

Discussion of “Trade, Jobs, and Worker Welfare” by Erhan Artuç, Paulo Bastos , and Eunhee Lee

Pablo Fajgelbaum

Princeton and NBER

July 8, 2020

Background and Main Idea

- Recent studies with job reallocation and trade
 - Artuc et al. (2010), Dix-Carneiro (2014), Caliendo et al. (2019), Traiberman (2019),...
 - Sector reallocations due to individual and aggregate shocks
 - Limited role for within-sector job reallocation given observables
- Here: number of jobs are an autonomous source of welfare gain
 - More jobs make it more likely to find a “match”
 - Greater within-sector reallocation reveal higher welfare
- Interesting potential channel
 - Sharp predictions for sector size
 - “New” source of welfare gain
 - Not explored in trade

Summary of Paper

- ① Reduced-form evidence. Sector-level export shock leads to:
 - Less workers leaving and more workers entering
 - More switching within sector
- ② Estimate a trade and labor mobility model (+within-sector reallocation)
 - Revisit regressions using model-based welfare measure
- ③ Counterfactuals: sector-level trade shock
 - Show results with constant number of jobs within sector

Broad Assessment

- Paper extends existing models & builds upon dynamic-hat-algebra tricks
- We would like to see:
 - ① Suggestive evidence
 - ② Parameters that index the intensity of the new channel
 - ③ Counterfactuals that demonstrate its welfare relevance

Equilibrium in a Nutshell (Steady-State, 2 Sectors)

- $\{L^i\}$ determined given $\{w^i, N^i\}$ through dynamic labor supply decision:
 - Value of starting in k

$$V^k = w^k + \nu \ln(OV^k)$$

$$OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^I \exp\left(\frac{\beta V^I - C(k, I) - \delta}{\nu}\right)$$

- Employment distributions, inflows=outflows:

$$\frac{L^k}{L^I} = \frac{\text{Prob of switching from } I \text{ to } k}{\text{Prob of switching from } k \text{ to } I} = \frac{N^k}{N^I} \frac{OV^k}{OV^I} \exp\left(\beta(V^k - V^I)\right)$$

- $\{w^i, N^i\}$ determined given $\{L^i\}$ through static equilibrium of trade model
 - Tasks: $O^k = \arg \max_O P^k (L^k)^{\gamma} O^{\frac{1}{\gamma-1}} - cO - w^k L^k$
 - "Jobs": $N^k = \rho(O^k)$
- I did not understand: why is $N^k \neq L^k$. What is N^k ?

Equilibrium in a Nutshell (Steady-State, 2 Sectors)

- $\{L^i\}$ determined given $\{w^i, N^i\}$ through dynamic labor supply decision:
 - Value of starting in k

$$V^k = w^k + \nu \ln(OV^k)$$

$$OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^I \exp\left(\frac{\beta V^I - C(k, I) - \delta}{\nu}\right)$$

- Employment distributions, inflows=outflows:

$$\frac{L^k}{L^I} = \frac{\text{Prob of switching from } I \text{ to } k}{\text{Prob of switching from } k \text{ to } I} = \frac{N^k}{N^I} \frac{OV^k}{OV^I} \exp\left(\beta(V^k - V^I)\right)$$

- $\{w^i, N^i\}$ determined given $\{L^i\}$ through static equilibrium of trade model
 - Tasks: $O^k = \arg \max_O P^k (L^k)^{\gamma} O^{\frac{1}{1-\gamma}} - cO - w^k L^k$
 - "Jobs": $N^k = \rho(O^k)$
- I did not understand: why is $N^k \neq L^k$. What is N^k ?

Equilibrium in a Nutshell (Steady-State, 2 Sectors)

- $\{L^i\}$ determined given $\{w^i, N^i\}$ through dynamic labor supply decision:
 - Value of starting in k

$$V^k = w^k + \nu \ln(OV^k)$$

$$OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^I \exp\left(\frac{\beta V^I - C(k, I) - \delta}{\nu}\right)$$

- Employment distributions, inflows=outflows:

$$\frac{L^k}{L^I} = \frac{\text{Prob of switching from } I \text{ to } k}{\text{Prob of switching from } k \text{ to } I} = \frac{N^k}{N^I} \frac{OV^k}{OV^I} \exp\left(\beta(V^k - V^I)\right)$$

- $\{w^i, N^i\}$ determined given $\{L^i\}$ through static equilibrium of trade model
 - Tasks: $O^k = \arg \max_O P^k (L^k)^\gamma O^{\frac{1}{\bar{\sigma}-1}} - cO - w^k L^k$
 - "Jobs": $N^k = \rho(O^k)$
- I did not understand: why is $N^k \neq L^k$. What is N^k ?

