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Motivation

• Concerns about the effects of new technologies on labour
demand:

• Routine-Biased Technological Change / Automation
• Offshoring (works just like a “new technology”)

• BUT “it is harder than one might think to write down economic
models in which workers as a group are harmed by new
technology” (Caselli and Manning, 2019)

• Threats to employment through impact on the competitiveness of
markets in the presence of frictions rather than from changes in
the production function in the presence of frictionless markets.
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The Impact of Routineness & Offshorability on Labour
Hours
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Recent Survey Evidence

• Increasing talent shortage with only 40% of the firms report that
it is a skill issue, while 60% of them stress lack of experience or
human strengths.

“ Most of the top ten in-demand roles today require post-secondary
training and not always a full university degree.[...] In the digital
age, employment will not always require a college degree, but will
rely heavily on continual skills development as even the most tra-
ditional roles are augmented with new technology.”

(Manpower Group, 2018, p.6)

• Machine-specific experience ranging from the knowledge of
production procedures to the ability to understand blueprints,
schematics and manuals.

• Many other types of machines, each with its own specific
blueprints, schematics and manuals.

• Retraining to a new machine can be costly, making firms and
workers cautious about potential mismatch.
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Our Approach

• Challenges to the rosy neoclassical view come from . . .

. . . Structural Story
• Structural demand shift for certain skills (RBTC vs. SBTC).
• Vertical skill-task mismatch.
• Growing empirical and theoretical evidence.

. . . Frictional Story
• Search frictions hinder the efficient matching between

heterogeneous firms and workers.
• Horizontal skill-task mismatch.
• TC increases productivity of ideal match relative to less-than-ideal

ones, above and beyond any considerations of skill or routine bias.
⇒ Core-Biased Technological Change
• Additional effects of automation and offshoring that are at work

independently from any vertical heterogeneity.
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Model — Skills and Tasks

• Firms that need heterogeneous tasks to be performed and workers
endowed with heterogeneous skills to perform those tasks.

• Heterogeneity as horizontal differentiation with workers and firms
having different “addresses” along the unit circle.
⇒ Circular Sorting Model
• Continuum of workers with heterogeneous occupation-specific

core-skill x and continuum of firms with heterogeneous
sector-specifc core-tasks y.

⇒ Core-biased Technological Change.
⇒ Complementarity induces sorting!

• Search frictions hamper the formation of ideal matches.
⇒ Mismatch between skills and tasks

d(x, y) = min [x − y + 1, y − x]
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Model — Search & Matching

• Standard DMP setup with CRS matching function and Nash
Bargaining

• Workers of type x accept a job of type y if and only if

Λ(x) = {y : S(x, y) ≥ 0} & Φ(y) = {x : S(x, y) ≥ 0}

⇒ M(x, y) = {x, y : S(x, y) ≥ 0} .

• Appealing feature of uniformly distributed skills & tasks:
→ Identical values of unemployment & vacancies.
→ Values of employment, production and wages only depend on

mismatch d.
→ Acceptance sets endogenously determined by common maximum

distance d∗ from own address.

Λ(x) = [y − d∗, y + d∗] & Φ(y) = [x − d∗, x + d∗] (1)

for all x and y.
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Model — Production, Automation & Offshoring I

• Match Surplus:

s(d) = f(d)− ρK(d) = ΦA
1

1−β L(d) (2)

• A > 0 is total factor productivity, which we will simply call
automation henceforth.

• Efficiency units of domestic worker depends on subtasks
performed.
→ Each task d consists of continuum of subtasks indexed i ∈ [0, 1] in

increasing order of ability to perform tasks:

L(d, i) = Fi − γA
2 d. (3)

• Some subtasks Ω are offshored.
• Subtasks i ∈ (Ω, 1] are assigned to the domestic worker whereas

subtasks i ∈ [0,Ω) are offshored:

L(d) =
∫ 1

Ω

L(d, i)di = 1
2 (1 − Ω) [F(1 +Ω)− γAd] . (4)
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Model — Production, Automation & Offshoring II

• Match surplus for mismatch d can be finally expressed as:

s(d) = Φ

2 A
1

1−β (1 − Ω) [F(1 +Ω)− γAd] (5)

for d ∈ [0,F(1 +Ω)/γA] and zero otherwise.
• The balance of 4 effects determines the effect of automation and

offshoring:

ds(d)
dA =

Φ

2
1

1 − β
A

β
1−β (1 − Ω) [F(1 +Ω)− γAd]︸ ︷︷ ︸

productivity effect

−Φ

2 A
1

1−β (1 − Ω)γd︸ ︷︷ ︸
mismatch effect

,

ds(d)
dΩ =

Φ

2 A
1

1−β (1 − Ω)F︸ ︷︷ ︸
specialization effect

− Φ

2 A
1

1−β [F(1 +Ω)− γAd]︸ ︷︷ ︸
substitution effect

.
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Simulation — Employment & Selectivity
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Simulation — Wages
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Data

• We capture skill heterogeneity at the occupational level and task
heterogeneity at the sectoral level.

