Discussion of “Trade, Jobs, and Worker Welfare” by Erhan Artuç, Paulo Bastos, and Eunhee Lee

Pablo Fajgelbaum

Princeton and NBER

July 8, 2020
Recent studies with job reallocation and trade
- Artuc et al. (2010), Dix-Carneiro (2014), Caliendo et al. (2019), Traiberman (2019),...
- Sector reallocations due to individual and aggregate shocks
- Limited role for within-sector job reallocation given observables

Here: number of jobs are an autonomous source of welfare gain
- More jobs make it more likely to find a “match”
- Greater within-sector reallocation reveal higher welfare

Interesting potential channel
- Sharp predictions for sector size
- “New” source of welfare gain
- Not explored in trade
Summary of Paper

1. Reduced-form evidence. Sector-level export shock leads to:
 - Less workers leaving and more workers entering
 - More switching within sector

2. Estimate a trade and labor mobility model (+within-sector reallocation)
 - Revisit regressions using model-based welfare measure

3. Counterfactuals: sector-level trade shock
 - Show results with constant number of jobs within sector
Paper extends existing models & builds upon dynamic-hat-algebra tricks

We would like to see:

1. Suggestive evidence
2. Parameters that index the intensity of the new channel
3. Counterfactuals that demonstrate its welfare relevance
Equilibrium in a Nutshell (Steady-State, 2 Sectors)

- \(\{L^i\} \) determined given \(\{w^i, N^i\} \) through dynamic labor supply decision:
 - Value of starting in \(k \)
 \[
 V^k = w^k + \nu \ln \left(OV^k \right)
 \]
 \[
 OV^k = \exp \left(\frac{\beta V^k}{\nu} \right) + \left(N^k - 1 \right) \exp \left(\frac{\beta V^k - \delta}{\nu} \right) + N^I \exp \left(\frac{\beta V^I - C(k, l) - \delta}{\nu} \right)
 \]
 - Employment distributions, inflows=outflows:
 \[
 \frac{L^k}{L^I} = \frac{\text{Prob of switching from } I \text{ to } K}{\text{Prob of switching from } K \text{ to } I} = \frac{N^k}{N^I} \frac{OV^k}{OV^I} \exp \left(\beta \left(V^k - V^I \right) \right)
 \]

- \(\{w^i, N^i\} \) determined given \(\{L^i\} \) through static equilibrium of trade model
 - Tasks: \(O^k = \arg \max O \left(L^k \right) \gamma \frac{1}{O^{k-1}} - cO - w^k L^k \)
 - "Jobs": \(N^k = \rho \left(O^k \right) \)

I did not understand: why is \(N^k \neq L^k \). What is \(N^k \)?
Equilibrium in a Nutshell (Steady-State, 2 Sectors)

- \(\{L^i\} \) determined given \(\{w^i, N^i\} \) through dynamic labor supply decision:
 - Value of starting in \(k \)
 \[
 V^k = w^k + \nu \ln (OV^k) \\
 OV^k = \exp \left(\frac{\beta V^k}{\nu} \right) + \left(N^k - 1 \right) \exp \left(\frac{\beta V^k - \delta}{\nu} \right) + N^l \exp \left(\frac{\beta V^l - C(k, l) - \delta}{\nu} \right)
 \]
 - Employment distributions, inflows=outflows:
 \[
 \frac{L^k}{L^l} = \frac{\text{Prob of switching from } l \text{ to } k}{\text{Prob of switching from } k \text{ to } l} = \frac{N^k}{N^l} \frac{OV^k}{OV^l} \exp \left(\beta \left(V^k - V^l \right) \right)
 \]
- \(\{w^i, N^i\} \) determined given \(\{L^i\} \) through static equilibrium of trade model
 - Tasks: \(O^k = \arg \max O P^k (L^k)^\nu \frac{1}{O + \frac{1}{cO} - cO - w^k L^k} \)
 - "Jobs": \(N^k = \rho (O^k) \)
- I did not understand: why is \(N^k \neq L^k \). What is \(N^k \)?
Equilibrium in a Nutshell (Steady-State, 2 Sectors)

