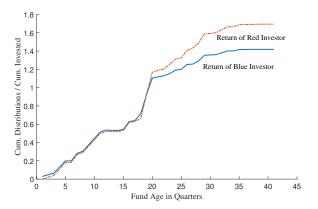
How do private equity fees vary across public pensions?

Juliane Begenau

Emil Siriwardane

Stanford GSB & NBER & CEPR Harvard Business School


Motivation

Public pensions increasingly invest in private equity and real estate
 → \$1 trillion in capital flows since mid-2000s (Ivashina and Lerner, 2018)

- Active debate on fees, which are known to be large (~4-7% per year) (Gompers and Lerner, 1999; Metrick and Yasuda, 2010; Phalippou et al., 2018)
- Yet very little systematic analysis of costs in private markets, mainly because contracts are privately negotiated and fees are often not recorded
- Empirical hurdles to research on fee economics highlighted by recent SEC investigations of disclosure practices in private equity

This paper

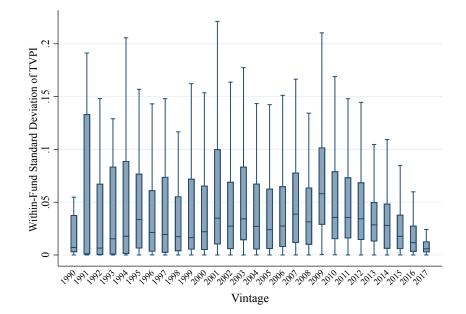
- We sidestep the lack of direct data on fees by comparing net-of-fee returns of multiple pensions invested in the *same* private-market fund
- Data example \rightarrow investors in the same fund with different realized returns:

- 1. Sizable within-fund variation in net-of-fee returns, likely due to fees
- Most funds have 2-3 tiers of investors in terms of fees
 → Plus estimates of how fixed and performance fees differ across tiers
- 3. Some pensions pay higher fees in all of their PE funds ("pension effects")
- 4. Observables (e.g., size) account for a modest amount of these pension effects
 → Several implications for theories of fee determination

Institutional Background

- General partners (GPs) manage PE funds and limited partners (LPs) provide the bulk of capital
- Terms are privately negotiated in a limited partnership agreement (LPA)
- Two building blocks of fee structures (e.g., Robinson and Sensoy, 2013):
 - Fixed annual management fee, typically 1-2.5% of committed capital
 - Variable performance fee (carry), typically 10-30% of fund profits
- PE funds generally have a fixed start and end date (10-15 year life)
 - This structure makes it is reasonable to compare returns within a fund

- Amount invested and **net-of-fee** distributions of individual pension investments into private markets from Preqin (1990 2019)
- Mainly sourced through FOIA requests
 - We have audited the Preqin data with our own direct FOIA requests
 - Near perfect match in terms of data quality
- Fees include management, performance, and any other cost borne by LPs
- Merge with publicly available information from pension funds' annual reports on pension size, broad portfolio composition, etc.


Measuring Returns and Sample Definitions

• Measure net-of-fee-return using multiple on invested capital (aka TVPI):

$$r_t^M := \underbrace{\frac{\text{Cumulative Distributions}_t}{\text{Cumulative Invested}_t}}_{r_t^D} + \frac{\text{Net Asset Value}_t}{\text{Cumulative Invested}_t}$$

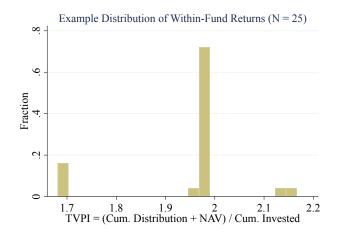
- Simplest return measure and harder to distort relative to IRR (Andonov, Hochberg, and Rauh 2018)
- Within-fund variation in r_t^M or r_t^D based on the latest available data
 - This "core sample" is unique at the investor-fund level
 - See the internet appendix for detailed sample criteria
- \$515 bn invested by 231 pensions in 2,535 funds managed by 931 GPs

Clear within-fund variation in net-of-fee returns (i.e., fees)

