Bank Heterogeneity and Financial Stability

Itay Goldstein University of Pennsylvania

> Lin Shen INSEAD

Alexandr Kopytov Princeton University

Haotian Xiang Peking University

→

JIN NOR

July, 2020

Motivation

Financial system is densely interconnected

- Technologies: securitization, interbank trading, syndicated loans...
- Problem: common risk exposures and systemic risk

Our focus: Bank runs in the interconnected financial system

- The literature mostly studies individual banks' fragility...
- ...or abstracts from fragility and focuses on interconnections

SIN NOR

Motivation

Financial system is densely interconnected

- Technologies: securitization, interbank trading, syndicated loans...
- Problem: common risk exposures and systemic risk

Our focus: Bank runs in the interconnected financial system

- The literature mostly studies individual banks' fragility...
- ...or abstracts from fragility and focuses on interconnections
- Our model emphasizes how cross-bank interactions amplify individual fragilities in a homogeneous financial system

Setting: Banking sector with fire-sale externalities

- Within-bank strategic complementarity a-la Diamond and Dybvig (1983)
- Cross-bank strategic complementarity due to fire sales
- Two complementarities are mutually reinforcing
 - When prices are low, depositors are more sensitive to runs within their banks

ELE SQC

Setting: Banking sector with fire-sale externalities

- Within-bank strategic complementarity a-la Diamond and Dybvig (1983)
- Cross-bank strategic complementarity due to fire sales
- Two complementarities are mutually reinforcing
 - When prices are low, depositors are more sensitive to runs within their banks

Main result: Differentiating banks makes all banks less fragile

► Asset portfolios are less correlated ⇒ weaker complementarity amplification

A = N A = N = I = 000

Setting: Banking sector with fire-sale externalities

- Within-bank strategic complementarity a-la Diamond and Dybvig (1983)
- Cross-bank strategic complementarity due to fire sales
- Two complementarities are mutually reinforcing
 - When prices are low, depositors are more sensitive to runs within their banks

Main result: Differentiating banks makes all banks less fragile

- ► Asset portfolios are less correlated ⇒ weaker complementarity amplification
- Increasing heterogeneity (to a certain extent) is Pareto improving
 - Policy debate: individual insolvencies vs systemic risk (Haldane, 2009)
 - Existing theory: optimal heterogeneity depends on the size of the shocks (e.g. Acemoglu et al., 2015; Cabrales et al., 2017)

Setting: Banking sector with fire-sale externalities

- Within-bank strategic complementarity a-la Diamond and Dybvig (1983)
- Cross-bank strategic complementarity due to fire sales
- Two complementarities are mutually reinforcing
 - When prices are low, depositors are more sensitive to runs within their banks

Main result: Differentiating banks makes all banks less fragile

- Asset portfolios are less correlated \Rightarrow weaker complementarity amplification
- Increasing heterogeneity (to a certain extent) is Pareto improving
 - Policy debate: individual insolvencies vs systemic risk (Haldane, 2009)
 - Existing theory: optimal heterogeneity depends on the size of the shocks (e.g. Acemoglu et al., 2015; Cabrales et al., 2017)
- Ring fencing, M&A regulation, crises resolution, bank disclosure...

Literature

Asset commonality and systemic risk

- Theories: Wagner (2010, 2011), Ibragimov, Jaffee and Walden (2011), Allen, Babus and Carletti (2012), Cabrales, Gottardi and Vega-Redondo (2017)
- Empirics: Adrian and Brunnermeier (2016), Acharya et al. (2017)

Panic runs

- Classics: Diamond and Dybvig (1983), Rochet and Vives (2004), Goldstein and Pauzner (2005)
- Panic runs with fire sales: Eisenbach (2017), Liu (2018), Luo and Yang (2019)

Global games with heterogeneous agents

Frankel, Morris and Pauzner (2003), Sakovics and Steiner (2012), Choi (2014)

