Q: risk, rents, or growth?

Alex Corhay¹ Howard Kung² Lukas Schmid³

¹Rotman - University of Toronto

²London Business School & CEPR

³USC Marshall & CEPR

Secular trends

- ▷ Secular trends in aggregate economic activity:
 - ▷ average output growth and productivity have declined 2.38% (1984-2000) to 1.08% (2001-2017)
 - ▷ capital investment and innovation have dropped

Investment and innovation

> Secular fall in investment and innovation over the past few decades

Secular trends

- ▷ Secular trends in aggregate economic activity:
 - ▷ average output growth and productivity have declined 2.38% (1984-2000) to 1.08% (2001-2017)
 - ▷ capital investment and innovation have dropped
- ▷ Secular trends in asset valuation:
 - ▷ increase in corporate profits
 - $\,\triangleright\,\,$ high valuation ratios over the period

Q

> Tobin's Q had been rising over the same period

Secular trends

- ▷ Secular trends in aggregate economic activity:
 - ▷ average output growth and productivity have declined 2.38% (1984-2000) to 1.08% (2001-2017)
 - ▷ capital investment and innovation have dropped
- ▷ Secular trends in asset valuation:
 - \triangleright increase in corporate profits
 - \triangleright high valuation ratios over the period
- ▷ Increase in Tobin's Q was followed by a large correction in March 2020 and a prompt recovery.

Q: Risk, Rents, or Growth?

$$Q = \frac{V}{K} \approx 1 + \frac{ROA}{R-g}$$

1. ROA

- Rents? Competition?
- Returns to intangible capital?
- 2. R
- Interest rates?
- Risk premia?
- 3. g
- Innovation?

Q: Risk, Rents, or Growth?

$$Q = \frac{V}{K} \approx 1 + \frac{ROA}{R - g}$$

1. ROA

- Rents? Competition? (e.g. Gutierrez and Philippon (2018))
- Returns to intangible capital? (e.g. Crouzet and Eberly (2018))
- 2. R
- Interest rates? (e.g. Eggertson et al. (2018))
- Risk premia? (e.g. Farhi and Gourio (2018))
- 3. g
- Innovation? (e.g. Bloom et al. (2018))
- Endogenous linkages between these forces?

This paper: provide a quantitative decomposition of the drivers behind these trends using an estimated general equilibrium model with endogenous growth, endogenous competition, and realistic risk premia

Roadmap

- Model
- > Estimate the model, using SMM, in two sub-periods
 - \triangleright 1984-2000 (high *i*, low valuations/profits, high *r*)
 - \triangleright 2001-2017 (low *i*, high valuations/profits, low *r*)
- ▷ Isolate effect of changes in key structural parameters
- \triangleright Extension with sticky prices

Key model features

- 1. Endogenous concentration:
 - firms compete in oligopolistic industries
 - new firms can enter and disrupt incumbents rents
 - creates time-varying markups
- 2. Endogenous growth:
 - firms can improve their productivity by investing in R&D
 - through spillover effects: innovation policies affect aggregate growth
- 3. Recursive preferences:
 - movements in long-run rates are priced
- $\Rightarrow~$ Changes in the competitive environment can affect long-term growth and risk and vice-versa.

Results highlights

> Model rationalizes many secular trends in the data.

- \uparrow concentration, \uparrow markup, \downarrow labor share
- \downarrow productivity, investment and innovation
- \uparrow Tobin's Q
- \downarrow risk-free rate and inflation
- etc.
- ▷ Explain the increased sensitivity of asset prices and economic activity to shocks (monetary policy, demand, uncertainty, etc.)
- ▷ Large role attributed to rising entry costs.
- ▷ Increase in price markup has had important effects on risk and growth:
 - consumption growth: pprox -51~bps
 - risk-free rate: pprox -50~bps
 - equity premium: pprox +43 bps
 - welfare loss: pprox +27%

Economic environment

- ▷ Households: rep agent, Epstein-Zin preferences
- ▷ Production structure:
 - 1. final goods: competitive
 - 2. industries: bounded measure of differentiated firms, free entry
 - firms compete oligopolistically
- ▷ Only one exogenous shock to technology.