Assessing the magnitude of within-fund fee dispersion

• Pension *p*'s potential gain in fund *f* had it paid the lowest fee:

where r_f^{max} is maximum net-of-fee return in fund f


• Can aggregate potential gains (as % invested) in any subsample:

$$G = \frac{\sum_{p,f} d_{pf}}{\sum_{p,f} a_{pf}}$$

G ≈ \$8.50 per \$100 invested → \$44 billion in potential dollar gains
 \$4.69 per \$100 even in most conservative subsample

1. How do fee structures vary within a typical fund?

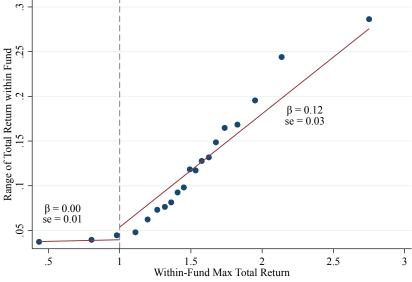
2. Are some pensions "top tier" investors in the sense that they consistently pay lower fees? What determines status?

- Clear bunching of returns → investors in a fund are tiered in terms of fees
- Machine learning methods suggest 90% of funds have 2-3 tiers of investors

What differs across investor tiers in a fund? A stylized example

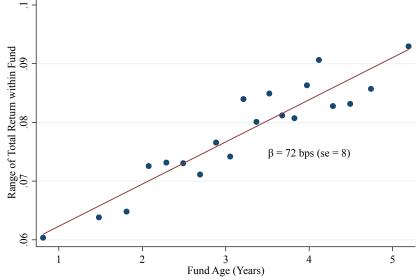
• Compare net-of-fee returns *r* in a fund that has two tiers, *A* and *B*:

$$\Delta_t := r_{At} - r_{Bt}$$
$$= (m_B - m_A) \times t + (c_B - c_A) \times \max(g_t - 1, 0)$$


m is mgmt fee, *c* is perfm. fee, and g_t is the fund's gross-of-fee return at *t*

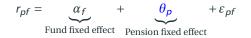
• Differences in *c* are pinned down by sensitivity of Δ_t to fund profitability:

$$\frac{\partial \Delta}{\partial g_t} = \begin{cases} 0 & \text{if } g_t < 1 \\ c_B - c_A & \text{if } g_t \geq 1 \end{cases}$$


Differences in *m* are pinned down by sensitivity of Δ_t to age
 → m_B - m_A also easier to detect when fund is young, before *c* is charged

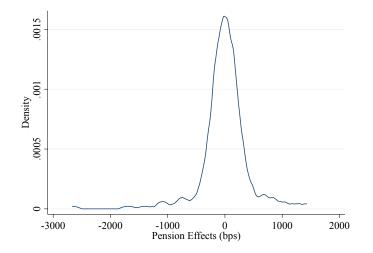
Estimate of avg. difference in effective performance fee $\approx 12 \ pp$

Note: Binscatter adjusts for age effects


Estimate of avg. difference in effective management fees ≈ 72 bps

Note: Binscatter adjusts for return effects

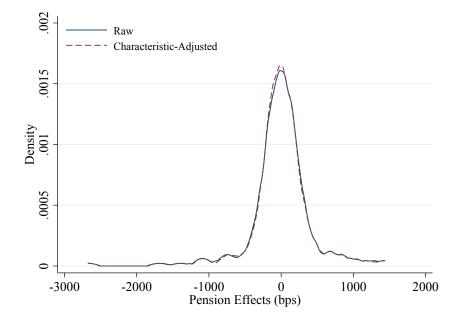
Are there top-tier pensions in terms of fees?


Test using a fixed-effects regression:

	Pensi	Pension-Effects ($\theta_1 = = \theta_K$)			
Min. Age	F	р	<i>p</i> *	K	N
1	5.41	< 0.01	< 0.01	205	10,848
4	5.23	< 0.01	< 0.01	191	8,493
8	4.13	< 0.01	< 0.01	158	4,923

- p^* based on random assignment of returns within funds
- Consistently reject the null of no pension effects ($\theta_1 = ... = \theta_K$)

How large are pension effects?



- $\sigma(\theta_p) \approx 523$ bps, compared to average within-fund range ≈ 900 bps
- p10 vs. p90 pension in fees \approx p50 vs. p60 PE fund returns

Why do some pensions consistently pay lower fees?

