancing, the key target moments for the model are the within-person regression
estimates of portfolio changes from the portfolio adjustment model in Section 5. To find the
model-implied regression coefficients b0, b1, and b2, I run the same regression in model-simulated
data. I select investors with age 30 to 58 and control for a third-order polynomial in initial log
financial assets, initial log income (instrumented), a third-order polynomial in the initial log
equity share, and a second-order polynomial in age. Appendix Figure A.11 plots the adjustment
model regression coefficients estimated from model-simulated data for different values of γ1 and
with fixed values for γ0, χ, and β. The graphs suggest that a positive γ1 and cyclical skewness
in labor income are important ingredients to fit the empirical regression coefficients. These
implications are later confirmed in formal estimations of the model.

Permanent income and saving rates. A well-known stylized feature of the data is that rich
households with high lifetime income have higher saving rates than income-poor households
(Mayer, 1972; Dynan, Skinner, and Zeldes, 2004). Straub (2019) proposes a method to measure
the cross-sectional curvature of consumption in permanent income, and finds estimates of this
curvature that imply a significant deviation from the linear relation that is implied by many
macroeconomic models. Straub (2019) estimates the following relation:29

cit = φpi1 + δ′Xit + ηit, (41)

29I focus on the case where the persistent component of individual income is a random walk. Straub (2019) also
considers the case with a fixed permanent component wi and a mean-reverting process for pit.
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where cit is log consumption and pi1 is log permanent income upon entering the labor market.
Since permanent income is not directly observable, consistent estimates of φ can be obtained
through running an IV regression of cit on yit and Xit, with yi1 as instrument for yit. Straub (2019)
estimates φ in PSID data between 1999 and 2013 for households with age 30–65.30 The estimated
value of φ is 0.732 with a standard error of 0.05.

Absent heterogeneity in the rate of time preference, saving rates in the life-cycle model are
nearly constant across the population.31 I introduce a simple way to account for variation in
saving behavior by wealth in the population by having heterogeneous time discount factors βi

that are correlated with initial permanent income. To find the slope β1 of discount factors with
respect to permanent income, I estimate the relation (41) in model-simulated data. The controls
include a third-order polynomial in age.

Objective function. I estimate the model parameters through indirect inference. In total, there
are 12 empirical target moments. The objective is to minimize the weighted distance between
moments in the model and in the data:

α̂ = arg min(m(α)− µ)′W(m(α)− µ), (42)

where α is the vector of parameters to be estimated, m(α) are model moments, and µ is the vector
of moment values in the data. As weighting matrix W, I use the inverse of the diagonal of the
empirical variance-covariance matrix of the moments.

The mapping from parameters to moments is relatively straightforward. The baseline risk
aversion parameter γ0 pins down the average equity share, the degree of non-homotheticity in
risk aversion γ1 drives the regression coefficients b1 and b2, the probability of updating χ is tightly
linked to the coefficient b0 of overall equity share changes on passive equity share changes in the
rebalancing regression, the baseline rate of time preferences β0 drives wealth profiles over the
life cycle, and heterogeneity in discount rates β1 captures concavity in the cross-sectional relation
between consumption and permanent income.

As described below, I will also consider versions of the estimation where some of the moments
are excluded from the target vector.

30Straub (2019) focuses on after-tax income. I follow his approach by running the IV regression in model-simulated
data with post-tax income.

31Note that the model has Epstein-Zin preferences that separate the elasticity of intertemporal substitution from risk
aversion. The EIS is assumed to be constant and homogeneous. Furthermore, the bequest motive is homothetic. As
a consequence, saving rates are nearly unaffected by the level of wealth. In fact, when γ1 = 0 (CRRA preferences)
and transfers and taxes are proportional, the value function is homothetic in permanent income and only the relative
proportion of financial wealth to human capital matters for consumption and saving rates. This neutrality is broken
by the Social Security system where replacement rates decrease in income, by progressive income taxation, and by
DRRA preferences that imply that poorer households are more risk averse and therefore have a greater demand for
precautionary savings. However, these deviations from a neutral model are not sufficient to generate the empirical
degree of concavity φ.
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7.2 Estimation Results

Parameter estimates. Table 8 reports the estimated parameters for different specifications
of the model. Column (1) reports the estimated parameters for the baseline model that has
countercyclical tail risk income, progressive taxes and a realistic Social Security system with non-
proportional replacement rates. The baseline coefficient of relative risk aversion (approximately
equal to average risk aversion in model simulations) is 5.7, which falls within typical ranges and
is lower than the high risk aversion coefficient that some portfolio choice models need to match
equity shares (see e.g. Fagereng et al., 2018). Most importantly, risk preferences are estimated
to be strongly non-homothetic: γ1 = 0.31. Further, the annual probability of portfolio updating
is estimated at 15%, the baseline discount rate is slightly below 0.95, and discount rates are
heterogeneous (β1 > 0) to match heterogeneity in saving rates. Investors are somewhat more
passive in the model than what is observed in the data; the other moments of the fitted model fall
within the confidence bounds of the empirical moments.

Columns (2)–(4) report parameter estimates for alternative specifications of the model with
progressive taxes and non-proportional retirement replacement income. Column (2) restricts
preferences to be of the CRRA form and excludes the portfolio responses to wealth shocks from
the target moments. The resulting model fits the cross-sectional moments but is inconsistent with
the within-person portfolio evidence. Column (3) considers an alternative model specification
where income is not subject to tail risk. While the implications for risk preferences are similar,
this version fits the data less well. Safer labor income raises the desire to tilt financial wealth to
risky assets (hence, higher risk aversion) and weakens the precautionary saving motive (hence,
less time discounting). Column (4) imposes homogeneity in time discount rates β. The implied
non-homotheticity in risk preferences is even stronger, but consistent with Straub (2019), the
model does not fit the degree φ of cross-sectional concavity in consumption by income levels.

The baseline model deviates from a homothetic model not just by allowing for DRRA
preferences, but also by having non-proportional government policies. As a result of progressive
taxes and retirement replacement rates that decline in income levels, increases in labor income
translate less than one-for-one to increases in human capital. I find that the qualitative results
of the model do not depend on this particular form of government policies. Columns (5)–(7)
report estimated parameters for a more traditional setup of the model where transfers and taxes
are proportional to permanent income, and without heterogeneity in discount rates. Column (5)
shows that this version of the model closely matches all targets except for heterogeneity in saving
rates, and still implies a significant degree of non-homotheticity in risk preferences. Column (6)
shows that a restriction version with γ1 = 0 (CRRA preferences) again does not fit the portfolio
evidence. In this fully homothetic version of the model, for a given value of cash on hand relative
to permanent income, there are no effects of permanent income P on consumption and saving
rates. Indeed, we find that φ = 1 and that the portfolio regression coefficients add up to a
number that is close to zero. Finally, column (7) shows that also in the model with proportional
government policies, a standard specification of labor income without tail risk provides a worse
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Table 8: Parameter Estimates

Non-proportional govt policies Proportional govt policies

(1) (2) (3) (4) (5) (6) (7) Data

Baseline risk aversion γ0 5.7118 6.5857 6.7061 5.8311 5.1999 5.6315 6.0066
(0.0786) (0.0823) (0.1144) (0.0854) (0.0617) (0.0773) (0.0982)

Non-homotheticity in risk aversion γ1 0.3106 0 0.2697 0.3999 0.2245 0 0.1567
(0.0158) (0.0152) (0.0167) (0.0168) (0.0162)

Calvo probability χ 0.1520 0.1661 0.1255 0.1698 0.1825 0.1608 0.1469
(0.0039) (0.0058) (0.0034) (0.0043) (0.0055) (0.0056) (0.0039)

Baseline discount rate β0 0.9482 0.9566 0.9610 0.9423 0.9445 0.9507 0.9551
(0.0017) (0.0016) (0.0014) (0.0020) (0.0020) (0.0019) (0.0018)

Slope of discount rate β1 4.2358 3.1067 3.6189 0 0 0 0
(0.3632) (0.4640) (0.3905)

Income process Tail risk Tail risk No tail risk Tail risk Tail risk Tail risk No tail risk

Targets
Age profile of financial wealth Y Y Y Y Y Y Y
Equity share at age 50 Y Y Y Y Y Y Y
Portfolio regression b0 Y Y Y Y Y Y Y
Portfolio regression b1, b2 Y Y Y Y Y
Saving regression φ Y Y Y

Value of objective (full) 50.880 375.064 98.611 87.685 57.928 434.184 97.002
Value of objective (limited) 50.880 16.038 98.611 64.050 25.620 30.465 64.933

Equity share at age 50 0.4170 0.4259 0.4213 0.4409 0.4432 0.4238 0.4143 0.4309
(0.0111)

Portfolio regression b0 0.8646 0.8393 0.8791 0.8537 0.8337 0.8390 0.8551 0.8372
(0.0059)

Portfolio regression b1 0.0568 0.0196 0.0580 0.0534 0.0487 0.0134 0.0541 0.0525
(0.0021)

Portfolio regression b2 -0.0138 -0.0329 -0.0186 -0.0130 -0.0109 -0.0187 -0.0179 -0.0095
(0.0023)

Saving regression φ 0.6480 0.7338 0.6881 0.9731 1.0142 1.0001 1.0132 0.7300
(0.0500)

Notes: This table reports the results of structural estimations of different versions of the model. I first report the estimated parameter
values and their corresponding standard errors, I then indicate which moments were targeted in the estimation, and finally I report
the value of the objective and the key moments of the model evaluated at the estimated parameter values.

fit to the data.
The estimation results are robust to using a different weighting matrix for the moment

conditions or changing fixed parameters in the model. In Appendix A.4.3, I illustrate and discuss
the sensitivity of the estimated parameters to the empirical moments, using the method proposed
by Andrews, Gentzkow, and Shapiro (2017).