Industry structure

▷ Each industry uses a measure $N_{j,t}$ of firm's output to produce an industry good $Y_{j,t}$:

$$Y_{j,t} = \left(\int_0^{N_{j,t}} X_{ij,t}^{\frac{\nu_2-1}{\nu_2}} di\right)^{\frac{\nu_2}{\nu_2-1}},$$

a. ν₂ is the elasticity of substitution between intermediate goods
b. N_{j,t} is the *time-varying* mass of firms in an industry.

Industry structure

- Industries are characterized by an oligopolistic market structure. Firms play each period a *Bertrand game* within their industry, i.e. firms set price taking as given the decisions of other firms.
 - $\Rightarrow\,$ the intensity of competition depends on the number of firms within each industry.
- ▷ The price elasticity of demand:

$$\xi_{j,t} = \frac{-\nu_2 N_{j,t} + \nu_2 - \nu_1}{N_{j,t}}$$

> Converges to standard Dixit-Stiglitz elasticity in the limit:

$$\lim_{N_{j,t}\to\infty}\xi_{j,t} = -\nu_2.$$

Firms

Uses labor and physical and intangible capital as inputs (suppressing industry and intermediate good subscripts):

$$X_t = K_t^{\alpha} \left(TFP_t \cdot L_t \right)^{1-\alpha}$$

▷ Total factor productivity:

$$TFP_t \equiv A_t Z_t^{\eta} Z_t^{1-\eta},$$

where Z_t is the total aggregate stock of intangible capital.

The spillover effects from R&D investment lead to sustained endogenous growth.

Firms

▷ Firm's problem:

$$\max_{L_t, K_t, Z_t, P_t} D_t = P_t X_t - W_t L_t - r_t^k K_t - r_t^z Z_t$$

s.t. firm demand function and taking decisions of other firms as given

 \triangleright In equilibrium, the price markup φ_t depends on the number of firms:

$$\phi_t = \frac{-\nu_2 \, \textit{N}_t + (\nu_2 - \nu_1)}{-(\nu_2 - 1) \, \textit{N}_t + (\nu_2 - \nu_1)}$$

Entry & exit

▷ Entry in the industry entails a fixed cost:

$$F_{E,t} = \kappa \mathcal{Y}_t$$

▷ Law of motion for number of firms in an industry:

$$N_{t+1} = (1 - \delta_n)(N_t + N_{E,t})$$

where δ_n is the firm exit rate, and $N_{E,t}$ is entry.

▷ The equilibrium number of firms is determined by a free entry condition:

$$(1-\delta_n)E_t[\mathcal{M}_{t+1}V_{t+1}]=F_{E,t}$$

Endogenous links: markup, growth, and risk

$$\frac{RDX}{Sales} = \frac{\mathcal{R}_t^z Z_t}{P_t X_t} = \frac{\eta(1-\alpha)}{\varphi_t}$$

- ▷ Incentives for entry are related to expected profits
 ⇒ entry (and competition) is *procyclical*.
 ⇒ markups are *countercyclical*.
- Further reduces demand for R&D in recessions, which amplifies downturns

Endogenous links: markup, growth, and risk

▷ Equilibrium TFP depends on the accumulation of R&D capital:

$$\begin{aligned} & \mathcal{E}_t[\Delta t f \boldsymbol{p}_{t+1}] & \approx \quad \Delta z_{t+1} \\ & \approx \quad -\delta_z + \log(\mathsf{R}\&\mathsf{D} \text{ intensity}). \end{aligned}$$

- creates low-frequency movements in growth rates which are a source of equilibrium long-run risks.
 - with EZ preferences \Rightarrow sizeable risk premia.
- > Allowing for endogenous price markups amplifies this relation.

Estimation

- ▷ Estimate 7 potential candidate drivers of secular trends over two subsamples (1984-2000 and 2001-2017) via SMM.
- ▷ Estimated parameters:
 - δ_k , δ_z : depreciation rates of physical and intangible capital
 - \rightarrow use empirical depreciation rates.
 - η : is the share of technology in the production function
 - \rightarrow identified using the ratio of intangible to physical capital.
 - β: subjective discount factor
 - \rightarrow primarily identified using the 1-year real yield.
 - K: entry cost parameter
 - \rightarrow aggregate markup measure from Eeckhout and DeLoecker (2018)
 - a*: average level of productivity
 - \rightarrow match mean output growth.
 - γ : risk aversion
 - \rightarrow match PE ratio.