- \(\{L^i\} \) determined given \(\{w^i, N^i\} \) through dynamic labor supply decision:
 - Value of starting in \(k \)
 \[
 V^k = w^k + \nu \ln \left(OV^k \right)
 \]
 \[
 OV^k = \exp \left(\frac{\beta V^k}{\nu} \right) + (N^k - 1) \exp \left(\frac{\beta V^k - \delta}{\nu} \right) + N^l \exp \left(\frac{\beta V^l - C(k, l) - \delta}{\nu} \right)
 \]
 - Employment distributions, inflows=outflows:
 \[
 \frac{L^k}{L^l} = \frac{\text{Prob of switching from } l \text{ to } k}{\text{Prob of switching from } k \text{ to } l} = \frac{N^k}{N^l} \frac{OV^k}{OV^l} \exp \left(\beta \left(V^k - V^l \right) \right)
 \]

- \(\{w^i, N^i\} \) determined given \(\{L^i\} \) through static equilibrium of trade model
 - Tasks: \(O^k = \arg \max_O P^k \left(L^k \right)^\gamma O^\frac{1}{\sigma - 1} - cO - w^k L^k \)
 - “Jobs”: \(N^k = \rho \left(O^k \right) \)

I did not understand: why is \(N^k \neq L^k \). What is \(N^k \)?
Equilibrium in a Nutshell (Steady-State, 2 Sectors)

- \(\{L^i\} \) determined given \(\{w^i, N^i\} \) through dynamic labor supply decision:
 - Value of starting in \(k \)
 \[
 V^k = w^k + \nu \ln(OV^k)
 \]
 \[
 OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + \left(N^k - 1\right)\exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^l \exp\left(\frac{\beta V^l - C(k, l) - \delta}{\nu}\right)
 \]
 - Employment distributions, inflows=outflows:
 \[
 \frac{L^k}{L^l} = \frac{\text{Prob of switching from } l \text{ to } k}{\text{Prob of switching from } k \text{ to } l} = \frac{N^k}{N^l} \frac{OV^k}{OV^l} \exp\left(\beta \left(V^k - V^l\right)\right)
 \]

- \(\{w^i, N^i\} \) determined given \(\{L^i\} \) through static equilibrium of trade model
 - Tasks: \(O^k = \arg \max_O P^k (L^k) \gamma O^{\frac{1}{\sigma - 1}} - cO - w^k L^k \)
 - “Jobs”: \(N^k = \rho(O^k) \)
 - I did not understand: why is \(N^k \neq L^k \). What is \(N^k \)?
Suggestive Evidence?

Implication for job flows across regions?

- This model: higher within-sector worker reallocation in large sector-regions
- vs. Bilal (2020): higher-wage (=larger) regions have low job-finding and even lower job-destruction rates

Paper shows: export shock to k, then

\[
\begin{align*}
\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of keeping job}} &= (N^k - 1) \exp \left(-\frac{\delta}{\nu} \right) \\
\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of switching out of } k} &= \frac{N^k - 1}{N^l} \exp \left(\beta \left(\frac{w^k - w^l}{\nu} \right) - C(k,l) \right) \left(\frac{OV^k}{OV^l} \right)^{\beta/\nu}
\end{align*}
\]

Interpretation: through N^k (= “job opportunities”)

Also consistent with standard within-sector reallocations

- Frictionless: Melitz model
- Frictional: Cosar, Guner and Tybout (AER 2016)

Would like to see: sector size (“# jobs”) matters for labor supply

- Conditional on wages and job-finding rate
- Akin to agglomeration effect in urban economics (cf. Diamond 2016)
Implication for job flows across regions?

This model: higher within-sector worker reallocation in large sector-regions

vs. Bilal (2020): higher-wage (=larger) regions have low job-finding and even lower job-destruction rates

Paper shows: export shock to k, then

\[
\begin{align*}
\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of keeping job}} &= (N^k - 1) \exp \left(-\frac{\delta}{\nu}\right) \\
\uparrow \frac{\text{Prob of switching within sector } k}{\text{Prob of switching out of } k} &= \frac{N^k - 1}{N^l} \exp \left(\frac{\beta(w^k - w^l) - C(k,l)}{\nu}\right) \left(\frac{OV^k}{OV^l}\right)^\beta
\end{align*}
\]

Interpretation: through N^k (= “job opportunities”)

Also consistent with standard within-sector reallocations

Frictionless: Melitz model
Frictional: Cosar, Guner and Tybout (AER 2016)

Would like to see: sector size (“# jobs”) matters for labor supply

Conditional on wages and job-finding rate
Akin to agglomeration effect in urban economics (cf. Diamond 2016)
Suggestive Evidence?

