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Abstract

We develop a quantitative business cycle model with search complementarities in the

inter-firm matching process that entails a multiplicity of equilibria. An active static

equilibrium with strong joint venture formation, large output, and low unemployment can

coexist with a passive static equilibrium with low joint venture formation, low output, and

high unemployment. Changes in fundamentals move the system between the two static

equilibria, generating non-linear, large, and persistent business cycle fluctuations and a

bimodal distribution of output. The volatility of shocks is important for the selection and

duration of each static equilibrium. Sufficiently adverse shocks, such as a financial crisis

or a pandemic, in periods of low macroeconomic volatility trigger severe and protracted

downturns. The magnitude of a fiscal stimulus is critical to foster economic recovery in

the passive static equilibrium, while it plays a limited role in the active static equilibrium.
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1 Introduction

Search often involves two parties. Workers search for firms and firms search for workers.

Customers search for shops and shops search for customers. Entrepreneurs search for venture

capitalists and venture capitalists search for entrepreneurs.

Two-sided searches generate a strategic complementarity. If the probability of a match is

supermodular on the search effort exerted by the parties, an increase in the search effort by one

party will raise (under some conditions on the search costs function) the other party’s search

effort. Conversely, a decrease in the search effort by one party will lower the other party’s search

effort. Depending on fundamentals (i.e., payoff-relevant variables such as productivity or the

discount factor), this strategic complementarity begets a unique static Nash equilibrium (i.e., an

equilibrium for the current period) where both agents search with low effort, a unique static

Nash equilibrium where both agents search with high effort, or multiple static Nash equilibria

with different search efforts.

In this context, shocks to fundamentals have direct and indirect effects. For example, if

matches are persistent, the direct effect of a higher discount factor is to increase the search

effort by agents, independently of what other agents do. But since all the agents are searching

more, the supermodularity of matching probabilities kicks in. We may get the indirect effect of

a switch from the static Nash equilibrium with low search effort to the static Nash equilibrium

where the search effort is higher than if we only had the direct effect. In other words, search

complementarities amplify and propagate shocks to fundamentals. Loosely speaking, search

complementarities provide a microfoundation for what would appear, at first sight, to be

increasing returns to matching in the spirit of Diamond (1982).

To explore this amplification and propagation mechanism, we build a quantitative business

cycle model and calibrate it to U.S. data. Firms post job vacancies and fill them with workers from

households in an off-the-shelf Diamond-Mortensen-Pissarides (DMP) frictional labor market.

The DMP block of the model gives us a natural framework to analyze unemployment and

vacancies but, for simplicity, will not present search complementarities. Once vacancies are

filled, firms must match among themselves in long-lasting relationships to produce output. This

mechanism captures the inter-firm linkages embedded in contemporary value-added chains. For

example, an airplane manufacturer must find a producer of carbon fiber reinforced thermoplastics
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(CFRPs) to complete a plane and a CFRP producer must find an airplane manufacturer that

will purchase its products. In our model, the search effort among firms is supermodular. When

airplane manufacturers and CFRP manufacturers search for each other with high effort, output

is high and unemployment low. Otherwise, output is low and unemployment high.

We interpret the search friction among firms as reflecting the process of firms engaging in

complex relationships, which goes well beyond locating potential partners. We have in mind,

among others, the costly effort by buyers in analyzing vendors (in our example, assessing the

quality of CFRPs delivered by a new supplier and checking their suitability for proprietary and

well-guarded production processes) and in completing all the required contractual arrangements,

certifications, and regulatory compliance procedures. For the suppliers, we have in mind the

costly effort related to advertising and branding, participating in trade fairs, tendering offers,

adapting production processes to highly specific buyer requirements, and setting up supply

procedures to process and track orders from a new buyer. The ample space dedicated to these

topics in operations management textbooks (e.g., Heizer et al., 2016, or Stevenson, 2018) is

compelling evidence of how seriously the industry takes this friction. The authors’ insistence on

the importance of investing enough resources in building a supply chain demonstrates the role

of effort in succeeding or failing to create an inter-firm match.

In terms of exogenous movements in fundamentals, households are subject to discount factor

shocks, and firms experience productivity shocks. Since households own the firms in the economy,

the discount factor shocks also affect how firms discount the future.

Thus, in our model, the return from establishing a joint venture between firms depends on

fundamentals and on the search effort of potential partners. The latter dependence generates a

region of state variable values where there is a unique passive static equilibrium (where firms

search for partners in the current period with zero effort), a region where there is a unique active

static equilibrium (where firms search for partners in the current period with positive effort),

and a region where both static equilibria exist. In this case, we will assume that the economy

stays in the same static equilibrium as in the previous period: if yesterday firms did not search,

today firms still do not search; if yesterday firms searched with positive effort, today firms still

search. History dependence is both an intuitive and transparent equilibria selection device and

a well-documented predictor of empirical behavior in coordination games similar to ours (see

the classic findings in Van Huyck et al., 1990, 1991).
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Since in the active static equilibrium, firms post more vacancies, output is higher, and

unemployment lower than in the passive static equilibrium, shocks to the discount factor induce

large aggregate fluctuations by switching the economy between the regions of uniqueness and

the multiplicity of static equilibria. Furthermore, once the economy is at one static equilibrium,

it remains there until a sufficiently large discount factor shock, such as those triggered by

a financial crisis or a pandemic, terminates the equilibrium. In the meantime, even if the

alternative static equilibrium reappears, the economy is stuck in the previous static equilibrium.

Hence, search complementarities can transform transitory negative shocks into protracted

slumps. This phenomenon might explain the aftermath of the Great Recession in the U.S.,

where output remained below trend and employment-to-population ratios were depressed for a

decade. Through the lenses of our model, the economy moved in 2008 to a static equilibrium

with less search, and it did not abandon it even after the original adverse shocks evaporated.

If the model starts from the active equilibrium deterministic steady state, a one-period

adverse shock to the discount factor of 12% moves the system to the passive static equilibrium,

increasing the unemployment rate by 3.2% and reducing output by roughly 15%. The drop in

output is in the ballpark of the one observed for the U.S. in the Great Recession measured as a

deviation with respect to trend (which we ignore in our model to ease notation).1 Justiniano

and Primiceri (2008) estimate a standard deviation of the discount factor equal to 5% in the

U.S. post-war period. A reduction of 12% in the discount factor is around a two-and-a-half

standard deviation fall in the discount factor, a low probability but not a rare event. Smaller

shocks to the discount factor fail to move the system away from the original static equilibrium,

and the properties of the system are similar to those of conventional business cycle models. By

comparison, the observed U.S. standard deviation of productivity shocks is too small to generate

productivity realizations that move the economy from one static equilibrium to the other.

The model matches U.S. business cycle statistics, in particular along two key dimensions.

First, the economy generates a strong internal propagation of shocks. The autocorrelation of the

variables is larger and closer to the observed data than in standard models without the need to

assume highly persistent exogenous shocks. In our model, instead, persistence comes from history

dependence. Second, our economy generates endogenous movements in labor productivity and

1Between 2007.Q4 and 2014.Q4, output per capita fell 12.4% in the U.S. with respect to its post-war trend.
In comparison, unemployment increased, at its peak, from 4.4% to 10.0%, around 50% more than in our model.
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more realistic volatility of unemployment than alternative business cycle models.

Even more interestingly, our model creates strong non-linearities and bimodal ergodic

distributions of endogenous variables such as output. As Adrian et al. (2019) have documented,

output is highly non-linear and the non-linearity is strongly linked to financial conditions (a

natural interpretation of our discount factor shock). Second, again as in our model, we show

that the pattern of output bimodularity is significant only in periods of high volatility. Most

business cycle models fail at accounting for these features of the data.

All our results come without adding expectational shocks to the model as in Kaplan and

Menzio (2016). While we could include those, we prefer not to do so to focus more sharply on the

interaction between shocks to fundamentals and search complementarities. For the same reason,

we will postpone for future research the study of non-Markov strategies by firms, alternative

static equilibrium selection devices, and limit cycles.

The data support the two central mechanisms in our model: search complementarities and

shocks to the discount factor. To document the existence of search complementarities, we use

the Occupational Employment Statistics (OES) database constructed by the BLS. We show how

increases in search effort by suppliers (measured as the number of workers involved in advertising,

marketing, sales, demonstration, and promotion) correlate strongly with increases in the search

effort of industry buyers (measured as the number of workers involved in ordering, buying,

purchasing, and procurement). Shocks to the discount factor —proxied by a broad range of

indexes— are tightly correlated with the volume of intermediate input, output, unemployment,

and partnership creation. Indeed, observed fluctuations in intermediate inputs account for 71%

of fluctuations in total industry gross output.

We also explore how the volatility of shocks shapes fluctuations under search complemen-

tarities. A fall in macroeconomic volatility, such as the Great Moderation, leads to increased

persistence in labor market downturns (see Liu et al., 2019, for evidence that the Great Modera-

tion continued until the current health crisis). Since large shocks are unlikely when volatility

is low, once the economy is pushed into the passive static equilibrium due to a rare negative

shock, it takes a long time before a new large rare positive shock allows the economy to abandon

the passive static equilibrium. Under the Great Moderation, recessions are rarer, but their

consequences more severe. Thus, our model suggests that the long-lasting weak recovery from

the financial crisis is a direct consequence of the Great Moderation, albeit an unwelcome one.
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Finally, we investigate the role of fiscal policy in our model. In our example above, a CFRP

producer can supply an airplane manufacturer or provide materials for the construction of a new,

seismic-resistant public school in California. If the government increases its expenses (modeled

as a rise in government-owned firms such as a new public school), the search incentives for

private firms increase, and the economy can switch from a passive static equilibrium to an active

one. Thus, the fiscal multipliers can be as high as 3.5 when the fiscal stimulus is of just the

right size to move the economy from the passive to the active static equilibrium. Thus, our

model supports large fiscal packages after particularly large shocks. On the other hand, if search

effort is already high (or the fiscal expansion too small in a passive static equilibrium), the fiscal

multiplier will be as low as 0.15.

There is a long tradition in economics of linking strategic complementarities to aggregate

fluctuations, going back to Diamond (1982), Weitzman (1982), Howitt (1985), and Diamond and

Fudenberg (1989) and explored by Cooper and John (1988), Chatterjee et al. (1993), Huo and

Ŕıos-Rull (2013), and Kaplan and Menzio (2016). Recent papers with strategic complementarities,

but with mechanisms different from ours, include Taschereau-Dumouchel and Schaal (2015) (with

complementarities in production capacity), Sterk (2016) (with complementarities created by the

lost skills of unemployed workers), and Eeckhout and Lindenlaub (2018) (with complementarities

between on-the-job search and vacancy posting by firms).

How does our paper add to this tradition? First, we analyze how strategic complementarities

interact with shocks to fundamentals in an otherwise standard quantitative business cycle

model. Our model, while preserving parsimony, improves upon the empirical performance of

conventional business cycle models. Thus, our experiments regarding, for example, fiscal policy

provide quantitative guidance for policymakers. Second, by highlighting complementarities in

search effort and providing empirical evidence for it, we dispense with increasing returns to scale

on production or trading. Third, we postulate an empirically plausible mechanism for static

equilibrium switches through variations in the discount factor of the household. Fourth, we show

the effects of changes to the exogenous volatility of shocks on our economy, with consequences for

the length of static equilibria spells and their switches. Fifth, we go beyond recent models that

have highlighted the role of search intensity or vacancy posting (Kehoe et al., 2019, and Leduc

and Liu, 2020) in that we generate the sharp non-linear responses and bimodal distribution of

output reported by Adrian et al. (2019).
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2 A simple model with search complementarities

To build intuition, we present a simple model with search complementarities. This environment

embodies the mechanisms at work in our fully-fledged model with greater transparency, but at

the cost of quantitative implications that are not designed to account for the data.

2.1 Environment

We start with a deterministic version of the model. The economy is composed of a continuum

of islands of unit measure where time is discrete and infinite. Two risk-neutral firms populate

each island. Both firms are owned by a representative household, whose only task is to consume

the aggregate net profits of all firms in the economy. At the start of the period, firms are in

two separate locations within the island, and they must meet to engage in production. If they

do not meet, each firm produces zero output. If they do meet, they jointly produce 2 units of

output that they split into equal parts. At the end of the period, the match is dissolved, and

each firm moves to a new, separate location to search in the next period ex novo. Since we will

analyze symmetric equilibria where all firms exert the same search effort, we drop the island

index. Although realizations of meetings will differ among islands, a law of large numbers will

hold in the aggregate economy and individual matching probabilities will equal the aggregate

share of islands where matches occur. Similarly, since there are no payoff-relevant state variables

carrying information across periods and given our focus on static Nash equilibria for each period,

we do not need to specify a discount factor. Thus, for the moment, we drop the time index of

each variable.

The probability of meeting is given by a matching function that depends on the search effort

of each firm within the island. Specifically, for a search effort σ1 ∈ [0, 1] of firm 1 and a search

effort σ2 ∈ [0, 1] of firm 2, the matching probability function is:

π (σ1, σ2) =
1 + σ1 + σ2 + σ1σ2

4
. (1)

This function yields a matching probability of 1/4 when σ1 = σ2 = 0, a probability of 1 when

σ1 = σ2 = 1, and probabilities between 1/4 and 1 in the intermediate cases of search effort.

For an α ∈ [0, 1), the cost of search effort for firm i ∈ {1, 2} is c (σi) = 1+α
4
σi +

σ3
i

3
.
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2.2 Nash equilibria

To find the set of Nash equilibria in our model, we look at the problem of firm 1 when it takes

the search effort of firm 2, σ2, as given. The expected profit function of firm 1 is:

J (σ1, σ2) =
1 + σ1 + σ2 + σ1σ2

4
− 1 + α

4
σ1 −

σ3
1

3
.

Maximizing J (σ1, σ2) with respect to σ1 and noticing that the optimal solution is, for some

values of σ2, at a corner of zero optimal search effort, we get the best response function Π (σ2)

for firm 1:

σ∗1 =

 0 ifσ2 ≤ α

1
2

√
σ2 − α ifσ2 > α.

(2)

Analogously, the best response function Π (σ1) for firm 2 is:

σ∗2 =

 0 ifσ1 ≤ α

1
2

√
σ1 − α ifσ1 > α.

(3)

These best response functions explain why we assumed that α ∈ [0, 1). Values of α < 0

imply that there is a unique static Nash equilibrium and that such an equilibrium has positive

search effort. Values of α ≥ 1 also yield a unique static Nash equilibrium, but with zero search

effort. Only for α ∈ [0, 1) can we have multiple static Nash equilibria.

A tuple {σ∗1, σ∗2} is a static pure Nash equilibrium if it is a fixed point of the product of

the best response functions (2) and (3) (Footnote 5 explains why we ignore mixed-strategies

equilibria; also from here on, we will omit “static” when no ambiguity occurs). Clearly, for all

α ∈ [0, 1), {σ∗1, σ∗2}= {0, 0} is a Nash equilibrium. We call this case a passive equilibrium, where

the matching probability is 1/4, aggregate output y is 1/2, and consumption c is 1/2.

Depending on the value of α, we might have one or two more equilibria in pure strategies with

a positive search effort of σ∗ = σ∗1 = σ∗2 > 0. The matching probability is now given by 1+2σ∗+(σ∗)2

4
,

gross aggregate output y by 1+2σ∗+(σ∗)2

2
, and consumption c by 1+2σ∗+(σ∗)2

2
− 1+α

2
σ∗ − 2

3
(σ∗)3.

To derive c, we subtracted the search costs of both firms from output. We call equilibria with

positive search effort active.

Figure 1 draws three cases: α = 0.05 (panel on the left), α = 0.063 (central panel), and
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Figure 1: Three cases of cost parameter α

0 0.05 0.1 0.15 0.2 0.25

1

0

0.05

0.1

0.15

0.2

0.25

0.3

2

 = 0.05

Best response firm 2
Best response firm 1

0 0.05 0.1 0.15 0.2 0.25

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2

 = 0.063

Best response firm 2
Best response firm 1

0 0.05 0.1 0.15 0.2 0.25

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2

 = 0.07

Best response firm 2
Best response firm 1

α = 0.07 (panel on the right). The dashed line plots the best response function of firm 1,

the solid line the best response function of firm 2, and the red circles each Nash equilibrium.

When α = 0.05, there are three Nash equilibria in pure strategies: σ∗ = σ∗1 = σ∗2 = 0,

σ∗ = σ∗1 = σ∗2 = 0.069, and σ∗ = σ∗1 = σ∗2 = 0.181. These equilibria are Pareto-ranked:

consumption (a welfare measure in our environment) is 0.5 in the first equilibrium, 0.535 in the

second equilibrium, and 0.598 in the third equilibrium. When α = 0.063, there are two Nash

equilibria in pure strategies: σ∗ = σ∗1 = σ∗2 = 0, and σ∗ = σ∗1 = σ∗2 = 0.126. Again, the equilibria

are Pareto-ranked, with consumption in the active equilibrium equal to 0.565. When α = 0.07,

the only Nash equilibrium in pure strategies is passive, σ∗ = σ∗1 = σ∗2 = 0.

2.3 Stochastic shocks

To generate additional results beyond the multiplicity of equilibria, we introduce stochastic

shocks in the production function of matched firms. Instead of jointly producing 2 units of

output, as in the baseline case, we now assume that firms produce 2zt, where zt is a productivity

shock in period t (we must start indexing variables by t, but because of symmetry, there is no

need to index them by the island). Productivity shocks will induce movements in the economy

along one Nash equilibrium and, sometimes, changes among the Nash equilibria firms play.