Parameter estimates

Panel A: Moments							
			Data			Мо	del
		1984-2000 2001-2017		1984-2000		2001-2017	
Mean output growth		2.38%	, D	1.08%	2	2.38%	
Mean risk-fr	ee rate	3.13%	, D ·	-0.48%	3	.13%	-0.48%
Mean marku	р	37.56%	6	47.75%	37	7.68%	47.87%
$E[\delta_k]$		1.79%	, D	1.72%	1	.79%	1.72%
$E[\delta_z]$		7.02%	, D	7.27%	7	.02%	7.27%
Mean Z/K		6.28%	, D	10.82%	6	.28%	10.82%
Mean <i>PE</i>		19.41		24.54 19		.9.38	24.48
Panel B: Parameter estimates							
	a*	β	η	γ	ĸ	δ_k	δz
1984-2000	1.030	0.988	0.072	8.467	2.301	1.79%	7.02%
2001-2017	0.272	0.994	0.155	9.813	4.078	1.72%	7.27%
Difference	-0.758	0.005	0.083	1.346	1.776	-0.07%	0.25%

> The model matches the trend in the target moments very well.

 \triangleright Share of intangible and entry cost have subtantially increased.

Parameter contribution in explaining trends

	a*	β	η	γ	к	δ _k	δz
HHI	0.02	-0.02	-0.00	0.00	0.11	0.00	-0.00
n	-0.03	0.03	0.01	-0.00	-0.19	-0.00	0.00
Profit Share	1.56%	-0.29%	-4.84%	0.05%	7.00%	0.22%	-0.04%
B. Macro mor	nents						
$E[\Delta y]$	-2.44%	1.28%	0.32%	-0.14%	-0.51%	-0.11%	0.03%
$\sigma[\Delta y]$	-0.12%	0.10%	-0.08%	-0.00%	0.09%	-0.02%	0.02%
$E[\Delta tfp]$	-2.44%	1.28%	0.32%	-0.14%	-0.51%	-0.11%	0.03%
$\sigma[\Delta tfp]$	-0.09%	0.03%	-0.04%	-0.00%	0.06%	-0.02%	0.02%
Net I/K	-2.45%	1.29%	0.32%	-0.15%	-0.51%	-0.11%	0.03%
Net S/Z	-2.45%	1.29%	0.32%	-0.15%	-0.51%	-0.11%	0.03%
Labor Share	-0.01	0.01	0.00	-0.00	-0.04	-0.00	0.00
C. Asset prices	5						
$E[r_{f}^{(1)}]$	-0.08%	-2.86%	0.33%	-0.56%	-0.50%	0.09%	-0.07%
$E[r_d - r_f]$	-1.14%	1.34%	-0.22%	0.75%	0.43%	-0.15%	0.10%
$E[r_d]$	-1.31%	-1.45%	0.08%	0.23%	-0.06%	-0.07%	0.04%
E[Q]	-0.03	0.03	-0.17	0.00	0.24	-0.00	0.00
$\sigma[r_d - r_f]$	-0.14%	0.08%	0.04%	0.00%	0.12%	-0.02%	0.03%

▷ Rising markups are key to explain:

- ▷ joint rise in Q and fall in R&D and investment.
- ▷ the increase in competition and profitability measure.

Effects of the rise of market power cont.

	Farler B. Markup contribution to target moments						
	1984-2000	2001-2017	Difference	Contribution			
$E[\Delta y]$ $E[r_f]$ $E[r_d -$	2.38% 3.13% r _f] 2.01%	1.08% -0.48% 3.50%	-1.30% -3.60% 1.48%	-0.51% -0.50% 0.43%			

Panel B: Markup contribution to target moments
--

- ▷ Rising markups explains a significant portion of:
 - the fall in productivity and growth.
 - the fall in risk-free rate and rising equity risk premium.
 - $-\,$ lead to a significant welfare loss $\approx 27\%$
- Accounting for endogenous markup and growth is key to explain observed secular trends.

Risk, rents, and growth nexus

Table: Markup contribution

	I. Benchmark	II Exo growth&markup
Markup	10.19%	10.19%
$E[\Delta y]$	-0.51%	0.00%
$\sigma[\Delta y]$	0.09%	0.00%
$E[r_f]$	-0.50%	-0.03%
$E[r_d - r_f]$	0.43%	0.20%
Welfare costs	27%	1%

 Critical to account for endogenous linkages between markups, growth, and risk.