Equilibrium in a Nutshell (Steady-State, 2 Sectors)

- $\{L^i\}$ determined given $\{w^i, N^i\}$ through dynamic labor supply decision:
 - Value of starting in k

$$V^k = w^k + \nu \ln(OV^k)$$

$$OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^I \exp\left(\frac{\beta V^I - C(k, I) - \delta}{\nu}\right)$$

- Employment distributions, inflows=outflows:

$$\frac{L^k}{L^I} = \frac{\text{Prob of switching from } I \text{ to } k}{\text{Prob of switching from } k \text{ to } I} = \frac{N^k}{N^I} \frac{OV^k}{OV^I} \exp\left(\beta(V^k - V^I)\right)$$

- $\{w^i, N^i\}$ determined given $\{L^i\}$ through static equilibrium of trade model
 - Tasks: $O^k = \arg \max_O P^k (L^k)^\gamma O^{\frac{1}{\bar{\sigma}-1}} - cO - w^k L^k$
 - "Jobs": $N^k = \rho(O^k)$
- I did not understand: why is $N^k \neq L^k$. What is N^k ?

Suggestive Evidence?

- Implication for job flows across regions?
 - This model: higher within-sector worker reallocation in large sector-regions
 - vs. Bilal (2020): higher-wage (=larger) regions have low job-finding and even lower job-destruction rates
- Paper shows: export shock to k , then
 - $\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of keeping job}} = (N^k - 1) \exp\left(-\frac{\delta}{\nu}\right)$
 - $\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of switching out of } k} = \frac{N^k - 1}{N^l} \exp\left(\frac{\beta(w^k - w^l) - C(k, l)}{\nu}\right) \left(\frac{\partial V^k}{\partial V^l}\right)^\beta$
 - Interpretation: through N^k (= "job opportunities")
- Also consistent with standard within-sector reallocations
 - Frictionless: Melitz model
 - Frictional: Cosar, Guner and Tybout (AER 2016)
- Would like to see: sector size ("# jobs") matters for labor supply
 - Conditional on wages and job-finding rate
 - Akin to agglomeration effect in urban economics (cf. Diamond 2016)

Suggestive Evidence?

- Implication for job flows across regions?
 - This model: higher within-sector worker reallocation in large sector-regions
 - vs. Bilal (2020): higher-wage (=larger) regions have low job-finding and even lower job-destruction rates
- Paper shows: export shock to k , then
 - $\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of keeping job}} = (N^k - 1) \exp\left(-\frac{\delta}{\nu}\right)$
 - $\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of switching out of } k} = \frac{N^k - 1}{N^l} \exp\left(\frac{\beta(w^k - w^l) - C(k, l)}{\nu}\right) \left(\frac{\partial V^k}{\partial V^l}\right)^\beta$
 - Interpretation: through N^k (= "job opportunities")
- Also consistent with standard within-sector reallocations
 - Frictionless: Melitz model
 - Frictional: Cosar, Guner and Tybout (AER 2016)
- Would like to see: sector size ("# jobs") matters for labor supply
 - Conditional on wages and job-finding rate
 - Akin to agglomeration effect in urban economics (cf. Diamond 2016)

Suggestive Evidence?

- Implication for job flows across regions?
 - This model: higher within-sector worker reallocation in large sector-regions
 - vs. Bilal (2020): higher-wage (=larger) regions have low job-finding and even lower job-destruction rates
- Paper shows: export shock to k , then
 - $\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of keeping job}} = (N^k - 1) \exp\left(-\frac{\delta}{\nu}\right)$
 - $\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of switching out of } k} = \frac{N^k - 1}{N^l} \exp\left(\frac{\beta(w^k - w^l) - C(k, l)}{\nu}\right) \left(\frac{\partial V^k}{\partial V^l}\right)^\beta$
 - Interpretation: through N^k (= "job opportunities")
- Also consistent with standard within-sector reallocations
 - Frictionless: Melitz model
 - Frictional: Cosar, Guner and Tybout (AER 2016)
- Would like to see: sector size ("# jobs") matters for labor supply
 - Conditional on wages and job-finding rate
 - Akin to agglomeration effect in urban economics (cf. Diamond 2016)

Suggestive Evidence?

- Implication for job flows across regions?
 - This model: higher within-sector worker reallocation in large sector-regions
 - vs. Bilal (2020): higher-wage (=larger) regions have low job-finding and even lower job-destruction rates
- Paper shows: export shock to k , then
 - $\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of keeping job}} = (N^k - 1) \exp\left(-\frac{\delta}{\nu}\right)$
 - $\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of switching out of } k} = \frac{N^k - 1}{N^l} \exp\left(\frac{\beta(w^k - w^l) - C(k, l)}{\nu}\right) \left(\frac{\partial V^k}{\partial V^l}\right)^\beta$
 - Interpretation: through N^k (= "job opportunities")
- Also consistent with standard within-sector reallocations
 - Frictionless: Melitz model
 - Frictional: Cosar, Guner and Tybout (AER 2016)
- Would like to see: sector size ("# jobs") matters for labor supply
 - Conditional on wages and job-finding rate
 - Akin to agglomeration effect in urban economics (cf. Diamond 2016)

Key Parameters?