Model fit. The results in Table 8 highlight that the model with DRRA preferences fits the
reduced-form portfolio regression estimates, while the model with CRRA preferences does not.
Although the qualitative implications of the model do not depend on the specific income process,
the model with tail risk in labor income fits the data significantly better.

Next, I look at the implications of the estimated preferences for life-cycle profiles in the
model. First, Figure 9a plots median asset holdings over the life cycle in the model and in the
SCF (conditional on holding retirement wealth). The age profile of savings is targeted in model
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Figure 9: Life-Cycle Profiles of Savings and Equity Shares

(a) Median Net Worth by Age

25 30 35 40 45 50 55 60 65

Age

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

$450,000

N
e
t 
W

o
rt

h

Baseline Model

SCF

(b) Average Equity Share by Age
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Notes: Panel (a) plots median net worth by age in the baseline model and in the SCF (RIs). Panel (b)
compares the age profiles of equity shares in various specifications of the model to the SCF.

estimations, and the fitted model matches the data well.
Second, the profile of equity shares over the life cycle has been studied extensively in the

household finance literature. While empirically the age profile of equity shares tends to be
relatively flat or even upward sloping, in traditional life-cycle models the equity share sharply
declines with age. One possible explanation for the age profile of equity shares is DRRA
preferences (Wachter and Yogo, 2010), but there are many alternatives, such as cointegration
between labor income and dividends (Benzoni et al., 2007) and disaster risk in stock markets
(Fagereng et al., 2018). Distinguishing these theories of portfolio choice is difficult with cross-
sectional data. I provide direct empirical evidence in support of DRRA preferences using
within-person portfolio changes.

Even though I only target the level of the equity share at age 50 and not the age profile,
Figure 9b shows that the baseline model with DRRA generates an age profile of equity shares
that is upward sloping and closely aligns with the age profile of equity shares of households in
the SCF that are saving for retirement. Figure 9b highlights three main channels in the model
through which the life-cycle profile of equity shares deviates from the traditional downward-
sloping curve. With CRRA preferences, no tail risk in labor income, and full portfolio adjustment
each year, the age profile of equity shares is strongly downward sloping, starting at 100% equity
for young households. With infrequent, time-dependent portfolio adjustment, the equity share
profile is still downward sloping but flatter. Accounting for tail risk in labor income, the fitted
model generates a flat age profile of equity shares. Finally, equity shares increase with age and
are closest to the data when income tail risk is combined with non-homothetic preferences in the
baseline version of the model.
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Figure 10: Equity Shares over the Wealth Distribution

(a) Equity Shares by Age and Wealth
in Baseline Model with DRRA
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(b) Equity Shares by Age and Wealth
in CRRA Model
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(c) Equity Shares by Age and Wealth in SCF
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Notes: These figures plots average equity shares by age and wealth groups. Panel (a) shows the results
for the baseline model with DRRA preferences, panel (b) shows the outcomes from the restricted model
with CRRA preferences, and panel (c) plots the empirical equivalents from the SCF.

7.3 DRRA and Heterogeneity in Expected Returns

The parameter γ1 drives the curvature of the certainty equivalent aggregation function J
in the Epstein-Zin framework. A positive γ1 implies that preferences are DRRA. What is
the implied elasticity of risk aversion with respect to wealth? I calculate the relative risk
aversion of households from the local curvature evaluated at current value function Vit:
RRAit = γ0

(
Vit/κβi

)−γ1 . I estimate the following specification in model-simulated data:

∆ log RRAit = ζ · ∆pit + δ′Xi,t−1 + ηit. (43)

The controls Xi,t−1 include a polynomial in age. Estimations of the model parameters yield a
significant degree of non-homotheticity in risk preferences: the average elasticity ζ of risk aversion
with respect to permanent income is −0.17.

Since risk aversion decreases in wealth, wealthier households desire a bigger portfolio share
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Figure 11: Heterogeneity in Risk Aversion and Returns to Wealth

(a) Distribution of Risk Aversion (Age 50)
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Notes: This figure illustrates heterogeneity in risk aversion and expected returns by wealth in the baseline
model. Panel (a) plots the distribution of the coefficient of relative risk aversion at age 50. Panel (b) plots
expected returns over the wealth distribution at age 35, age 50, and age 65.

of equity, ceteris paribus. Figure 10a plots the average equity share by age and wealth in the
baseline model with DRRA, where households of each age are split in four groups based on their
rank in the asset distribution. Except close to retirement, equity shares monotonically increase
with wealth. Having DRRA preferences is crucial for generating this pattern: Figure 10b shows
a weak and non-monotonic relation between wealth and risk-taking behavior in the restricted
model with CRRA preferences. Figure 10c plots equity shares by age and wealth in the SCF. The
data show a pattern that is consistent with the implications of the DRRA model – households with
high net worth hold considerably higher equity shares than households with lower net worth (see
also Wachter and Yogo, 2010, who include housing equity in the risky portfolio and find a bigger
dispersion in risk taking over the wealth distribution).

To further illustrate the quantitative significance of DRRA risk preferences, estimated from
within-person changes, Figure 11a plots the resulting cross-sectional distribution of relative risk
aversion in the baseline model specification for agents of age 50. Wealth dispersion leads to a
sizable variation in risk aversion across investors, with a reasonable range: the largest mass is
around a risk aversion of 5, the 5th percentile is 2.9, and the 95th percentile is 8.5.

Figure 11b plots expected returns by wealth for three different ages. The positive relation
between wealth and average portfolio returns matches cross-sectional patterns in the data
(Fagereng et al., forthcoming). The range of expected returns by net worth, conditional on age,
nearly spans the full equity premium: households in the lowest percentile of the net worth
distribution invest the majority of their financial wealth in the risk-free asset, while households
in the top of the net worth distribution invest only in equity. Since all agents in the model have
access to two assets, a risk-free asset and a stock market index, these patterns are fully driven by
differences in risk-taking behavior as opposed to differences in technologies.
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8 Aggregate Implications

I exploit the estimated life-cycle consumption and portfolio choice model to analyze aggregate
implications of DRRA preferences. First, I examine the implications of heterogeneity in expected
returns for wealth inequality. Second, I look at the effect of rising income inequality on wealth
inequality and asset prices.

8.1 Wealth Inequality

A large body of research exists on factors that drive the degree of inequality in the wealth
distribution that is observed in the data. The literature points to three main drivers that are
important for understanding the level and the dynamics of wealth inequality. First, motivated by
the Aiyagari-Beweley framework, many papers have focused on the role played by idiosyncratic
and uninsurable labor income to generate tails in the wealth distribution (e.g. Castaneda, Diaz-
Gimenez, and Rios-Rull, 2003). Properties of the labor income distribution typically carry over to
similar properties for the wealth distribution. Empirically, however, income inequality is an order
of magnitude lower than wealth inequality. Therefore, another branch of the literature has focused
on differential saving rates as a second factor, and has combined earnings heterogeneity with
heterogeneity in saving rates across wealth levels to generate a thick tail in the wealth distribution
(e.g. De Nardi, 2004; Carroll, 2000). A third factor that has been shown to be instrumental
in generating a skewed wealth distribution with sufficient fluctuations in tail inequality is
heterogeneity in returns to wealth, especially if those returns are positively correlated with wealth
itself (Benhabib, Bisin, and Zhu, 2011; Gabaix, Lasry, Lions, and Moll, 2016; Benhabib, Bisin, and
Luo, 2019). Fagereng et al. (forthcoming) provide empirical evidence on heterogeneity in expected
returns across the wealth distribution. An open question is what the source of heterogeneity
in expected returns is. Heterogeneity in returns to wealth could be due to differences in risk
preferences, or due to technological features of asset returns such as fixed costs of high-return
investment opportunities or economies of scale in wealth management. Understanding these
differences is important for designing policies that target wealth accumulation.

The life-cycle model estimated in the previous section does not assume any differences in
investment technologies across agents. However, agents vary in the amount of compensated
risk they take due to DRRA preferences. Non-homotheticity in risk preferences implies that
there is a two-way relation between wealth and equity demand. Since risk aversion decreases
in wealth, richer households invest a larger share of their portfolios in equity. Because of the
equity premium of 4.5%, wealth inequality gets further amplified through differences in average
portfolio returns. As displayed in the previous section, average returns indeed vary widely over
the wealth distribution in the model.

I find that DRRA preferences have significant implications for the cross-sectional distribution
of wealth. By targeting the within-person portfolio responses to wealth shocks and the
cross-sectional relation between consumption and permanent income, the model generates an
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Figure 12: Lorenz Curves

(a) Lorenz Curve for Wealth

0 0.2 0.4 0.6 0.8 1

Population Share

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e
a
lt
h
 S

h
a
re

DRRA preferences

CRRA preferences

(b) Lorenz Curve for Consumption
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Notes: This figure shows Lorenz curves for wealth and consumption in the baseline model. The Lorenz
curve illustrates the share of wealth that the bottom x% of the distribution hold, as a function of x. The
further away the curve is from the 45-degree line, the more unequal the distribution is.

(untargeted) wealth distribution with large inequality: Table 9 reports that the wealth share
of the top 1% is 37.0%. An important contributor to this large wealth inequality is that equity
holdings are concentrated in the hands of the rich. Figure 12 compares the Lorenz curves for
DRRA preferences and CRRA preferences. In an alternative estimation of the model where risk
preferences are CRRA, the top 1% wealth share drops to 20.4%. Similarly, in a version of the
model where the equity premium is set to zero, the top 1% wealth share is 19.4%.

8.2 Effects of Rising Income Inequality

The last few decades have seen an increase in income inequality in the United States (Autor,
Katz, and Kearney, 2008). An important force behind increased income inequality is an increase
in the dispersion of permanent income levels of new cohorts (Guvenen et al., 2018). With a
concave relation between permanent income and consumption, an increase in permanent income
inequality leads to increased wealth inequality (Straub, 2019). DRRA preferences amplify wealth
inequality by generating heterogeneity in expected returns across the wealth distribution. In this
section, I ask two questions: (1) What is the effect of rising income inequality on wealth inequality
in the presence of multiple assets combined with non-homothetic risk preferences? (2) What are
the long-term effects of rising inequality on asset prices?