The new expected profit function of firm 1 is:

J (σ1,t, σ2,t, zt) = zt
1 + σ1,t + σ2,t + σ1,tσ2,t

4
− 1 + α

4
σ1,t −

σ3
1,t

3
.
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Following the same reasoning as in the deterministic case, the best response function Π (σ2,t, zt)

for firm 1 is:

σ∗1,t =

 0 if zt (1 + σ2,t) ≤ (1 + α)

1
2

√
zt (1 + σ2,t)− (1 + α) if zt (1 + σ2,t) > (1 + α) ,

(4)

and the best response function Π (σ1,t, zt) for firm 2 is:

σ∗2,t =

 0 if zt (1 + σ1,t) ≤ (1 + α)

1
2

√
zt (1 + σ1,t)− (1 + α) if zt (1 + σ1,t) > (1 + α) .

(5)

When zt = 1, equations (4) and (5) collapse to equations (2) and (3).

A tuple {σ∗1, σ∗2} is a static pure Nash equilibrium if it is a fixed point of the product of the

best response functions (4) and (5). As before, we can have one, two, or three Nash equilibria

with matching probability given by
1+2σ∗t+(σ∗t )2

4
, gross aggregate output yt by zt

1+2σ∗t+(σ∗t )2

2
, and

consumption ct by zt
1+2σ∗t+(σ∗t )2

2
− 1+α

2
σ∗t − 2

3
(σ∗t )

3.

To illustrate the behavior of our economy, we fix α = 0.063 and assume that zt follows a

Markov chain with support {0.93, 1, 1.07}. Since the values of the transition matrix for this

chain will not matter for the next few paragraphs, we momentarily defer its specification. We

pick the average value of zt to be 1 to make the stochastic model coincide, for that realization,

with the deterministic environment. The value of α = 0.063 ensures that, when zt = 1, there is

only one active Nash equilibrium. We pick the high realization of zt to be 1.07 to get zt > 1 + α.

When this condition holds, zero search effort is not a Nash equilibrium. We pick a low realization

of 0.93 for symmetry.

Figure 2 plots the best response functions under each realization of productivity. The left

panel shows in solid lines the best responses for zt = 1 (with crosses for the best response of firm

2). These are the same as those drawn in the central panel of Figure 1 and show two fixed points:

one with σ∗t = σ∗1,t = σ∗2,t = 0, and one with σ∗t = σ∗1,t = σ∗2,t = 0.126. Consumption in the first

equilibrium is 0.5 and 0.565 in the second equilibrium, even if productivity remains the same.

The dashed lines in the same panel are the best responses when zt = 1.07 (with crosses for the

best response of firm 2). Now we have a unique Nash equilibrium at σ∗t = σ∗1,t = σ∗2,t = 0.274 (the
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Figure 2: Changing productivity zt
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green circle), with consumption at 0.709. The right panel plots in solid lines the best responses

for zt = 1, with the same explanation as above. The dashed lines now draw the best responses

for zt = 0.93, with a unique Nash equilibrium at σ∗t = σ∗1,t = σ∗2,t = 0 and consumption at 0.465.

Figure 2 illustrates how consumption usually moves more than productivity. For example,

consumption increases 27% when the economy starts at the passive equilibrium and zt moves

from 1.0 to 1.07. This amplification mechanism comes from search complementarities: when

firm 1 searches more because productivity is higher, firm 2 increases its search effort in response

to the higher search effort of firm 1 (and vice versa).

Indeed, the multiplier |∆ct/ct
∆zt/zt

| of consumption to a productivity shock is state-dependent:

the same productivity shock leads to different changes in consumption depending on the state of

the economy. Table 1 reports the multiplier in six relevant cases (and where subindexes denote

the productivity level and type of equilibria). The multiplier ranges from as low as 1 –when

the economy moves from low productivity to mean productivity, as search effort is zero in both

cases– to nearly 6 –when the economy moves from mean productivity and zero search effort to

high productivity.

Our last task is to specify a transition matrix Π for productivity shocks. We select a standard

business cycle parameterization with symmetry and medium persistence:

Π =


0.90 0.08 0.02

0.05 0.90 0.05

0.02 0.08 0.90

 .
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Table 1: Multiplier

Productivity shock |∆ct/ct
∆zt/zt

|

zlow → zmean,passive 1
zlow → zhigh 3.485

zmean,passive → zhigh 5.969
zmean,active → zhigh 3.627

zhigh → zlow 4.009
zhigh → zmean,active 3.095

When zt is high or low, the Nash equilibrium is unique. When zt = 1, there are two Nash

equilibria, and we select between them through history dependence following Cooper (1994).

More concretely, if the economy was in a passive equilibrium in the previous period, we stay

in such an equilibrium today. Conversely, if the economy was in an active equilibrium in the

previous period, firms continue searching with positive effort today.

Our equilibrium selection has two implications. First, the effects of a productivity shock

persist longer than the shock. In particular, the economy cannot move directly from zlow to

zmean,active or from zhigh to zmean,passive (this explains why Table 1 does not report these cases).

Instead, to switch equilibria, the economy must transition through an intermediate stage of high

productivity (when we start from zt = 0.93) or low productivity (when we start from zt = 1.07).

Second, we do not generate fluctuations through sunspots. Changes among Nash equilibria in

our economy always derive from the movement in fundamentals.

Figure 3: Simulation of aggregate consumption

0 200 400 600 800 1000
Time

0.5

0.6

0.7

A
gg

re
ga

te
 c

on
su

m
pt

io
n

Figure 3 displays a typical realization of consumption for 1,000 periods. Consumption takes

four different values: 0.465 (zt = 0.93), 0.5 (zt = 1.0, passive equilibrium), 0.565 (zt = 1.0, active
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equilibrium), and 0.709 (zt = 1.07). Given Π, the stationary distribution of productivity is

(0.278, 0.444, 0.278). Since our simulations start from zt = 1.0 (and an active equilibrium), we

have a slightly higher level of mean realizations of productivity, with a count of (233, 490, 277).

Consumption is 0.465 in 233 periods and 0.552 in 277 periods. More interesting is the breakdown

of the 490 periods when zt = 1.0: 180 happen in a passive equilibrium and 310 in an active

equilibrium. Asymptotically, due to the symmetry of Π, the realizations of zmean will split evenly

between both levels of consumption.

The simple model has illustrated four points. First, search complementarities create multiple

Nash equilibria. Second, the interaction of search complementarities with stochastic shocks

amplifies the impact of the latter. Third, the multiplier of consumption to a productivity shock

is a highly non-linear function of the state of the economy and the size of the shock. Fourth,

history dependence enhances the persistence of aggregate variables to shocks. Next, we show how

these four key points appear in a quantitative business cycle model with search complementaries.

3 A model with search complementarities

We work with a search and matching model where time is discrete and infinite. The economy is

composed of households, firms in the intermediate-goods production sector (I), and firms in the

final-goods production sector (F ).

3.1 Households

There is a continuum of households of size 1. Households are risk neutral and discount the

future by βξt per period. This term is the product of a constant β < 1 and a discount factor

shock ξt. Innovations to ξt may encapsulate demographic shifts, movements in financial frictions,

or fluctuations in risk tolerance that we abstract from. Cochrane (2011) and Hall (2016, 2017)

provide evidence for the importance of those shocks as a central source of aggregate fluctuations.

Since households own the firms, firms also employ βξt to discount future profits.

Households can either work one unit of time per period for a wage w or be unemployed and

receive h utils of home production and leisure. Households do not have preferences for working

–or searching for a job– in either sector i ∈ {I, F} and receive the aggregate firms’ profits.
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3.2 Labor matching

At the beginning of each period t, any willing new firm can post a vacancy in either sector at the

cost of χ per period to hire job-seeking households. Each firm posts a vacancy for one worker.

Vacancies and job seekers meet in a DMP frictional labor market.

Given ui,t unemployed households and vi,t posted vacancies in sector i, a constant-returns-

to-scale matching technology m(ui,t, vi,t) determines the number of hires and vacancies filled

in period t. The new hires start working in period t+ 1. The job-finding rate for unemployed

households, µi,t = m(ui,t, vi,t)/ui,t = µ(θi,t), and the probability of filling a vacancy, qi,t =

m(ui,t, vi,t)/vi,t = q(θi,t), are functions of each sector’s labor market tightness ratio θi,t = vi,t/ui,t.

Then, µ′(θi,t) > 0 and q′(θi,t) < 0: in a tighter labor market, unemployed households are more

likely to find a job, and firms are less likely to fill vacancies.

At the end of each period t, already existing jobs terminate at a rate δ and unfilled vacancies

expire. We assume that 50% of the newly unemployed workers are assigned to search in each

sector. To simplify, once an unemployed worker is assigned to search in one sector, she is not

allowed to move to search in another sector (given the symmetry of our model across sectors

and our calibration below, workers do not mind this restriction). Appealing to a law of large

numbers, unemployment is set by changes in job creation that depend on θi,t:

ut+1 = ut − [µI (θI,t)uI,t + µF (θF,t)uF,t]︸ ︷︷ ︸
Job creation

+ δ (1− ut)︸ ︷︷ ︸
Job destruction

(6)

where ut = uI,t + uF,t.

Note that our DMP block is standard. More concretely, we do not include search comple-

mentarities on it. The only role of the DMP block is to provide us with a natural framework to

discuss unemployment and vacancies without unduly complicating the rest of the model.

3.3 Inter-firm matching

Once job vacancies are filled, a final-goods firm must form a joint venture with an intermediate-

goods firm to manufacture together, starting in t+ 1, the final good sold to households. The

final good is also the numeraire in the economy. If a firm fails to form a joint venture in period

t, it produces no output and continues searching for a partner in t+ 1. This stylized matching

14



problem summarizes more sophisticated inter-firm network structures such as those in Jones

(2013) and Acemoglu et al. (2012) and that we motivated in the introduction.

A technology with variable search effort governs inter-firm matching. Search effort is costly,

but it reduces the expected duration of remaining unable to produce. At the end of each period,

a constant fraction of already existing joint ventures are destroyed because either the job is

destroyed with probability δ, or the joint venture fails at a rate δ̃.2 In the former case, the firms

dissolve. In the latter case, the firms revert to their status as single firms, but the jobs survive.

Figure 4: Timeline of firms’ evolution
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The actions of these firms, summarized in Figure 4, require more explanation. In a joint

venture, the intermediate-goods firm uses its worker to produce yI,t = zt, where zt is the

stochastic productivity in the intermediate-goods sector. The final-goods firm takes this yI,t

and, employing its worker, transforms it one-to-one into the final good, yF,t = yI,t = zt.

Extending the search effort model in Burdett and Mortensen (1980), we assume that the

number of inter-firm matches is M (ñF,t, ñI,t, ηF,t, ηI,t) = (φ+ ηF,tηI,t)H (ñF,t, ñI,t), where ñF,t

is the number of single firms in sector F with search effort, ηF,t; ñI,t and ηI,t are the analogous

variables for the I sector. The parameter φ > 0 represents the efficiency in matching unrelated

to search effort and it will help us to replicate the average inter-firm matching probabilities in

2To simplify the algebra, we assume that, in a joint venture, the jobs in the intermediate-goods firm and the
final-goods firm terminate simultaneously with probability δ or survive simultaneously with probability 1− δ. In
single firms, the job destruction rate is also δ. Also, we assume that δ + δ̃ < 1, and that the separation of job
matches and joint ventures is a mutually exclusive event.
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the data. The function H (·) has constant returns to scale and it is strictly increasing in both

search efforts. We set up its units by choosing H (1, 1) = 1. Variable search effort generates

strategic complementarities in the sense of Bulow et al. (1985) since the degree of optimal search

effort by one firm will be (weakly) increasing in the number of firms searching in the opposite

sector and their search effort.

Given the inter-firm market tightness ratio ñF/ñI , the probability that a sector I firm will

form a joint venture with a sector F firm is:

πI =
M (ñF , ñI , ηF , ηI)

ñI
= (φ+ ηFηI)H

(
ñF,t
ñI,t

, 1

)
, (7)

and the probability that a sector F firm will form a joint venture with a sector I firm is:

πF =
M (ñF , ñI , ηF , ηI)

ñF
= (φ+ ηFηI)H

(
1,
ñI,t
ñF,t

)
. (8)

Search effort in sector i, ηi,t = ψ + σ̃0.5
i,t , has a fixed component, ψ > 0, and a variable

component, σ̃i,t ≥ 0. The fixed component ψ bounds the marginal return to searching from

below when prospective partners search with zero effort. Each firm optimally chooses σ̃i,t ≥ 0 to

trade off search cost and the profits from matching success.

We will focus on symmetric equilibria where ñF,t = ñI,t and σ̃F,t = σ̃I,t is the same across all

firms. Thus, the inter-firm matching probability is:

πF,t = πI,t = φ+ ηF,tηI,t = φ+
(
ψ + σ̃0.5

F,t

) (
ψ + σ̃0.5

I,t

)
. (9)

If we had ψ = 0, πF,t = πI,t = φ + σ̃0.5
F,tσ̃

0.5
I,t , and we could have placed the power 0.5 in

equations (7) and (8) and written φ + η0.5
F η0.5

I instead, placing the power on the σ̃i,t’s. The

case ψ = 0 delivers constant returns to scale in the search efforts, always a natural benchmark.

However, our parameterization with two separate constants is more convenient. In equation

(9), ψ determines the impact for the matching probability of the variable search effort in the

opposite sector, while φ does not. This will give us, in our calibration in Section 5, identification

for πF,t and πI,t and further flexibility matching the data.3

3With ψ > 0, equation (9) has decreasing returns to scale on σ̃F,t and σ̃I,t. Nonetheless, σ̃0.5
F,tσ̃

0.5
I,t , the most

relevant term for the quantitative analysis, is homogeneous of degree 1. Since we are looking for a microfoundation
to the increasing returns to scale assumption in Diamond (1982) through the endogenous choice of search effort,
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The cost of σ̃i,t is:

c (σ̃i,t) = c0σ̃
0.5
i,t + c1

σ̃
(1+ν)/2
i,t

1 + ν
, (10)

where c0 > 0 creates a quadratic cost tranche and c1 > 0, where ν > 1, a convex cost tranche.

To simplify the algebra, we define σi,t = σ̃0.5
i,t . Then, equations (10)-(9) become:

c (σi,t) = c0σi,t + c1

σ1+ν
i,t

1 + ν
, (11)

and

πF,t = πI,t = φ+ (ψ + σF,t) (ψ + σI,t) . (12)

The first term in equation (11) implies that the net gain from searching can be negative, in

which case the firm chooses σi = 0. If c0 = 0, the benefit from an additional unit of search

effort is always positive, and the firm chooses σi > 0 in all states. Instead, c0 > 0 generates the

non-convexity that triggers, as we will see, multiple equilibria.4

The number of joint ventures in period t+ 1 comprises firms that survive job separation and

joint venture destruction plus newly formed joint ventures:

nt+1 = (1− δ − δ̃)nt + (φ+ (ψ + σF,t) (ψ + σI,t))ñI,t. (13)

The number of single firms in sector i in period t+ 1 includes firms that survive job separation

((1− δ) ñi,t), newly created single firms whose vacancies are filled by job-seekers (µi (θi,t) · ui,t),

and firms whose joint ventures exogenously terminate (δ̃ni,t), net of the number of single firms

that form joint ventures (πi,tñi,t):

ñi,t+1 = (1− δ) ñi,t + µi (θi,t)ui,t + δ̃ni,t − πi,tñi,t. (14)

We will prove below that search complementarities beget multiple static equilibria. As in

Section 2, one of these equilibria is passive, with σI,t = σF,t = 0, low production, and high

homogeneity of degree 1 is, indeed, a natural benchmark.
4The cost function in Section 2 follows equation (10) when c0 = 1+α

4 , c1 = 1, and ν = 2. The matching
probability (1) is nearly the same as the one in equation (9) when φ = 3

16 and ψ = 1
4 , except for a term 1

4 missing
in front of σI,tσF,t, which we introduced to ensure that the matching probability was always between (0, 1). Also,
in the simple model, we have a strategic complementarity between two firms in each island; in the complete
model, the strategic complementarity is among a continuum of firms.
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unemployment. The other equilibria are active, with (σI,t, σF,t) > 0, high production, and low

unemployment. Also, as in Section 2, the selection of static equilibria is history-dependent.

Sufficiently large shocks to productivity or the discount factor induce firms to adjust search

effort, and the economy shifts from one equilibrium to the other. Otherwise, the economy stays

in the same equilibrium as in the previous period.

An indicator function, ιt, with value 0 if the static equilibrium is passive and 1 if active,

keeps track of those equilibria. This indicator function is taken as given by all agents.5

3.4 Values of households and firms

We can now define the Bellman equations that determine the value, for each sector i, of an

unemployed household (Ui,t), of an employed household in a single firm (W̃i,t) and in a joint

venture (Wi,t), of a filled job in a single firm (J̃i,t) and in a joint venture (Ji,t), and of a vacant job

(Vi,t). We index all of these value functions by ιt since they depend on the type of equilibrium

at t, which affects the future path of the equilibrium and the match value.

The value of an unemployed household in sector i and equilibrium ι is:

Ui,t|ιt = h+ βξtEt
[
µi,tW̃i,t+1 + (1− µi,t)Ui,t+1 | ιt

]
. (15)

In the current period, the unemployed household receives a payment h. The household finds a

job with probability µi,t and circulates into employment during the next period, or it fails to

find employment with probability 1− µi,t and remains unemployed. To save space, we ignore

the state variables when presenting the equations, but they are described in Appendix E.

