Survey

Descriptives

Model

Achieving Scale Collectively

Vittorio Bassi USC & CEPR Raffaela Muoio BRAC Tommaso Porzio Columbia & CEPR

Ritwika Sen Northwestern Esau Tugume BRAC

NBER SI 2020, Economic Growth

Sixth Co-author: invaluable team of RAs. Thanks to Arianna, Alessandro, Maddalena, Sebastian, Monia, Kasey, Usman, Arushi, Jung, Jeanne, and Mitchell.

Premise: Three Facts on Firms in Developing Countries

1. Small firm size; 2. Many firms; 3. Operate side by side

Premise: Three Facts on Firms in Developing Countries

1. Small firm size; 2. Many firms; 3. Operate side by side

Source: Uganda Census of Business Establishments

Drivers of Firm-level Technology Adoption

▶ Technology often embodied in large indivisible capital inputs

- firms are small (Fact 1) \rightarrow indivisibility of capital might hinder adoption

- many small firms (Facts 2 & 3) \rightarrow indivisibility may not bind for the cluster

This paper: presence of many firms near each other allows them to adopt technology through rental markets for machine
machines are indivisible, but their capacity can be shared

Drivers of Firm-level Technology Adoption

▶ Technology often embodied in large indivisible capital inputs

- firms are small (Fact 1) \rightarrow indivisibility of capital might hinder adoption
- many small firms (Facts 2 & 3) \rightarrow indivisibility may not bind for the cluster

This paper: presence of many firms near each other allows them to adopt technology through rental markets for machine
- machines are indivisible, but their capacity can be shared

Overview

▶ Novel **survey** of 1,000 manufacturing firms in urban Uganda

- focus on three sectors: carpentry, metal fabrication, grain milling
- detailed information on the $how~{\rm firms}~{\rm produce}~{\rm output}~{\rm (production~process)}$

Describe the organization of production in the three sectors

- economies of scale due to large capital equipment (especially in carpentry)
- active *inter-firm* rental markets (especially in carpentry)

Model of technology adoption and machine rentals, w/ frictions
 1. estimate the size of frictions in the rental market

- 2. quantify aggregate and distributional effects of the rental market
- 3. show how benefits of rental markets depend on other frictions

Overview

▶ Novel **survey** of 1,000 manufacturing firms in urban Uganda

- focus on three sectors: carpentry, metal fabrication, grain milling
- detailed information on the how firms produce output (production process)

Describe the organization of production in the three sectors

- economies of scale due to large capital equipment ${}_{\rm (especially\ in\ carpentry)}$
- active inter-firm rental markets (especially in carpentry)

Model of technology adoption and machine rentals, w/ frictions
 1. estimate the size of frictions in the rental market

- $2.\ {\rm quantify\ aggregate\ and\ distributional\ effects\ of\ the\ rental\ market}$
- 3. show how benefits of rental markets depend on other frictions

Overview

- ▶ Novel **survey** of 1,000 manufacturing firms in urban Uganda
 - focus on three sectors: carpentry, metal fabrication, grain milling
 - detailed information on the how firms produce output (production process)
- Describe the organization of production in the three sectors
 economies of scale due to large capital equipment (especially in carpentry)
 active *inter-firm* rental markets (especially in carpentry)
- Model of technology adoption and machine rentals, w/ frictions
 1. estimate the size of frictions in the rental market
 - $\mathbf 2.$ quantify aggregate and distributional effects of the rental market
 - 3. show how benefits of rental markets depend on other frictions

The Survey

Geographical Coverage

Information on Production Process for Key Products

(a) Key Product

Step	Step Description
1	Design
2	Drying the timber
3	Cutting
4	Planing
5	Thicknessing
6	Edging
7	Sanding
8	Mortising
9	Finishing
10	Final Drying

(b) Production Steps

For each step we know: hours of labor, hours of capital, mechanization

Mechanization: Modern Machines vs Manual Tools

(c) Thickness Planer (Mechanized) (d) Manual Planer (Not Mechanized)

Key Facts on Production in Urban Uganda

1. **Production in clusters** of small and (quite) similar firms

- average firm size: 5 workers
- average carpentry firm has other 16 carpenters within 500m radius
- same products, same steps (i.e. no specialization), different capital intensity

Key Facts on Production in Urban Uganda

1. Production in clusters of small and (quite) similar firms

- average firm size: 5 workers
- average carpentry firm has other 16 carpenters within 500m radius
- same products, same steps (i.e. no specialization), different capital intensity