I use the estimated life-cycle model to run a counterfactual analysis of the effects of rising
inequality on asset demand and the wealth distribution. As input, I take the rise in income
inequality in the SCF between 1989 and 2016. Recall that in the baseline model, the dispersion
in initial income is calibrated to match the Gini coefficient of income in the SCF in 2016, which is
0.551. I now compare simulations of the model to a version where the dispersion in initial income
is calibrated to match the 1989 Gini coefficient of income of 0.453. All other parameters are held
constant. Table 9 reports the effects of rising income inequality on the wealth distribution. In the
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Table 9: Inequality in the Model

Share of wealth or consumption in top

Gini Top 1% Top 5% Top 10% Top 25% Top 50%

Wealth inequality
Baseline model 0.838 37.0% 63.0% 75.8% 90.8% 97.5%
CRRA preferences 0.763 20.4% 47.0% 63.1% 85.0% 96.3%
No equity premium 0.757 19.4% 46.9% 63.3% 85.0% 95.6%
Homogeneous β 0.547 12.9% 31.4% 44.1% 65.5% 84.2%
1989 income inequality 0.714 22.0% 45.3% 59.7% 80.4% 93.1%

Consumption inequality
Baseline model 0.471 10.8% 25.5% 36.7% 58.4% 80.4%
CRRA preferences 0.417 6.2% 19.4% 30.7% 54.1% 78.1%
No equity premium 0.360 4.6% 15.4% 25.6% 48.5% 74.9%
Homogeneous β 0.464 8.3% 22.7% 34.3% 57.5% 80.7%
1989 income inequality 0.412 8.5% 21.6% 32.1% 53.7% 77.0%

Notes: This table reports statistics on inequality in the distribution of wealth and
consumption for different versions of the model. Starting point is the baseline
estimation of the model with non-proportional transfers and taxes. The first
deviation is a restricted parameterization where γ1 = 0, so that risk preferences
are CRRA. In a second deviation, I set the equity premium to zero so that investors
allocate all financial assets to the risk-free security. The third deviation is a
restricted parameterization where β1 = 0 so that discount rates are homogeneous.
Finally, I consider an alternative calibration where the distribution of initial income
is chosen so that the Gini coefficient of income in the model matches the equivalent
in the 1989 SCF (as opposed to the 2016 SCF).

model, the top 1% wealth share rises from 22.0% to 37.0%.
Holding the risk-free rate and the equity premium constant, the increase in inequality leads to

additional demand for the risk-free asset and, in particular, for equity. The demand for equity as
a fraction of overall wealth in the economy increases from 58% to 71%. As a second step, I run a
similar exercise as in Catherine (2019): I calculate the change in equity premium that offsets this
increase in demand for equity. I assume that supply of the two securities adjusts such that the
aggregate asset value composition in the economy remains constant. Specifically, in the model
with income inequality at 2016 levels, I search for the value of the equity premium that moves the
aggregate equity share back to its level in the model with inequality at 1989 levels. The difference
in risk premium captures the effect of the rise in income inequality. I find that increased inequality
has a significant low-frequency effect on asset prices. The model implies that rising inequality
over the past few decades has led to increased demand for equity that is equivalent to a decrease
in the equity premium of 0.69 percentage points – a decline by 15%.32

32The estimated non-homotheticity in risk tolerance also provides qualitative support for asset pricing models based
on cross-sectional or time-series variation in risk aversion that fit important asset pricing facts (e.g. Campbell and
Cochrane, 1999; Chan and Kogan, 2002; Gârleanu and Panageas, 2015). However, in Appendix A.4.4 I show that
the time-series variation in aggregate risk aversion at business cycle frequencies in the estimated life-cycle model is
quantitatively limited.
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9 Conclusion

A rich theoretical literature on household portfolio choice studies optimal asset allocations under
a wide range of assumptions on preferences and financial profiles. Recent life-cycle models
extend the assumptions of traditional models by including realistic features of the household
problem such as non-diversifiable idiosyncratic income risk, borrowing constraints, and time-
varying investment opportunities. Due to the limited availability of panel data that meets the
demanding requirements for testing these theories at the micro level, the literature has often
relied on cross-sectional patterns in the data, mostly from surveys, to calibrate or estimate key
model parameters. This identification strategy requires restrictive assumptions on differences
across individuals. In parallel, existing micro-level studies of portfolio choice in panel data have
focused on qualitative tests of some of the main channels of theoretical models in reduced-form
specifications. The quantitative implications of empirical patterns in household portfolio choice
are largely unexplored.

In this paper, I provide new evidence on investor portfolio changes in response to financial
changes in a large sample of U.S. retirement investors that (1) provide a qualitative test of whether
risk aversion decreases in wealth, and (2) guide a quantitative investigation of portfolio choice
behavior. I measure how portfolio risk taking changes in response to fluctuations in labor income
and returns to financial wealth. While the effect of financial wealth on risk taking is in itself not
informative about risk preferences, the combined effects of income growth and portfolio returns
provide a test of CRRA versus DRRA preferences. Controlling for infrequent portfolio adjustment
and ex-ante differences across individuals, I find that positive and persistent shocks to income
lead to an increase in the equity share of investor portfolios. Increases in financial wealth due to
realized returns lead to a small decline in the equity share. The positive net effect of income growth
and portfolio returns on equity shares conflicts with the prediction of a standard homothetic life-
cycle model and suggests that risk aversion decreases in wealth.

Using these empirical findings, I structurally estimate the parameters of a life-cycle
consumption and portfolio choice model that allows for DRRA preferences and accounts for
business cycle variation in the tail risk that is embedded in human capital. I find that the model is
able to closely match the empirical findings with a significant degree of non-homotheticity in risk
preferences – the average elasticity of risk aversion with respect to permanent income is −0.17. I
use the model to study the distributional and aggregate consequences of DRRA preferences. The
model has important quantitative implications for inequality. Decreasing risk aversion in wealth
concentrates equity in the hands of the wealthy and leads to a cross-sectional relation between
wealth and expected returns that is consistent with patterns in the data. The wealth share of the
top 1% in the model nearly doubles due to heterogeneity in expected returns to financial wealth.
The model further suggests that rising inequality in the U.S. has led to increased demand for
equity that is equivalent to a decrease in the equity premium by 15%.
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Appendix

A.1 Stylized Model Derivations

Portfolio choice. Let Z = W + P be total wealth at time t = 0. Note that

W1 = W(R f + θ(Re − R f )) + P(R f + φ(Re − R f ))

= (W + P)
{

R f +

(
θ

W
W + P

+ φ
P

W + P

)
(Re − R f )

}
= (W + P)(R f + α(Re − R f )) ≡ ZRtot.

(A.1.1)

Hence, θ = α + (α− φ) P
W .

Let V1(W1) =
(W1−X1)

1−γ

1−γ be the value function as a function of wealth at time 1. The standard
first-order condition of the portfolio choice problem is

E[V ′1(W1)Re] = E[V ′1(W1)R f ]. (A.1.2)

Applying the approximation log E[ey] ≈ E[y] + 1
2 Var[y], which holds with equality when y is

normally distributed, to the left hand side and right hand side of (A.1.2) yields

µe − r f +
1
2

σ2
e ≈ −Cov[log Re, log V ′1]. (A.1.3)

Let X = X1/R f be the present value of the subsistence level, and let smaller case letters denote
logs, with w̃1 = log(W1 − X1). A log-linearization around Re = R f gives

w̃1 = k′ +
Z

Z− X
rtot, (A.1.4)

where k′ is a log-linearization constant. Plugging this into the approximated Euler equation gives

µe − r f +
1
2

σ2
e ≈ α

Z
Z− X

γσ2
e . (A.1.5)

The solution to the portfolio choice problem is

α =
µe − r f +

1
2 σ2

e

γσ2
e

· Z− X
Z

= ᾱ

(
1− X

W + P

)
, (A.1.6)

where

ᾱ =
µe − r f +

1
2 σ2

e

γσ2
e

. (A.1.7)
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As a fraction of financial wealth, the optimal portfolio share θ is given by

θ = α + (α− φ)
P
W

= ᾱ + (ᾱ− φ)
P
W
− ᾱ

(
1 +

P
W

)
X

W + P
.

(A.1.8)

Comparative statics. Further log-linearization of (A.1.8) around Rp f = R f and Rp = R f yields

log θ ≈ k + λ1
W

W + P
(log P− log Rp f )

− λ2

(
P

W + 2P
W

W + P
(log P− log Rp f )− W

W + 2P
log Rp f − 2P

W + 2P
log P

)
,

(A.1.9)

where k is a log-linearization constant, and

θ = ᾱ− ᾱ

(
1 +

P
W + P

)
X

W + 2P
+ (ᾱ− φ)

P
W + P

,

λ1 =
ᾱ− φ

θ
· P

W + P
, λ2 =

ᾱ

θ

(
1 +

P
W + P

)
X

W + 2P
.