The value of a household with a job in a single firm in sector i is:

W̃i,t|ιt = w̃i,t + βξtEt
{

(1− δ)
[
πi,tWi,t+1 + (1− πi,t) W̃i,t+1

]
+ δUi,t+1 | ιt

}
. (16)

The first term on the right-hand side (RHS) is the period wage w̃i,t (to be determined below by

Nash bargaining). In period t+ 1, the match that survives job destruction may either form a

5There might exist mixed-strategy Nash equilibria in which firms search with positive variable effort with
a certain probability. We ignore those equilibria because Appendix F shows the mixed-strategy is not robust:
when one sector changes the probability slightly due to a trembling-hand perturbation, the opposite sector would
immediately set the probability to either zero or one. We will leave non-Markov strategies, limit cycles, and
alternative equilibria selection devices for future investigation.
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joint venture with a firm in the opposite sector with probability πi,t, gaining the value Wi,t+1, or

otherwise remain a single firm with probability 1− πi,t, with value W̃i,t+1. With probability δ,

the job is destroyed, and the household transitions into unemployment.

The value of a household with a job in a joint venture in each sector i is:

Wi,t|ιt = wi,t + βξtEt
[
(1− δ − δ̃)Wi,t+1 + δ̃W̃i,t+1 + δUi,t+1 | ιt

]
. (17)

A worker in a joint venture receives the wage wi,t. In period t+1, the worker becomes unemployed

with probability δ, gaining the value Ui,t+1. With probability δ̃, the joint venture is terminated,

and the value becomes W̃i,t+1. Otherwise, the match continues, gaining the value Wi,t+1.

The value of a single firm in sector i is:

J̃i,t|ιt = max
σi,t≥0

{
−w̃i,t − c (σi,t) + β (1− δ) ξtEt

[
πi,tJi,t+1 + (1− πi,t) J̃i,t+1 | ιt

]}
. (18)

Equation (18) tells us that single firms have zero revenues until they form a joint venture with a

firm in the opposite sector. Despite zero production, the firm pays the wage (w̃i,t) and incurs

search costs c (σi,t), as described in equation (11). In period t+ 1, conditional on surviving job

destruction with probability 1− δ, the firm forms a joint venture with probability πi,t given by

equation (12), gaining the flow value Ji,t+1. Otherwise, the firm remains single with flow value

J̃i,t+1. If the job is destroyed, the firm exits the market with zero value.

The value of a joint venture for a sector I firm is:

JI,t|ιt = ztpt − wI,t + βξtEt
[
(1− δ − δ̃)JI,t+1 + δ̃J̃I,t+1 | ιt

]
. (19)

This profit comprises revenues ztpt from selling intermediate goods to the final-goods firm, net

of the wage wI,t. Both pt and wI,t are determined by Nash bargaining. In period t + 1, with

probability δ̃, the firm is separated from its partner and becomes a single firm, gaining a value

of J̃I,t+1; with probability δ, the job match is destroyed, and the firm exits the market with zero

value. Otherwise the joint venture continues with flow value Ji,t+1.

The value of a joint venture for a sector F firm is:

JF,t|ιt = zt(1− pt)− wF,t + βξtEt
[
(1− δ − δ̃)JF,t+1 + δ̃J̃F,t+1 | ιt

]
. (20)
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The profit for the joint venture in the final-goods sector comprises revenues from selling zt units

of final goods at price 1, net of the costs of purchasing intermediate goods (ztpt) and paying the

wage (wF,t). The rest of the equation follows the same interpretation as equation (19).

The value of a vacant job in sector i is:

Vi,t|ιt = −χ+ βξtEt
[
q (θi,t) J̃i,t+1 + (1− q (θi,t)) max (0, VI,t+1, VF,t+1) | ιt

]
. (21)

Equation (21) shows that the value of a vacant job comprises the fixed cost of posting a vacancy

χ in period t. With probability q
(
θi,t|ιt

)
, the vacancy is filled, and a single firm with flow value

J̃i,t+1 is created. Otherwise, the vacancy remains open, generating the flow value of Vi,t+1. The

last term in the equation shows that firms that fail to recruit a worker may choose to be inactive

or post a vacancy in either sector in the next period t+ 1.

By free-entry, we have Vi,t = 0 and the condition that pins down labor market tightness:

χ = βξtEt
[
q (θi,t) J̃i,t+1 | ιt

]
. (22)

3.5 Wages and prices

We can now define the Nash bargaining rules that determine wages and prices. During each

period t, wages are pinned down by Nash bargaining between firms in joint ventures and workers:

max
wi,t

(Wi,t − Ui,t)1−τJτi,t (23)

and between single firms and workers:

max
w̃i,t

(W̃i,t − Ui,t)1−τ J̃τi,t, (24)

where the parameter τ ∈ [0, 1] is the firm’s bargaining power.

The price for goods manufactured in the intermediate-goods sector is determined by Nash

bargaining between the final-goods producer and the intermediate-goods producer within the

joint venture:

max
pt

(JF,t − J̃F,t)1−τ̃ (JI,t − J̃I,t)τ̃ , (25)

20



where the parameter τ̃ ∈ [0, 1] is the intermediate-goods producer’s bargaining power.

3.6 Stochastic processes and aggregate resource constraint

The discount factor shock, ξt, has a log-normal i.i.d. distribution, log (ξt) ∼ N
(
0, σ2

ξ

)
. This

shock is not persistent over time. In this way, we can show that the propagation mechanism

created by ξt is, in its entirety, a combination of endogenous forces and history dependence

(although introducing persistence in the shock would be straightforward). Productivity follows

log (zt+1) = ρz log (zt) + σzεz,t+1, where ρz ≤ 1.

The total resources of the economy, equal to ztnt (i.e., production per joint venture times

the number of existing joint ventures; h is in util terms and, thus, fails to appear here), are used

for aggregate consumption by households, ct, and to pay for vacancies and inter-firm search:

ct +
∑
i=I,F

χvi,t +
∑
i=I,F

ñi,t

(
c0σi,t + c1

σ1+ν
i,t

1 + ν

)
= ztnt. (26)

4 Characterizing the equilibrium

The equilibrium definition for our model is standard and we include it in Appendix A. We can

use this definition to characterize the optimal search strategy of firms and show the existence of

multiple static equilibria.

4.1 Optimal search effort

Following condition 3 above, the optimal σi,t maximizes the value of the single firm, J̃i,t. We

can express this value function as a response function to σj,t given an equilibrium ιt:

Πi (σi,t | σj,t, ιt) = −w̃i,t − c (σi,t) + βξt (1− δ)Et
[
πi,t(Ji,t+1 − J̃i,t+1) + J̃i,t+1 | ιt

]
. (27)

A single firm i chooses σi,t to maximize Πi (σi,t | σj,t, ιt). The interior solution σi,t > 0 satisfies:

c0 + c1σ
ν
i,t = β̃ (ψ + σj,t)︸ ︷︷ ︸

Search effort in sector j

ξt︸︷︷︸
discount factor shock

Et
(
Ji,t+1 − J̃i,t+1 | ιt

)
︸ ︷︷ ︸

Expected capital gain

(28)
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where β̃ = β (1− δ) /τ (the wage Nash bargaining implies that the firm bears τ fraction of

the search cost). The left-hand side (LHS) of equation (28) is the marginal cost of exerting

σi,t to build a joint venture in sector i, while the RHS is the expected benefit of searching

for a partner, which increases with σj,t, and the expected capital gain from entering into a

joint venture, Et(Ji,t+1 − J̃i,t+1 | ιt) times ξt. The expected capital gains depend positively on

zt. Hence, condition (27) shows how higher ξt or zt (fundamentals) and higher σi,t (search

complementarities) lead to higher σi,t.

Because the optimization problem is non-convex, we also have a corner solution σi,t = 0,

either because the firms in the other sector search too little or because the discounted expected

gains from matching are too small. The next proposition summarizes this argument.

Proposition 1. The optimal σi,t is equal to:

σi,t =


[
β̃(ψ+σj,t)ξtEt(Ji,t+1−J̃i,t+1|ιt)−c0

c1

] 1
ν

if β̃ (ψ + σj,t) ξtEt
(
Ji,t+1 − J̃i,t+1 | ιt

)
> c0

0 otherwise.

(29)

Proposition 1 establishes why search complementarities beget a multiplicity of equilibria

(this proposition follows directly from equation (28); the proofs of the other propositions and

lemmas in this subsection appear in Appendix D). Sufficiently large shocks to either ξt or zt

move the system between interior and corner solutions, generating alternate business cycle

phases with robust search effort, a large number of joint ventures, and low unemployment with

phases marked by no search effort, few joint ventures, and high unemployment. The parameter

c0 determines whether σi,t > 0 while c1 controls the marginal cost of search.

4.2 The deterministic steady states of the model

We study now the existence and stability properties of the deterministic steady states (DSSs) of

the model that appear when we shut down the shocks ξt and zt by making them constant and

equal to their mean values (both equal to 1). The model encompasses two types of DSSs: a

passive DSS with zero search effort (σI = σF = 0) and active DSSs with positive search effort

(σI > 0, σF > 0). The level of economic activity is different across DSSs.
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Proposition 2. The level of output is strictly lower and the unemployment rate is strictly higher

in a passive DSS than in an active DSS.

Intuitively, zero search effort in the passive DSS implies few joint ventures and low production.

A small probability of forming a joint venture reduces the value of a single firm and generates a

fall in posted vacancies and an increase in unemployment.

The next two propositions establish conditions for the existence of the different DSSs.

Proposition 3. The passive DSS exists if and only if

β̃ψ

2− 2β
[(

1− δ − δ̃
)
− (1− δ) (φ+ ψ2)

] < c0. (30)

Proposition 3 states that the passive DSS exists for any sufficiently large value of c0—that is,

when the benefit from an additional unit of search effort is lower than the cost associated with

it. In such a case, σI = σF = 0. The critical cost for the existence of the passive DSS is c0. In

comparison, c1 does not appear in Proposition 3.

Proposition 4. An active DSS exists if and only if there exists σ ∈
(
0,
√

1− φ− ψ
)

that solves

β̃ (ψ + σ)
1 +

(
c0σ + c1

σ1+ν

1+ν

)
2− 2β

[(
1− δ − δ̃

)
− (1− δ)

(
φ+ (σ + ψ)2)] = c0 + c1σ

ν . (31)

The LHS of equation (31) captures the marginal gain of searching with positive effort in

the active equilibrium. The RHS reflects the marginal cost of searching. In the active DSS,

both quantities must be equal. Proposition 4 defines the parameter values that guarantee the

existence of the active DSS. The restriction σ ∈
(
0,
√

1− φ− ψ
)

ensures that the matching

probability φ+ (ψ + σI)(ψ + σF ) is within (0,1).

Proposition 5. The active and passive DSSs coexist if and only if equations (30) and (31) hold

simultaneously.

Equations (30) and (31) can hold simultaneously, since they depend on different parameter

combinations. The passive DSS characterized by equation (30) is uniquely pinned down when

σI = σF = 0. In comparison, the system allows for multiple active DSSs, since equation (31) can
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hold for different symmetric (σI,t, σF,t) > 0. When the best response function is strictly concave

(i.e., ν > 1), the system admits, at most, two DSSs (if ν < 1, we would only have one active and

unstable equilibrium). The argument is formalized next.

Lemma 1. The system has a unique passive DSS and at most two active DSSs.

Figure 17 in Appendix C illustrates these two lemmas by drawing regions of values of c0 and

c1 for which there exists a unique passive DSS, a unique active DSS, and where both coexist.

The next proposition establishes the stability of the DSSs. This stability guarantees that

a slight deviation of a subset of firms from their best response will fail to cause the system to

deviate from the initial DSS permanently.

Proposition 6. Suppose the active and passive DSSs coexist. The passive DSS is stable. When

two active DSSs coexist, one DSS is stable and the other DSS is unstable. When only one active

DSS exists, it is unstable.

For the remainder of the analysis, we mainly focus on stable DSSs. Also, we can study

the transition path from an arbitrary point in the state space of the system to the DSS. The

endogenous state variables of the system are the unemployment rates (uI,t, uF,t), the measure

of single firms (ñI,t, ñF,t), the measure of firms in joint ventures (nI,t, nF,t), and the current

equilibrium (ιt). Knowledge of ñi,t and ui,t gives us ni,t = 1− ñi,t − ui,t.

Figure 5: Transition path to the DSS
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(b) Initial active equilibrium
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Figure 5 shows the transition path of the system to the DSS for different initial values of

the unemployment rate (x-axes) and the measure of single firms (y-axes) and the calibration in
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Section 5. Since we consider the case of a symmetric economy, the analysis is representative

of each sector. Panel (a) shows the transition path to the DSS when the system starts from a

passive equilibrium (with each red dot representing a DSS of the system). Given the history

dependence of the equilibrium selection, the system remains in the passive equilibrium and

converges to the passive DSS indicated by the higher red circle, where the unemployment rate

is 8.7% and the measure of single firms is 22%. Analogously, panel (b) shows that the system

converges to the active and stable DSS, when it starts from an active equilibrium. In the active

DSS (the lower red dot), the unemployment rate is 5.5%, and the measure of single firms is 12%.

4.3 Existence of two (stochastic) equilibria

Once we have characterized the DSSs of the model, we can reintroduce the shocks to the discount

factor and productivity. The following propositions characterize the conditions for the existence

of (stochastic) passive and active equilibria and their coexistence.

Proposition 7. The passive equilibrium exists if and only if

∂Πi (0|0, ιt = 0)

∂σi,t
≤ 0 for i = I, F (32)

or equivalently

c0 > β̃ψξtEt(Ji,t+1 − J̃i,t+1 | ιt = 0). (33)

Proposition 7 states that the passive equilibrium exists when the marginal benefit from

increasing search effort is negative. Equation (33) highlights that the existence of the passive

equilibrium requires either a low ξt or a small zt+1 (and, hence, a low Et(Ji,t+1 − J̃i,t+1 | ιt = 0)).

Proposition 8. The active equilibrium exists if and only if there exists a pair of positive search

efforts ({σI,tσF,t} > 0) that satisfies:

∂Πi (σi,t | σj,t, ιt = 1)

∂σI,t
= 0 for i = {I, F} (34)

or, equivalently,

c0 + c1σ
ν
i,t = β̃ (ψ + σj,t) ξtEt(Ji,t+1 − J̃i,t+1 | ιt = 1), (35)

with (σI,t, σF,t) > 0 and the second derivatives of Πi are negative.
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Proposition 8 states that an active equilibrium exists when the optimal response of the firm

is to choose σi,t > 0 that satisfies equation (35). The next proposition states the condition for

the coexistence of the two static equilibria. History dependence selects between them.

Proposition 9. The active and passive equilibria coexist if and only if Propositions 7 and 8

hold simultaneously.

4.4 Transitional dynamics and ξt

To illustrate the deterministic transitional dynamics of the model, Figure 6 illustrates movements

in search effort as a function of ξt (a similar figure could be drawn for zt), again for the calibration

in Section 5. The dashed line plots the passive equilibrium path with low search effort and the

solid line the active equilibrium path with high search effort. The arrows indicate the direction

of the transition dynamics for the endogenous variable to reach the basins of attraction of the

system, represented by point σp(1) for the passive DSS and σa(1) for the active DSS. The shaded

area indicates the range of values of ξt that support multiple static equilibria. The passive

equilibrium fails to exist for sufficiently large values of ξt and, conversely, the active equilibrium

fails to exist for sufficiently small values of ξt. In the absence of innovations to ξt, the system

converges and remains on the original basins of attraction in the passive equilibrium, σp(1), and

the active equilibrium, σa(1), depending on the starting equilibrium.

Figure 6: Phase diagram for search effort
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to a new static equilibrium. For example, if the system starts in the passive equilibrium at point

A and a large and positive innovation to ξt moves the system to point B, the passive equilibrium

disappears, and the equilibrium of the system becomes active. The economy moves to the new

active equilibrium at point C, converging to the stationary basin of attraction σa(1) in the long

run. The system remains in the active equilibrium until a sufficiently negative innovation to ξt

returns the system to the passive equilibrium. For instance, a large negative innovation to ξt,

which moves the system from point C to point D, triggers the new passive equilibrium at point

E, converging to the stationary basin of attraction σp(1). In comparison, innovations to ξt that

move the equilibrium of the system within the shaded area, where both static equilibria coexist,

fail to shift the equilibrium because of history dependence.

5 Calibration

We calibrate the model at a monthly frequency for U.S. data over the post-WWII period. Table

2 summarizes the value and the source or target for each parameter.

Table 2: Parameter calibration

Parameter Value Source or Target

β 0.996 5% annual risk-free rate
α 0.4 Shimer (2005)
τ 0.4 Hosios condition
χ 0.28 0.45 monthly job-finding rate
κ 1.25 den Haan et al. (2000)
h 0.3 Thomas and Zanetti (2009)
τ̃ 0.5 Sectoral symmetry
δ 0.027 5.5% unemployment rate in active DSS

δ̃ 0.021 4 years’ duration of joint venture
φ 0.135 22% rate of idleness in recessions
ψ 0.114 Condition of Propositions 3 and 4 and 15% recession periods
c0 0.33 Condition of Propositions 3 and 4 and 15% recession periods
c1 5 12% rate of idleness in booms
ν 2 Ensure concavity of best response function
σξ 0.05 Justiniano and Primiceri (2008)

ρz 0.951/3 BLS
σz 0.008 BLS

The constant β is set to 0.996 (equivalent to 0.99 at a quarterly frequency) to replicate an

average annual interest rate of 5% over the sample period. In keeping the DMP block of the

model as standard as possible, we assume a Cobb-Douglas matching function m(u, v) = u1−αvα

in the labor market and calibrate the elasticity of vacancies in the matching function α = 0.4,
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the average value estimated in the literature (see Petrongolo and Pissarides, 2001). We set the

wage bargaining power equal to τ = α = 0.4, which satisfies the Hosios (1990) condition. We

follow den Haan et al. (2000) in selecting the inter-firm matching function:

H (ñF , ñI) =
ñF · ñI

(ñκF/2 + ñκI/2)1/κ
. (36)

This functional form ensures that matching probabilities are between 0 and 1 without introducing

truncations (as often happens with Cobb-Douglas matching functions). After den Haan et al.