2. Economies of scale due to indivisibility of machines

- evidence of productivity gains from mechanization
- machines are expensive and have too large capacity for one single firm
- heterogeneity: cheap machines in metal fabrication, used heavily in milling

Key Facts on Production in Urban Uganda

1. Production in clusters of small and (quite) similar firms

- average firm size: 5 workers
- average carpentry firm has other 16 carpenters within 500m radius
- same products, same steps (i.e. no specialization), different capital intensity

2. Economies of scale due to indivisibility of machines

- evidence of productivity gains from mechanization
- machines are expensive and have too large capacity for one single firm
- heterogeneity: cheap machines in metal fabrication, used heavily in milling

3. Active inter-firm rental market for large machines

(a) Owners

(b) Owners and Renters

- machines mostly used at owner premises \Rightarrow transaction and time costs

- machines mostly used at owner premises \Rightarrow transaction and time costs
- rental markets less important in metal fabrication and grain milling

Achieving Scale Collectively?

1. Firm's boundaries are usually defined by the manager's span of control

Achieving Scale Collectively?

- 1. Firm's boundaries are usually defined by the manager's span of control
- 2. Extend firm's boundary to all workers using same machines [~ Grossman-Hart-Moore]

Achieving Scale Collectively?

1. Firm's boundaries are usually defined by the manager's span of control

2. Extend firm's boundary to all workers using same machines [~ Grossman-Hart-Moore]

 \rightarrow whether 2. is meaningful, depends on transaction costs to access rented capital

\mathbf{Model}

Note: assumptions are motivated by extensive empirical evidence shown in the paper

Individuals with managerial ability ζ

All individuals make an entry choice

All individuals make an entry choice Each manager has to make two production choices

The rental mkt wedge, τ

Proposition 1: Choices to Invest and Mechanize $(\tau = 0)$

- investment choice only depends on cost of capital
- mechanization choice only depends on return to capital

Introduction

Proposition 1: Choices to Mechanize $(\tau = 0)$

Proposition 1: Choices to Mechanize $(\tau > 0)$

 \Rightarrow a positive τ ties together investment and mechanization choices

Introduction

Proposition 1: Choices to Mechanize $(\tau > 0)$

 \Rightarrow a positive τ ties together investment and mechanization choices

Proposition 1: Choices to Mechanize $(\tau > 0)$

 \Rightarrow a positive τ ties together investment and mechanization choices

Bringing the Model to Data

Model to Data: Approach

We extend the model to make it amenable to estimation
 add sector of specialized lenders + preference shocks

We use our data to pin down the parameters (for carpentry)
 1. rental market wedge (τ) exactly identified by model restrictions
 2. a number of parameters calibrated outside the model (e.g. p_r, p_b)
 3. remaining parameters jointly estimated through SMM

Estimating the Rental Market Wedge τ

 \blacktriangleright Model's result: τ modulates gap in marginal costs of capital

- for renters: $(1 + \tau)p_r$
- for owners: p_r [opportunity cost of renting out]

Estimating the Rental Market Wedge τ

 \blacktriangleright Model's result: τ modulates gap in marginal costs of capital

- for renters: $(1 + \tau)p_r$
- for owners: p_r [opportunity cost of renting out]

 \rightarrow capital-labor ratio of renters (relative to owners) decreases in τ

Estimating the Rental Market Wedge τ

 \blacktriangleright Model's result: τ modulates gap in marginal costs of capital

- for renters: $(1 + \tau)p_r$
- for owners: p_r [opportunity cost of renting out]

 \rightarrow capital-labor ratio of renters (relative to owners) decreases in τ

Run the following regression for step s in firm j:

$$\log(K_{sj}) = \beta_0 + \beta_1 Rent_{sj} + \beta_2 \log(w_j \times L_{sj}) + \vartheta_s + \gamma X_j + \delta Z_{sj} + \epsilon_{sj}$$

- $Rent_{sj}$: share of machines used in step s that are rented
- ϑ_s : steps FE; X_j : firm controls; Z_{sj} : characteristics of machines in step s
- can also run the specification with firm fixed effects