(A.1.10)

After rearranging, we arrive at

log θ ≈ k + (κ1λ1 + (1− κ2)λ2) log P + (−κ1λ1 + κ2λ2) log Rp f , (A.1.11)

where

κ1 =
W

W + P
, κ2 =

W
W + 2P

(
1 +

P
W + P

)
. (A.1.12)

Extension to dynamic model. The state variables in a standard homothetic life-cycle model are
age t and relative cash on hand wit. The optimal portfolio is θit = Θ(wit, t). The dynamics of wit

are given by (10). Consider a log-linearization of θi,t+1 around Rp f
i,t+1 = R f , Pi,t+1/Pit = R f , and

εi,t+1 = 0. Let

wi,t+1 = (wit − cit)
Gt

Gt+1
+ 1− τ. (A.1.13)

We obtain the approximation

log θi,t+1 = kit +
Θw(wi,t+1, t + 1)wi,t+1

Θ(wi,1, t + 1)
(ρit log Rp f

i,t+1 − ρit∆ log Pi,t+1 + (1− ρit)εi,t+1), (A.1.14)

where kit is a log-linearization constant that depends on time-t information, and

ρit =
(wit − cit)

Gt
Gt+1

wi,t+1
. (A.1.15)
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Hence, we get

log θi,t+1 = kit + b1,i,t∆ log Pi,t+1 + (−b1,i,t︸ ︷︷ ︸
b2,i,t

) log Rp f
i,t+1 + b3,i,tεi,t+1, (A.1.16)

where

b1,i,t = −
Θw(wi,t+1, t + 1)wi,t+1

Θ(wi,1, t + 1)
ρit

b3,i,t =
Θw(wi,t+1, t + 1)wi,t+1

Θ(wi,1, t + 1)
(1− ρit).

(A.1.17)

A.2 Data Construction

This section includes additional details on the construction of the dataset.

Asset classes. Investor portfolios are composed of positions in funds, individual securities, and
annuities. Holdings are assigned to four different asset classes based on product descriptions:
equity, fixed income, cash and cash-like securities, and alternative assets.33 Equity holdings
consist of pure equity funds, directly held equity, and the equity portion of multi-asset class
funds. The fixed income category includes bond funds, individual bonds, and the portion of
multi-asset class funds that is not allocated to equity. The category of cash and cash-like securities
includes money market funds and liquid short-term debt.

Mixed-assets funds, such as target date funds, are split into an equity component and a fixed
income component based on fund equity shares. I use quarterly data on fund asset compositions
from the CRSP Survivor-Bias Free US Mutual Fund database if available, and complement this
with internally available quarterly target equity shares on other mixed-asset funds.

International exposure. To characterize international equity exposures in investor portfolios,
equity holdings are divided into a domestic and an international component. Pure equity funds
are characterized as either domestic or international based on internal product descriptions. The
equity portion of mixed-asset funds is treated as a domestic equity investment. For individual
securities, I set the location to international if it is a foreign security (i.e., has a foreign ISIN) or if the
company is incorporated outside of the US according to Compustat, and to domestic otherwise.
The international share of equity is defined as the ratio of international equity to total portfolio
equity holdings.

Returns. I compute realized returns using two methods. The first method is based on external
return data. Observed portfolio holdings are linked to external data on realized returns from
CRSP stock, treasury, and mutual fund return files, as well as WRDS corporate bond returns,

33Investment products with insufficient detail to categorize holdings are excluded. Average holdings in these assets
are less than 1.5% of total (investable) assets.
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using CUSIP identifiers that are available for all public securities and funds in the data. Assets in
the cash and cash-like securities class are treated as risk-free assets and are assigned the risk-free
rate (one-month Treasury bill rate) as return. While this method provides a return for the large
majority of assets in the data, the returns on some assets are not available (e.g. non-public funds).

In a second method, I compute yearly portfolio returns from annual portfolio holdings and
transactions at the security level. In particular, I calculate the price appreciation from positions
with constant holdings in the asset. To this price appreciation I add the dividends that were paid
out over the year, assuming no reinvestment. Using this method, I get a nearly complete coverage
of asset returns. The results that are reported in the paper are based on this second method. The
results are robust to using the publicly available returns from the first method.

Market betas. CAPM market betas are estimated from monthly regressions of excess asset
returns on excess market returns. A market beta is assigned to funds and securities that have at
least 24 monthly return observations.

A.3 Additional Empirical Analysis

A.3.1 Wealth Composition of RIs

While the data on investor portfolios are rich on information about asset holdings and
characteristics of a large sample of typical U.S. retail investors, a limitation of the data is that only
wealth that investors hold with this particular firm is observable. In this section, I use the SCF
to summarize the main sources of wealth that are missing and the potential implications for the
analysis.

The first type of missing wealth is wealth that falls under the categories that are observable
in the data but that is outside of the sample: investable wealth held with other firms or by other
members of the household. Figure A.1 compares the distribution of total investable wealth at the
household level in the SCF to individual investor wealth in the sample. The distribution of total
investable wealth in the sample lines up reasonably well with the distribution across households
in the SCF, although the sample misses some non-retirement wealth of wealthy households. The
first row of Table A.1 confirms that for most retirement investors, retirement wealth is the main
form of investable wealth. The mean (median) share of retirement wealth in investable wealth is
88% (100%). I conclude that the data provide an accurate representation of how investable wealth
is allocated for a large sample of U.S. investors.

The second type of missing wealth is other sources of wealth besides investable wealth.
Table A.1 presents statistics on the composition of total net worth for retirement investors in the
SCF of age 30–58 that earn a wage income above the minimum wage income and have a positive
net worth of at least one thousand dollars. The mean (median) share of retirement wealth in total
net worth is 51% (40%). The main source of missing wealth is housing wealth. Home equity
accounts on average for 37% of wealth. The second source of missing wealth is bank accounts

59



Figure A.1: Wealth in Firm Data (Individual) and SCF (Household)
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Notes: This figure plots the distribution of individual wealth in the sample of RI investors versus the
distribution of household wealth for RI investors in the SCF. Panel (a) displays the distribution of
retirement wealth and panel (b) displays the distribution of total investable wealth.

and other liquid savings, accounting on average for 10% of net worth. Non-retirement investable
wealth covers 7% of net worth. These types of wealth that are missing in the data likely have
different risk characteristics than investable wealth. In particular, we would typically expect
equity exposures to be higher in investable wealth than in missing sources of wealth. Therefore,
in the empirical analysis I allow the measured portfolio equity share in the data to differ from
the equity share of the full portfolio by a scaling factor – uncorrelated with wealth changes after
controlling for observables – by running the main regressions in logs. In the model estimation, I
include the average equity share of total financial wealth at age 50 from the SCF as a target.

The main question raised by these summary statistics is how the analysis changes in the
presence of housing equity. First, if households would permanently live in the same house and
consume its services, there would be no effect of housing on the allocation of investable wealth.
Second, when accounting for housing as an investment vehicle, the portfolio implications depend
on the risk characteristics of real estate as an asset class. Adelino, Schoar, and Severino (2018)
find that a large majority of U.S. households (71%) believe that housing is a “safe” investment.
When housing is considered a safe asset, we may expect the implications for portfolio choice to
go against the findings in this paper: in a homothetic model, the net effect of changes to financial
wealth and human capital should be negative instead of zero, since compositional shifts away
from a safe outside investment should – analogous to the case with bond-like human capital –
lead to a reduction of the equity share in the riskier financial portfolio to get the same overall risk
exposure.

As an additional check, I look at the portfolios of home owners versus renters in the SCF.
Figure A.2 plots the equity share over the life cycle for these two groups. Home owners have a
slightly higher equity share than renters, with a similar age profile. If housing were treated as a
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Table A.1: Wealth Composition of RIs in SCF

Variable Mean SD P10 P25 P50 P75 P90

Share of investable wealth
Retirement wealth 0.88 0.24 0.48 0.88 1 1 1

Share of net worth
Retirement wealth 0.51 0.94 0.08 0.19 0.40 0.63 0.88
Non-retirement 0.07 0.26 0 0 0 0.05 0.23

investable wealth
Home equity 0.37 0.85 0 0.03 0.27 0.51 0.76
Liquid wealth 0.10 0.27 0.01 0.02 0.04 0.11 0.24
Other -0.05 1.61 -0.30 -0.01 0.07 0.22 0.47

Notes: This table summarizes the composition of net worth of retirement
investors in the 2016 Survey of Consumer Finances. The sample consists
of households of age 30–58 with wage income above the minimum wage
income, with net worth of at least one thousand dollars, and with retirement
wealth that falls within the 10th and 90th percentiles of the retirement
wealth distribution by age. Investable wealth is defined as the total of
money market funds, non-money market funds, individual stocks and
bonds, certificate of deposits, quasi-liquid retirement wealth, and other
managed accounts.

risky investment, larger housing wealth should lead to a reduction in the equity share of financial
wealth, everything else equal. In contrast, the observed patterns are consistent with a wealth
effect on risk tolerance. Finally, including yearly zip code fixed effects in the portfolio regressions
accounts for any correlations between local changes in house prices and changes in labor income
or asset returns. The measured portfolio changes in response to wealth changes do not change
when including zip code–year fixed effects.

Figure A.2: Equity Share over the Life Cycle by Home Ownership in SCF
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Notes: This figure plots the age profile of equity shares for investors
with retirement wealth in the SCF, comparing home owners and
renters.
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Table A.2: Income Growth and Equity Share Changes – Job Spells

∆3+j log equity sharet+j

j = 0 j = 1 j = 3 j = 5 j = 0 j = 1 j = 3 j = 5

(1) (2) (3) (4) (5) (6) (7) (8)

∆3 log incomet 0.0194 0.0236 0.0251 0.0213 0.0383 0.0327 0.0236 0.0081
(0.0012) (0.0013) (0.0016) (0.0027) (0.0063) (0.0062) (0.0073) (0.0133)

Employer × year FE Y Y Y Y
Log equity sharet−3 Y Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y Y
Year FE Y Y Y Y

Sample Same job in t− 3 and t Job change between t− 3 and t− 1

R-squared 0.264 0.288 0.328 0.371 0.450 0.481 0.513 0.523
Share of individuals 49.2% 47.7% 40.9% 25.2% 2.3% 2.3% 1.8% 0.7%

Notes: This table presents the results of an OLS regression of changes in log equity shares, measured
over several horizons, on three-year income growth. Columns (1)–(4) report the results for the subsample
of investors with the same job in t − 3 and t. Columns (5)–(8) report the results for the subsample of
investors that had a job change between t− 3 and t− 1. The demographic controls include a second-order
polynomial in age, gender, marital status, a second-order polynomial in employment tenure, log income,
and the log of financial assets, all measured at t− 3. Standard errors are clustered at the individual level.

