The Aggregate Importance of Intermediate Input Substitutability

Alessandra Peter IIES / NYU Cian Ruane IMF

NBER SI, Economic Growth July 2020

Disclaimer: any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the IMF, its Executive Board, or its management.

Motivation

- Metals and Plastics used as intermediate inputs
- ▶ Increase in Metals sector TFP \Rightarrow decrease in price

Intermediate Input	Intermediate Input	Size of	Aggregate
Substitutability	Share Metals & Plastics	Metals Sector	TFP
Cobb-Douglas		_	1

Motivation

- Metals and Plastics used as intermediate inputs
- ▶ Increase in Metals sector TFP \Rightarrow decrease in price

Intermediate Input Substitutability	Intermediate Input Share Metals & Plastics	Size of Metals Sector	Aggregate TFP
Cobb-Douglas		_	Ť
Complements		Ļ	î

Motivation

Metals and Plastics used as intermediate inputs

• Increase in Metals sector TFP \Rightarrow decrease in price

This Paper

1. Estimate plant-level elasticities of substitution between inputs

- At 3 levels of aggregation:
 - 8 categories of materials (plastics, metals, ...)
 - Energy, materials and services
 - Capital-labor and intermediates
- Context: Indian manufacturing sector
 - ▶ Time horizon = 7 years
 - Trade liberalization \Rightarrow quasi-random changes in input prices
- 2. Embed estimates in a multi-sector GE model of Indian economy
 - Assess importance of elasticities for:
 - Aggregate impact of sectoral TFP increases
 - Misallocation
 - Gains from trade

Main findings

Empirical estimates: material inputs highly substitutable

Material inputs (8 categories) are substitutes: 4.7

- This paper: permanent shock to prices, longer-run response
- Energy, materials and services are complements: 0.4

Atalay (2017), Oberfield & Raval (2019): < 1</p>

- Intermediate inputs and capital/labor are complements: 0.6
 - Atalay (2017), Oberfield & Raval (2019): < 1</p>
- Quantitative model: deviations from Cobb-Douglas important
 - ► Gains from closing US-India TFP gap in one sector: 76% larger
 - Baqaee & Farhi (2019)
 - Losses from misallocation of inputs across plants: 6 times larger
 - Baqaee & Farhi (2020), Oberfield & Boehm (2020)

Plant Production Function \Rightarrow Estimating Equation

 $Y_i = F_i(\text{Capital}_i, \text{Labor}_i, \underbrace{\text{Intermediates}_i}_{G_i(\text{Energy}_i, \text{Materials}_i, \text{Services}_i) }$

$$\mathsf{Materials}_i = \left[\sum_{j=1}^J \pi_{ij} M_{ij}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}$$

j = Plastics, Metals, Chemicals, Woods, Minerals, Textiles, Agricultural, Other

► Cost minimization ⇒

$$\Delta \ln \left(\frac{P_{ij} M_{ij}}{P_{ik} M_{ik}} \right) = (1 - \theta) \Delta \ln \left(\frac{P_{ij}}{P_{ik}} \right) + \theta \Delta \ln \left(\frac{\pi_{ij}}{\pi_{ik}} \right)$$

Why not run OLS? Simultaneity bias and attenuation bias ⇒ use ∆ import tariffs to instrument for ∆ domestic input prices

Setting: India's Trade Liberalization (1991-1997)

▶ Policy 'experiment': IMF program after BoP crisis → unanticipated

- Large permanent decline in import tariffs (average = 50%)
- ▶ Tariff changes very **dispersed** (s.d. = 35%) and **quasi-random**
 - Uncorrelated with industry characteristics, etc.
 - Predicted by initial tariff levels (trade policy unchanged since 1950s)

Setting: India's Trade Liberalization (1991-1997)

- ▶ Policy 'experiment': IMF program after BoP crisis → unanticipated
- Large permanent decline in import tariffs (average = 50%)
- ▶ Tariff changes very **dispersed** (s.d. = 35%) and **quasi-random**
 - Uncorrelated with industry characteristics, etc.
 - Predicted by initial tariff levels (trade policy unchanged since 1950s)

Estimation Strategy: Plant-level Elasticities

Survey of formal Indian manufacturing plants in 1989 and 1996 (ASI)

Spending on 1000s of subcategories within 8 materials

Estimation Strategy: Plant-level Elasticities

Survey of formal Indian manufacturing plants in 1989 and 1996 (ASI)

Spending on 1000s of subcategories within 8 materials

Bartik approach \Rightarrow plant-level prices and tariffs for Metals, ...