- We augment our fixed effects regression with observables X_{pf}
- This lets us assess several potential mechanisms:
 - Some LPs lower the cost of raising capital (e.g., signaling effects)
 → Pension size, share of the fund, initial commitment date
 - 2. LP preferences/governance
 - \rightarrow Pension risk aversion (e.g., cash holdings)
 - \rightarrow Variables that capture political agency frictions (Andonov et al. 2018)
 - 3. LP experience, bargaining position, and search costs
 - \rightarrow Size, proxies for PE experience, and LP-GP relationships
- Also verify in the paper that measurement error and bespoke investment structures like co-investment are unlikely to explain pension effects

Characteristics and pension effects

Implications for fee economics

- · Pension effects are largely unexplained by observables
- This suggests similar pensions pay consistently different fees
- Implications for potential mechanisms:
 - 1. Some LPs lower the cost of raising capital
 - \rightarrow Mostly orthogonal to size and proxy for commit date (e.g., state regulations)
 - 2. LP preferences/governance
 - \rightarrow No evidence for risk aversion and some for board composition
 - \rightarrow LPs could have heterogeneous beliefs
 - 3. LP experience, bargaining position, and search costs
 - \rightarrow Must not load on observables

Another possibility: some pensions do not fully optimize on fees

- Would explain why pensions that should presumably have similar outside options, preferences, and information systematically pay different fees
- Several possible microfoundations:
 - 1. Agency frictions (non-political)
 - 2. Biased beliefs about GP skill or fund risk
 - 3. Confusion about cost structure embedded in contracts
- On #3: our evidence shows perform. fees vary within the typical fund
 - Yet only 5% of pensions mention perform. fees in annual reports
 - Even if fully tracked, ex-ante fee valuation is complex (Sorensen et al., 2014)

Robustness

- Measurement error
 - Audit via direct FOIA requests, plus hard to account for pension effects
- Alternative vehicles (e.g., coinvestment) and investor-specific mandates
 - Excluded from all analysis
 - Currently small part of public pension portfolios (likely to change)
 - Restrict to pre-2010 and smaller pensions
- Potential gains estimates:
 - Alternative return measures: cash multiple on investment (DVPI) and IRR
 - Lower bound on redistribution from fee dispersion
- Pension effects:
 - Similar results using DVPI
 - Additional controls:
 - Reporting on performance fees
 - Reported expectations of aggregate PE performance

- Within-fund variation in net-of-fee returns implies that fees vary across pensions in the same private equity fund
- Some pensions consistently pay lower fees relative to others, and the potential gains from better fee terms are large:
 - 5th percentile pension = \$14.91 per \$100 invested
 - 95th percentile pension = \$1.12 per \$100 invested
 - Aggregate potential gains are \$44bn
- Evidence suggests some pensions likely overpay for access to private equity
- We are actively exploring these issues in follow-up work

References

- Aleksandar Andonov, Yael V. Hochberg, and Joshua D. Rauh. Political Representation and Governance: Evidence from the Investment Decisions of Public Pension Funds. *The Journal of Finance*, 2018.
- Paul Gompers and Josh Lerner. An analysis of compensation in the u.s. venture capital partnership. *Journal of Financial Economics*, 51 (1):3 44, 1999. ISSN 0304-405X. doi: https://doi.org/10.1016/S0304-405X(98)00042-7. URL

http://www.sciencedirect.com/science/article/pii/S0304405X98000427.

Victoria Ivashina and Josh Lerner. Looking for alternatives: Pension investments around the world, 2008 to 2017. Working Paper, 2018.

Andrew Metrick and Ayako Yasuda. The economics of private equity funds. The Review of Financial Studies, 23(6):2303-2341, 2010.

- Ludovic Phalippou, Christian Rauch, and Marc Umber. Private equity portfolio company fees. Journal of Financial Economics, 129(3): 559–585, 2018.
- David T. Robinson and Berk A. Sensoy. Do Private Equity Fund Managers Earn Their Fees? Compensation, Ownership, and Cash Flow Performance. The Review of Financial Studies, 26(11):2760–2797, 11 2013.

Morten Sorensen, Neng Wang, and Jinqiang Yang. Valuing private equity. The Review of Financial Studies, 27(7):1977-2021, 2014.