A.3.2 Job Turnover and Background Risk

Most individuals have a single job over the period that they are in the sample. As a result, the
results in Section 4 on the relation between income growth and changes in equity shares are largely
driven by within-employment changes in income. The first four columns in Table A.2 make this
selection explicit by selecting the sample to be investors with a single job during the window
of portfolio changes. For robustness, I repeat the analysis for the relatively smaller subsample of
individuals (but still sizeable in numbers) that switched jobs in between income observations. The
results are in columns (5)–(8). For this subsample, I find a positive and significant effect of income
growth on changes in equity share that is consistent with the baseline estimates. The magnitude
of the effect is even somewhat larger, perhaps because the relative share of permanent income
growth in total income growth is larger when comparing income across jobs. For this subsample
the point estimate declines with the horizon, although power is limited at long horizons.

Next, in models of individual financial decisions, the risk properties of human capital are
crucial for determining optimal allocations of investable wealth. Because human capital is non-
tradable, not just systematic risk but also uninsurable wage risk matters for portfolio allocations.
The quantitative importance of uninsurable wage risk was recently studied by Fagereng et al.
(2018). By instrumenting variation in worker earnings by variation in firm profitability, they find
a large marginal effect of uninsurable income risk on portfolio choices. In standard models of wage
income, there is no relation between individual income growth and changes to future uninsurable
wage risk. However, if income growth is in fact negatively related to future variability of earnings,
that would provide an alternative explanation for the positive relation between income growth
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Figure A.3: Background Risk and Income Growth

(a) Probability of Job Separation

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

9%

10%

11%

12%

13%

−0.2 −0.1 0.0 0.1 0.2

Income Growth

Pr
ob

ab
ili

ty
 o

f J
ob

 S
ep

ar
at

io
n

(b) Probability of Liquidity-Driven Withdrawal
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Notes: Panel (a) plots the probability of having a job separation in year t + 1 as a function of income
growth in year t, using 20 bins for income growth. Panel (b) plots the probability of having a liquidity-
driven withdrawal in year t + 1 as a function of income growth in year t, again using 20 bins for income
growth.

and equity share changes.
Lacking a direct measure of background risk in the data, I consider the probability of job

separation as a proxy. I construct an indicator for job separation in year t + 1 for individuals that
have an active employment relation at the end of year t that equals one if the employment relation
has been terminated by the end of year t + 1. Figure A.3a plots the probability of having a job
separation in year t + 1 as a function of income growth in year t, using 20 bins for income growth.
Consistent with Holzheu (2018), there is a U-shaped relationship between income growth and job
separations. Workers with high negative or positive changes in wages have a higher probability
of job separation in the next period. To confirm that large changes in earnings represent a real
economic risk for households, especially on the right tail of the income growth distribution, I
also measure withdrawals from retirement accounts due to liquidity needs. Figure A.3b plots the
probability of having such a withdrawal in year t + 1 as a function of income growth in year t,
again using 20 bins for income growth. The result is a similar U-shaped relation.

If background risk is the channel through which income growth affects portfolio allocations,
we would expect a similar nonlinear relation between income growth and equity share changes. In
Table A.3, I test this prediction. In addition to the basic set of controls from the portfolio regression
and various fixed effects, I control for mean reversion in portfolio shares with a strength that
increases in the magnitude of income growth (see Figure A.8) by including the interaction between
absolute income growth and initial equity share as a control. Columns (1)–(4) confirm a positive
relation between squared income growth and separations that holds after including the controls.
Next, I add squared income growth to the portfolio regression. The results are in columns (5)–
(8). The coefficient on squared income growth is a precisely estimated zero in all specifications.

63



Table A.3: Income Growth and Future Income Risk

Job separationt+1 ∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log incomet -0.1303 -0.1305 -0.1228 -0.1288 0.0184 0.0146 0.0139 0.0142
(0.0008) (0.0008) (0.0008) (0.0009) (0.0009) (0.0009) (0.0009) (0.0010)

(∆ log incomet)2 0.1883 0.1367 0.1987 0.1869 -0.0015 -0.0144 -0.0269 -0.0366
(0.0182) (0.0182) (0.0178) (0.0181) (0.0204) (0.0204) (0.0204) (0.0208)

Log equity sharet−1 -0.0020 -0.0010 0.0004 0.0004 -0.2352 -0.2359 -0.2356 -0.2355
(0.0002) (0.0002) (0.0002) (0.0002) (0.0009) (0.0009) (0.0009) (0.0009)

|∆ log incomet| 0.0665 0.0749 0.0419 0.0423 -0.0443 -0.0394 -0.0357 -0.0330
(0.0036) (0.0036) (0.0036) (0.0036) (0.0041) (0.0041) (0.0041) (0.0042)

|∆ log incomet| × -0.0035 -0.0052 -0.0070 -0.0072 -0.0909 -0.0926 -0.0982 -0.0975
log equity sharet−1 (0.0020) (0.0020) (0.0019) (0.0019) (0.0092) (0.0092) (0.0090) (0.0091)

Year FE Y Y
Demographic controls Y Y Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y Y Y

log equity sharet−1
Industry × year FE Y Y
Employer × year FE Y Y
Employer × income bin × Y Y

year FE

R-squared 0.016 0.026 0.104 0.125 0.153 0.156 0.180 0.193
Share of individuals 92.3% 91.8% 92.3% 91.9% 92.7% 92.3% 92.7% 92.4%

Notes: This table reports OLS estimates of two outcome variables on a second-order polynomial in income
growth. Columns (1)–(4) report estimates of the relation between job separation rates and quadratic income
growth. Columns (5)–(8) report estimates of the relation between changes in log equity shares and quadratic
income growth. The demographic controls include a second-order polynomial in age, gender, marital status,
a second-order polynomial in employment tenure, log income, and the log of financial assets, all measured at
t− 1. Standard errors are clustered at the individual level.

Hence, I find no evidence that income growth affects portfolio risk taking through background
risk instead of a first-order wealth effect.

A.3.3 Heterogeneity in Effect Size across Investors and Accounts

Next, I test for sources of heterogeneity in the relation between income growth and portfolio equity
changes across the population. I consider heterogeneity across investors at different stages of the
life cycle and with different financial profiles, and further break down the results by the magnitude
of income changes.

Life-Cycle Variation To explore heterogeneity in the relation between income growth and
portfolio equity share changes by demographic characteristics, I test for variation in the effect size
by age, financial assets, and income. Table A.4 reports the results. I find that the relation between
income growth and equity share changes is larger for older investors. There is little variation in
the effect by total asset wealth and by the level of income. Since the effects of income growth on
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Table A.4: Income Growth and Equity Share Changes – Heterogeneity by Investor Characteristics

∆ log equity sharet

(1) (2) (3) (4) (5) (6)

∆ log incomet 0.0253 0.0740
× Aget−1 < 40 (0.0016) (0.0109)
∆ log incomet 0.0440 0.1541
× Aget−1 ∈ [40, 49] (0.0022) (0.0131)
∆ log incomet 0.0661 0.2482
× Aget−1 >= 50 (0.0034) (0.0174)

∆ log incomet 0.0283 0.1354
× Assetst−1 ∈ bottom tercile (0.0019) (0.0152)
∆ log incomet 0.0462 0.1978
× Assetst−1 ∈middle tercile (0.0023) (0.0150)
∆ log incomet 0.0492 0.1390
× Assetst−1 ∈ top tercile (0.0026) (0.0116)

∆ log incomet 0.0493 0.2064
× Incomet−2 ∈ bottom tercile (0.0022) (0.0180)
∆ log incomet 0.0452 0.2295
× Incomet−2 ∈middle tercile (0.0025) (0.0177)
∆ log incomet 0.0445 0.1372
× Incomet−2 ∈ top tercile (0.0023) (0.0105)

Year FE Y Y Y Y Y Y
Log equity sharet−1 Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y

Income instrumented Y Y Y Y Y Y

Sample Active Active Active
turnover turnover turnover

R-squared 0.144 0.336 0.149 0.337 0.149 0.337
Share of individuals 96.7% 23.0% 96.7% 23.0% 96.7% 23.0%

Notes: This table presents the results of an IV regression of one-year changes in log equity
shares on income growth interacted by various indicators. The demographic controls include
a second-order polynomial in age, gender, marital status, a second-order polynomial in
employment tenure, log income, and the log of financial assets, all measured at t − 1. Log
income at t− 1 and t is instrumented by log income at t− 2 and t + 1, respectively. Standard
errors are clustered at the individual level.

portfolio changes are driven by a small set of people that make substantial changes, I also report
the estimates conditional on active turnover over the year (defined as a turnover of more than
25% of initial assets). In this way, we can rule out that differences by demographics are driven by
a differential likelihood of portfolio adjustment. The patterns are similar when conditioning on
active turnover.

Small versus Large Changes in Labor Income Theories that generate DRRA preferences differ
in their predictions on heterogeneity in the effect by shock size: a habit specification predicts
that big changes have the largest effects, while models with consumption commitments predict
a concentration of the effect on small shocks. Table A.5 reports the regression results when
restricting the sample to various ranges of income growth. For the OLS specification from
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Table A.5: Income Growth and Equity Share Changes – Magnitude of Income Change

∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log incomet 0.0040 0.0163 0.0301 0.0402 0.0417 0.0428 0.0538 0.0667
(0.0004) (0.0009) (0.0017) (0.0036) (0.0013) (0.0017) (0.0026) (0.0063)

Year FE Y Y Y Y Y Y Y Y
Log equity sharet−1 Y Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y Y

Income instrumented N N N N Y Y Y Y

|∆ log incomet| in range [0, ∞) [0, 0.25] [0, 0.1] [0, 0.05] [0, ∞) [0, 0.5] [0, 0.25] [0, 0.1]

R-squared 0.144 0.142 0.140 0.139 0.144 0.143 0.142 0.141
Share of individuals 96.7% 93.0% 83.7% 70.4% 96.7% 92.0% 85.1% 67.9%

Notes: This table presents regression estimates of one-year changes in log equity shares on income growth
for various restrictions on the range of income growth. Columns (1)–(4) report the results for the OLS
specification. Columns (5)–(8) report the results for the IV specification where log income at t− 1 and
t is instrumented by log income at t − 2 and t + 1, respectively. The demographic controls include
a second-order polynomial in age, gender, marital status, a second-order polynomial in employment
tenure, log income, and the log of financial assets, all measured at t− 1. Standard errors are clustered at
the individual level.