• Data on employment and mismatch from EULFS for country ×
industry × occupation × year

• 16 sectors (out of 21 in the NACE Rev.2 classification; dropped
public and agricultural sectors).

• 92 occupations (out of 28 in the ISCO-88 classification; dropped
occupations closely associated to public and agricultural sectors).

• Years: 1995-2010.
• 13 Countries with full coverage (Austria, Belgium, Germany,

Denmark, Spain, France, Great Britain, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal).

• Offshorability from Blinder and Krueger (2013)
• Routine Task Intensity (RTI) from Autor and Acemoglu (2011)
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Measuring Specialization

• Sectors to proxy ”tasks” and occupations to proxy ”skills”.
• Define selectivity as the concentration of an occupation’s

employment across sectors
⇒ Sectoral Specialization of the Occupation (SSO).

• Herfindahl Index of occupation’s employment share across
industries.

SSOoi =
∑
k∈K

(
Loki∑

k∈K Loki

)2
, (6)

⇒ High SSO: few sectors account for a large share of the
occupation’s employment.

⇒ Low SSO: Workers in occupation are equally distributed across
sectors.

⇒ Inversely related to size of the theoretical matching set.
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Empirical Strategy

Step 1: From Technology to Selectivity

∆ln(SSOoi) = β1RTIo×IH
oi+β2RTIo×IL

oi+β3Offshoro+Z′
oiC+µi+ϵoi

(7)

Step 2: From Selectivity to Employment

∆ln(Hoursoi) = γ + δ1∆ln(SSOoi) + K′C2 + ηi + υoi (8)

• The model has two main implications:
1. β1 > 0

⇒ Automation and offshoring fosters selectivity from 1995 to 2010.
2. δ1 < 0

⇒ Increased selectivity decreases employment.
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Table 1: Selectivity, Automation & Offshoring

Dep. Var.: ∆ln(SSO)

(1) (2) (3) (4) (5)

RTI 0.0755 0.0312
(0.0522) (0.0552)

RTI × IH 0.207** 0.168* 0.301**
(0.100) (0.0994) (0.150)

RTI × IL -0.0151 0.00885 0.00952
(0.0792) (0.0781) (0.0972)

Offshor. -0.0765* -0.0923** -0.123** -0.0691 -0.0943**
(0.0414) (0.0432) (0.0525) (0.0427) (0.0440)

RTI × Offshor. 0.0667
(0.0470)

Share95 0.0727
(2.117)

Share95 × RTI 4.874***
(1.596)

SSO95 -1.146*** -1.231*** -1.328*** -1.156*** -1.268***
(0.184) (0.189) (0.203) (0.183) (0.195)

Observations 1,063 1,063 1,063 1,063 1,063
R-squared 0.139 0.143 0.149 0.146 0.115
Fixed effects Country Country Country Country Country
Spillover Controls Yes
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Country fixed effects and TFP change.
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Selectivity & Employment

∆ln(Hoursoi) = γ + δ1∆ln(SSOoi)︸ ︷︷ ︸
Enodgeneity/Rev. Causlity

⇒Double-Bartik Instrument

+K′C2 + ηi + υoi (9)

• Construction of Double-Bartik Instrument:
1. Bartik-predicted employment change

̂Lb
oik,2010 = gb

o,−i,k,2010 × so,i,k,1995 (10)

⇒ Occupation × Industry grows at same rate as all other countries.
2. Bartik-predicted selectivity using the shares computed in the first

step to derive the Herfindahl index
̂SSOb

oi,2010 =
∑
k∈K

(ŝb
oik,2010)

2

3. Construct instrument as:

̂∆ln(SSOb
oi) = ln

 ̂SSOb
oi,2010

SSOoi,1995


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Table 2: Selectivity & Employment

Dep. Var.: ∆ln(Hours)

(1) (2) (3) (4) (5)

∆ln(SSO) -0.160*** -0.161* -0.169*** -0.267*** -0.446***
(0.0417) (0.0852) (0.0349) (0.0658) (0.0809)

∆ln(Lb) 0.266*** 0.266*** 0.297*** 0.302*** 0.0697
(0.0640) (0.0647) (0.0629) (0.0650) (0.0883)

RTI -0.226*** -0.225***
(0.0425) (0.0427)

Offshor. 0.0719 0.0668
(0.0562) (0.0578)

RTI × Offshor. -0.178*** -0.181***
(0.0447) (0.0453)

First Stage 1.780*** 1.789*** 1.925***
(0.127) (0.139) (0.204)

FE Country Country Country Country Country
× Occup.

