Discussion of:

In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis

by
Xavier Gabaix and Ralph S.J. Koijen

Discussant: Dimitri Vayanos

NBER SI - July 2020

This Paper

- Theory and empirics on how flows affect aggregate stock market valuation.
- Main takeaway: Flows have large effects.
- Flows equal to 1% of aggregate stock market valuation raise it by 5%.
- Theory: Low price elasticity stems from restricted mandates of asset managers.
- Empirics: Price elasticity is estimated using Granular Instrumental Variables (GIV).

Theory

- Two-period model. Extended to multiple periods.
- Bond fund: Invests in riskless asset with exogenous return r.
- Mixed fund: Invests in riskless asset and in stock (aggregate market). Exogenous demand for stock:

$$
\frac{P Q^{D}}{W}=\theta e^{\kappa \hat{\pi}},
$$

where:

- P is stock price.
- Q^{D} is quantity of shares.
- W are assets under management.
- (θ, κ) are constants.
- $\hat{\pi}$ is expected excess return $\delta-(1+r)$, where δ is dividend yield $\frac{E(D)}{P}$.

Main Theoretical Result

- Suppose that investors transfer ΔF from bond fund to mixed fund.
- Proposition: Stock price goes up by

$$
\frac{P-\bar{P}}{\bar{P}}=\frac{1}{1-\theta+\kappa \delta} \frac{\Delta F}{W} .
$$

- Demand elasticity $\zeta \equiv 1-\theta+\kappa \delta$:
- Is zero when $\theta=1$ and $\kappa=0$.
- Increases when θ becomes smaller than one.
- Portfolio rebalancing is automatic stabilizer.
- Stock price increases \rightarrow Fraction invested in the stock increases.
- Increases when κ becomes positive.
- Substitution effect.
- Stock price increases \rightarrow Expected return decreases \rightarrow Fraction invested in the stock decreases.

Extensions and Comments

- Extension 1: Multiple periods.
- Flows have a larger effect when they are expected to be permanent.
- Extension 2: Multiple stocks.
- Micro vs. macro elasticity. Macro elasticity is smaller under plausible assumptions.
- Comments on model:
- Simple model of limited arbitrage.
- Restricted mandates of asset managers, combined with no reallocation of investor assets across managers (lack of information).
- See Buffa-Vayanos-Woolley (2019) for a related equilibrium analysis with tracking-error constraints.
- Other frictions have been explored in the literature.
- Asymmetric information.
- Participation costs.
- Agency costs of raising capital, etc.

Empirics

- Assume that flows for different sectors have a common and an idiosyncratic component:

$$
f_{j t}=\lambda_{j} \eta_{t}+u_{j t}
$$

where:

- $f_{j t}$ is flow into sector j at time t.
- η_{t} is common shock.
- $u_{j t}$ is idiosyncratic shock.
- Extract $\left(\eta_{t}, u_{j t}\right)$ using PCA.
- Estimate elasticity ζ by OLS

$$
p_{t}=\frac{1}{\zeta} \sum_{j} S_{j t} u_{j t}+\epsilon_{t},
$$

where $S_{j t}$ is weight of sector j at time t.

- Must observe total flow into bonds and stocks.

Main Empirical Result

- Price multiplier (inverse elasticity) ranges from 4.5 to 7 , across a wide variety of specifications.
- Specification 1: Sector-level flows (FoF).
- Pros: Observe flow into bonds and into stocks.
- Cons: Large heterogeneity across investors in a given sector, e.g., pure bond and pure stock funds.
- Specification 2: Investor-level flows (13F).
- Pros: Observe large cross-section of investors within a sector.
- Cons: Observe only stock portfolios.
- Consistency across specifications is remarkable and reassuring.

Comments

- This paper addresses a very important question.
- What is price impact of flows into aggregate stock market?
- Estimates are surprisingly large.
- Yet, not out of line with estimates from other markets. (Bond QE)
- Suggestions:
- Make estimates more "tangible" (less black-box). Specific episodes?
- Examine how estimates depend on cross-sectional and time-series characteristics.
- Examine implications for return predictability.
- Shorten the paper. (Main body is 52 pages!)

Bond QE

- Williams (2014) summarizes QE studies as indicating that:
- \$600 bn of Fed purchases lower ten-year yield by $15-25$ bps.
- Price impact plays a significant part in driving this effect (compared to signalling about path of future short rates).
- Given GDP of $\$ 15 \mathrm{tn}$ in 2010 , and debt to GDP of $91 \%, \$ 600 \mathrm{bn}$ are 4.4% of government bond market cap.
- Decline in ten-year ZC yield by 15 bps is 1.5% increase in price. Price multiplier is 0.33 .
- 0.33 is a very conservative lower bound when extrapolating to stocks.
- Stocks have larger duration. With 30 -year duration, price multiplier becomes 1 .
- Stocks are riskier. (Model does not explicitly account for risk as a driver of inelasticity.) Doubling the standard deviation quadruples the price multiplier.
- QE purchases are expressed as fraction of government bond market only.
- Flows should be expressed as \% of which market cap? (Model vs. empirics)
- Market segmentation.

Dissecting the Effect of Flows

- To further tie the estimates to causal effects of flows, can explore how they depend on cross-sectional and time-series characteristics.
- Do flows have larger price impact during more volatile times?
- Do persistent components of flows have larger price impact than more transitory components?
- Do flows into aggregate stock market have larger price impact on stocks with
- Higher cashflow beta?
- Higher duration of cashflows?

Return Predictability

- Flows are estimated to generate return volatility of $5-8 \%$ ($30-50 \%$ of actual volatility).
- Performing a similar calculation for return predictability could be interesting.
- That calculation would depend on the persistence of flows.
- Flows have a positive autocorrelation, which dies out over time.

Correlation

Conclusion

- This paper addresses a very important question.
- Its estimates of the price impact of flows can have far-reaching implications.
- Possible improvements and future work:
- Make estimates more "tangible."
- Examine how estimates depend on cross-sectional and time-series characteristics.
- Examine implications for return predictability.