- Wholesale price indices & tariffs for detailed input subcategories
- Weight using average plant shares (prices) or 1989 shares (tariffs)
- \blacktriangleright \Rightarrow variation in plant-level prices and tariffs

Estimation Strategy: Plant-level Elasticities

Survey of formal Indian manufacturing plants in 1989 and 1996 (ASI)

Spending on 1000s of subcategories within 8 materials

Bartik approach \Rightarrow plant-level prices and tariffs for Metals, ...

- Wholesale price indices & tariffs for detailed input subcategories
- Weight using average plant shares (prices) or 1989 shares (tariffs)
- \blacktriangleright \Rightarrow variation in plant-level prices and tariffs

Estimating Equations:

First stage:
$$\Delta \ln(P_{ij}) = \rho \Delta \tau_{ij} + \mathsf{FE}_i + \mathsf{FE}_j + \eta_{ik}$$

Second stage: $\Delta \ln\left(\frac{PM_{ij}}{PM_i}\right) = \beta \Delta \ln(P_{ij}) + \mathsf{FE}_i + \mathsf{FE}_j + \epsilon_{ik}$

i = plant, j = material input category (e.g. Metals)

Estimates of elasticities of substitution

	0 7 materials		0 E-M	∂ ^X E-M-S		<mark>е</mark> KL-EMS	
	OLS (1)	IV (2)	OLS (3)	IV (4)	OLS (5)	IV (6)	
Elasticity	1.4	4.7					
	[1.0, 1.7]	[2.9, 6.5]					
Obs	14,294	14,294					
# plants	5,411	5,411					

First stage: for θ , the regression of price changes on tariff changes yields a coefficient of 0.09 (F-stat 56) for θ^X , a coefficient of 0.14 (F-stat 26); for ε , a coefficient of 0.11 (F-stat 23). Standard errors clustered at industry-level.

First stage: regress % price changes on pp. tariff changes

Coefficient: 0.09 (F-stat: 56)

Estimates of elasticities of substitution

	0 7 materials		<u></u> Е-І	<mark>∂</mark> X E-M-S		<mark>е</mark> KL-EMS	
	OLS (1)	IV (2)	OLS (3)	IV (4)	OLS (5)	IV (6)	
Elasticity	1.4	4.7	0.5	0.4			
	[1.0, 1.7]	[2.9, 6.5]	[0.1, 0.8]	[-0.3, 1.2]			
Obs # plants	14,294 5,411	14,294 5,411	16,884 8,616	16,884 8,616			

First stage: for θ , the regression of price changes on tariff changes yields a coefficient of 0.09 (F-stat 56) for θ^X , a coefficient of 0.14 (F-stat 26); for ε , a coefficient of 0.11 (F-stat 23). Standard errors clustered at industry-level.

Similar estimation strategy for EMS and for KL vs. EMS

Estimates of elasticities of substitution

	(9	θ ^X		ຂ	
	7 ma	terials	E-M-S		KL-EMS	
	OLS	IV	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)	(5)	(6)
Elasticity	1.4	4.7	0.5	0.4	0.5	0.6
	[1.0, 1.7]	[2.9, 6.5]	[0.1, 0.8]	[-0.3, 1.2]	[0.2, 0.8]	[0.0,1.2]
Obs	14,294	14,294	16,884	16,884	8,449	8,449
# plants	5,411	5,411	8,616	8,616	8,449	8,449

First stage: for θ , the regression of price changes on tariff changes yields a coefficient of 0.09 (F-stat 56) for θ^X , a coefficient of 0.14 (F-stat 26); for ε , a coefficient of 0.11 (F-stat 23). Standard errors clustered at industry-level.