(2000), we set κ = 1.25.

We pick the cost of posting a vacancy χ = 0.28 to match the monthly job-finding rate

in the active DSS, µ (θ) = 0.45, as in Shimer (2005). Conditional on χ = 0.28, we select a

job-separation rate δ = 0.027 to match an unemployment rate of 5.5% in the active DSS. The

flow value of unemployment h is set at 0.3, which consists of the value of leisure and home

production and the unemployment benefit, as in Thomas and Zanetti (2009). In this calibration,

the flow value of unemployment is about 61% of the average wage in the active DSS, which is in

the range of replacement rates documented by Hall and Milgrom (2008).

Compared to a standard DMP economy, our model includes seven new parameters: τ̃ , δ̃, φ,

ψ, c0, c1, and ν. The bargaining share of the intermediate-goods firm τ̃ is set to 0.5, to evenly

split the total surplus from matching between firms and make the workers indifferent between

working in either sector. The rate of termination of inter-firm matches δ̃ is 0.021 to replicate the

4 years’ average duration of a match. The median and the mean of the duration of inter-firm

matches are around 4 years in the Compustat Customer Segment data, which report the major

customers for a subset of U.S. listed companies on a yearly basis.

Once we have set values for the previous parameters, c1 and φ pin down the measure of

single firms in the active DSS and passive DSS, respectively. The ratio of the measure of single

firms to employment corresponds to the rate of idleness, indicating the share of time when

employed workers are idle due to a lack of activity (Michaillat and Saez, 2015). The Institute for

Supply Management constructs the operating rates (one minus the rate of idleness) in the U.S.

According to its measurements, the rate of idleness is about 30% for the non-manufacturing

sector and 20% for the manufacturing sector during the Great Recession, and 12% for both

sectors before this event. Thus, we set φ = 0.135 and c1 = 5 to yield a rate of idleness equal to
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0.22 and 0.12 in the passive DSS and the active DSS, respectively. Finally, ν = 2 ensures the

concavity of the best response function of search effort.

There is no direct empirical guidance for the calibration of c0 and ψ. We calibrate them as

0.33 and 0.114, respectively, to satisfy the conditions for the coexistence of passive and active

DSSs in Proposition 5. Our calibration of c0 and c1 implies that search cost is about 2% of

output. This value is consistent with the fact that 2.5% of workers are employed in search-related

occupations (see Subsection 7.1 for our measure of search-related employment).

We set σξ to 0.05.6 Such a value, given the rest of the calibration, generates a passive

equilibrium with 15% probability, consistent with the frequency of recessions in the post-WWII

U.S. The persistence of the productivity shock, ρz, is set to 0.881/3 to match the observed

quarterly autocorrelation of 0.88, and the standard deviation, σz, is set to 0.0057 to match the

quarterly standard deviation of 0.02, as in Shimer (2005).

Once the model is calibrated, we compute the different value functions using value function

iteration and exploit the equilibrium conditions of the model to find all variables of interest. See

Appendices B and E for technical details.

6 Quantitative analysis

To study the dynamic properties of the model, we simulate it for 3,000,000 months and time-

average the resulting variables to generate quarterly data. We start the simulation from the

active DSS, focusing on the case when only discount factor shocks are present. Appendix G

provides a quantitative analysis of properties of the model with productivity shocks. We relegate

that case to the appendix because productivity shocks of plausible magnitude are unable to

move the system between different equilibria, unless those shocks are permanent.

Figure 7 reports the responses of key variables to shocks to ξt for the first 100 periods. The

economy begins at a positive search effort with high output, low unemployment, and a high

job-finding rate. Then, in period 15, a sufficiently large shock to the discount factor pushes the

economy to the low search equilibrium until period 25, with a prolonged drop in output (as joint

ventures terminate faster than they are replaced), high unemployment, and a low job-finding

6Justiniano and Primiceri (2008, Table 1) find a quarterly σεξ = 3.13%, with a persistence of 0.84. This

implies that σξ = 0.0313/
√

1− 0.842 = 0.0577. If we extrapolate the quarterly AR(1) process to a monthly
AR(1) process, the implied standard deviation is about 0.056. To be cautious, we round down to 0.05.
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Figure 7: Simulated variables for the first 100 periods with shocks to ξt
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rate. In that period, a large positive discount factor shock shifts the economy back to the active

equilibrium with positive search effort.

Figure 8: Ergodic distribution with i.i.d. shocks to ξt
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Figure 8 plots the ergodic distribution of selected variables implied by the entire simulation.

Endogenous switches between the two equilibria generate a distinctive bimodal distribution of
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aggregate variables resembling those documented in Adrian et al. (2019) or the ones that you

would get from models with increasing returns to scale to search in the tradition of Diamond

(1982).7 As required by our calibration, the figure implies that the economy spends about 85% of

the time in the active equilibrium and 15% in the passive equilibrium. In the active equilibrium,

the unemployment rate fluctuates around 5.5%. In the passive equilibrium with zero search

effort, unemployment fluctuates around 8.7%. Similarly, the job-finding rate moves around 45%

in the active equilibrium and 27% in the passive equilibrium.

Figure 9: Distribution of unemployment rate and output growth in the data
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To compare our results to the data, Figure 9 plots the empirical distribution for the

unemployment rate and real GDP per capita (unemployment rate is monthly from 1960 to

2018; real GDP per capita is quarterly from 1960 to 2018 and is linearly detrended in logs).

The distribution of both variables shows skewness and bimodality that is consistent with the

prediction of our model.8 Recall, when comparing the simulated and real data, that our Figure

8 is generated –for parsimony– only with shocks to the discount factor, while the data in Figure

9 are driven by a combination of different shocks. Nonetheless, the behavior of the model is

commendable. We will revisit this issue in more detail in Subsection 8.2.

Panel (a) of Table 3 reports various second moments of observed business cycle statistics

following the same structure as in Shimer (2005, Table 1). Panel (b) reports second moments of

the benchmark model with two DSSs. Finally, panel (c) reports second moments of a version

of the model without search complementarities and calibrated on the active equilibrium. Each

entry presents the autocorrelation coefficient, the standard deviation, and the correlation matrix

for the variables listed across the first row of the table.

Several lessons arise from Table 3. First, our model generates a robust internal propagation:

7See Pizzinelli et al. (2020) and Taschereau-Dumouchel and Schaal (2015) for additional evidence on skewness
and bimodality in macroeconomic variables.

8The Hartigan’s dip test for unimodality (Hartigan and Hartigan, 1985) rejects unimodality for the unemploy-
ment rate and real GDP per capita with 5% and 1% significance levels, respectively.
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Table 3: Second moments

u v v/u lp ξ

(a) Quarterly U.S. data, 1951-2016

Autocorrelation coefficient 0.95 0.95 0.95 0.90 −
Standard deviation 0.20 0.21 0.40 0.02 −

u 1 -0.92 -0.98 -0.25 −
Correlation matrix v 1 0.98 0.29 −

v/u 1 0.27 −
lp 1 −

(b) Benchmark model

Autocorrelation coefficient 0.82 0.55 0.71 0.88 0
Standard deviation 0.10 0.21 0.28 0.02 0.03

u 1 -0.71 -0.85 -0.94 -0.06
Correlation matrix v 1 0.97 0.54 0.39

v/u 1 0.72 0.30
lp 1 0.00
ξ 1

(c) Model without search complementarities

Autocorrelation coefficient 0.06 -0.27 -0.08 1 0
Standard deviation 0.02 0.04 0.05 0 0.03

u 1 -0.27 -0.56 0 -0.56
Correlation matrix v 1 0.95 0 0.95

v/u 1 0 1.00
lp 1 0
ξ 1

the autocorrelation coefficients of the aggregate variables are significantly larger than in the

model without complementarities and much closer to the observed ones. Complementarities in

search effort plus history dependence amplify and prolong the effect of shocks.

Second, our model generates empirically plausible standard deviations for the selected

variables that are much larger than those in the model without complementarities. This property

of the model comes from the amplification of shocks created by the shift between equilibria.

Third, our model produces endogenous movements in labor productivity (“lp” in the table)

that would be otherwise absent. The model assumes that firms manufacture goods after matching

with a partner. Hence, measured labor productivity depends on the endogenous fraction of the

joint ventures over the total number of firms, ni,t/ (ñi,t + ni,t). In comparison, without inter-firm

matches, labor productivity is exogenous. Table 3 shows that business cycle statistics for labor

productivity generated by our benchmark model are close to those in the data.

Fourth, the benchmark model generates a correlation between unemployment and vacancies

(i.e., the Beveridge curve) equal to -0.71, which is close to the value of -0.92 in the data and
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much larger than the correlation of -0.27 in the model without complementarities. The large

negative correlation between vacancies and unemployment is a direct consequence of strategic

complementarities in search effort. In the active equilibrium, there is robust vacancy posting and

low unemployment, while the relationship is reversed in the passive equilibrium. The switching

between equilibria results in periods with a consistently negative relationship between vacancies

and unemployment that generates the downward sloping Beveridge curve.

Figure 10: GIRFs to a negative discount factor shock
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Note: Each panel shows the response of a variable to a negative discount factor shock (ξt) with magnitudes of
0.10 (solid line) and 0.12 (dashed line).

Finally, Figure 10 shows generalized impulse response functions (GIRF) of selected variables

to a 12% (solid line) and 10% (dashed line) shock to ξt, respectively (we are not dealing with a

linear model; thus, we use the adjective “generalized”). In period t = 1, the economy starts

from the active DSS. In period t = 2, an exogenous and one-period disturbance to the discount

factor hits the economy. When the contractionary shock to ξt is 10%, the firm’s search effort

temporarily declines in response to the fall in the stream of benefits in forming a joint venture,

generating a temporary fall in labor market tightness and a rise in the unemployment rate.

This shock is too small to move the system to the passive equilibria and the variables return

to the original DSS. However, when the fall in ξt is sufficiently large, the system moves to the

equilibrium with zero search effort, low output, and high unemployment. While the shock is

only 2% larger (12% instead of 10%), its effects are quite different: search complementarities

induce large non-linearities in the model.
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7 Evidence on the theoretical mechanism

The mechanism in our model builds on three legs: the existence of search complementarities

among firms that lead to a co-movement of output and intermediate inputs, the shocks to the

discount factor, and history dependence. We will not discuss the last leg. As argued in the

introduction, history dependence is an intuitive selection device that has shown considerable

empirical success in experiments (Van Huyck et al., 1990, 1991). We focus, instead, on the

existence of search complementarities and the shocks to the discount factor.

7.1 Evidence for search complementarities

Through the lenses of our model, search effort can be measured by the inputs employed by

final (customer) and intermediate (supplier) industries in forming value-added chains. Thus, to

document the existence of search complementarities, we can check in the data how these inputs

co-move among partners.

To understand this idea better, consider the linearized best response curves:

σF,t = β1σI,t + ξF,t (37)

σI,t = β2σF,t + ξI,t, (38)

where σF,t and σI,t are the observed search efforts of industry F and I, and ξF,t and ξI,t

are the respective unobserved exogenous shocks due to unspecified industry-specific shocks

such as a regulatory change. To simplify the exposition, we will assume momentarily that

corr (ξF,t, ξI,t) = 0 (we remove this assumption below). From (37) and (38), we get:

cov (σF,t, σI,t) =

(
1

1− β1β2

)2

[β1var (ξF,t) + β2var (ξI,t)] . (39)

Search complementarities require that β1 and β2 be positive: a higher search effort in one

sector increases search effort in the other and, thus, cov (σF,t, σI,t) > 0. Symmetrically, if both

β’s are negative and we have strong search substitutabilities, cov (σF,t, σI,t) < 0. The ambiguous

case where sgn β1 6= β2 (weak substitutabilities) is of less interest, since it violates the symmetry

assumptions underlying our analysis. In conclusion, looking at the regression coefficient of the

34



search effort in one sector into the other sector’s search effort, which provides us with an estimate

of cov (σF,t, σI,t), is a sharp test for the existence of search complementarities.

To implement this idea (and to generalize it to the case with correlation of errors), we identify

each industry’s supplier industries from the BEA input-output tables, which report the use of

intermediate input for 66 private industries in 3-digit NAICS. Following Michaillat and Saez

(2015), we approximate customer industries’ search efforts as the number of workers whose

occupation is ordering, buying, purchasing, and procurement. The data come from the OES

database, constructed by the BLS, which reports yearly employment and wage at the 3-digit-

NAICS industry levels, with detailed occupation levels between 2003 and 2018. Analogously, we

approximate supplier industries’ search efforts as the number of workers whose occupation is

advertising, marketing, sales, demonstration, and promotion. We measure search effort in terms

of log-linearly detrended employment levels.

Since co-movements of search effort can reflect both search complementarities and time

effects (i.e., the correlation of shocks that we ignored to build intuition), we take advantage of

industry- and firm-specific shocks in the data to exploit cross-sectional variation and estimate:

σi,t = ωσconnecti,t + υi + γt + εi,t, (40)

where σi,t is the search effort of industry i as a customer industry at period t, σconnecti,t is the

search effort of industry i’s supplier industries, and υi and γt are industry and time fixed effects,

respectively. Since each industry has multiple supplier industries, we measure the average search

effort for industry i’s supplier industries as the mean of these supplier industries’ search effort

weighted by the value of intermediate goods that industry i purchases from them.

Our point estimate ω̂ = 0.45 (column (1) in Table 4) and its significance at the 1% level is

strong support for the central mechanism in our paper: the search efforts of supplier industries

are positively correlated with the search efforts of customer industries.

A possible complication for our finding could be the presence of shocks that are specific to

each pair of connected industries and that cannot be removed by time fixed effects. To address

this concern, we use a two-stage regression procedure to purge the observed search efforts from

the influence of common shocks. In the first stage, we regress the search effort in the customer
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Table 4: Search efforts are positively correlated between connected industries

(1) (2) (3) (4)

Measure of search efforts Search-related employment Signaling cost

Level Residual Level Residual

σconnecti,t 0.45*** 0.16* 1.04*** 2.39***

(0.08) (0.09) (0.16) (0.08)

Time FE Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

R2 0.16 0.08 0.32 0.29

Observations 15× 47 14× 47 21× 66 20× 66

Note: Data are yearly from 2003 to 2016 and 1998 to 2017 for columns (1) (2) and (3) (4), respectively. The
dependent variables are the search effort of industry i. σconnecti,t is the search effort of industry i’s supplier
industries and connected industries, respectively. Standard errors, in parentheses, are clustered at the industry
level. * and *** denote significance at the 10% and 1% level, respectively.

industry and supplier industries on measures of industry-level economic activity:

σi,t = αi + βiyi,t + γiy
connect
i,t + σ̂i,t, (41)

σconnecti,t = α̃i + β̃iyi,t + γ̃iy
connect
i,t + σ̂connecti,t , (42)

where yi,t and yconnecti,t are loglinearly detrended employment of industry i and industry i’s

supplier industries, respectively.9 Analogously to σconnecti,t , yconnecti,t is the weighted average of the

employment of industry i’s supplier industries. The terms σ̂i,t and σ̂connecti,t in equations (41) and

(42) are residuals that encapsulate the part of the search effort that is orthogonal to measures

of industry-level economic activity. Presumably, common shocks would shift industry-level

economic activity, so the residuals exclude the influence of common shocks.

In the second stage, we estimate equation (40) using residuals in equations (41) and (42):

σ̂i,t = ωσ̂connecti,t + υi + γt + εi,t.

The rationale for the second stage regression is to study the co-movement in residual search

efforts that exclude the influence of common shocks obtained from the first stage.10 Column

9We use industry employment instead of industry output since it entails a greater sample size by avoiding the
merging of the OES data for search effort and the BEA data for output.

10Residual search efforts might reflect exogenous shocks to the search effort. In our model, exogenous shocks
to search effort would not affect output in the same period, as joint venture formation is time-consuming. Thus,
these shocks are not filtered out in the first stage. Although exogenous shocks to search effort would not affect
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(2) in Table 4 shows that ω̂ = 0.16, supporting a positive correlation between search effort in

connected industries even after excluding common shocks.

As an alternative exercise, we approximate the search effort by the signaling costs that

make firms more visible to potential trading partners. Following Hall (2014), we measure

an industry i’s signaling cost as the value of its intermediate input from the four industries

of publishing, motion picture/sound recording, broadcasting/telecommunications, and data

processing/internet publishing/other information services, obtained from the BEA input-output

tables. The difference between this measurement and our previous measurement is that the

former gauges the search effort outsourced from the other industries, while the latter focuses on

the search effort exerted within the industry.

More precisely, we measure search costs as the intermediate input from the industries above

by deriving a measure of the signaling cost for industry i’s connected industries by weighting

signaling costs by the value of input-output intermediate goods traded with industry i. Then,

we estimate σi,t = ωσconnecti,t + νi + γt + εi,t, where σi,t is the measure of the signaling cost of

industry i; σconnecti,t is the signaling cost of industry i’s connected industries, which include both

industry i’s customer and supplier industries; and υi and γt are the industry and the year fixed

effects, respectively. Column (3) in Table 4 shows that signaling costs are positively correlated

between connected industries, which again supports the existence of search complementarities.

To ensure that results are not driven by common shocks, we also implement the two-

stage regression approach described above. Table 4 in column (4) shows that signaling costs

are positively correlated between connected industries, supporting the existence of search

complementarities.