A I > A I > A I > I = A I < O Q O</p>

= 900

▶ ∢ ⊒

 $t=\mathbf{0}$

Investors finance banks

$\mathbf{t} = \mathbf{1}$

Shocks are realized Some investors choose to run Fire sales; cross-bank spillovers

t=2

Banks repay late withdrawers

3 1 4 3

= 900

 $\mathbf{t} = \mathbf{0}$

Investors finance banks

$\mathbf{t} = \mathbf{1}$

Shocks are realized Some investors choose to run Fire sales; cross-bank spillovers

t = 2

Banks repay late withdrawers

 $\mathbf{t} = \mathbf{0}$

Investors finance banks

$\mathbf{t} = \mathbf{1}$

Shocks are realized Some investors choose to run Fire sales; cross-bank spillovers

t=2

Banks repay late withdrawers

 $\mathbf{t} = \mathbf{0}$

Investors finance banks

t = 1

Shocks are realized Some investors choose to run Fire sales; cross-bank spillovers

 $\mathbf{t} = \mathbf{2}$

Banks repay late withdrawers

Model outline I

▶ Dates: $t \in \{0, 1, 2\}$. Three types of agents: banks, investors, outsiders

 $\mathbf{t} = \mathbf{0}$

A continuum of ex-ante identical banks $i \in [0, 1]$ with long-term asset return

$$z_i = \theta + \eta_i$$

- ▶ Aggregate productivity: θ ~ F(·), Eθ > 1
 ▶ Bank-specific productivities are i.i.d.: η_i = $\begin{cases} \Delta & \text{w.p. 0.5} \\ -\Delta & \text{w.p. 0.5} \end{cases}$
- \blacktriangleright Δ is the degree of heterogeneity between (ex post) strong and weak banks
- Bank i has no wealth but receives funding from a unit mass of investors

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Model outline II

t = 1

- Payoff from early withdrawal (run): $\pi_{run} = 1$
 - Fraction $\bar{m} < 1$ can withdraw funds early (e.g. due to limited attention)
- Given the mass of runners m_i , bank *i* sells $\frac{m_i}{n_i}$ units of assets to outsiders
 - *p_i* < 1 is determined by market-clearing condition</p>
 - $\frac{\bar{m}}{p_i} \leq 1$: no bankruptcy

1 3 1 4 3 1 3 1 3 1 4 4 5 1 1 4 5 1 4 5 1 4 5 1 1 4 5 1 1 4 5 1 1 4 5 1

Model outline II

 $\mathbf{t} = \mathbf{1}$

- Payoff from early withdrawal (run): $\pi_{run} = 1$
 - Fraction $\bar{m} < 1$ can withdraw funds early (e.g. due to limited attention)
- Given the mass of runners m_i , bank *i* sells $\frac{m_i}{n_i}$ units of assets to outsiders
 - *p_i* < 1 is determined by market-clearing condition</p>

•
$$\frac{\bar{m}}{p_i} \leq 1$$
: no bankruptcy

 $\mathbf{t}=\mathbf{2}$

• Late withdrawers receive $\pi_{stay}(z_i, m_i, p_i) = \frac{z_i \left(1 - \frac{m_i}{p_i}\right)}{1 - m_i}$

• Within-bank strategic complementarity: $\frac{\partial(\pi_{stay} - \pi_{run})}{\partial m_i} < 0$ iff $p_i < 1$