Instrument No Bartik No Bartik Bartik

Observations 1,073 1,073 1,062 1,062 1,073
K-P F-Test 1st 196.6 165.1 88.71
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Table 3: Selectivity & Employment II

Dep. Var.: ∆ln(Hours)

(1) (2) (3) (4) (5) (6)

∆ln(SSO) -0.339*** -0.694***
(0.101) (0.151)

∆ln(SSO)× IH -0.343*** -0.507*** -0.357*** -0.714**
(0.119) (0.159) (0.126) (0.288)

∆ln(SSO)× IL 0.105 0.0594 0.244** 0.241**
(0.107) (0.112) (0.0973) (0.109)

∆ln(Lb) 0.223*** -0.145 0.326*** 0.248*** 0.113 -0.0954
(0.0845) (0.109) (0.0700) (0.0764) (0.0846) (0.116)

RTI -0.194***
(0.0511)

Offshor. 0.0445 0.00564 0.0340
(0.0644) (0.0521) (0.0606)

RTI × Offshor. -0.182*** -0.205*** -0.147***
(0.0507) (0.0394) (0.0485)

FE Occup. Occup. Occup.
Instrument Bartik Bartik Bartik Bartik Bartik Bartik
∆ln(SSO) > 0 Yes Yes Yes Yes

Observations 558 563 1,062 558 1,073 563
K-P F-Test 1st 90.11 63.88 24.31 17.93 9.593 11
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Conclusion

• Better matches enjoy a comparative advantage in exploiting
automation and a comparative disadvantage in exploiting
offshoring.

• Automation as an increase in the productivity (productivity
effect), but also increase in the productivity of ideal matches
relative to less-than-ideal ones (mismatch effect)

• Offshoring as an increase in the productivity of any given match
due to subtask specialization (specialization effect), but also as a
decrease in assigned subtasks (substitution effect).
⇒ Core-Biased Technological Change: Substitutability between

less-than-ideal skills and ideal ones (core competencies).

• Negative relation of employment and wage equality with
improvements in technology arises naturally in our setting of
horizontal mismatch.

• Core-biased change illustrates a more general idea of how wages
and jobs in frictional labour markets may react to other shocks.
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Thank You!
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DMP Setup

• Workers/Firms are infinetly lived, risk-neutral, discount rate ρ

• Search is random with matching function:

M(U,V) = θUφV1−φ

• Productive matches fall in the acceptance ranges for y and x ⇒
Symmetry implies one d∗

VE(d) = w(d)− δ (VE(d)− VU)

VU = 2 ∗ qu(θ)

∫ d⋆

0
(VE(z)− VU) dz

VP(d) = f(d)− w(d)− c)− δ ∗ (VP(d)− VV) > VP(d∗) = 0

VV = −c + 2 ∗ qv(θ)

∫ d⋆

0
(VP(z)− VV)

!
= 0

• Nash Bargaining, free-entry and steady-state flow condition close
the model.



Core-Biased Technological Change

• What is the contribution of CBTC to the total effect of
automation on employment?

1. Automation → Selectivity:

∆RTI on SSO = β̂1RTIoi × IH
oi

2. Selectivity → Employment:

δ̂1∆ln(SSOoi)

3. Total Effect:
∆tot = ζ̂1RTIoi︸ ︷︷ ︸

−0.443∗∗∗

×IH
oi

4. Relative effect:

∆RTI-based SSO

∆tot =
δ̂1 × β̂1

(
RTIo × IH

oi
)

ζ̂1RTI × IH
oi

=
δ̂1 × β̂1

ζ̂1
=

0.207 × (−0.343)
(−0.445) = 0.160



Other Measures of Mismatch

• Educational mismatch = over-education + under-education:
• Compare each worker’s education in terms of years to the

educational level of his peers at the date of the observation.
• A worker is over-educated (under- educated) if her educational

level is above (below) the average in her occupation, industry,
country and 10-year cohort by more than 2 standard deviations.

• Unemployment duration
• We assign an unemployed worker to the cell of his last job and

aggregate the observations at the 2-digit ISCO level.



Table 4: Impact of Technology on Educational Mismatch
& Unemployment Duration

∆Unemployment
Duration ∆Mismatch ∆Under

Education
∆Over

Education

(1) (2) (3) (4)

RTI 0.0409* -0.0347 -0.00340*** 0.00305***
(0.0243) (0.0984) (0.000742) (0.000778)

Offshor. -0.0183 0.0532 0.00220** -0.00167**
(0.0319) (0.114) (0.000858) (0.000795)

RTI × Offshor. 0.0454 -0.290*** -0.00177** -0.00113
(0.0328) (0.111) (0.000814) (0.000805)

Observations 905 1,915 1,915 1,915
R-squared 0.183 0.236 0.143 0.235
Fixed effects Country-Industry



Spillover & Aggregate Effects

• Consider two countries, each with two occupations and workers mobile only
between occupations within a country:

1. In one of the countries an occupation is automated and some jobs
in that occupation vanish
⇒ Shock in one occupation has spillover effects on the other

occupation; strength of the spillover effects depend on the share of
treated occupations

2. Now instead all occupations in one country (i.e. in half of the
countries) are affected:
⇒ Fraction of treated occupations is 1 in the affected country and 0

in the other; spillovers are immaterial for general equilibrium
effects.

• Following Berg and Streitz (2019), estimate

∆ln(Hours)oi = β0 + β1IH
o + βTRTI−oiIH

o + βCRTI−oiIL
o + ϵoi.

• where βT and βC inform about spillovers and we can aggregate

E
[
∆ln(Hours)i|RTIi

]
= β0 + (β1 + βC)RTIi + (βT − βC)RTIi

2
,



Estimated Aggregate Effects & TFP
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Vertical Specialization
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	Appendix