Once we have ascertained the existence of search complementarities, we provide evidence

for the positive relationship between inter-firm matches and firm growth measures. We use the

list of major customers for U.S. publicly listed firms from Compustat Customer Segment data

(publicly listed firms in the U.S. are required to disclose the identity of customers that account

for at least 10% of annual sales). We measure match creation by using a dummy variable (pari,t)

equal to one if firm i reports at least one new major customer in year t. Columns (a) and (b)

output in the same month (our calibration period), they might still affect output in the same year (our estimation
period). However, as long as some shocks to search effort do not shift output in the same year, these shocks can
be captured by the residuals in the first stage and help to identify the sign of β1 and β2. We run Monte Carlo
simulations to check that our two-stage test is valid with yearly data. Detailed results are available upon request.
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in Table 5 show a significant and positive relationship between match creation and the firm’s

market value and sales growth. When we control for year fixed effects (columns (c) and (d)),

the effect of match creation on sales growth becomes insignificant, while its effect on the growth

rate of market value remains statistically significant and economically large.

Table 5: Match creation improves firm growth

(a) (b) (b) (d)
Market Return Sales Growth Market Return Sales Growth

pari,t 0.144** 0.026** 0.119* 0.008
(0.065) (0.012) (0.067) (0.012)

Time FE No No Yes Yes
Firm FE Yes Yes Yes Yes
R2 0.00 0.00 0.06 0.08
Observations 2,456 2,219 2,456 2,219

Note: Data are yearly from 1999 to 2014. The dependent variables are the yearly growth rates of market value
and sales, obtained from CRSP and Compustat Fundamentals Annual data, respectively. pari,t is a dummy
variable equal to one if firm i reports at least one new major customer in year t, according to the major customer
records constructed by Compustat Customer Segment data. We restrict the analysis to firms with continuous
records of major customers between 1999 and 2014. Standard errors are in parentheses. * and ** denote
significance at the 10% and 5% level, respectively.

We close by showing that output and intermediate inputs co-move in the fashion predicted

by search complementarities. The BEA compiles a measure of gross output (O) equal to the

sum of an industry’s value added (V A) and intermediate inputs (II), i.e., O = V A+ II. BEA

data are annual over the period 1997-2015. Figure 11 plots the cyclical component of gross

output (blue line), intermediate inputs (red line), and industry value added (yellow line) together

with NBER-dated recession periods (grey bands). We extract the cyclical component of the

variable using an HP filter. The figure reveals that fluctuations in intermediate inputs are more

procyclical than those in output. The Great Recession witnessed a sharp fall in intermediate

input and gross production across industries, while the value added remained more stable.

To establish the relative contribution of value added and industry input to the overall

volatility of gross output, we decompose the variance of the gross industrial output in terms of

its covariance terms: Var(O) = Cov(V A,O) + Cov(II, O). Using this identity, together with

the definition O = V A + II, and plugging in observed data, we find that the contribution of

industry inputs to movements in industrial gross output is:

Cov(II, V A+ II)

Var(V A+ II)
= 0.71.
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Figure 11: Intermediate inputs, value added, and gross output

Thus, fluctuations in intermediate input account for 71% of the movements in gross industry

output. This average contribution increases during recessions. For instance, in 2008, industry

intermediate input decreased by 1.9 trillion, making up 84% of the decline in gross industrial

output (2.3 trillion).

7.2 Discount factor shocks

The second leg in the model is the relevance of discount factor shocks for fluctuations in

intermediate inputs and aggregate fluctuations. The presence of discount factor shocks has been

documented in a long list of papers. See, among many others, Justiniano and Primiceri (2008),

Fernández-Villaverde et al. (2015), Cochrane (2011), and Hall (2016, 2017). These authors

have argued that, beyond pure shocks to preferences, discount factor shocks can also represent

demographic shifts, movements in financial frictions, fluctuations in risk tolerance, and changes

in fiscal and monetary policy that we abstract from in the model. Discount factor shocks can

also capture heightened risk aversion caused by a health crisis.

Our task is to relate measures of the discount factor to changes in aggregate output,

unemployment, and inter-firm matching. To do so, we use the standard definition of the discount

factor as the ratio of the current market price of a future cash receipt to the expected value of

the payment (our households are risk neutral and, hence, we do not need to adjust for risk).

There are three popular measures of the discount factor. In measure 1, we follow Hall (2017)
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and construct the series for the market discount rate for dividends payable from one year (12

months) to two years (24 months) as: ξt = pt/(Et
∑24

τ=13 dt+τ ), where pt is the market price in

month t of the claim of future dividends inferred from option prices and the stock price, and dt is

the dividend paid in month t. The data on pt are from Binsbergen et al. (2012). In measure 2, we

proxy the discount factor using the price-dividend ratio (p/d) of the stock market, as described

in Cochrane (2011). Finally, in measure 3, we proxy the discount rate rt using the measure

of expected returns from the S&P stock price index. We obtain the median 12-months-ahead

forecast of the stock market index (mnemonics: SPIF, Forecast12month) from the Livingston

Survey. Then, we divide by the index of the base period to calculate the expected gross return

1 + rt and compute the discount factor as ξt = 1/ (1 + rt).

Figure 12: Alternative measures of the discount factor
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Figure 12 plots the three measures of the discount factor for the period between January

1996 and May 2009. All three measures agree that i) there was a sizable decline in the discount

factor during the Great Recession (as our theory requires) and ii) the series display high variance

(reflecting the large sensitivity of the discount factor over the business cycle, also required by

our theory). The low correlation across the three measures is not surprising, since each of these

series reflects discounting from different financial players and assets (see Hall, 2017).

Table 6 shows that the three measures of the discount factor are positively correlated with

GDP and input of intermediate goods (columns (a) and (c)), and negatively correlated with

unemployment (column (b)). The discount factor positively correlates with the rate of match
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Table 6: Correlation between discount rates and aggregate variables

Correlation coefficient (a) (b) (c) (d)
Unemployment rate GDP Intermediate input Match creation

Livingston Survey -0.55 0.53 0.42 0.16
S&P dividend strip p/d ratio -0.33 0.50 0.21 0.32
P/d ratio -0.75 0.80 0.53 0.79

Note: Discount rates and unemployment: monthly data from January 1996 to May 2009. GDP: quarterly data
from 1996Q1 to 2009Q1. Intermediate input: annual data from 1997 to 2009. Rate of match creation: annual
data from 1996 to 2009. Series are HP filtered.

creation (column (d)), measured from Compustat Customer Segment data. These patterns

corroborate the important relation between shocks to the discount factor and movements in

production, unemployment, and inter-firm matching highlighted by our model.

8 The volatility of shocks

We now gauge how the volatility of the shocks to the economy determines the dynamic properties

of the model and the likelihood and duration of each equilibrium.

8.1 Analytical illustration with a simplified model

To gain intuition, and before we report the quantitative results from the full model, we derive

an analytical characterization of the effect of volatility on the likelihood and duration of each

static equilibrium by simplifying the model in Section 3. First, we assume that firms produce

their output without labor. Thus, we can drop the whole DMP module of the model and set a

constant measure of size 1 of firms in each sector. Second, we assume that δ̃ = 1, i.e., all joint

ventures terminate after one period. Also, joint ventures start producing in the same period in

which firms match. Hence, the firm’s problem is equivalent to a sequence of static maximization

problems and we do not need to specify a discount factor. To ease the algebra, we also set

ρz = 0, and as in the calibration in Section 5, τ̃ = 0.5 and ν = 2. This simplified model is nearly

identical to the model in Section 2 except for a slightly different matching function.

Under these simplifications, each firm optimally chooses the level of its search effort, σi,t, given

the search effort of the firms in the opposite sector, σ−i,t, and productivity, zt, by maximizing:

Ji,t(σi,t, σ−i,t, zt) = (φ+ (ψ + σi,t) (ψ + σ−i,t))
zt
2
− c0σi,t − c1

σ3
i,t

3
.
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The first term of the RHS is the inter-firm matching probability defined in equation (12)

multiplied by half the expected production, πi,tzt (recall the equal split of output between the

firms given τ̃ = 0.5) minus the cost of searching.

The interior solution σi,t > 0 satisfies:

c0 + c1σ
2
i,t = (ψ + σ−i,t)

zt
2
. (43)

Otherwise, σi,t = 0. Hence, as in the benchmark model, the simplified model entails passive and

active equilibria. The passive equilibrium with zero search effort exists if and only if c0 > ψ zt
2

.

Thus, we can define a threshold of productivity z̄ = 2c0
ψ

that determines whether the passive

equilibrium exists.

Lemma 2. The passive equilibrium exists if and only if zt < z̄.

Recall that we assumed that ψ > 0. If ψ = 0, a passive equilibrium always exists regardless

of the value of zt.

In an active equilibrium, firms in each sector optimally choose a positive search effort that

comes from finding the fixed point of the product of equation (43) for each sector:

σF,t = σI,t =
zt +

√
z2
t + 8ψzt − 16c0c1

4c1

. (44)

This optimal search effort is increasing in zt.
11

From equation (44), the threshold for the active equilibrium is z = 4
(√

ψ2c2
1 + c1c0 − ψc1

)
,

and we get the following lemma.12

Lemma 3. An active equilibrium exists if and only if zt ≥ z.

Proposition 10 merges lemmas 2 and 3 to characterize the range of values zt compatible with

multiple equilibria.

Proposition 10. The economy retains multiple equilibria if zt ∈ (z, z̄). The passive equilibrium

is the unique equilibrium if zt ≤ z. The active equilibrium is the unique equilibrium if zt ≥ z̄.

11There is a second fixed point, σi,t =
zt−
√
z2t+8ψzt−16c0c1

4c1
. However, this solution is locally unstable.

12To prevent the marginal search cost from converging to zero when σi,t is zero, the term c0 must be positive.
If c0 = 0, it yields z = 0. In such an instance, the active equilibrium exists for any positive value of zt.
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Proposition 10 establishes that if economic fundamentals are sufficiently weak or strong, the

static equilibrium is unique, either passive or active; otherwise, we have two static equilibria.

Sufficiently large shocks to zt move the system between the two alternative static equilibria.

Proposition 10 is empirically relevant because we can calibrate ψ to a small number so that z̄ is

low and c1 to a large number so that z is high. In that way, the model will allow multiple static

equilibria for a wide range of productivity z < 1 < z̄.

Since we have set ρz = 0, log (zt) ∼ N (0, σ2
z). Using the distribution for zt and the thresholds

z and z, we derive the transition matrix between equilibria:

Active Passive

Active 1− Φ [log (z) /σz] Φ [log (z) /σz]

Passive 1− Φ [log (z̄) /σz] Φ [log (z̄) /σz]

where Φ(·) is the cdf of the standard normal distribution. The next proposition establishes that

aggregate volatility plays a critical role in the selection and duration of each static equilibrium.

Proposition 11. The expected duration of a passive equilibrium spell is 1
Φ[log(z)/σz ]

, and the

expected duration of an active equilibrium spell is 1
1−Φ[log(z̄)/σz ]

. The duration of each equilibrium

is inversely related to the volatility of zt.

Proposition 11 shows that a reduction in volatility induces the system to remain for a

prolonged spell in one static equilibrium, with a decreased probability for the system to move

to the alternative static equilibrium. However, if a sufficiently large change in fundamentals

triggers a change in the static equilibrium, the economy would move to the alternative static

equilibrium and stay there for a long time.

The dynamics in the simple model are consistent with the large and ongoing low employment-

to-population ratio in the aftermath of the financial crisis of 2007-2009 (even if the headline

unemployment rate recovered by early 2017). The financial crisis was preceded by a long spell

of stable economic conditions during the Great Moderation that started in the mid-1980s, which

the model identifies as a prerequisite for the unprecedented persistence in the low employment-

to-population ratio (although, see Fernald et al., 2017, for an alternative interpretation based on

a change in long-run growth trends).
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8.2 Bimodality and volatility

With the intuition from the simplified model, we return to our benchmark model to gauge the

changes in the volatility of shocks. Table 7 reports business cycle statistics for a low (column (a))

and a high (column (b)) variance of shocks to the discount factor (σξ). As before, we simulate

the model for 3,000,000 months and time average to obtain quarterly data. The first and

second rows report the number of periods and the average duration of the passive equilibrium,

respectively, and the third row reports the transition matrix between equilibria. We calibrate

high and low volatility by following Justiniano and Primiceri (2008), who estimate that the

volatility of the discount factor shocks is equal to 0.07 before 1984 and 0.04 after that date.

Table 7: Variance of shocks and duration of equilibria

(a) (b)
σξ = 0.04 σξ = 0.07

Fraction of periods in passive equilibrium 0.11 0.27
Average number of quarters in passive equilibrium 11 3.4
Transition matrix

Active Passive Active Passive
Active 0.98 0.02 0.89 0.11
Passive 0.09 0.91 0.29 0.71

The passive equilibrium materializes with a probability of around 11% in the low-volatility

economy, in contrast with a 27% probability in the high-volatility economy. Despite the lower

chance of moving to a passive equilibrium, the low-volatility economy stays longer on average in

a passive equilibrium, 11 quarters, than the high-volatility economy, 3.4 quarters. Low volatility

induces less frequent but long-lasting periods of low output and high unemployment.

The last two rows in Table 7 report the transition matrix between equilibria. The low-

volatility economy transitions between equilibria infrequently. The probability of moving from

active equilibrium to passive equilibrium is equal to 2%, and the probability of a reverse move

from passive equilibrium to active equilibrium is equal to 9%. The rotation among equilibria

gets much higher in the high-volatility economy, as the probability of moving from an active to

a passive equilibrium is 11%, and the probability of a reverse move is 29%.

While Figures 8 and 9 demonstrate the bimodality of output’s unconditional distribution,

our model predicts that the bimodality of output’s conditional distribution is significant only in

periods of high volatility. When volatility is low, the system mostly stays in one of the equilibria,
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and the bimodality in the distribution of output is very mild.13

To show that this implication of the model is consistent with the data, we estimate –for

each quarter– the one-quarter-ahead conditional distribution of real output growth with the

non-parametric approach proposed by Adrian et al. (2019). Then, we calculate the p-value of

Hartigan’s dip test for each quarter. A lower p-value indicates a higher probability of rejecting

unimodality. We find that the correlation between the Hartigan’s dip test’s p-value and the VIX

index is −0.30, which is statistically significant at the 1% level. In words: unimodality is more

likely to be rejected when VIX is high.

Figure 13: Conditional distribution of output growth
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Figure 13 illustrates this point by plotting output growth’s conditional distribution in 2008 Q3

and 2017 Q3, respectively. Bimodality was pronounced in 2008 Q3 (left panel) when the volatility

was extraordinarily high (V IX = 58.6, compare with the sample mean of 19.2). In contrast

(right panel), there was little bimodality in 2017 Q3 when volatility was low (V IX = 11.0).

8.3 The Great Moderation and the persistence of business cycles

Our model predicts that a lower volatility of fundamentals is associated with more prolonged

equilibrium spells. This prediction is consistent with the empirical pattern in the U.S. data.

In Figure 14, the upper panel plots the U.S. employment rate (blue curve) and its trend

(orange curve) estimated from an HP filter with λ = 1600 from 1996 to 2017. The light-orange

bars indicate labor market downturns. Inspired by the NBER’s methodology, we define a labor

13See, in Appendix H, the histograms of the model’s endogenous variables when volatility is high and low.
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Figure 14: The Great Moderation and labor market downturns
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market downturn as starting when the employment rate falls below the trend for two quarters

and ending when the employment rate rises above the trend for two quarters. As noted by many

researchers (see Jaimovich and Siu 2012 and references therein), the figure shows how the three

labor market downturns that occurred after 1984 were longer than the previous ones. Precisely

after 1984, the U.S. economy experienced a substantial reduction in aggregate volatility, which

Justiniano and Primiceri (2008) and Fernández-Villaverde et al. (2015) attribute, in part, to a

lower volatility of shocks to fundamentals. To illustrate this point, the bottom panel in Figure

14 plots the cyclical component of real GDP per capita, with a grey area to indicate the Great

Moderation that started around 1984.

Our model suggests an intrinsic link between the Great Moderation and the increasing

persistence in labor market downturns. While the Great Moderation improves macroeconomic

stability and reduces the occurrences of recessions, it makes these recessions and the associated

labor market downturns more durable.
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9 The role of fiscal policy

In our model, government spending that stimulates joint venture formation may permanently

move the system from a passive to an active equilibrium, inducing a large fiscal multiplier. To

study this hypothesis, we embed government spending in the economy and derive the analytical

conditions for fiscal policy to move the system from a passive to an active equilibrium. We then

investigate the effect of public spending on the DSSs in the model. Finally, we evaluate the size

and state dependence of the impact of government spending.

9.1 Government spending as a set of final-goods producers

We focus our investigation on government spending (government consumption expenditures and

gross investment). We ignore transfers because our model abstracts from aggregate demand

considerations. We model government spending as an exogenous increase in the number of single

firms in the final-goods sector, where these additional firms can be interpreted as new public

projects such as building a new school. Thus, we have government-owned single final-goods

firms, ñGF,t, that operate together with private single firms in both sectors. The formation of

private firms remains endogenous, as described by equation (14). We assume that government

spending is financed by lump-sum taxes.

The law of motion for government single final-goods firms is ñGF,t+1 = (1− δ − πF ) ñGF,t + εGt ,

where εGt are the new government-owned single firms created in period t.14 Like the private

firms, government-owned firms must form a joint venture with firms in the intermediate-goods

sector to manufacture goods (for example, a public school requires CFRPs produced by private

firms). Joint ventures with government-owned firms follow nGF,t+1 =
(

1− δ − δ̃
)
nGF,t + πF ñ

G
F,t.

A government firm exits the market when its job match or joint venture is terminated.