1 3 1 4 3 1 3 1 3 1 4 4 4 4 A

Liquidation

Outsiders

- Deep-pocketed, competitive, less efficient than banks
- Purchase k_i unit of bank i's asset to maximize expected payoff

$$\max_{\{k_i\}_{i\in[0,1]}} f\left(\int z_i k_i di\right) - \int p_i k_i di$$

where f(x) < x, $f'(\cdot) > 0$, $f''(\cdot) < 0$, and xf'(x) increases in x

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

Liquidation

Outsiders

- Deep-pocketed, competitive, less efficient than banks
- Purchase k_i unit of bank i's asset to maximize expected payoff

$$\max_{\{k_i\}_{i\in[0,1]}} f\left(\int z_i k_i di\right) - \int p_i k_i di$$

where f(x) < x, $f'(\cdot) > 0$, $f''(\cdot) < 0$, and xf'(x) increases in x

Liquidation prices

- ► Taking FOCs and imposing market-clearing conditions: $p_i = \frac{z_i}{\lambda(m)}$
- $m = \int m_i di$ is total mass of runners in the economy
- Cross-bank complementarity: $\lambda'(m) > 0$

Complementarities

Investors' incentive to stay

$$\pi_{stay} - \pi_{run} = rac{z_i - \lambda(m)m_i}{1 - m_i} - 1$$

Two mutually reinforcing complementarities

• Within-bank complementarity: $\frac{\partial (\pi_{stay} - \pi_{run})}{\partial m_i} < 0$

• Cross-bank complementarity:
$$\frac{\partial (\pi_{stay} - \pi_{run})}{\partial m} < 0$$

Complementarities reinforce each other: -

er:
$$\frac{\partial^2 \left(\pi_{stay} - \pi_{run}\right)}{\partial m \partial m_i} < 0$$

• When total amount of runs m is high, fire-sale discount $\lambda(m)$ is high

Investors of bank i are more sensitive to run decisions of each other

= 900

Bank runs

Information structure

- lnvestor j in bank i observes η_i (can be relaxed)
- lnvestor j in bank i receives a noisy signal s_{ij} about aggregate fundamental θ

$$s_{ij} = \theta + \sigma \epsilon_{ij}, \ \epsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} \Phi(\cdot)$$

Run decision

An investor j in bank i withdraws early if

$$\mathbb{E}\left[\left.\pi_{\textit{stay}}(\textit{z}_i,\textit{m}_i,\textit{p}_i)\right|\textit{s}_{ij}\right] < \pi_{\textit{run}} \Leftrightarrow \mathbb{E}\left[\left.\frac{\textit{z}_i - \lambda(\textit{m})\textit{m}_i}{1 - \textit{m}_i}\right|\textit{s}_{ij}\right] < 1$$

10 / 18

JIN NOR

Global games

Equilibrium uniqueness

• Focus on the limit of negligible signal noise: $\sigma \rightarrow 0$

• Unique threshold equilibrium: investor *j* of bank *i* $\begin{cases}
\text{runs if } s_{ij} \leq \theta_i^* \\
\text{stays if } s_{ij} > \theta_i^*
\end{cases}$

Marginal investor in bank *i*: $s_{ij} = \theta_i^*$

► Indifference condition:
$$\int_0^1 \frac{\theta_i^* + \eta_i - \lambda(m(x)) \bar{m}x}{1 - \bar{m}x} dx = 1$$

Mass of runner on investor's own bank i: m̄x

• Mass of runners in the economy: $m(x) = \bar{m} \int \Phi\left(\frac{\theta_k^* - \theta_i^*}{\sigma} + \Phi^{-1}(x)\right) dk$

Illustration

Heterogeneity: Run thresholds

Two groups of banks: strong and weak

$$\theta_i^* = \begin{cases} \theta_s^* & \text{if } \eta_i = \Delta, \\ \theta_w^* & \text{if } \eta_i = -\Delta \end{cases}$$

$$\int_{0}^{1} \frac{\theta_{s}^{*} + \Delta - \lambda \left(0.5\bar{m}x + 0.5\bar{m}\Phi \left(t + \Phi^{-1}(x) \right) \right) \bar{m}x}{1 - \bar{m}x} dx = 1$$

$$\int_{0}^{1} \frac{\theta_{w}^{*} - \Delta - \lambda \left(0.5\bar{m}x + 0.5\bar{m}\Phi \left(-t + \Phi^{-1}(x) \right) \right) \bar{m}x}{1 - \bar{m}x} dx = 1$$