- Implication for job flows across regions?
 - This model: higher within-sector worker reallocation in large sector-regions
 - vs. Bilal (2020): higher-wage (=larger) regions have low job-finding and even lower job-destruction rates

- Paper shows: export shock to k, then
 \[
 \begin{align*}
 \upsilon \frac{\text{Prob of switching within sector } k}{\text{Prob of keeping job}} &= (N^k - 1) \exp\left(-\frac{\delta}{\nu}\right) \\
 \upsilon \frac{\text{Prob of switching within sector } k}{\text{Prob of switching out of } k} &= \frac{N^k - 1}{N^l} \exp\left(\frac{\beta(w^k - w^l) - C(k,l)}{\nu}\right) \left(\frac{OV^k}{OV^l}\right)^\beta
 \end{align*}
 \]
 - Interpretation: through N^k (=$\text{“job opportunities”}$)

- Also consistent with standard within-sector reallocations
 - Frictionless: Melitz model
 - Frictional: Cosar, Guner and Tybout (AER 2016)

- Would like to see: sector size (="\# jobs") matters for labor supply
 - Conditional on wages and job-finding rate
 - Akin to agglomeration effect in urban economics (cf. Diamond 2016)
Implication for job flows across regions?

This model: higher within-sector worker reallocation in large sector-regions
vs. Bilal (2020): higher-wage (=larger) regions have low job-finding and even lower job-destruction rates

Paper shows: export shock to k, then

\[
\frac{\text{Prob of switching within sector } k}{\text{Prob of keeping job}} = (N_k^k - 1) \exp \left(-\frac{\delta}{\nu}\right)
\]

\[
\frac{\text{Prob of switching within sector } k}{\text{Prob of switching out of } k} = \frac{N_k^k - 1}{N^l} \exp \left(\frac{\beta(w_k^k - w_l^l) - C(k,l)}{\nu}\right) \left(\frac{OV_k}{OV^l}\right)^\beta
\]

Interpretation: through N_k^k (= “job opportunities”)

Also consistent with standard within-sector reallocations

Frictionless: Melitz model
Frictional: Cosar, Guner and Tybout (AER 2016)

Would like to see: sector size (“# jobs”) matters for labor supply

Conditional on wages and job-finding rate
Akin to agglomeration effect in urban economics (cf. Diamond 2016)
Key Parameters?

- Key parameters:

\[
OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N^l \exp\left(\frac{\beta V^l - C(k, l) - \delta}{\nu}\right)
\]

\[
O^k = \arg\max_O P^k \left(L^k\right)^\gamma O^{\frac{1}{\tilde{\sigma} - 1}} - cO - w^k L^k
\]

\[
N^k = \rho\left(O^k\right)
\]

- \(\delta\) and \(c\) are differenced out
- \(\tilde{\sigma}\) and \(\rho(O)\) matter through: \(N^k = \rho\left(\frac{P^k \left(L^k\right)^\gamma}{\left(\tilde{\sigma} - 1\right)c}\right)\)
 - \(\rho(O)\) assumed linear
 - \(\tilde{\sigma}\) normalized so that output has CRS in tasks and other factors

- A hidden parameter: how differentiated are jobs within a sector?
- In the paper, differentiation across sectors = within sectors
- As if assuming same \(\sigma\) for all goods to measure love from variety
- Solution: Nested Logit, bring in within-sector \(\nu\)
Key Parameters?