The inflow εGt changes the matching probabilities in the inter-firm matching market:

πI,t = [φ+ (ψ + σI) (ψ + σF )]H
(

1, θ̃t

)
, (45)

and πF = [φ+ (ψ + σI) (ψ + σF )]H
(

1

θ̃t
, 1
)

, where θ̃t = (ñF,t + ñGF,t)/ñI,t is the inter-firm

14We assume that government spending shocks hit once per year. With probability 1/12, εGt is drawn from the
uniform distribution with the support [0, ñF,t/2]. Otherwise, εGt = 1. This specification ensures a non-negative
measure of government firms and that the inter-firm matching market tightness ratio does not explode.
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matching market tightness ratio in the presence of government single firms.

Since H is increasing in both arguments, εGt > 0 increases the matching probability for

intermediate-goods firms (more potential partners) and decreases the matching probability for

final-goods firms (stiffer competition for partners). These changes in matching probabilities, in

turn, move search effort and, potentially, the equilibrium of the economy.

Total government spending is equal to the output produced by government-owned firms in

joint ventures and the single government-owned firms’ search cost gt = ztn
G
F +ñGF

(
c0σF + c1

σ1+ν
F

1+ν

)
.

Gross aggregate output comprises government and private production: yt = zt(n
G
F,t+nF,t), and it

is used for private consumption, government spending, and search costs. The aggregate resource

constraint is yt = ct + gt +
∑

i=I,F χvi +
∑

i=I,F ñi

(
c0σi + c1

σ1+ν
i

1+ν

)
.

9.2 Shocks to government spending and equilibria switches

We assume that the economy is in the passive equilibrium (i.e., σI = σF = 0) before the arrival

of a positive government spending shock, εGt .

Upon the realization of the shock, the passive equilibrium continues to exist if and only if:

β̃ξtψH
(

1, θ̃t

)
Et
(
JI,t+1 − J̃I,t+1 | ι = 0

)
< c0, (46)

and

β̃ξtψH
(
θ̃−1
t , 1

)
Et
(
JF,t+1 − J̃F,t+1 | ι = 0

)
< c0. (47)

where, recall, β̃ = β (1− δ) /τ . Equation (46) shows that the passive equilibrium disappears if

the increase of a government-owned single firm tightens the inter-firm matching market enough

and makes the expected capital gain of intermediate-goods firms so high that these firms search

with positive effort even if the final-goods firms search with zero effort.

Proposition 12. Starting from the passive equilibrium, the size of government spending needed

to move the system to the active equilibrium is:

ñGF,t
ñI,t

> Ψ

 c0

β̃ξψEt
(
JI,t+1 − J̃I,t+1 | ι = 0

)
− ñF,t

ñI,t
, (48)
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with Ψ
′
> 0.15

Equation (48) shows that the magnitude of the policy intervention that moves the economy to

an active equilibrium is proportional to the cost-to-benefit ratio of forming a joint venture, and

it decreases with the measure of private firms in the final-goods sector relative to intermediate-

goods firms. A large quantity of private final-goods firms improves the joint venture prospects

for intermediate-goods firms, decreasing the magnitude of government spending needed to move

to the active equilibrium.

9.3 The fiscal multiplier

We provide now quantitative results regarding the dynamic response of the economy to expan-

sionary fiscal policy shocks and the size of the fiscal multiplier. See Appendix E.2 for details

of the computation of this case. Once we introduce government spending, we have 12 state

variables. Due to this large number of state variables, we implement a dimensionality reduction

algorithm inspired by Krusell and Smith (1998) that is of interest in itself and potentially

applicable to similar problems.

Figure 15 shows the dynamic reaction of selected variables to the same 15% (dotted line) and

20% (solid line) shocks to the relative size of the final-goods sector that we just described when the

economy starts at the passive equilibrium DSS (Appendix I shows the responses for the system

that starts from the active equilibrium). Since the 20% fiscal expansion satisfies Proposition

12, it produces a significant and persistent increase in output and a fall in unemployment.

Nevertheless, this fiscal expansion crowds out private consumption upon impact. This reaction

is due to two mechanisms. First, a rise in government-owned firms reduces, in the short run, the

formation of joint ventures that produce goods for private consumption. Second, the shift of

equilibrium triggers an increase in the cost associated with vacancy posting and joint venture

formation, which further reduces private consumption. The first mechanism still exists in the

15% fiscal expansion, inducing a small drop in private consumption.

We also calculate the fiscal multiplier for our economy, defined as the ratio of the cumulative

change in output over one quarter and one year, generated by the one-period change in government

15Denote h
(
θ̃
)

= H
(

1, θ̃
)

. Ψ is the inverse function of h (·). As h (·) is strictly increasing in θ̃ by assumption,

Ψ is also a strictly increasing function. In our calibration: h (θ) = 2
1
κ

(
1 + θ̃−κt

)− 1
κ

, Ψ (x) = (2x−κ − 1)
− 1
κ .
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Figure 15: GIRFs to positive government spending shock
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spending triggered by the inflow of government-owned single firms in the final-goods sector (we

could compute the fiscal multiplier at other horizons if desired). Panel (a) in Figure 16 shows the

fiscal multiplier as a function of the inflow of government-owned single firms when the economy

is in the passive equilibrium at the start of the fiscal expansion. Panel (b) replicates the exercise

for the case when the economy is in the active equilibrium.

Figure 16: Fiscal multiplier
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In the passive equilibrium, a sufficiently large fiscal expansion generates a multiplier larger

50



than 1 since it triggers a rise in search effort. The fiscal multiplier peaks at the threshold

where we shift from the passive to the active equilibrium. In our calibration, the peak quarterly

fiscal multiplier, 3.5, is at a 19% increase in the number of government-owned firms, which is

equivalent to a 3.8% increase in government spending relative to output in the first quarter

(since the increase in government spending is persistent, the overall size of the fiscal intervention

is larger than the impact change of 3.8%). Any stimulus beyond this level reduces the fiscal

multiplier because the crowding out of private consumption outweighs the increase in output

from the fiscal expansion. A doubling in the number of government-owned final-goods firms

generates a fiscal multiplier of around 1 over a quarter. Similarly, a fiscal expansion below the

threshold generates a less than unitary fiscal multiplier since it creates a large crowding-out

effect and no equilibrium switch.

Panel (b) in Figure 16 shows that the fiscal multiplier is substantially lower in the active

equilibrium. The increased costs of forming joint ventures for private firms in the final-goods

sector reduce private output, and we have a less than unitary fiscal multiplier for any size of the

fiscal stimulus. The multiplier declines with the size of government spending for a crowding-out

effect across a wide range of time horizons.

Our results in Figure 16 agree with the recent empirical literature that has documented the

acute state dependence of fiscal multipliers. See, for example, Auerbach and Gorodnichenko

(2012), Owyang et al. (2013), and Ghassibe and Zanetti (2020). Our model accounts for such

state dependence of fiscal multipliers parsimoniously.

10 Conclusion

This paper shows that search complementarities in the formation of inter-firm joint ventures

have broad implications for the magnitude and persistence of business cycle fluctuations and

the effect of fiscal policy. The optimal degree of search effort is either zero or positive, and the

system entails two static equilibria: an active one with large economic activity and a passive

one with high economic activity. Sufficiently large changes in fundamentals that change search

effort move the system between the two static equilibria.

The dynamic properties of our economy are unlike those of standard models. The model

generates bimodal ergodic distributions of variables and protracted slumps after large shocks.
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Macroeconomic volatility plays an essential role in the selection and duration of each static

equilibrium. In particular, large negative shocks during spells of low volatility generate a

persistent shift to the passive equilibrium, which is consistent with the large and persistent

deviation of economic variables from trend following the financial crisis in the aftermath of the

Great Moderation. Fiscal policy operates markedly different than in standard models, and it is

powerful in stimulating the economy in the passive equilibrium, with a non-monotonic effect on

economic activity, while its effectiveness significantly declines in the active equilibrium.

The analysis opens exciting avenues for additional research. A direct extension would be to

embed strategic complementarities in richer models of the business cycle such as those including

money, nominal rigidities, and financial frictions. Furthermore, the role of agent and spatial

heterogeneity deserves further exploration. We will pursue some of those ideas in future work.
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Appendix

We include a series of appendices. Appendix A formally defines an equilibrium for our economy.

Appendix B shows the derivation of the total surplus of a filled job and the capital gain from

forming a joint venture. Appendix C describes how we compute the DSSs of the model. Appendix

D presents the proofs of several propositions in the main text. Appendix E outlines how to

compute the model. Appendix F discusses the role of mixed-strategy Nash equilibria. Appendix

G completes our discussion of the effects of technology shocks. Appendix H looks at the ergodic

distribution of variables of interest in cases of high and low volatility of the shocks to ξt. Last,

Appendix I, reports the GIRFs to government spending shocks in the active equilibrium.

A Equilibrium

A recursive, symmetric equilibrium of type ιt for our economy is a collection of Bellman equations

Ui,t, W̃i,t, Wi,t, J̃i,t, Ji,t, and Vi,t, a variable search effort σi,t, and sequences for unemployment

ut, single firms ñi,t, joint ventures nt, the price of the intermediate good pt, and wages w̃i,t and

wi,t, all for i ∈ {I, F}, such that:

1. Ui,t, W̃i,t, Wi,t, J̃i,t, Ji,t, and Vi,t satisfy equations (15)-(21).

2. The free-entry condition Vi,t = 0 holds.

3. σi,t maximizes the asset value of the single firm J̃i,t.

4. The sequences of unemployment ut, single firms ñi,t, and joint ventures nt follow the laws

of motion in equations (6), (14), and (13), respectively.

5. The intermediate-goods price pt and the wage for single and joint ventures, w̃i,t and wi,t,

respectively, are determined by the Nash bargaining equations (23)-(25).

6. The type of equilibrium ιt is consistent with σi,t.

7. ξt and zt follow their stochastic processes.

8. The aggregate resource constraint (26) is satisfied.
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B Total surplus

The total surplus of a labor market match at time t in a joint venture in either sector i ∈ {I, F}

of the economy is TSi,t = Wi,t − Ui,t + Ji,t. Analogously, the total surplus of a filled job in a

single firm is T̃ Si,t = W̃i,t − Ui,t + J̃i,t.

Given the bargaining weight, τ , common across sectors, Nash bargaining for wages implies:

Ji,t = τTSi,t, (49)

Wi,t − Ui,t = (1− τ)TSi,t, (50)

J̃i,t = τ T̃Si,t, (51)

W̃i,t − Ui,t = (1− τ) T̃ Si,t. (52)

The free-entry condition of the labor market is:

χ = βξtτH
(
θ̃t, 1

)
Et
(
T̃ SI,t+1

)
= βξtτH

(
1, 1/θ̃t

)
Et
(
T̃ SF,t+1

)
. (53)

The total surplus of establishing a joint venture is the sum of the capital gain from matching

for the firms in the intermediate-goods sector, JI,t − J̃I,t, and final-goods sector, JF,t − J̃F,t is

TSJVt = JI,t − J̃I,t + JF,t − J̃F,t. The price for intermediate goods, pt, is set according to the

Nash bargaining rules JI,t − J̃I,t = τ̃TSJVt and JF,t − J̃F,t = (1− τ̃)TSJVt, where τ̃ is the

intermediate-goods producer’s bargaining power.

We derive now the total surplus of a filled job in a joint venture, TSi,t. Using the equations

for WI,t, JI,t, and UI,t in the definition of TSI,t, we get:

WI,t + JI,t − UI,t = ztpt − h

+ βξtEt

 (
1− δ − δ̃

)
(WI,t+1 + JI,t+1 − UI,t+1)

+δ̃
(
W̃I,t+1 + J̃I,t+1 − UI,t+1

)
− µI,t

(
W̃I,t+1 − UI,t+1

)
 , (54)

or, equivalently,

TSI,t = ztpt − h+ βξtEt
[(

1− δ − δ̃
)
TSI,t +

(
δ̃ − µI,t (1− τ)

)
T̃ SI,t

]
, (55)

where, in the interest of space, we omit the variable ιt.
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Analogously, the total surplus of a filled job in a joint venture for the firm in the final-goods

sector F is:

TSF,t = zt (1− pt)− h+ βξtEt
[(

1− δ − δ̃
)
TSF,t +

(
δ̃ − µF,t (1− τ)

)
T̃ SF,t

]
. (56)

Next, we derive the total surplus of a filled job in a single firm, T̃ Si,t. The equations for

W̃I,t, J̃I,t, and UI,t yield:

J̃I,t + W̃I,t − UI,t = −h− c
(
σ∗I,t
)

+

βξtEt

 (1− δ)
(
1− π∗I,t

) (
J̃I,t+1 + W̃I,t+1 − UI,t+1

)
+

(1− δ) π∗I,t (WI,t+1 + JI,t+1 − UI,t+1)− µI,t
(
W̃I,t+1 − UI,t+1

)
 , (57)

where σ∗I,t is the search effort that maximizes J̃I,t and π∗I,t is the matching probability induced

by σ∗I,t. By using the definition of T̃ Si,t above, we re-arrange the previous equation as:

T̃ SI,t = −h− c
(
σ∗I,t
)

+ βξtEt
[
(1− δ) πI,tTSI,t+1 + ((1− δ) (1− πI,t)− (1− τ)µI,t) T̃ SI,t+1

]
. (58)

Nash bargaining for wages, as shown by equation (51), indicates that firm and worker choose

search effort to maximize their joint surplus T̃ SI,t. Specifically, since σ∗I,t maximizes J̃I,t, it also

maximizes T̃ SI,t. Thus, equation (58) becomes:

T̃ SI,t = max
σI,t≥0

{
− h− c (σI,t)

+ βξtEt
[
(1− δ) πI,tTSI,t+1 + ((1− δ) (1− πI,t)− (1− τ)µI,t) T̃ SI,t+1

]}
, (59)

and where πI,t is an increasing function of σI,t.

We denote the gain for total surplus from forming a joint venture as ∆TSi,t = TSi,t − T̃ Si,t,

and rewrite equation (59) as:

T̃ SI,t = max
σI,t≥0

{
− h− c (σI,t)

+ βξtEt
[
(1− δ) πI,t∆TSI,t+1 + ((1− δ)− (1− τ)µI,t) T̃ SI,t+1

]}
. (60)
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Similarly, we write the total surplus for single firms in the final-goods sector as:

T̃ SF,t = max
σF,t≥0

{
− h− c (σF,t)

+ βξtEt
[
(1− δ) πF,tTSF,t+1 + ((1− δ) (1− πF,t)− (1− τ)µF,t) T̃ SF,t+1

]}
, (61)

or, equivalently,

T̃ SF,t = max
σF,t≥0

{
− h− c (σF,t)

+ βξtEt
[
(1− δ) πF,t∆TSF,t+1 + ((1− δ)− (1− τ)µF,t) T̃ SF,t+1

]}
. (62)

Finally, we derive the total surplus of a joint venture, TSJVi,t. The Nash bargaining for the

intermediate goods price and wage yields ∆TSI,t = τ̃
τ
TSJVt and ∆TSF,t =

(
1−τ̃
τ

)
TSJVt. Using

equations (55) and (59) in the definition of ∆TSi,t produces:

∆TSI,t = min
σI,t

{
ztpt + c (σI,t) + β

[(
1− δ − δ̃

)
− (1− δ)πI,t

]
ξtEt (∆TSI,t+1)

}
, (63)

or after using the Nash bargaining condition ∆TSI,t = τ
τ̃
TSJVt:

TSJVt = min
σI,t

{τ
τ̃

[ztpt + c (σI,t)] + β
[(

1− δ − δ̃
)
− (1− δ)πI,t

]
ξtEt (TSJVt+1)

}
. (64)

Analogously, the total surplus of a joint venture from sector F ’s optimization problem is:

TSJVt = min
σF,t

{ τ

1− τ̃
[zt (1− pt) + c (σF,t)]

+ β
[(

1− δ − δ̃
)
− (1− δ) πF,t

]
ξtEt (TSJVt+1)

}
. (65)

Combining Equation (64)×τ̃+Equation (65)× (1− τ̃), pt cancels out and we find:

TSJVt = τ · zt + β
(

1− δ − δ̃
)
ξtEt (TSJVt+1)

+ min
σI,t

{
τ · c (σI,t)− β (1− δ) πI,tξtEt (τ̃ · TSJVt+1)

}
+ min

σF,t

{
τ · c (σF,t)− β (1− δ) πF,tξtEt [(1− τ̃) · TSJVt+1]

}
. (66)
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The first-order conditions for {σI,t, σF,t} in equation (66) are:

β (1− δ) (ψ + σF,t)H
(
θ̃t, 1

)
τ̃ ξtEt (TSJVt+1) = τ [c0 + c1 (σI,t)

ν ] , (67)

β (1− δ) (ψ + σI,t)H
(

1, θ̃−1
t

)
(1− τ̃) ξtEt (TSJVt+1) = τ [c0 + c1 (σF,t)

ν ] . (68)

The active equilibrium exists if and only if there exists a pair (σI,t, σF,t) > 0 that jointly

solves equations (67) and (68). In the symmetric equilibrium for which τ̃ = 1/2 and θ̃t = 1,

equations (67) and (68) become:

β̃ (ψ + σF,t) ξtEt
(
JI,t+1 − J̃I,t+1

)
= c0 + c1 (σI,t)

ν , (69)

β̃ (ψ + σI,t) ξtEt
(
JF,t+1 − J̃F,t+1

)
= c0 + c1 (σF,t)

ν , (70)

where β̃ = β (1− δ) /τ . Equivalently, we can express the first-order conditions as:

β (1− δ) (ψ + σF,t) ξtEt (∆TSI,t+1) = c0 + c1 (σI,t)
ν (71)

β (1− δ) (ψ + σI,t) ξtEt (∆TSF,t+1) = c0 + c1 (σF,t)
ν . (72)

C Solving for the DSSs

To solve for the DSSs, we evaluate the equilibrium conditions of the model when the variables

are constant over time and the exogenous shocks take their average value. The model entails a

passive and an active (stable) DSS. We disregard the active and unstable DSS in our analysis.

