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The Welfare Costs of Oligopoly

Old and recurring question in economics:
• Harberger (1954): misallocation across industries
• Empirical I.O. (1980s-today): within industry

Resurgent interest with a macro angle (Syverson, 2019). Trends:
• Rising corporate profits (Barkai, 2020)
• Rising concentration: (Autor et al., 2020)
• Markups distribution shifting (De Loecker & Eeckhout, 2020)

Question: what are the welfare implications of rising concentration?
à Change in oligopolistic deadweight loss and consumer surplus.
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This Paper

• I.O.-style general equilibrium model that features granular firms
that behave as oligopolists alongside a continuum of atomistic
firms with free entry that act competitively.

• Hedonic demand to model competition among oligopolists.

• I estimate it for the universe of US public companies using
bilateral product similarity scores by Hoberg & Phillips (2016)

• Results: rising concentration resulted in 30%+ deadweight loss,
consumer share of surplus declining from 50% to 44%.

• Contribution: connects I.O. to a growing macro literature on
markups (Baqaee & Fahri, 2020; Edmond, Midrigan & Xu, 2019)
to answer questions about oligopoly in macro/GE environment.
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The Model
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Supply structure

§ i = 1,2,...,n firms that behave as oligopolists (will
explain later how to incorporate atomistic firms).

§ Hedonic demand: each firm’s product is a bundle of
characteristics (Lancaster, 1968; Rosen, 1974)

§ 1 unit of product i provides:

• 1 unit of an idiosyncratic characteristic i

• a unit-length vector ai of k common characteristics
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A basic example: 2 firms, 2 characteristics
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Representative agent utility

• Representative consumer values products as bundles of
characteristics U (x,q,H) =

• H = hours worked – numeraire
• Because x = Aq, this can be re-written in term of q
• Consumer faces price vector p and choose q

The vector ai therefore provides firm i’s coordinates in the space of common characteristics. We can
stack all the coordinate vectors ai inside a matrix. Let us call this matrix A:

A =
h
a1 a2 · · · an

i
=

2

666664

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
ak1 ak2 · · · akn

3

777775
(2.4)

The assumption that ai is of unit length amounts to a normalization assumption. For every product,
we need to pick an output volume metric (kilograms, pounds, gallons, etc.). The normalization consists
in picking the volume unit so that each unit is geometrically represented by a point on the k-dimensional
hypersphere.

Let qi be the number of units produced by firm i and consumed by the representative agent, which we
write inside vector q:

q =
h
q1 q2 · · · qn

i0
(2.5)

Definition 1 (Allocation). A vector q that specifies, for every firm, the number of units produced and sold
is called an allocation.

The matrix A transforms the vector of units of goods purchased q into units of characteristics x:

xj =
X

i

ajiqi (2.6)

in linear algebra notation:
x = Aq (2.7)

On top of the k common characteristics, there are also n characteristics that are completely idiosyncratic
– that is, which are distinctive to each product. I assume that each unit consumed of good i provides exactly
unit of its corresponding idiosyncratic characteristic, hence we can just write the units of idiosyncratic
characteristic provided the consumption of good i as qi.

The representative consumer’s preferences are quadratic in the vector of characteristics, and incorporate
a linear disutility for the total number of hours of work supplied (H):

U (x,q, H)
def
= ↵ ·

kX

j=1

✓
bxj xj � 1

2
x2
j

◆
+ (1� ↵)

nX

i=1

✓
bqi qi � 1

2
q2i

◆
�H (2.8)

where bxj and bqi are characteristic-specific preference shifters. In linear algebra notation:

U (x,q, H)
def
= ↵

✓
x

0
b

x � 1

2
· x0

x

◆
+ (1� ↵)

✓
q

0
b

q � 1

2
· q0

q

◆
�H (2.9)

Because units of idiosyncratic characteristics equate to units of products, we write this utility directly in
terms of x and q. The parameter ↵ determines the utility weight that is assigned to common characteristics.
Therefore – ↵ governs the degree of horizontal differentiation among products. A related utility specification
(without idiosyncratic characteristics) was adopted – in a demand estimation context – by Epple (1987). To
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Inverse Demand

where

More explicitly, the component (A0
A)ij = a

0
iaj measures the cosine of the angle between vectors ai and aj

in the space of characteristics Rk:3 A higher cosine similarity score reflects a lower angular distance. In other
words, if the cosine similarity between i and j (a0iaj) is high, the outputs of i and j contain a more similar
set of characteristics. The intuition for the fact that the quadratic term contains this matrix is that if two
products i and j contain a similar set of characteristics (that is, if the cosine between i and j is high), there
is a high degree of substitution between these two products; as a consequence, an increase in the supply
of product i will have a large negative impact on the marginal utility provided by one additional unit of
product j.

Figure 1 helps visualize this setup for the simple case of two firms—1 and 2—competing in the space
of two characteristics A and B. As can be seen in the figure, both firms exist as vectors on the unit circle
(with more than three characteristics, it would be a hypersphere). The cosine similarity a

0
iaj captures the

tightness of the angle ✓ and, therefore, the similarity between firm 1 and firm 2. An increase in the cosine
of the angle ✓ (a lower angular distance) reflects a more similar set of characteristics, and therefore a higher
degree of substitution between firm 1 and firm 2.