Similar estimation strategy for EMS and for KL vs. EMS

Heterogeneity & Robustness

Robustness: Estimates

- Non-importers
- Top 2 inputs / minimum spending shares
- Extensive margin
- Price and tariff construction

Heterogeneity:

- Individual industry estimates in line with pooled estimates Figure
- Slightly lower substitutability for small plants Estimates
- Preliminary: lower substitutability for shorter time horizons

Estimates of industry-level elasticities similar to plant-level

Quantitative Model

Static open economy, multiple sectors, roundabout production

- Heterogeneous firms in each sector face CES demand
 - Production function has nested CES structure
 - Key elasticities of substitution: $\theta, \theta^X, \varepsilon$
 - Potentially face plant-specific input prices (distortions)
- Sectoral output used as intermediate or for final good production

Quantitative exercise: importance of $\theta >> 1$ for

- 1. Aggregate effect of increasing one sector's TFP to the US level?
- 2. Aggregate losses due to input distortions?
- 3. (Paper: gains from trade liberalization & revenue distortions)

Gains from closing TFP gap to the US

Gains are 76% larger on average with an elasticity of 4.7.

Similar amplification in model with cross-product substitution Figure

Input Misallocation

Huge heterogeneity in factor shares even within industry

- Could be due to technology or plant-specific "distortions"
- Transportation costs, markups charged by suppliers, taxes,...

Distortions create misallocation

- How large are losses from input distortions?
- Role of substitutability between intermediate inputs?
- Conservative way to back out distortions
 - 1/3 of dispersion in factor shares from distortions
- Aggregate losses from adding input distortions?

Input Misallocation

Huge heterogeneity in factor shares even within industry

- Could be due to technology or plant-specific "distortions"
- Transportation costs, markups charged by suppliers, taxes,...
- Distortions create misallocation
 - How large are losses from input distortions?
 - Role of substitutability between intermediate inputs?
- Conservative way to back out distortions
 - 1/3 of dispersion in factor shares from distortions
- Aggregate losses from adding input distortions?
 - ▶ 36% of GDP with our estimates vs. 6% with Cobb-Douglas

Conclusion

Material inputs are substitutable over the medium-run

- Elasticity of 4.7
- More flexibility than existing short-run estimates
- Inputs more complementary at higher levels of aggregation
 - Energy, Materials and Services are complements
 - Intermediate input and capital/labor are complements
- Substitutability has large effects on the macroeconomy
 - Gains from raising TFP to US level \approx 76% larger
 - Losses from input misallocation pprox 6 times larger

Robustness of θ estimate

	Top 2	2 Inputs	Non-ir	nporters	No Extensive Margin		Industry Prices and Tariffs	
	OLS	IV	OLS	IV	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Elasticity	1.4 [1.0, 1.7]	3.6 [2.0, 5.2]	1.3 [1.0, 1.7]	4.4 [2.3, 6.5]	1.5 [1.0, 2.0]	4.6 [1.9, 7.4]	1.2 [0.9, 1.6]	3.5 [1.2, 5.9]
∆tariffs F-stat		First Stage 0.091 (.014) 44.2		First Stage 0.084 (.013) 40.1		First Stage 0.078 (.011) 44.7		First Stage 0.100 (.022) 17.7
Observations # plants	10,822 5,430	10,860 5,430	10,932 4,148	10,932 4,148	4,386 1,562	4,386 1,562	14,294 5,411	14,294 5,411

Notes: Standard errors clustered at industry-level.

Back

$\boldsymbol{\theta}$ heterogeneity across using industries

$\boldsymbol{\theta}$ heterogeneity for small vs. large plants

	Below Me	edian Size	Above M	Above Median Size		
	OLS	IV	OLS	IV		
	(1)	(2)	(3)	(4)		
Elasticity	1.41	3.57	1.29	5.85		
	[1.0, 1.8]	[1.2, 5.9]	[0.9, 1.7]	[3.6, 7.1]		
Observations	6,919	6,919	7,375	7,375		
# plants	2,706	2,706	2,705	2,705		

First stage: for plants below median size, the regression of price changes on tariff changes yields a coefficient of 0.09 (F-stat 37) for plants above median size, a coefficient of 0.08 (F-stat 48.4). Standard errors clustered at industry-level.

Substitution Between Products

► Large relative input price changes ⇒ similar predicted changes in industry spending shares ⇒ similar amplification Back