Section 4.1, the magnitude of the effect strongly increases as the range of income growth gets
narrowed down. For the IV specification, the magnitude still increases when restricting the
sample to smaller shocks, but the relative differences are much smaller.

A.3.4 Other Portfolio Outcomes

The results in the main text concentrate on equity share as the measure that summarizes investor
portfolios. Here, I show the effects of income growth on other portfolio outcomes.

Table A.6 reports results for the main IV specification applied to other portfolio measures.
Column (1) has the market beta of the portfolio as outcome variable. The results closely match the
findings for the equity share (column (5) of Table 4). The reason is that the dominating source of
variation across investor portfolios is variation in holdings across asset classes. There is much less
variation in market exposure within asset classes. The second column shows that income growth
does not lead to an economically meaningful increase in the market beta of equity. Instead, income
growth leads to an increase in the market exposure of investor portfolios by a reallocation from
both fixed income and cash-like securities to equity products, as evident from columns (3) and (4).

Columns (5)–(7) of Table A.6 display the results for three other portfolio measures. Column
(5) shows that the main effect of income growth on portfolio equity shares is driven in part by
a positive relation between income growth and the share of assets invested in individual stocks.
There is no effect on the share of equity invested in international equity funds or securities (column
6). Finally, I find no relation between income growth and the share of assets invested in target date
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Table A.6: Income Growth and Portfolio Changes

∆ portfolio measuret

Portfolio Equity Fixed income Cash Indiv stock Intl share TDF
beta beta share share share of equity share

(1) (2) (3) (4) (5) (6) (7)

∆ log incomet 0.0248 0.0015 -0.0053 -0.0173 0.0096 0.0005 -0.0003
(0.0005) (0.0003) (0.0004) (0.0004) (0.0003) (0.0003) (0.0006)

Year FE Y Y Y Y Y Y Y
Portfolio measuret−1 Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y

Income instrumented Y Y Y Y Y Y Y

R-squared 0.110 0.088 0.114 0.096 0.071 0.090 0.031
Share of individuals 99.7% 96.6% 100.0% 100.0% 100.0% 96.7% 100.0%

Notes: This table presents the results of an IV regression of one-year changes in various portfolio outcomes on income
growth. The demographic controls include a second-order polynomial in age, gender, marital status, a second-order
polynomial in employment tenure, log income, and the log of financial assets, all measured at t− 1. Log income at t− 1
and t is instrumented by log income at t− 2 and t + 1, respectively. Standard errors are clustered at the individual level.

funds (column 7). This last finding suggests that the positive effect of income growth on equity
shares reflects investor preferences and cannot be explained by investors moving out of default
allocations or moving into more “advised” products like target date funds for other reasons.

A.3.5 Active Rebalancing Decisions and Heterogeneity in Propensity to Rebalance

Finally, I present additional results related to rebalancing decisions and differences in rebalancing
propensities across investors.

First, column (1) of Table A.7 presents estimates of the partial adjustment regression model
with equity shares in levels instead of in logs. The results are consistent and are therefore
not driven by the specific functional forms that separate passive changes from realized overall
portfolio returns.

Second, column (2) reports the effect of income growth and idiosyncratic portfolio returns on
changes in equity shares in years where the individual has an active portfolio turnover (turnover
above 25% of initial assets over the year). Consistent with the findings in Section 4.3, both
coefficients on income growth and portfolio returns are much larger in absolute value for the
set of people that make an active reallocation decision. While in general portfolio returns and
changes in equity shares are positively correlated due to passivity, these results confirm that
investors actively offset a positive idiosyncratic portfolio return by slightly reducing the portfolio
equity share.

Third, there is considerable heterogeneity in the propensity to rebalance portfolios across
investors: Table A.8 shows that individual fixed effects explain around half of the overall
variation in rebalancing. As illustrated in Section 5.1, rebalancing is hard to predict based on
changes in individual financial situations. Since the timing of rebalancing is (nearly) unrelated to
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Table A.7: Portfolio Responses Conditional on Rebalancing

∆ equity sharet

(1) (2) (3) (4) (5)

Passive change in equity sharet 0.8641
(0.0029)

∆ log incomet 0.0245 0.0693 0.0633 0.0462 0.0940
(0.0007) (0.0034) (0.0036) (0.0047) (0.0056)

Log portfolio returnt -0.0041 -0.0152 -0.0108 -0.0299 0.0046
(0.0008) (0.0039) (0.0043) (0.0058) (0.0062)

Year FE Y Y Y Y Y
Log equity sharet−1 (3rd order) × Y Y Y Y Y

year FE
Demographic controls Y Y Y Y Y

Income instrumented Y Y Y Y Y

Sample Active Active Active Active
turnover turnover, turnover, turnover,

>= 3 years >= 3 years, >= 3 years,
frequent infrequent

rebalancing rebalancing

R-squared 0.166 0.341 0.337 0.323 0.369
Share of individuals 56.6% 16.9% 13.5% 5.2% 8.3%

Notes: The first column presents regression estimates of the partial adjustment model with
equity shares in levels. The second column considers portfolio adjustment for investors with
active turnover (a turnover of at least 25% of initial assets) over the year. The third column
restricts the sample to investors with observations for at least three years and that have active
turnover over the year. The fourth and fifth columns further split the sample into people
with active portfolio turnover in more than one third of the total years in the sample, and
people with a large portfolio turnover in at most one third of the total years in the sample.
The demographic controls include a second-order polynomial in age, gender, marital status, a
second-order polynomial in employment tenure, log income, and the log of financial assets, all
measured at t− 1. Log income at t− 1 and t is instrumented by log income at t− 2 and t + 1,
respectively. Standard errors are clustered at the individual level.

observable economic fundamentals, the investment decisions of investors that actively rebalance
their portfolios are informative about the overall effects of wealth changes on risk preferences.
If population behavior is homogeneous, as assumed in the baseline specification, the effect on
desired portfolio allocations follows from scaling the average change in portfolios by the average
propensity to rebalance. However, some investors never update their portfolios, while other
investors frequently update their portfolios.

A potential issue of the baseline specification is therefore that people that differ in their
rebalancing behavior might also differ in their sensitivity to wealth changes. For instance, if
investors that update their portfolios regularly are more sensitive to wealth changes, the overall
elasticity of desired portfolio allocations to wealth fluctuations is overestimated. In columns (3)–
(5) of Table A.7, I estimate the portfolio responses to income growth and idiosyncratic portfolio

68



Table A.8: Trading Behavior

Trade indicator Active turnover indicator

(1) (2) (3) (4) (5) (6) (7) (8)

|∆ log incomet| 0.0260 0.0383 0.0294 0.0212
(0.0025) (0.0048) (0.0019) (0.0041)

| Log equity returnt| 0.2713 0.1010 0.2045 0.0828
(0.0025) (0.0044) (0.0020) (0.0038)

Year FE Y Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y Y
Individual FE Y Y Y Y

Sample Balanced Balanced Balanced Balanced

R-squared 0.061 0.062 0.540 0.540 0.022 0.023 0.391 0.391
Share of individuals 54.1% 54.1% 6.2% 6.2% 54.1% 54.1% 6.2% 6.2%

Notes: This table presents regression estimates of two measures of portfolio reallocation activity on the
magnitude of income growth changes and realized equity returns of individual portfolios. In columns (1)–
(4), the outcome variable is an indicator for having at least one investor-driven trade during the year. In
columns (5)–(8), the outcome variable is an indicator for having a turnover of at least 25% of initial assets
over the year. The demographic controls include a second-order polynomial in age, gender, marital status,
a second-order polynomial in employment tenure, log income, and the log of financial assets, all measured
at t− 1. Standard errors are clustered at the individual level.

returns for a sample of investors with observations for at least three years. Column (3) confirms
that the results for this subsample are similar to the full sample. Columns (4) and (5) further
split the sample into people that frequently rebalance their portfolios (active portfolio turnover in
more than one third of the total years in the sample) and people that infrequently rebalance their
portfolios (active portfolio turnover in at most one third of the total years in the sample). The
qualitative findings are consistent across these populations, and in fact the portfolio results are
stronger for people that irregularly rebalance their portfolios. Conditional on rebalancing, people
that frequently rebalance are more sensitive to portfolio returns, but people that infrequently
rebalance are more sensitive to income growth.

A.4 Model Appendix

A.4.1 Numerical Procedure

Model solution. Following the usual approach in solving life-cycle models, I start from the last
period of life and solve the life-cycle problem backwards. Here, I describe the details of the
solution method. For notational simplicity, I suppress the individual subscript i.

For computing the value function and optimal policies, I scale all relevant variables by
permanent income GtPt: let vt ≡ Vt/(GtPt), wt ≡ Wt/(GtPt), ct ≡ Ct/(GtPt), ypost

t ≡ Ypost
t /(GtPt).
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The state variables are wt, Pt, and θ̃t, where

θ̃t =

θ
pass
t if no portfolio update at t, with probability 1− χ

−1 if portfolio update at t, with probability χ.
(A.4.1)

By definition, the portfolio share θt equals θ̃t if there is no portfolio update at t, which happens
with probability 1−χ. With probability χ the investor chooses a new portfolio allocation, in which
case the history of portfolio shares is irrelevant.