• $t = \lim_{\sigma \to 0} \frac{\theta_w^* - \theta_s^*}{\sigma}$ is a distance between run thresholds

Two effects of larger heterogeneity Δ

- Fundamentals: strong banks become stronger
- Fire-sale pressure: strong banks suffer from a higher fire-sale pressure

토▷《토▷ 토⊫ නର୍∾ ty 12/18

Heterogeneity and fragility I

• $\Delta < \Delta_{min}$: strategic uncertainties across investors of different banks

- Weak bank investors perceive runs on strong banks as possible
- Strong bank investors believe that weak banks might avoid runs
- $\Delta > \Delta_{min}$: no more strategic uncertainties

Goldstein, Kopytov, Shen and Xiang

Bank Heterogeneity and Financial Stability

13 / 18

Heterogeneity and fragility II

• Heterogeneity is Pareto-improving if $\Delta < \Delta_{min}$

Nonzero noise

EL SQA

(B)

Goldstein, Kopytov, Shen and Xiang

Heterogeneity and fragility III

The effect of increasing heterogeneity Δ

	Weak banks	Strong banks
Fundamental	\downarrow (–)	↑(+)
Fire-sale pressure	\downarrow (+)	\uparrow (–)

• Impact of Δ on run threshold θ^* :

- Fundamental: zero net effect (by construction)
- Fire-sale pressure: net benefit due to reinforcing complementarities
- $\Delta > \Delta_{min}$: fire-sale pressure is constant
 - Weak banks' investors are certain that strong banks are not liquidating
 - Strong banks' investors are certain that weak banks are liquidating

Why

1 3 1 4 3 1 3 1 3 1 4 4 4 4 A

Robustness and extensions

- N types of banks
- Uncertain bank-specific productivities
- General payoff functions
- No aggregate uncertainty

= nar

Policies

Ring fencing

- Service divisions: commercial banks vs investment banks
 - United States: Volcker rule
 - United Kingdom: Banking Reform Act 2013
- Geographic divisions
 - Europe: legal restrictions on intragroup cross-border asset transfers and limitations on the distribution of profits by foreign-owned subsidiaries
- Heterogeneity is crucial: splitting banks into identical clones will not help
- M&A regulation: increase risk weights of merging banks

Bank support during crises

- U.S. Treasury forced all major banks to take the TARP money
- Avoid signaling and stigma
- Unintended (?) consequence: heterogeneity is preserved

토▶ ◀토▶ 토|티 ∽�@ ity 17 / 18

Conclusion

Bank runs with common market for asset sales

- Two mutually reinforcing complementarities
- Aggregate uncertainty

Key results

- A homogeneous financial system is suboptimal
- Increasing heterogeneity is Pareto improving

Policy prescriptions

Ring fencing, M&A regulation, support of banks in crises

E SQA

Appendix

Goldstein, Kopytov, Shen and Xiang

Bank Heterogeneity and Financial Stability 1 /

N types of banks

Same setting but bank-specific productivity can take N values

$$\eta_i = \Delta_i \;\; ext{with prob.} \;\; w_i, \; ext{where} \;\; \sum_{i=1}^N w_i = 1, \;\; \sum_{i=1}^N w_i \Delta_i = 0$$

Proposition

Starting from a homogeneous financial system ($\Delta_i = 0 \forall i$), any sufficiently small heterogeneity reduces run thresholds for all banks.