We can streamline the notation further by defining:

⌃

def
= ↵ (A0

A� I) (2.18)

then the demand and inverse demand functions are given by:

Aggregate demand : q = (I+⌃)
�1

(b� p) (2.19)

Inverse demand : p = b� (I+⌃)q (2.20)

Notice that the quantity sold by each firm may affect the price of the output sold by every other firm in
the economy (unless the matrix I+⌃ equals the identity matrix), hence there is imperfect substitutability
among the products. In particular, the derivative @pi/@qj is proportional to a

0
iaj : the product similarity

between i and j. The closer two firms are in the product-characteristics space, the higher the cross-price
elasticity between the two firms. Because A

0
A is symmetric, we have @qi/@pj = @qj/@pi by construction.

As a consequence, the (inverse) cross-price elasticities of demand are:

Inverse cross� price elasticity of demand :
@ log pi
@ log qj

= �qj
pi

· �ij (2.21)

Cross� price elasticity of demand :
@ log qi
@ log pj

= �pj
qi

·
�
⌃�1

�
ij

(2.22)

My choice to use a linear demand system is motivated by a recent literature that has investigated the
implications of different demand systems on allocative efficiency and market power.4 Linear demand has
super-elasticity—that is, the elasticity of demand decreases with firm size. I discuss the implications of linear
demand at length in Appendix F.

3This is a consequence of the normalization assumption that all vectors ai are unit vectors.
4See ?Haltiwanger et al. (2018).
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AʹA is called the matrix 
of cosine similarities 

The Hoberg & Phillips 
dataset provides an 

estimate of this object

Back to 2 firms, 2 characteristics
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Competition

• Cost function:

• Cournot Competition: firm i choose supply qi to
maximize profits πi (quadratic)

• Linear-quadratic game over a weighted network
(Ballester, Calvó-Armengol & Zenou, 2006)

• Why? Σ (the matrix of inverse demand derivatives)
can be seen as an adjacency matrix of a network

close the model, I modify the utility function by simply replacing the outside good with a linear disutility
for labor.

I denote by hi the labor input acquired by every firm. I assume (without loss of generality) that labor
is the only factor of production, and that it is the numeraire of this economy (the price of one unit of labor
is 1$), therefore hi is also the total variable cost incurred by firm i. Firm i produces output qi using a
quasi-Cobb Douglas production function:

qi = k✓i · ` (hi) (2.10)

where ki is capital and the function ` (·) is such that firm i’s technology can be described by the following
quadratic variable cost function:

hi = ciqi +
�i
2
q2i (2.11)

MC and AVC denote, respectively, the marginal cost, the average variable cost and the total variable cost:

MCi = ci + �iqi; AVCi = ci +
�i
2
qi (2.12)

The representative consumer buys goods vector q taking p (the vector of prices) as given. Moreover, I
assume that the representative consumer is endowed with the shares of all the companies in the economy.
As a consequence, the aggregate profits are paid back to them. Their consumption basket, defined in terms
of the unit purchased q, has to respect the following budget constraint:

H +⇧ =
kX

i=1

piqi (2.13)

Notice that we have defined aggregate profits ⇧ to include all capital compensation.

2.3. Equilibrium

To streamline notation, we define:
bi

def
= bqi +

X

j

axjixj (2.14)

or, in linear algebra notation:
b

def
= (1� ↵)bq + ↵A

0
b

x (2.15)

Then, plugging equation (2.7) and 2.15 inside (2.9), we obtain the following Lagrangian for the represen-
tative consumer:

L (q, H) = q

0
b� 1

2
q

0 [I+ ↵ (A0
A� I)]q�H � � (q0

p�H �⇧) (2.16)

The choice of work hours as the numeraire immediately pins down the Lagrange multiplier � = 1. Then,
the consumer chooses a demand function q (p) to maximize the following consumer surplus function:

S (q) = q

0 (b� p)� 1

2
q

0 [I+ ↵ (A0
A� I)]q (2.17)

The matrix A

0
A contains the cosine similarity scores between all pairs of firms in the characteristics space.

8
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Network visualization of 
the Hoberg & Phillips 
(2016) dataset

Time-varying 
estimate of A’A 

(5000× 5000)
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Nash Equilibrium (Katz-Bonacich Centrality)

Marginal Surplus
at qi = 0

Network 
Position

Equilibrium size depends on:
• Producing at low cost relative to quality
• Being “far” from competitors (centrality)

I can now define the vector of economic profits ⇡ as follows:

⇡ (q)
def
= Q [p (q)� c] (2.23)

= Q (b� c)�Q

✓
I+

1

2
�+⌃

◆
q

where

�

def
=

2

666664

�1 0 · · · 0

0 �2 · · · 0
...

...
. . .