Robustness checks

The quantitative importance of rising entry costs is robust to:

- 1. estimating capital share changes across sample
- 2. using a demand-side measure for industry competition total number of operating firms.

$$\varphi_t = \frac{-\nu_2 N_t + (\nu_2 - \nu_1)}{-(\nu_2 - 1) N_t + (\nu_2 - \nu_1)}$$

3. allowing parameters to slowly adjust over time.

Nominal trends

▷ Extend the model with sticky prices.

$$D_t = P_t X_t - \mathcal{W}_t L_t - R_{k,t} K_t - R_{z,t} Z_t - \frac{\Phi_P}{2} \left(\frac{P_t}{P_{t-1} \overline{\Pi}} - 1 \right)^2 \bar{\mathcal{Y}}_t$$

Price markup varies over time because of

- industry competition
- aggregate inflation

$$\begin{split} \varphi_t^{-1} &= \frac{-(\nu_2 - 1) \, N_t + (\nu_2 - \nu_1)}{-\nu_2 \, N_t + (\nu_2 - \nu_1)} \\ &+ \Phi_P \frac{-\left(\frac{\Pi_{j,t}}{\Pi} - 1\right) \frac{\Pi_{j,t}}{\Pi} + \mathcal{E}_t \left[(1 - \delta_n) \mathcal{M}_{t,t+1} \left(\frac{\Pi_{j,t+1}}{\Pi} - 1\right) \frac{\Pi_{j,t+1}}{\Pi} \Delta \mathcal{Y}_{t+1} \Delta \mathcal{N}_{t+1} \right]}{1 - \nu_2 + (\nu_2 - \nu_1) N_t^{-1}} \end{split}$$

 \Rightarrow Amplifies the countercyclicality of markups.

Parameter estimates

Panel A: Moments						
	Da	ata	Mc	Model		
	1984-2000	2001-2017	1984-2000	2001-2017		
Mean output growth	2.38%	1.08%	2.38%	1.08%		
Mean risk-free rate	3.13%	-0.48%	3.13%	-0.48%		
Mean markup	37.56%	47.75%	37.56%	47.75%		
$E[\delta_k]$	1.79%	1.72%	1.79%	1.72%		
$E[\delta_z]$	7.02%	7.27%	7.02%	7.27%		
Mean Z/K	6.28%	10.82%	6.28%	10.82%		
Mean <i>PE</i>	19.41	24.54	19.41	24.52		
Mean inflation	3.20%	2.06%	3.20%	2.06%		

Panel B: Parameter estimates								
	a*	β	η	γ	Π*	ĸ	δ _k	δz
1984-2000	1.016	0.988	0.072	8.636	1.025	2.074	1.79%	7.02%
2001-2017	0.261	0.994	0.156	10.112	1.028	3.743	1.72%	7.27%
Difference	-0.755	0.005	0.084	1.476	0.002	1.669	-0.07%	0.25%

 \triangleright Model matches the fall of inflation.

Risk, rents, and growth nexus - nominal rigidities

	I. Benchmark	II. Nominal rigidities
Markup	10.19%	10.19%
$E[\Delta y]$	-0.51%	-0.60%
$\sigma[\Delta y]$	0.09%	0.10%
$E[r_f]$	-0.50%	-0.70%
$E[r_d - r_f]$	0.43%	0.51%
E[π]	-	-1.11%
σ[π]	-	-0.15%

- ▷ Role of markups increased with nominal rigidities.
- $\,\triangleright\,$ Rise in markups explain 'missing inflation puzzle' and the secular trend in inflation volatility.

Intuition:

- Sticky prices make markup "too high" in recessions relative to the desired markup.
- recessions are times of high price of risk.
- $-\,$ firms are reluctant to increase price \Rightarrow lower inflation
- higher markups amplify this effect.

Higher markups and responses to shocks

- Stock market valuations and the economy are more sensitive to shocks in high markup environment.
 - ▷ consistent with large market correction in March 2020.

Monetary policy shocks

> Economy and asset markets more sensitive to monetary policy shocks.

Conclusion

- ▷ We estimate a model that allows for rich interactions between market structure, growth and risk.
 - time-varying markups play a central role in the economy
- ▷ Fall in competition is a key driver of recent macroeconomic trends and has an important impact on welfare.
- Policy makers should pay a close attention to the enforcement of antitrust laws.