The value function in period t ≤ TD is34

vt = max
ct,θt

{
(1− β)c

1− 1
ψ

t + β(GtPt)
1
ψ−1

{
J−1
(

Et

[
πt J(Gt+1Pt+1vt+1) +

(1− πt)J
(

Gt+1Pt+1wt+1

b̃

)])}1− 1
ψ

} 1
1− 1

ψ

,

(A.4.2)

subject to

wt+1 = (wt − ct)(R f + θt(Re
t+1 − R f ))

GtPt

Gt+1Pt+1
+ ypost

t+1 (A.4.3)

θt

= θ̃t if θ̃t ≥ 0

∈ [0, 1] if θ̃t = −1.
(A.4.4)

The first-order conditions for asset allocation and consumption, respectively, are given by

0 = Et

[(
πt J′(Gt+1Pt+1vt+1)

∂vt+1

∂wt+1
+ (1− πt)J′

(
Gt+1Pt+1wt+1

b̃

)
1
b̃

)
(wt − ct)(Re

t+1 − R f )+

πt J′(Gt+1Pt+1vt+1)
Gt+1Pt+1

GtPt

∂vt+1

∂θ̃t+1

Re
t+1R f

(R f + θt(Re
t+1 − R f ))21(θ̃t+1 ≥ 0)

]

c
− 1

ψ

t =
β

1− β
(GtPt)

1
ψ
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(

Et

[
πt J(Gt+1Pt+1vt+1) + (1− πt)J

(
Gt+1Pt+1wt+1
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)])}− 1
ψ

× (J−1)′
(

Et

[
πt J(Gt+1Pt+1vt+1) + (1− πt)J

(
Gt+1Pt+1wt+1

b̃

)])
×Et
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(
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)
1
b̃

)
Rp

t+1

]
,

(A.4.5)
where Rp

t+1 ≡ R f + θt(Re
t+1 − R f ). The life-cycle problem is solved iteratively by calculating the

solution to these FOCs, accounting for the constraints, and calculating the corresponding value
function.

34Note that πTD = 0 and therefore vt = maxct ,θt

{
(1− β)c

1− 1
ψ

t + β(GtPt)
1
ψ−1

{
J−1

(
Et

[
J
(

Gt+1Pt+1wt+1

b̃

)])}1− 1
ψ

} 1
1− 1

ψ

for t = TD.
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To solve the model numerically, I construct a grid for the state variables. I discretize wealth-to-
income w (40 points), permanent income P (40 grid points), and the existing portfolio allocation
θ̃ (12 grid points). The grid points for w and P are equally spaced on a logarithmic scale, and
the grid points for θ̃ are equally spaced on a linear scale. For computational efficiency, I use the
endogenous grid point method and specify a grid for post-consumption total asset holdings n
(20 grid points). Given values for n and P, I solve for the optimal allocation decision conditional
on portfolio adjustment. Next, I use the consumption FOC to calculate the optimal consumption
corresponding to the given values for n and θ. Finally, I interpolate on the grid to get consumption
and portfolio choice for exogenous grid points w. I use linear interpolation and extrapolation to
evaluate the value function outside of the grid points. Because of Epstein-Zin preferences, the
value function is close to linear in cash on hand, except when wealth is low and close to the
borrowing constraint, and flat in P with CRRA preferences and proportional government policies.
Expectations are evaluated through Gaussian quadrature.

Estimation. I estimate the parameters of the model by minimizing the distance between the
moments in model simulations and the corresponding moments in the data. As weighting matrix
W, I use the inverse of the diagonal of the covariance matrix Σ of the empirical moments. I
calculate the value function and policy functions for a four-dimensional grid of the parameters
γ0, γ1, χ, and β for a total of 3000 points. I then simulate the model for different values of β0

and β1. I use cubic splines to approximate the objective function outside of the grid points. The
estimated parameter vector is given by the minimum of the approximated objective function.

To calculate standard errors, I compute the Jacobian matrix D of the moments with respect to
the parameters. The standard errors of the estimated parameters are given by the square roots of
the diagonal elements of the matrix Ω, which is defined as:

Ω = (D′WD)−1D′WΣWD′(D′WD)−1. (A.4.6)

A.4.2 Policy Functions

The optimal policies for consumption and asset allocations in the model are functions of the
state variables wit, Pit, and θ̃it. To illustrate optimal asset allocations conditional on updating
the portfolio, Figure A.4 plots the equity share policy function at age 50, under the estimated
parameter values, for six cases of the model: CRRA versus DRRA preferences and normal income
shocks versus income with countercyclical tail risk in the model with proportional taxes and
transfers, and CRRA versus DRRA preferences with countercyclical tail risk, progressive taxes,
and income-dependent retirement replacement rates. The figures plot the optimal θ as a function
of P, for given values of normalized cash-on-hand w, and conditional on having the opportunity
of updating the portfolio.
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Figure A.4: Optimal Allocation Policy in Model

(a) CRRA, Standard Income,
Proportional Government Policy
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(b) DRRA, Standard Income,
Proportional Government Policy

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Permanent Income P

0

0.2

0.4

0.6

0.8

1

E
q
u
it
y
 S

h
a
re

w = 1 w = 5 w =15

(c) CRRA, Income Tail Risk,
Proportional Government Policy
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(d) DRRA, Income Tail Risk,
Proportional Government Policy
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(e) CRRA, Income Tail Risk,
Baseline Government Policy
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(f) DRRA, Income Tail Risk,
Baseline Government Policy

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Permanent Income P

0

0.2

0.4

0.6

0.8

1

E
q
u
it
y
 S

h
a
re

w = 1 w = 5 w =15

Notes: This figure plots the policy function for the portfolio equity share θit at age 50 as a function of
permanent income P, for different values of cash on hand relative to permanent income w and conditional
on having the opportunity to update the portfolio. The six panels cover different cases of the model:
CRRA versus DRRA preferences, income with normal shocks versus income with countercyclical tail
risk, and proportional taxes and transfers versus progressive taxes and income-dependent retirement
replacement rates.

The policy functions highlight two key channels in the effects of wealth on portfolio choice.
The first channel is the role of human capital in the composition of total wealth. The relation
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between relative cash on hand and optimal portfolio shares depends on the properties of human
capital. When income is relatively stable with a low correlation to stock returns, as in the standard
income specification, human capital serves as a substitute for bonds. As a result, the optimal
allocation of financial wealth to stocks strongly decreases with relative cash on hand in panel (a).
With countercyclical tail risk in labor income, income is substantially riskier and less bond-like.
As a result, the optimal equity share is only mildly decreasing in relative cash on hand in panel
(c).

The second key channel is the effect of overall wealth on risk aversion. In panels (a) and
(c), the optimal equity allocation is flat in P for a fixed value of w, since the value function is
homothetic in permanent income. In contrast, panels (b) and (d) illustrate the policy function
under non-homotheticity in risk preferences. For a fixed value of relative cash on hand, the equity
share increases with permanent income. This reflects the effect of decreasing relative risk aversion
in total wealth. Panel (e) shows that the homotheticity of the value function is broken by non-
proportional taxes and transfers, in which case the optimal allocation policy depends on the level
of wealth even with CRRA preferences. Panel (f) shows a similar relation under DRRA preferences
between risk-taking behavior and permanent income in the baseline specification compared to
panel (d) with proportional government policies, with a higher sensitivity of equity shares to
permanent income at low levels of financial wealth.

A.4.3 Robustness and Parameter Sensitivity

Variations to baseline setup. Table A.9 shows that results are robust to changes in the model
and estimation setup. Column (1) repeats the results of the baseline model estimation. Column (2)
shows that these results are robust to using a different weighting matrix: the inverse of the full
covariance matrix of the empirical moments. Columns (3)–(6) present the results for alternative
calibrated parameter values. Column (2) fixes the EIS at ψ = 0.2 (instead of 0.5) and column (3)
fixes the EIS at ψ = 0.8. Choosing a different EIS has strong implications for the heterogeneity
in discount rates β1 that is needed to match cross-sectional variation in saving rates, but does not
materially affect the estimates of the other parameters.

Columns (4), (5), and (6) do not show any meaningful differences compared to the baseline
specification when either choosing a higher EIS (ψ = 0.8), setting a lower weight on bequests
(b̃ = 0.5), or using the estimated income profile from high school educated households instead of
college-educated households from Cocco et al. (2005).

Sensitivity. Figure A.5 plots the sensitivity matrix defined in Andrews et al. (2017). The values
are scaled to correspond to a one standard error increase in each moment.