We denote the variables referring to the passive and active DSS with superscript “pas” and

“act,” respectively.

Using equation (66), the total surplus of a joint venture in the passive DSS is:

TSJV pas = τ · zss + 2τ · c (0)

+ βξss
[(

1− δ − δ̃
)
− τ̃ (1− δ) πpasI − (1− τ̃) (1− δ) πpasF

]
TSJV pas (73)

where c (0) = 0, πpasI = (φ+ ψ2)H
(

1, θ̃pas
)

, and,

πpasF =
(
φ+ ψ2

)
H
(

1, 1/θ̃pas
)
. (74)
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As in our baseline calibration, we set τ̃ = 0.5 and assume a symmetric equilibrium so that

θ̃pas = 1. Applying these conditions in equation (73) yields:

TSJV pas =
τ · zss

1− βξss
[(

1− δ − δ̃
)
− (1− δ) (φ+ ψ2)

] . (75)

The gain of total surplus from forming a joint venture in the passive DSS is determined

by ∆TSpasI = τ̃
τ
TSJV pas and ∆TSpasF =

(
1−τ̃
τ

)
TSJV pas, which are useful in deriving the total

surplus of a filled job in the passive DSS.

Analogously, the total surplus of a joint venture in the active DSS is:

TSJV act =

τ ·
[
zss +

(
c0σ

act
I + c1

(σactI )
ν+1

1+ν

)
+

(
c0σ

act
F + c1

(σactF )
ν+1

1+ν

)]
1− βξss

[(
1− δ − δ̃

)
− τ̃ (1− δ) πactI − (1− τ̃) (1− δ)πactF

] , (76)

where:

πactI =
[
φ+

(
σactF + ψ

) (
σactI + ψ

)]
H
(

1, θ̃act
)
,

and

πactF =
[
φ+

(
σactF + ψ

) (
σactI + ψ

)]
H
(

1, 1/θ̃act
)
.

By imposing the symmetry conditions τ̃ = 1/2, θ̃act = 1 and σactF = σactI = σact, equation (76)

becomes:

TSJV act =

τ ·
[
zss + 2

(
c0σ

act + c1
(σact)

ν+1

1+ν

)]
1− βξss

[(
1− δ − δ̃

)
− (1− δ)

[
φ+ (σact + ψ)2]] . (77)

In the active DSS, the first-order condition for {σI,t, σF,t} described by equations (67) and

(68) is:
β (1− δ) (ψ + σact) ξssTSJV act

2
= τ

[
c0 + c1

(
σact
)ν]

. (78)

Equations (77) and (78) can be used to solve numerically for σact and TSJV act.

The gain of total surplus from forming a joint venture in the active DSS is determined by

∆TSactI = τ̃
τ
TSJV act and ∆TSactF =

(
1−τ̃
τ

)
TSJV act. Next, we derive the total surplus of a filled

job in a single firm and the job-finding rate in the DSS. Using equation (58), the total surplus
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of a filled job for a single firm in sector I in the passive DSS is:

T̃ S
pas

I = −h+ β
{

(1− δ)πpasI ·∆TS
pas
I + [(1− δ)− µpasI (1− τ)] T̃ S

pas

I

}
, (79)

where ∆TSpasI and πpasI were solved analytically as in equations (74) and (75). Using the

matching function and free-entry condition in the labor market, the job-finding rate in the

passive DSS is:

µpasI =

(
βτT̃S

pas

I

χ

) α
1−α

. (80)

Equations (79) and (80) are solved numerically for T̃ S
pas

I and µpasI .

Applying the same approach, we solve for T̃ S
pas

F and µpasF . Analogously, the total surplus of

a filled job in a single firm and the job-finding rate in the active DSS solves:

T̃ S
act

i = −h+

[
c0σ

act
i + c1

(σacti )
ν+1

1 + ν

]
+ β

{
(1− δ) πacti ·∆TSacti +

[
(1− δ)− µacti (1− τ)

]
T̃ S

act

i

}
, i ∈ F, I (81)

and

µacti =

(
βτT̃S

act

i

χ

) α
1−α

, i ∈ F, I. (82)

The total surplus of a filled job in a joint venture in the DSS is TSli = T̃ S
l

i + ∆TSli, i ∈

{I, F} , l ∈ {act, pas}. The firm’s asset value in the DSS is J li = τTSli, J̃
l
i = τ T̃S

l

i, i ∈

{I, F} , l ∈ {act, pas}. Finally, we can derive the DSS value for the remaining variables.

Substituting the job-finding rate into the matching function of the labor market, we get

θpas = (µpas)
1
α and θact = (µact)

1
α .

The value for the unemployment rate, the measure of single firms, and the measure of joint

ventures in the passive and active DSS are:

upas =
δ

δ + µpas

uact =
δ

δ + µact

ñpas =
δ̃ +

(
µpas − δ̃

)
upas

δ + πpas + δ̃
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ñact =
δ̃ +

(
µact − δ̃

)
uact

δ + πact + δ̃

npas = 1− upas − ñpas

nact = 1− uact − ñact.

The value for total final output in the passive and active DSSs is ypas = zssnpas and yact = zssnact.

Figure 17: Existence of DSSs

(a) Passive DSS
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(b) At least one active DSS
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(c) Two active DSS
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(d) Coexistence of passive and at
least one active DSS
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(e) Coexistence of passive and two
active DSSs
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With the previous solution, Figure 17 illustrates, for a range of values of c0 (x-axes) and c1

(y-axes), the conditions for the existence of a passive DSS, an active DSS, and the coexistence of

DSSs stated in the main text when the model is calibrated using the parameter values described

in Section 5. The yellow-shaded area shows the values that guarantee the existence of such a

DSS, while the blue area shows the non-existence region. Panel (a) shows that for sufficiently

large values of c0 that the passive DSS exists irrespective of c1. Panel (b) demonstrates that the

active DSS exists for sufficiently low values of c0. An increase in the value of c1 has two opposing

effects. On the one hand, it increases the cost of σi,t and, on the other hand, it decreases the

value of remaining a single firm, which raises the relative value of forming a joint venture. If the

second effect dominates, a large c1 expands the range of values of c0 that satisfy Proposition 4.

Panel (c) shows that two active DSSs exist when c1 is sufficiently large. Panel (d) combines
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panels (a) and (b) to draw the values for c0 and c1 that support the coexistence of passive and

active DSSs. Lastly, panel (e) plots the values of c0 and c1 where a passive and two active DSSs

coexist.

D Proof of propositions

Proof of Proposition 2

Proof. We consider the case of symmetric sectors, so we drop the sector subscripts. We first

show that the labor market tightness ratio is strictly lower in the passive DSS, i.e., θpas < θact,

or, equivalently T̃ S
pas

< T̃S
act

, as implied by the free-entry condition of the labor market.

We start with

T̃ S
act

= −h+

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β

{
(1− δ)πact ·∆TSact +

[
(1− δ)− µact (1− τ)

]
T̃ S

act
}
, (83)

and

µact =

(
βτT̃S

act

χ

) α
1−α

, (84)

which are equivalent to equations (81) and (82) except that here we drop the sector subscripts.

The values for T̃ S
act

and θact solve equations (83) and (84). We rewrite equation (84) as

χ = βτqactT̃ S
act

= βτqpasT̃ S
pas
. (85)

Given the Cobb-Douglas matching function for the labor market, equation (85) is equivalent to:

θact =

(
βτT̃S

act

χ

) 1
1−α

. (86)

Applying equation (85) to equation (83), delivers:

(
1− τ
τ

)
χθact =

{
− h−

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β (1− δ) πact ·∆TSact − [1− β (1− δ)] T̃ S

act
}
, (87)
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where we used µact = θactqact. In equation (87), θ is linear and strictly decreasing in the total

surplus for a single firm, T̃ S. In equation (85), θ is strictly increasing in T̃ S. Since σact and

∆TSact were solved in equations (77) and (78), they are treated as constant terms here.

Hence, values for θact and T̃ S
act

solve:

(
1− τ
τ

)
χθ =

{
− h−

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β (1− δ) πact ·∆TSact − [1− β (1− δ)] T̃ S

}
(88)

θ =

(
βτT̃S

χ

) 1
1−α

. (89)

Similarly, values for T̃ S
pas

and θpas solve:(
1− τ
τ

)
χθ = [−h+ β (1− δ) πpas ·∆TSpas]− [1− β (1− δ)] T̃ S, (90)

θ =

(
βτT̃S

χ

) 1
1−α

. (91)

In equations (88) and (90), θ is linear and strictly decreasing in T̃ S. In equations (89) and (91),

θ is strictly increasing in T̃ S.

For θact > θpas, it must be that the intercept term in equation (87) is greater than the

intercept term in equation (90), which occurs if:

− h−

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β (1− δ) πact ·∆TSact > −h+ β (1− δ) πpas ·∆TSpas. (92)

To simplify notation, denote W (σ) = −h+ W1(σ)
W2(σ)

, where

W1 (σ) =
[
β
(

1− δ − δ̃
)
− 1
] [
c0σ + c1

σν+1

1 + ν

]
+ β (1− δ)

[
φ+ (ψ + σ)2] ,

W2 (σ) = 1− β
{(

1− δ − δ̃
)
− (1− δ)

[
φ+ (ψ + σ)2]} .

It can be shown that equation (92) is equivalent to W (σact) > W (0). We verify that, for

σ ∈
(
0,
√

1− φ− ψ
)
, dW1

dσ
/W1 >

dW2

dσ
/W2, which implies dW/dσ > 0. Consequently, equation

(92) holds, and θact > θpas.
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Since the job-finding rate is strictly increasing in labor market tightness, µact > µpas. Since

u = δ/ (δ + µ) in the DSS, uact < upas holds.

Finally, we show that yact > ypas. Since y = n and n = 1− ñ− u, yact > ypas is equivalent to

showing that ñact + uact < ñpas + upas.

In the DSS, it holds that:

ñ+ u =
δ̃ + (π + µ+ δ) δ

δ+µ

δ + π + δ̃
. (93)

The RHS of equation (93) is strictly decreasing in both µ and π. Given that µpas < µact and

πpas < πact, it holds that ñact + uact < ñpas + upas, or, equivalently, yact > ypas.

Proof of Proposition 3

Proof. Proposition 3 holds if it is optimal for firms in one sector to search with zero effort when

firms in the opposite sector search with zero effort. In such a case, the Nash equilibrium with

zero search effort exists in the passive DSS.

The firm’s maximization problem in the passive DSS is:

T̃ S
pas

= max
σ≥0
−h−

(
c0σ + c1

σν+1

1 + ν

)
+ β

(1− δ) [φ+ ψ (ψ + σ)] ·∆TSpas

+ [(1− δ)− µpas (1− τ)] T̃ S
pas

 . (94)

The total surplus of a single firm T̃ S
pas

is strictly concave in σ, for σ > 0. Hence, the corner

solution σ = 0 is optimal if and only if the first-order derivative is non-positive at σ = 0:

c0 + c10ν ≥ β (1− δ)ψ∆TSpas, (95)

where ∆TSpas is given by equation (75), or, equivalently:

c0 >
β (1− δ)ψ

2− 2β
[(

1− δ − δ̃
)
− (1− δ) (φ+ ψ2)

] , (96)

where we assume zss = 1, ξss = 1, and τ̃ = 0.5.

Proof of Proposition 4
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Proof. Proposition 4 holds if there exist σ ∈
(
0,
√

1− φ− ψ
)

(to guarantee that the matching

probability is bounded by one) and ∆TS ∈ R that solve equations (78) and (77).

By substituting equation (78) into equation (77), we get:

1 +
(
c0σ + c1

σν+1

1+ν

)
2− 2β

[(
1− δ − δ̃

)
− (1− δ)

[
φ+ (σ + ψ)2]] =

c0 + c1σ
ν

β (1− δ) (ψ + σ)
, (97)

where we assume τ̃ = 1/2, ξss = 1, zss = 1.

Proof of Proposition 6

Proof. We first show that the Nash equilibrium in the passive DSS is stable. To do so, we

demonstrate that there exists an ε > 0, such that when a firm in sector j deviates from the

passive DSS by searching with a small and positive effort bounded by ε, it remains optimal for

the firm in the opposite sector i to search with zero effort:

c0 + c10ν > β (1− δ) (ψ + σj)E (∆TSi) , (98)

where σj ∈ (0, ε). The RHS of equation (98) is a function of σj, which is continuous at σj = 0

(note that E (∆TSi) is a continuous function of σj). Given the existence of the passive DSS,

we know that c0 + c10ν > β (1− δ)ψ∆TSpas. Because of continuity, there exists ε > 0, so that

equation (98) holds when σj < ε.

Next, we show that one Nash equilibrium in the active DSS is stable when two active DSSs

exist. The best response function of sector i implied by equations (71) and (72) in the active

DSS is:

σi =


[
β(1−δ)(ψ+σj)∆TS

act−c0
c1

] 1
ν

if β (1− δ) (ψ + σj) ∆TSact ≥ c0

0 if β (1− δ) (ψ + σj) ∆TSact < c0,
(99)

which is strictly increasing and concave in σj since c1 > 0 and ν > 1. When two active DSSs

exist, the best response curve (99) intersects with the 45-degree line at σF = σI = σ∗ and

σF = σI = σ∗∗ with 0 < σ∗ < σ∗∗ <
√

1− φ−ψ. Due to strict concavity, we have dσi
dσj
|σi=σj=σ∗> 1

and dσi
dσj
|σi=σj=σ∗∗< 1. Therefore, the active Nash equilibrium at σF = σI = σ∗ is unstable, while

the one at σF = σI = σ∗∗ is stable.

Finally, consider the case when the passive DSS and one active DSS exist, where σF = σI = σ∗
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and 0 < σ∗ <
√

1− φ− ψ. Since the passive DSS exists, the inequality c0 > β (1− δ)ψ∆TSpas

holds. In addition, we have that ∆TSact < ∆TSpas, which results from equations (75) and

(76). We also have that c0 > β (1− δ)ψ∆TSact. So σi (σj) = 0 in the active DSS for σj ∈ [0, σ̂]

with σ̂ = c0
β(1−δ)∆TSact − ψ. Since σF = σI = σ∗ is the only intersection between σi (σj) and the

45-degree line in the range σj ∈ [σ̂, σ∗] with σi (σ̂) = 0, we must have dσi
dσj
|σi=σj=σ∗≥ 1. When

the derivative is equal to one, the best response curves are tangent to the 45-degree line; when

the derivative is greater than one, the best response curve may have two intersections with the

45-degree line, in which case we have 0 < σ∗ <
√

1− φ− ψ < σ∗∗ which ensures that only one

intersection (σ∗) is the active equilibrium. Since the derivative is greater than or equal to one,

the active static Nash equilibrium at σF = σI = σ∗ is unstable.

E Model solution

In this appendix, we outline the algorithm to solve the model numerically.

E.1 Solution without government spending

We first discuss the solution to the benchmark case without government spending. The vector

of state variables is St = (zt, ξt, ιt−1, ut, nt, ñt), where we omit the sector subscripts. At the

beginning of period t, St is taken as given. The states zt and ξt are exogenous, and the states

ιt−1, ut, nt, and ñt are endogenous and predetermined. To derive the solution of the system, we

require the value functions TSJV (St), and T̃ S (St); two policy functions σ (St), and θ (St); and

the transition rule of ιt = ι (ιt−1, St). The transition rule for the other endogenous states (ut, nt

and ñt) is directly given by the model once the other functions have been found.

Because of sectoral symmetry, θ̃t = ñF,t/ñI,t = 1. As we will show below, a fixed θ̃ implies

that the value functions, policy functions, and the transition rule for ιt depend on (zt, ξt, ιt−1)

only.

Step 1: Solve for TSJV , σ, and ι. Equation (66) can be rewritten as:

TSJV (zt, ξt, ιt−1) = min
σt≥0

τ · [zt + 2c (σt)] + β
{(

1− δ − δ̃
)
− (1− δ) [φ+ (ψ + σt) (ψ + σt)]

}
∗ ξtEt [TSJV (zt+1, ξt+1, ιt)] , (100)
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where σt is the search effort in the opposite sector, taken as given by the firms. In the symmetric

equilibrium, σt = σt.

The equilibrium type ιt is determined by the best response functions implied by equation

(100) and the history dependence of equilibrium selection. Specifically, if ιt−1 = 0 (passive

equilibrium in period t− 1), we first verify whether the passive equilibrium continues to exist in

period t by checking whether:

arg min
σt≥0

2c (σt)− β̃ [φ+ (ψ + σt)ψ] ξtEt [TSJV (zt+1, ξt+1, ιt = 0)] = 0 (101)

holds. If it does, the passive equilibrium exists and persists (i.e., ιt = ιt−1 = 0). Otherwise, the

passive equilibrium fails to exist and the active equilibrium is selected (i.e., ιt = 1).

Analogously, if ιt−1 = 1 (active equilibrium in period t− 1), we verify whether the active

equilibrium continues to exist in period t by checking whether:

arg min
σt≥0

2c (σt)− β̃ [φ+ (ψ + σt) (ψ + σ∗)] ξtEt [TSJV (zt+1, ξt+1, ιt = 1)] > 0 (102)

holds. If it does, the active equilibrium exists and persists (i.e., ιt = ιt−1 = 1). Otherwise, the

active equilibrium fails to exist and the passive equilibrium is selected (i.e., ιt = 0).

We use value function iteration methods to solve for the value function TSJV , the policy

function σ, and the transition rule of ι using equation (100) and conditions (101) and (102).