= 200

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Uncertain bank-specific productivities

Assume that bank *i* sends an imperfect signal $d_i \in \{G, B\}$ about its type at t = 1

$$\mathbb{P}(d_i = G | \eta_i = \Delta) = \mathbb{P}(d_i = B | \eta_i = -\Delta) = \alpha \in [0.5, 1]$$

Proposition

The model is equivalent to the benchmark one with

$$w^{\text{eff}}(\alpha) = w\alpha + (1 - w)(1 - \alpha),$$
$$\Delta^{\text{eff}}(\alpha) = \frac{2\alpha - 1}{w\alpha + (1 - w)(1 - \alpha)}w\Delta.$$

Effective heterogeneity $\Delta^{eff}(\alpha > 0)$, $\Delta^{eff}(0.5) = 0$, and $\Delta^{eff}(1) = \Delta$.

- Imperfect signals about bank-specific productivities reduce effective heterogeneity
- When $\alpha = 0.5$, banks are effectively homogeneous
- Main result holds as long as signals are informative, $\alpha > 0.5$

General payoff function

Consider a general (net) benefit from staying

$$g(z_i, m_i, m), ext{ where } rac{\partial g}{\partial z_i} > 0, rac{\partial g}{\partial m_i} < 0, rac{\partial g}{\partial m} < 0$$

Proposition

If $\frac{\partial^2 g}{\partial m_i \partial m} \leq 0$, $\frac{\partial^2 g}{\partial z_i \partial m} \geq 0$, $\frac{\partial^2 g}{\partial z_i^2} \geq 0$, a common run threshold θ^* is not increasing when heterogeneity Δ goes up (declines if any of the inequalities is strict).

- $\frac{\partial^2 g}{\partial m; \partial m} \leq 0$ mutually reinforcing complementarities
- ▶ $\frac{\partial^2 g}{\partial z_i \partial m} \ge 0$ (mechanically) asymmetric fire-sale pressure
- $\frac{\partial^2 g}{\partial z_i^2} \ge 0$ (mechanically) beneficial heterogeneity

No aggregate uncertainty

► Bank *i* is characterized by its position $x_i \in [0, 1]$: $\eta_i = \begin{cases} \Delta, & \text{if } x_i > 0.5, \\ -\Delta, & \text{if } i_x \leq 0.5 \end{cases}$

• Assume that agents perfectly observe θ but not x_i (i.e., η_i): $s_{ij} = x_i + \sigma \epsilon_{ij}$

Proposition

• $\theta > \theta_L$: there exists a 'low-run' equilibrium with the run threshold $x_L^* < 0.5$

• $\theta < \theta_H$: there exists a 'high-run' equilibrium with the run threshold $x_H^* > 0.5$

• $\theta_L(\Delta)$ is increasing and $\theta_H(\Delta)$ is decreasing in Δ

- η_i is uncertain \Rightarrow multiplicity due to within-bank complementarities is resolved
- ▶ Prices are certain ⇒ multiplicity due to cross-bank complementarity is preserved
- Impact of heterogeneity depends on the type of equilibria being played

Finite noise

- Assume that signals are not infinitely precise
- Thresholds θ_s^* and θ_w^* are not infinitely close
- But overall pattern is preserved

Back

= 900

Asymmetric fire-sale pressure

Fire-sale pressure on strong banks

Back

Fragility of a homogeneous financial system

• Consider a homogeneous financial system, $\eta_i = 0 \ \forall i$

Benchmark case: Interacting complementarities

Synchronized runs across different banks ⇒ Threshold investor expects many runs on her bank when fire-sale discount is large

lndifference condition:
$$\int_0^1 \frac{\theta_0^* - \lambda(\bar{m}x)\bar{m}x}{1 - \bar{m}x} dx = 1$$

Fixed fire-sale discount: No complementarity interaction

Fix fire-sale discount at its average level: $\bar{\lambda} = \int_0^1 \lambda(\bar{m}x) dx$

• Indifference condition:
$$\int_0^1 \frac{\hat{\theta}_0^* - \bar{\lambda}\bar{m}x}{1 - \bar{m}x} dx = 1$$

▶ Banks are *less* fragile when complementarities do not interact: $\hat{\theta}_0^* < \theta_0^*$

Back

A B A B A B A B B A A A