Rental Market Wedge τ : Results

2	I	Dependent variable:	Log Monthly Machi	ne Hours	
	Step-Level				
_	Baseline	Firm FE	No Controls	Only Labor Controls	
	(1)	(2)	(3)	(4)	
Share of Rented Machines (0-1)	-0.339***	-0.385***	-0.655***	-0.530***	
	(0.092)	(0.089)	(0.110)	(0.094)	
				• F 22	
Labor Cost Control	Yes	Yes	No	Yes	
Machine Controls	Yes	Yes	No	No	
Firm Controls	Yes	No	No	No	
Machine Type FE	No	No	No	No	
Step FE	Yes	Yes	Yes	Yes	
Firm FE	No	Yes	No	No	
Subcounty FE	Yes	No	Yes	Yes	
Adjusted R^2	0.374	0.608	0.277	0.308	
Observations	1,536	1,536	1,536	1,536	

Rental Market Wedge τ : Results

2	I	Dependent variable:	Log Monthly Machi	ine Hours	
	Step-Level				
_	Baseline	Firm FE	No Controls	Only Labor Controls	
	(1)	(2)	(3)	(4)	
Share of Rented Machines (0-1)	-0.339***	-0.385***	-0.655***	-0.530***	
	(0.092)	(0.089)	(0.110)	(0.094)	
Labor Cost Control	Yes	Yes	No	Yes	
Machine Controls	Yes	Yes	No	No	
Firm Controls	Yes	No	No	No	
Machine Type FE	No	No	No	No	
Step FE	Yes	Yes	Yes	Yes	
Firm FE	No	Yes	No	No	
Subcounty FE	Yes	No	Yes	Yes	
Adjusted R^2	0.374	0.608	0.277	0.308	
Observations	1,536	1,536	1,536	1,536	

- model implies: $\beta_1 = -\log(1+\tau) \rightarrow \hat{\tau} = 0.41$ (from column 1)
- rental market wedge is $\approx 40\%$ of direct machine rental price
- validation: direct transport and time costs explain $\approx 2/3$ of the wedge

A Few Estimated Parameters (out of 23)

	Parameter	Value	Description
(8)	A_M	1.431	Relative productivity of mechanized process
(9)	μ	1.589	Relative quality of mechanized goods
(11)	$-\eta$	- 0.075	Elasticity of output to price
(12)	ν	0.162	Labor market frictions
(18)	$Corr(\log \rho, \log \zeta)$	- 0.330	Correlation cost and returns of capital

▶ Parameters identification discussed at lenght in the paper

- i.e. we link each primitive to one or few key empirical moments

Effects of the Rental Market

Aggregate Effects of the Rental Market

Aggregate Effects of the Rental Market

Aggregate Effects of the Rental Market

1. large possible gains: mech + 170%; labor prod +15%; output +30%

Aggregate Effects of the Rental Market

1. large possible gains: mech + 170%; labor prod +15%; output +30%

2. $\tau = 0.40$ reaps more than half of the gains \rightarrow firms achieve scale collectively

Beyond Uganda

Beyond Uganda

▶ Where should we expect rental markets to be important?

- how does the importance of rental markets vary as the economy develops?

Recompute the equilibrium varying strength of other frictions
 - frictions in labor, output and financial market

Rental Mkts Attenuate Other Imperfections

- rental mkts attenuate other imperfections: labor, output, financial mkt

Other

Rental Mkts Attenuate Other Imperfections

- rental mkts attenuate other imperfections: labor, output, financial mkt \Rightarrow Rental markets matter for economic development

Conclusion

- ► This project: new survey + model to interpret the data → study role of economies of scale and indivisibilities for development
- ► Key results:
 - 1. active rental market \Rightarrow indivisible machines can be shared by many firms
 - 2. large aggregate and distributional effects of the rental market
- ▶ Three broad lessons:
 - 1. shift focus from size of individual firms to size of clusters for tech. adoption
 - 2. shifting the boundaries, we may find the missing medium firms in the LDC
 - 3. rental markets can attenuate costs of other market imperfections

Conclusion

- ► This project: new survey + model to interpret the data → study role of economies of scale and indivisibilities for development
- ► Key results:
 - 1. active rental market \Rightarrow indivisible machines can be shared by many firms
 - 2. large aggregate and distributional effects of the rental market
- ▶ Three broad lessons:
 - 1. shift focus from size of individual firms to size of clusters for tech. adoption
 - 2. shifting the boundaries, we may find the missing medium firms in the LDC
 - 3. rental markets can attenuate costs of other market imperfections
- \Rightarrow Rental mkts are important and there is still a lot to learn

Thanks!