Step 2: Solve for T̃ S and θ. Equation (58) can be rewritten as:

T̃ S (zt, ξt, ιt−1) = −h−c (σt)+βξtEt

 (1− δ)πt∆TS (zt+1, ξt+1, ιt) +

((1− δ)− (1− τ) θα (zt, ξt, ιt−1)) T̃ S (zt+1, ξt+1, ιt)

 , (103)

where we used ∆TSt+1 = TSt+1 − T̃ St+1 and µt = θαt .

The free-entry condition of the labor market (equation 53) can be rewritten as:

χ = βξtτθ
α−1 (zt, ξt, ιt−1)Et

[
T̃ S (zt+1, ξt+1, ιt)

]
. (104)

With ∆TSt = τ̃TSJVt/τ , σt, and ιt being solved in step 1, we find the value function T̃ S

and the policy function θ with equations (103) and (104) by using value function iteration.
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E.2 Solution with government spending

We consider now the case with government spending. This case is challenging to solve since,

in general, it implies sectoral asymmetry. The model’s vector of state variables is: St =(
zt, ξt, ε

G
t , ιt−1, u

F
t , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , ñ

G
t

)
. States zt, ξt, and εGt are exogenous, and states

ιt−1, u
F
t , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , and ñGt are endogenous. To derive the solution of the system, we

need the solution for the value functions TSJV (St), T̃ SF (St), and T̃ SI (St) (the other value

functions can be derived from these three value functions), the four policy functions σI (St),

σF (St), θI (St), and θF (St), and the transition rule of ιt = ι (ιt−1, St). The transition rule of the

other endogenous states is directly given once the other functions have been found.

In the asymmetric case, the value functions, the policy functions, and the transition rule of

ιt depend on the entire vector of states St rather than a subset of St as in Appendix E.1. The

reason is that the measure of single firms
(
ñFt , ñ

I
t , ñ

G
t

)
determines the inter-firm market tightness

ratio θ̃t, which affects firms’ value and policy. In addition, the transition rule of
(
ñFt , ñ

I
t , ñ

G
t

)
depends on the

(
uFt , u

I
t , n

F
t , n

I
t , n

G
t

)
.

Given the high dimension of the state space, we simplify the model solution with a fore-

cast rule for θ̃ that only depends on a small number of state variables. This approach is

inspired by similar ideas in Krusell and Smith (1998). Intuitively, firms do not need to know(
uFt , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , ñ

G
t

)
to make decisions if the forecast rule is accurate, which greatly

reduces the dimension of the state space when solving the value and policy functions.

We choose the forecast rule:

log
(
θ̃t+1

)
=
(
aθ̃ + aθ̃,ιιt−1

)
log
(
θ̃t

)
+ (az + az,ιιt−1) log (zt)

+ (aξ + aξ,ιιt−1) log (ξt) + (aG + aG,ιιt−1) εGt , (105)

where A =
(
aθ̃, aθ̃,ι, az, az,ι, aξ, aξ,ι, aG, aG,ι

)
is the vector of coefficients to be determined.

To do so, we proceed as follows:

Step 1: Initialize the algorithm. We initialize the forecast rule with some initial guess:

A(0) =
(
a

(0)

θ̃
, a

(0)

θ̃,ι
, a(0)

z , a(0)
z,ι , a

(0)
ξ , a

(0)
ξ,ι , a

(0)
G , a

(0)
G,ι

)
. (106)
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Step 2: Solve for TSJV , σF , σI, and ι. Equation (66) can be rewritten as:

TSJV
(
zt, ξt, ε

G
t , ιt−1, θ̃t

)
= τ · zt + β

(
1− δ − δ̃

)
ξtEt

[
TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)]
(107)

+ min
σI,t

τ · c (σI,t)− β (1− δ) πI,tξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)]
+ min

σF,t
τ · c (σF,t)− β (1− δ) πF,tξtEt

[
(1− τ̃)TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)]
,

where πI,t = [φ+ (ψ + σF,t) (ψ + σI,t)]H
(
θ̃t, 1

)
, πF,t = [φ+ (ψ + σF,t) (ψ + σI,t)]H

(
1, 1/θ̃t

)
,

log
(
θ̃t+1

)
=
(
a

(q)

θ̃
+ a

(q)

θ̃,ι
ιt−1

)
log
(
θ̃t

)
+
(
a(q)
z + a(q)

z,ι ιt−1

)
log (zt)

+
(
a

(q)
ξ + a

(q)
ξ,ι ιt−1

)
log (ξt) +

(
a

(q)
G + a

(q)
G,ιιt−1

)
εGt ,

and A(q) =
(
a

(q)

θ̃
, a

(q)

θ̃,ι
, a

(q)
z , a

(q)
z,ι , a

(q)
ξ , a

(q)
ξ,ι , a

(q)
G , a

(q)
G,ι

)
is the vector of coefficients of the forecast rule

in the q-th iteration.

The equilibrium type ιt is determined by the best response functions implied by equation

(100) and the history dependence of equilibrium selection. If ιt−1 = 0 (passive equilibrium in

period t− 1), we verify whether the passive equilibrium still exists in the current period t, i.e.,

ιt = 0, by checking whether:

arg min
σI,t≥0

c (σI,t)− β̃ [φ+ (ψ + σI,t)ψ] ξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt = 0, θ̃t+1

)]
= 0

(108)

arg min
σF,t≥0

c (σF,t)− β̃ [φ+ (ψ + σF,t)ψ] ξtEt
[
(1− τ̃)TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt = 0, θ̃t+1

)]
= 0

(109)

hold. If these conditions hold, ιt = ιt−1 = 0. Otherwise, ιt = 1.

Analogously, if ιt−1 = 1 (active equilibrium in period t− 1), we verify whether the active

equilibrium still exists in the current period, i.e., ιt = 1, by checking whether:

arg min
σI,t≥0

c (σI,t)− β̃ [φ+ (ψ + σI,t) (ψ + σF,t)] ξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt = 1, θ̃t+1

)]
> 0

(110)
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and

arg min
σF,t≥0

c (σF,t)−β̃ [φ+ (ψ + σI,t) (ψ + σF,t)] ξtEt
[
(1− τ̃)TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt = 1, θ̃t+1

)]
> 0

(111)

hold. If these conditions hold, ιt = ιt−1 = 1. Otherwise, ιt = 0.

Given the forecast rule with A(q), we can solve for the value function TSJV , the policy

function σ, and the transition rule ι with equation (107) and conditions (108)-(111) using value

function iteration.

Step 3: Solve for T̃ S and θ. Equation (58) can be rewritten, for i ∈ {I, F}, as:

T̃ S
(
zt, ξt, ε

G
t , ιt−1, θ̃t

)
= −h− c (σi,t)

+ βξtEt


(1− δ) πi,t∆TS

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)
+(

(1− δ)− (1− τ) θαi

(
zt, ξt, ε

G
t , ιt−1, θ̃t

))
∗T̃ S

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)
 , (112)

where we have used the fact that ∆TSi,t+1 = TSi,t+1 − T̃ Si,t+1 and µi,t = θαi,t.

We also have, for i ∈ {I, F}, the free-entry condition implied by equation (53):

χ = βξtτθ
α−1
i,t

(
zt, ξt, ε

G
t , ιt−1, θ̃t

)
Et
[
T̃ S
(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)]
. (113)

With ∆TSi,t, σI,t, σF,t and ιt being solved in step 2 (in particular, ∆TSt = τ̃TSJVt/τ), we

can solve for the value function T̃ Si,t and the policy function θi,t approximately with equations

(112) and (113) using value function iteration.

Step 4: Simulate the model. We simulate the model for 10,000 periods (disregarding the

first 2,000 as a burn-in) with random draws of
{
zt, ξt, ε

G
t

}
. Then, we compute the realized

equilibrium inter-firm market tightness ratio θ̃t.

Step 5: Update the forecast rule. Based on the simulated data, we update the coefficient

of the forecast rule A(q) with A(q+1) using ordinary least squares. If A(q) and A(q+1) are sufficiently

close to each other, we stop the iteration. Otherwise, we return to step 2. The converged

forecasting rule explains the fluctuations of θ̃t well, with an R2 of 0.91.
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F Mixed-strategy Nash equilibria

This appendix discusses the role of mixed-strategy Nash equilibria in our model. We first

establish the condition for the existence of a mixed-strategy Nash equilibrium in the DSS (the

case with stochastic shocks is similar, but more cumbersome to derive). Then, we argue that such

a mixed-strategy Nash equilibrium exists and is unique for the calibration in Section 5. However,

this mixed-strategy Nash equilibrium is unstable: a small deviation from the mixed-strategy

makes the system converge to the pure-strategy Nash equilibrium.

In a mixed-strategy setting, firms randomize their search effort by choosing σ = 0 with

probability q and choosing σ = σ̂ with probability (1− q). We numerically verify that the

solution to equation (71) is unique in the range of 0 < σ̂ <
√

1− φ − ψ. So firms cannot

randomize their search effort by choosing between multiple positive efforts. The random choice

is independent across firms. Due to the law of large numbers, the average search effort in both

sectors is σ = q · 0 + (1− q) σ̂. For a single firm, the inter-firm matching probability is given by

π (σ) = φ+ ψ (ψ + σ) (ψ + σ). In the mixed-strategy Nash equilibrium, the inter-firm matching

probability takes two values: π (0) = φ+ ψ (ψ + σ) and π (σ̂) = φ+ (ψ + σ̂) (ψ + σ).

A mixed-strategy Nash equilibrium consists of a tuple {q, σ̂} with σ̂ ∈
(
0,
√

1− φ− ψ
)

and

q ∈ (0, 1). The tuple {q, σ̂} implies that single firms are indifferent between choosing σ = 0 and

σ = σ̂, i.e., T̃ S (0) = T̃ S (σ̂). Since ∆TS (0) = TS − T̃ S (0) and ∆TS (σ̂) = TS − T̃ S (σ̂), it

holds that ∆TS (0) = ∆TS (σ̂). We denote ∆TS (0) = ∆TS (σ̂) = ∆TS.

According to equation (63):

∆TS = zsspss + β
[(

1− δ − δ̃
)
− (1− δ) π (0)

]
∆TS, (114)

where c (0) = 0. From equation (60), the single firm’s total surplus with zero search effort is:

T̃ S (0) = −h+ β
[
(1− δ)π (0) ∆TS + ((1− δ)− (1− τ) θα) T̃ S (0)

]
. (115)

Analogously, the single firm’s total surplus by choosing σ̂ search effort satisfies:

T̃ S (σ̂) = −h− c (σ̂) + β
[
(1− δ) π (σ̂) ∆TS + ((1− δ)− (1− τ) θα) T̃ S (σ̂)

]
. (116)

Since T̃ S (0) = T̃ S (σ̂) in the mixed-strategy Nash equilibrium, combining equations (115)
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and (116) delivers:

c (σ̂) = β (1− δ) (π (σ̂)− π (0)) ∆TS. (117)

Finally, according to the first-order condition for {σI,t, σF,t} in equation (71):

β (1− δ) (ψ + σ) ∆TS = c0 + c1σ̂
ν . (118)

In sum, we have the three equations (114), (117), and (118) and three unknowns (i.e., σ̂, q,

∆TS). The mixed-strategy Nash equilibrium exists if the system of equations has a solution for

the three unknowns. Using the calibration in Section 5, the mixed-strategy Nash equilibrium is

q = 0.3425, σ̂ = 0.0164, and ∆TS = 2.7417. The average search effort σ is (1− q)× σ̂ = 0.0107.

Figure 18: Best response in the mixed-strategy Nash equilibrium
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The left panel in Figure 18 displays the firm’s optimal search effort in sector F as a function

of σI . The firm chooses a positive search effort if σI > 0.0107 (i.e., for values to the right of the

vertical dashed line). The firm chooses a zero search effort if σI < 0.0107 (i.e., for values to the

left of the vertical dashed line). The firm is indifferent between choosing σ = 0.0164 and σ = 0

if σI = 0.0107 (i.e., if sector I uses the mixed-strategy qI = 0.3425, σ̂I = 0.0164).

The right panel in Figure 18 plots σF as a function of σI . The firm chooses a positive search

effort if σI > 0.0107 (i.e., for values to the right of the vertical dashed line). The firm would

choose a zero search effort if σI < 0.0107 (i.e., for values to the left of the vertical dashed line).

If σI < 0.0107 (i.e., if sector I uses the mixed-strategy qI = 0.3425, σ̂I = 0.0164), a fraction

0.3425 of firms chooses σ = 0, while the rest of the firms choose σ = 0.0164, which implies

σF = 0.0107 (i.e., the cross marker).
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Figure 18 shows that the mixed-strategy Nash equilibrium is unstable: a decrease in σI

induces all firms in sector F to search with zero effort and the system converges to the pure-

strategy Nash equilibrium with zero search effort (i.e., passive equilibrium). Similarly, an increase

in σI induces all firms in sector F to search with positive effort; hence, the system converges to

the pure-strategy Nash equilibrium with positive search effort (i.e., active equilibrium).

G Simulations based on shocks to productivity

In this appendix, we complete our discussion of the effects of technology shocks in the model.

Figure 19 plots the ergodic distribution of selected variables for the case where we only have

AR(1) shocks to technology, zt (for transparency, we eliminate the discount factor shocks). As

outlined in the paper, persistent exogenous disturbances to the technological process fail to

move the system to a different equilibrium, the equilibrium is always active, and the ergodic

distributions of the variables of interest are unimodal.

In Figure 20, we plot the ergodic distribution of selected variables for the case where we have

shocks both to technology, zt and to the discount factor, ξt. We recover bimodality, but this

feature is induced by the shocks to ξt and their ability to switch equilibria. The main effect of

the shocks to productivity is to spread out the ergodic distribution in Figure 8 in the main text

(only shocks to ξt) around its two modes.

Figure 21 shows the GIRFs to a range of persistent negative productivity shocks when the

economy starts from the active DSS. Negative productivity shocks are unable to generate a shift

in equilibrium even when their magnitude gets very large. In each case, the costly search effort

falls after the productivity shock, and then gradually recovers. The effect of a productivity

shock on the labor market tightness ratio and the unemployment rate is also transitory. The

mechanism is that the gain of matching with a partner (TS − T̃ S) in the active equilibrium is

inelastic with the change in productivity. This result is similar to the one in Shimer (2005), who

points out that the gain of matching with a worker, T̃ S and TS, is inelastic with the change

in productivity in a canonical DMP model. Since T̃ S and TS move in the same direction in

reaction to productivity shocks, the response of TS − T̃ S to productivity shocks is even weaker.

As a result, the existence condition for the active equilibrium in equation (35) keeps holding: if

we start at the active DSS, firms find it desirable to search actively for a partner even when

productivity is low.
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Figure 19: Ergodic distribution with AR(1) shocks to zt
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Figure 20: Ergodic distribution with i.i.d. shocks to ξt and AR(1) shocks
to zt
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We also experiment with permanent changes in productivity. In period t = 1, the economy

starts from the active DSS with positive search effort, and in period t = 2 a permanent fall in

productivity hits the economy. This permanent shock may shift the equilibrium of the system
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Figure 21: GIRFs to a negative productivity shock
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Note: Each panel shows the response of a variable to a negative productivity shock (z) with magnitudes of 0.05
(blue line), 0.10 (red line), 0.15 (black line), and 0.20 (green line).

by affecting the expected gain of match Et(Ji,t+1 − J̃i,t+1). For example, in an economy in the

active equilibrium, a sufficiently large fall in zt decreases the expected gain from joint venture

formation and moves the system to the passive equilibrium.

Figure 22: GIRFs to a negative permanent productivity shock
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Note: Each panel shows the response of a variable to a permanent negative productivity shock (z) with magnitudes
of 0.19 (solid line), 0.23 (dashed line), and 0.35 (dot-dashed line).
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We use the model to assess the magnitude of the fall in zt needed to move the system from

the active to the passive equilibrium. Figure 22 shows the GIRFs of selected variables to a 19%

(solid line), 23% (dashed line), and 35% (dot-dashed line) permanent decline in productivity

(zt). The first two shocks are unable to move the system to the active equilibrium because

the expected gain from inter-firm matching is relatively inelastic to permanent changes in

productivity. Productivity shocks induce J̃i,t+1 and Ji,t+1 to comove, leading to a weak response

of Et(Ji,t+1− J̃i,t+1) to the shock. As we mentioned above, this finding is consistent with Shimer

(2005). In comparison, a sufficiently large productivity shock of 35% pushes the economy to the

passive equilibrium. This analysis suggests that a permanent productivity shock is unlikely to

move the system between equilibria unless the shock is massive.

H Volatility of shocks

Figure 23 plots the ergodic distribution of endogenous variables with i.i.d. shocks to ξ in the

case of high volatility. Figure 24 repeats the same exercise, but in the case of low volatility. In

both figures, we see the bimodal distributions that we discussed in the main text and the long

left tail of output when the volatility of ξt is high.

Figure 23: Ergodic distribution with i.i.d. shocks to ξ, high volatility
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Figure 25 lowers volatility of ξt even further, to 0.02. Now, all traces of bimodality disappear.
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Figure 24: Ergodic distribution with i.i.d. shocks to ξ, low volatility
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Figure 25: Ergodic distribution with i.i.d. shocks to ξ, extra-low volatility
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I GIRFs to government spending shock in the active

equilibrium

This appendix studies the effect of government spending shocks when the economy starts from

the active equilibrium. Figure 26 shows the response in the level of selected variables to a 15%

(the solid line) and an 18% (the dashed line) government spending shock. Since the economy is

already in the active equilibrium, the effects of the fiscal expansion are limited and transitory.

Figure 26: GIRFs to positive government spending shock in the active
equilibrium
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Note: Each panel shows the response of a variable to a one-period 15% (solid line) and 18% (dashed line) increase
in government spending.
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