Baseline risk aversion γ0. The baseline coefficient of risk aversion is mainly driven by the average
equity share at age 50 (age group 49). A higher average equity share leads to a lower average risk
aversion. Higher saving rates somewhat increase risk aversion, due to the precautionary motive,
and more positive responses to wealth shocks imply a lower risk aversion.
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Table A.9: Parameter Estimates in Alternative Model Specifications

Full weighting High school
Baseline matrix ψ = 0.2 ψ = 0.8 b̃ = 0.5 income profile

(1) (2) (3) (4) (5) (6) Data

Baseline risk aversion γ0 5.7118 5.7431 5.7117 5.6623 5.6876 5.6897
(0.0786) (0.0778) (0.0804) (0.0768) (0.0767) (0.0746)

Non-homotheticity in risk aversion γ1 0.3106 0.3024 0.2587 0.3060 0.3134 0.3141
(0.0158) (0.0149) (0.0159) (0.0153) (0.0156) (0.0149)

Calvo probability χ 0.1520 0.1524 0.1648 0.1520 0.1504 0.1628
(0.0039) (0.0038) (0.0045) (0.0038) (0.0039) (0.0045)

Baseline discount rate β0 0.9482 0.9499 0.9503 0.9485 0.9509 0.9477
(0.0017) (0.0016) (0.0034) (0.0012) (0.0018) (0.0017)

Slope of discount rate β1 4.2358 4.0564 24.1113 2.0645 5.5289 4.4391
(0.3632) (0.3718) (2.6631) (0.1891) (0.4331) (0.3437)

Income process Tail risk Tail risk Tail risk Tail risk Tail risk Tail risk

Targets
Age profile of financial wealth Y Y Y Y Y Y
Equity share at age 50 Y Y Y Y Y Y
Portfolio regression b0 Y Y Y Y Y Y
Portfolio regression b1, b2 Y Y Y Y Y Y
Saving regression φ Y Y Y Y Y Y

Value of objective 50.880 40.081 22.021 62.683 66.801 73.944

Equity share at age 50 0.4170 0.4171 0.4143 0.4328 0.4184 0.4295 0.4309
(0.0111)

Portfolio regression b0 0.8646 0.8637 0.8520 0.8648 0.8672 0.8574 0.8372
(0.0059)

Portfolio regression b1 0.0568 0.0559 0.0539 0.0547 0.0572 0.0556 0.0525
(0.0021)

Portfolio regression b2 -0.0138 -0.0149 -0.0145 -0.0155 -0.0147 -0.0142 -0.0095
(0.0023)

Saving regression φ 0.6480 0.6669 0.6386 0.6542 0.6423 0.6370 0.7300
(0.0500)

Notes: This table reports the results of structural estimations of alternative versions of the model. I first report the estimated
parameter values and their corresponding standard errors, I then indicate which moments were targeted in the estimation,
and finally I report the value of the objective and the key moments of the model evaluated at the estimated parameter values.

Non-homotheticity in risk preferences γ1. The degree of non-homotheticity in risk preferences, γ1,
is mainly driven by the regression coefficients b1 and b2. More positive responses to wealth shocks
imply a larger elasticity of risk aversion with respect to wealth. The estimate of γ1 is also positively
related to the saving regression coefficient φ: a high φ means relatively more consumption of the
permanent-income rich, and one way to get the rich to consume more is by them having bigger
average portfolio returns. Since an increase in γ1 means more precautionary savings when young
and relatively poor, larger values of γ1 are associated with flatter saving profiles. Therefore, high
saving rates for the young increase γ1 and high saving rates for the old decrease γ1.

Calvo probability χ. As expected, a high coefficient on passive change b0 implies a low
probability of adjustment χ. Since a low probability of adjustment is associated with a flat
profile of equity shares over the life cycle, an increase in the equity share at age 50 also lowers
the frequency of adjustment. A high regression coefficient b1 on income growth increases the
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estimated probability of adjustment through the extensive margin of portfolio rebalancing.

Figure A.5: Parameter Sensitivity
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(b) Parameter γ1
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(c) Parameter χ
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(d) Parameter β0
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(e) Parameter β1
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Notes: This figure shows the sensitivity matrix as defined in Andrews et al. (2017). The values are scaled
to correspond to a one standard error increase in each moment.

Baseline discount rate β0. The baseline discount rate is precisely estimated, and is driven mostly
by the savings profile of older people (young people are buffer stock savers). Higher saving rates
clearly imply that investors are more patient.
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Slope of discount rate β1. The slope of the discount rate is only sensitive to changes in the saving
regression coefficient φ. Obviously, a lower φ (more concavity in saving rates over the wealth
distribution) is associated with a large heterogeneity in discount rates across initial permanent
income levels.

A.4.4 Asset Pricing Dynamics

The estimated non-homotheticity in risk tolerance provides qualitative support for asset pricing
models based on cross-sectional or time-series variation in risk aversion that quantitatively fit
important asset pricing facts such as the equity premium, equity volatility, and countercyclical
risk premia (e.g. Campbell and Cochrane, 1999; Chan and Kogan, 2002; Gârleanu and Panageas,
2015).35 DRRA preferences have asset pricing implications through two channels. First,
households with DRRA have a risk aversion that changes over time as aggregate wealth changes,
as in a habit model (Constantinides, 1990; Campbell and Cochrane, 1999). As a result, cash flow
shocks get amplified through their effect on risk aversion. Second, DRRA preferences generate
cross-sectional heterogeneity in risk aversion through dispersion in wealth. This heterogeneity
leads to differences in optimal portfolios and concentrates holdings in the hands of the most risk
tolerant agents. With concentrated equity holdings as in Mankiw (1986), the marginal investor
is more exposed to stock market risk than the average household. Ex-ante differences in risk
aversion lead to differences in portfolios, which in turn generate variation in the distribution
of wealth, thereby changing aggregate risk aversion. In particular, negative (positive) shocks
get amplified by a redistribution of wealth to more (less) risk averse agents. Under the right
calibration, these effects have been shown to generate empirically relevant magnitudes of the
equity premium, equity volatility, and countercyclical risk premia (Chan and Kogan, 2002;
Gârleanu and Panageas, 2015). These two channels amplify the volatility of the stochastic
discount factor and lead to a more negative relation between equity investors’ marginal utility
and equity returns.

While my estimates do not speak directly to the dynamics of asset prices in general
equilibrium, I examine the implications of the estimated DRRA preferences on time-series
variation in aggregate risk aversion. Aggregate risk aversion is strongly linked to conditional
Sharpe ratios in equilibrium models of asset prices. As a simple illustration, consider an economy
where agents choose their portfolio allocations according to the Merton (1971) model. Let κ be
the Sharpe ratio and σe the volatility of equity. The share of wealth invested in risky assets by
individual i is given by

θi =
κ

γiσe
. (A.4.7)

35Other channels that have been successfully incorporated in general equilibrium asset pricing models include long-
run risks (Bansal and Yaron, 2004), rare disasters (Rietz, 1988; Barro, 2006), idiosyncratic risk (Heaton and Lucas,
1996; Constantinides and Duffie, 1996), institutional or intermediary frictions (Brunnermeier and Sannikov, 2014; He
and Krishnamurthy, 2012), and alternative probability assessments due to behavioral mistakes or ambiguity aversion
(Hansen and Sargent, 2001). See Cochrane (2017) for a nice overview.
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Figure A.6: Fluctuations in Aggregate Risk Aversion

(a) Life-Cycle Model: σ(∆ log RRA) = 0.0430
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(b) Campbell-Cochrane: σ(∆ log RRA) = 0.2271
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Notes: This figure illustrates the time-series dynamics of log aggregate risk aversion in simulations of the
life-cycle model and the habit model of Campbell and Cochrane (1999).

Imposing market clearing and letting Ni be the net worth of agent i, this yields the aggregate
relation (see also Kimball, Shapiro, Shumway, and Zhang, 2019)

∑
i

θiNi =
κ

γ̄σe
N̄ = N̄,

1
γ̄
= ∑

i

Ni

N̄
1
γi

, (A.4.8)

where γ̄ is aggregate risk aversion. Assuming a constant stock volatility, it follows that the Sharpe
ratio is proportional to aggregate risk aversion.

In model simulations, I find that the volatility of annual changes in log aggregate risk aversion
is 4.3%. This is an order of magnitude lower than the variation in aggregate risk aversion
implied by Campbell and Cochrane (1999), which is 22.7%. Figure A.6 illustrates these time-series
fluctuations in aggregate risk aversion in the models.
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A.5 Additional Figures and Tables

Figure A.7: Age Distribution
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Notes: This figure plots the distribution of age in the sample of RI
investors versus the distribution of individual retirement wealth for
RI investors in the SCF.

Figure A.8: Mean Reversion in Equity Share
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Notes: This figure plots the average change in equity share as a
function of initial equity share. The sample is split by the magnitude
of absolute income growth.
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Figure A.9: Modeled Certainty Equivalent Aggregator
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Notes: This figure plots the certainty equivalent aggregator J that is
the solution to the ODE (24) with baseline risk aversion γ0 = 5 and
for different values of the non-homotheticity parameter γ1.

Figure A.10: Modeled Discount Factor Heterogeneity by Initial Permanent Income
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Notes: This figure plots the parameterization (25) for discount factors
β that are a function of initial permanent income P1, for different
values of the slope parameter β1.
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Figure A.11: Adjustment Model Regression Coefficients in Life-Cycle Model
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(b) Income without Tail Risk,

Baseline Government Policies
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(c) Income with Tail Risk,

Proportional Government Policies
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(d) Income with Tail Risk,

Baseline Government Policies
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Notes: This figure plots the coefficients b1 and b2 of the portfolio adjustment regression estimated in
model-simulated data for different values of γ1, compared to the empirical estimates of b1 and b2, across
different model specifications.
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Table A.10: Income and Equity Shares – Long-Run Effects

∆3+j log equity sharet+j
j = 0 j = 1 j = 3 j = 5 Log equity sharet

(1) (2) (3) (4) (5) (6)

∆3 log incomet 0.0208 0.0250 0.0224 0.0203
(0.0011) (0.0012) (0.0017) (0.0025)

Log incomet 0.0313 0.0388
(0.0004) (0.0005)

Employer × year FE Y Y Y Y Y Y
Log equity sharet−3 Y Y Y Y
Demographic controls Y Y Y Y Y Y

Sample Non-default
investor

R-squared 0.272 0.297 0.370 0.377 0.090 0.076
Share of individuals 53.4% 51.6% 37.9% 27.0% 97.3% 51.5%

Notes: Columns (1)–(4) present estimates of the long-run relation between income and equity
shares by reporting the results of an OLS regression of changes in log equity shares, measured over
several horizons, on three-year income growth. The demographic controls include a second-order
polynomial in age, gender, marital status, a second-order polynomial in employment tenure, log
income, and the log of financial assets, all measured at t− 3. Columns (5)–(6) report the results of
an OLS cross-sectional regression of log equity shares on log income. The demographic controls
include a second-order polynomial in age, gender, marital status, and a second-order polynomial
in employment tenure. Standard errors are clustered at the individual level.
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