- Key parameters:

$$OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^I \exp\left(\frac{\beta V^I - C(k, I) - \delta}{\nu}\right)$$

$$O^k = \arg \max_O P^k \left(L^k\right)^\gamma O^{\frac{1}{\tilde{\sigma}-1}} - cO - w^k L^k$$

$$N^k = \rho(O^k)$$

- δ and c are differenced out
- $\tilde{\sigma}$ and $\rho(O)$ matter through: $N^k = \rho\left(\left(\frac{P^k(L^k)^\gamma}{(\tilde{\sigma}-1)c}\right)^{\frac{\tilde{\sigma}-1}{\tilde{\sigma}-2}}\right)$
 - $\rho(O)$ assumed linear
 - $\tilde{\sigma}$ normalized so that output has CRS in tasks and other factors
- A hidden parameter: how differentiated are jobs within a sector?
 - In the paper, differentiation across sectors = within sectors
 - ν is the parameter that controls the degree of differentiation within sectors
 - Solution: Nested Logit, bring in within-sector ν

Key Parameters?

- Key parameters:

$$OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^I \exp\left(\frac{\beta V^I - C(k, I) - \delta}{\nu}\right)$$

$$O^k = \arg \max_O P^k \left(L^k\right)^\gamma O^{\frac{1}{\tilde{\sigma}-1}} - cO - w^k L^k$$

$$N^k = \rho(O^k)$$

- δ and c are differenced out
- $\tilde{\sigma}$ and $\rho(O)$ matter through: $N^k = \rho\left(\left(\frac{P^k(L^k)^\gamma}{(\tilde{\sigma}-1)c}\right)^{\frac{\tilde{\sigma}-1}{\tilde{\sigma}-2}}\right)$
 - $\rho(O)$ assumed linear
 - $\tilde{\sigma}$ normalized so that output has CRS in tasks and other factors
- A hidden parameter: how differentiated are jobs within a sector?
 - In the paper, differentiation across sectors = within sectors
 - Solution: Nested Logit, bring in within-sector ν

Key Parameters?

- Key parameters:

$$OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^I \exp\left(\frac{\beta V^I - C(k, I) - \delta}{\nu}\right)$$

$$O^k = \arg \max_O P^k \left(L^k\right)^\gamma O^{\frac{1}{\tilde{\sigma}-1}} - cO - w^k L^k$$

$$N^k = \rho(O^k)$$

- δ and c are differenced out
- $\tilde{\sigma}$ and $\rho(O)$ matter through: $N^k = \rho\left(\left(\frac{P^k(L^k)^\gamma}{(\tilde{\sigma}-1)c}\right)^{\frac{\tilde{\sigma}-1}{\tilde{\sigma}-2}}\right)$
 - $\rho(O)$ assumed linear
 - $\tilde{\sigma}$ normalized so that output has CRS in tasks and other factors
- A hidden parameter: how differentiated are jobs within a sector?
 - In the paper, differentiation across sectors = within sectors
 - As if assuming same σ for all goods to measure love from variety
 - Solution: Nested Logit, bring in within-sector ν

Counterfactuals and Welfare Effects?

- Key relationship:

$$V_t^k = w_t^k + \beta E_t V_{t+1}^k - \nu \ln(1 - \text{probability of leaving job at } t)$$

- Regressions: relate (estimated) switching probabilities to export shocks
- Given wages, an increase in switching probability reveals a welfare increase
- But model has only one channel to interpret within-sector relation
- Welfare implications are more nuanced in general
 - No job-to-job transitions (Cosar et al. 2016), switching workers worse off
 - With JTJ transitions (Fajgelbaum 2020), some switching workers better off
 - → Welfare implication of average within-sector switching not clear

Main Counterfactual

Table 8: Average changes in present discounted values as a percentage of the annual labor income (%)

	Baseline	No job opportunity channel
Aggregate	120.43	92.64
Agriculture	100.78	71.75
Manufacturing	124.39	96.83
Services	120.21	92.42

Notes: Table reports for each model specification the average of changes in present discounted lifetime utility as a percentage of the initial annual labor income, weighted by the initial employment share of a labor market.

- Why is job opportunity channel more important in agriculture (since the export shock is to manufacturing)?

My Suggestions

- ① Show empirical evidence that is more directly suggestive of the channel
 - Key: sector size matters conditioning on wage
- ② Remove micro-foundation through tasks –no empirical counterpart anyhow
 - I.e. remove $\rho(N)$ and $\tilde{\sigma}$, use a completely standard trade model
 - Impose that jobs=jobs ($N = L$)
 - Work with nested logit, estimate within-sector differentiation
- ③ How to deal with other forces leading to reallocations?
 - Across-firms reallocations, job destruction
- ④ (Mind the writing)