- Key parameters:

\[
OV^k = \exp\left(\frac{\beta V^k}{\nu}\right) + (N^k - 1) \exp\left(\frac{\beta V^k - \delta}{\nu}\right) + N' \exp\left(\frac{\beta V' - C(k, l) - \delta}{\nu}\right)
\]

\[
O^k = \arg\max_O P^k \left(L^k\right)^\gamma O^{\frac{1}{\tilde{\sigma}-1}} - cO - w^k L^k
\]

\[
N^k = \rho\left(O^k \right)
\]

- \(\delta \) and \(c \) are differenced out
- \(\tilde{\sigma} \) and \(\rho(O) \) matter through: \(N^k = \rho\left(\left(\frac{P^k(L^k)^\gamma}{(\tilde{\sigma} - 1)c} \right)^{\frac{\tilde{\sigma} - 1}{\tilde{\sigma} - 2}} \right) \)
 - \(\rho(O) \) assumed linear
 - \(\tilde{\sigma} \) normalized so that output has CRS in tasks and other factors

- A hidden parameter: how differentiated are jobs within a sector?
 - In the paper, differentiation across sectors = within sectors
 - As if assuming same \(\sigma \) for all goods to measure love from variety
 - Solution: Nested Logit, bring in within-sector \(\nu \)
Key Parameters?

- Key parameters:

 \[OV^k = \exp \left(\frac{\beta V^k}{\nu} \right) + \left(N^k - 1 \right) \exp \left(\frac{\beta V^k - \delta}{\nu} \right) + N' \exp \left(\frac{\beta V' - C(k, l) - \delta}{\nu} \right) \]

 \[O^k = \arg \max_O P^k \left(L^k \right)^\gamma O^{\frac{1}{\tilde{\sigma}-1}} - cO - w^k L^k \]

 \[N^k = \rho \left(O^k \right) \]

- \(\delta \) and \(c \) are differenced out

- \(\tilde{\sigma} \) and \(\rho(\sigma) \) matter through: \(N^k = \rho \left(\left(\frac{P^k(L^k)^\gamma}{(\tilde{\sigma}-1)c} \right)^{\frac{\tilde{\sigma}-1}{\tilde{\sigma}-2}} \right) \)

 - \(\rho(\sigma) \) assumed linear
 - \(\tilde{\sigma} \) normalized so that output has CRS in tasks and other factors

- A hidden parameter: how differentiated are jobs within a sector?
 - In the paper, differentiation across sectors = within sectors
 - As if assuming same \(\sigma \) for all goods to measure love from variety
 - Solution: Nested Logit, bring in within-sector \(\nu \)
Counterfactuals and Welfare Effects?

- Key relationship:
 \[V_t^k = w_t^k + \beta E_t V_{t+1}^k - \nu \ln (1 - \text{probability of leaving job at } t) \]

 - Regressions: relate (estimated) switching probabilities to export shocks
 - Given wages, an increase in switching probability reveals a welfare increase

- But model has only one channel to interpret within-sector relation

- Welfare implications are more nuanced in general
 - No job-to-job transitions (Cosar et al. 2016), switching workers worse off
 - With JTJ transitions (Fajgelbaum 2020), some switching workers better off
 - Welfare implication of average within-sector switching not clear
Main Counterfactual

Why is job opportunity channel more important in agriculture (since the export shock is to manufacturing)?

Table 8: Average changes in present discounted values as a percentage of the annual labor income (%)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>No job opportunity channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>120.43</td>
<td>92.64</td>
</tr>
<tr>
<td>Agriculture</td>
<td>100.78</td>
<td>71.75</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>124.39</td>
<td>96.83</td>
</tr>
<tr>
<td>Services</td>
<td>120.21</td>
<td>92.42</td>
</tr>
</tbody>
</table>

Notes: Table reports for each model specification the average of changes in present discounted lifetime utility as a percentage of the initial annual labor income, weighted by the initial employment share of a labor market.
My Suggestions

1. Show empirical evidence that is more directly suggestive of the channel
 - Key: sector size matters conditioning on wage

2. Remove micro-foundation through tasks – no empirical counterpart anyhow
 - I.e. remove $\rho(N)$ and $\tilde{\sigma}$, use a completely standard trade model
 - Impose that jobs = jobs ($N = L$)
 - Work with nested logit, estimate within-sector differentiation

3. How to deal with other forces leading to reallocations?
 - Across-firms reallocations, job destruction

4. (Mind the writing)