...
0 0 · · · �n

3

777775
(2.24)

each component ⇡i quantifies the profits of firm i . Firms compete à la Cournot. That is, each firm i

strategically chooses its output volume qi by taking as given the output of all other firms. By taking the
profit vector as a payoff function and the vector of quantities produced q as a strategy profile, I have implicitly
defined a linear-quadratic game over a weighted network.

This class of games, which has been analyzed by Ballester et al. (2006, henceforth BCZ), belongs to a
larger class of games called “potential games”(Monderer and Shapley, 1996): their key feature is that they
can be described by a scalar function � (q), which we call the game’s potential. The potential function can be
thought of, intuitively, as the objective function of the “pseudo-planner” problem that is solved by the Nash
equilibrium allocation. The potential function is shown below, together with the aggregate profit function
⇧ (q) and the aggregate welfare function W (q):

Aggregate Profit : ⇧ (q) = q

0 (b� c) �q

0
✓
I+

1

2
�+⌃

◆
q

Cournot Potential : � (q) = q

0 (b� c) �q

0
✓
I+

1

2
�+

1

2
⌃

◆
q

Total Surplus : W (q) = q

0 (b� c) � 1

2
· q0 (I+�+⌃)q

(2.25)

The three functions are visually similar to each other; they differ only by the scalar weight applied to
the quadratic terms. In writing these functions, I separated, on purpose, the diagonal components of the
quadratic term from the off-diagonal components. As can be seen from equations , the Cournot potential
is somewhat of a hybrid: the diagonal elements of the quadratic terms are the same as the aggregate profit
function, while the off-diagonal terms are the same as the aggregate surplus function. By maximizing the
potential � (q), we find the Cournot-Nash equilibrium.

Proposition 1. The Cournot-Nash equilibrium of the game described above is given by the maximizer of
the potential function � (·), which I label q�:

q

� def
= argmax

q
� (q) = (2I+�+⌃)

�1
(b� c) (2.26)

Proof. The derivation of the potential function, as well as the proof that its maximizer q

� is the genuine
Nash equilibrium, appear in Appendix A.
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Adding a continuum of atomistic firms with entry/exit

• We can tractably fit a demand system for US public firms (new).
Can we include private and foreign firms, and allow free entry?

• Problem: Hoberg-Phillips only covers US public firms.

• Idea: use a representative firm to model other firms as atomistic.

• Aggregation Result: if the atomistic firms’ cost function is
quadratic and the productivity distribution tends to a Zipf Law
the representative firm’s cost function is quadratic in the limit.

• Implies that revenues and employment also follow a Zipf Law.

▹ Holds almost perfectly in US Census data (Axtell, 2001)
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Equilibrium with representative competitive firm
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Cournot: =

Modifies to:

Where:

This stylized fact was confirmed to hold for both the employment and the revenue distribution of US firms
by Axtell (2001), using Census microdata.

Because the representative firm behaves competitively, its first order condition will differ from that of
the granular firms 1 to n. The latter maximize individual profits:

⇡0
i (qi) = 0 for i = 1, 2, ..., n (2.58)

The representative firm, on the other hand, prices at marginal cost, and therefore it maximizes total surplus:

W 0 (qi) = 0 for i = n+ 1 (2.59)

We can write the full system of first order conditions in linear algebra notation as:

0 =

"
b

(n) � c

(n)

bn+1 � cn+1

#
+

 "
2I 0

0 1

#
+⌃+�

!"
q

(n)

qn+1

#
(2.60)

where cn+1 = 0, �n+1 = 1 and the superscript (n) identifies the sub-vector corresponding to the granular
firms. A simpler way to rewrite this set of equations is

0 = b� c� (I+G+⌃+�)q (2.61)

where G is a diagonal matrix that identifies granular firms – that is, whose diagonal elements equal 1 for
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The potential function for the model that includes the representative firm is:
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0 (I+G+⌃+�)q (2.63)

and the equilibrium quantity vector is:
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(b� c) (2.64)
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This stylized fact was confirmed to hold for both the employment and the revenue distribution of US firms
by Axtell (2001), using Census microdata.

Because the representative firm behaves competitively, its first order condition will differ from that of
the granular firms 1 to n. The latter maximize individual profits:

⇡0
i (qi) = 0 for i = 1, 2, ..., n (2.58)

The representative firm, on the other hand, prices at marginal cost, and therefore it maximizes total surplus:
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where cn+1 = 0, �n+1 = 1 and the superscript (n) identifies the sub-vector corresponding to the granular
firms. A simpler way to rewrite this set of equations is

0 = b� c� (I+G+⌃+�)q (2.61)

where G is a diagonal matrix that identifies granular firms – that is, whose diagonal elements equal 1 for
firms 1 to n and to 0 for firm n+ 1:
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Data - Hoberg & Phillips (2016)
• They construct similarity scores by text mining the “Business

Description” section of 10-K filings; already standard in Finance.

• Solve long-standing problems with NAICS/SIC: binary, arbitrary,
easily manipulated, based on process (not product) similarity,
seldom updated. SEC filings must be accurate and complete.

• Construction:

3 Mapping and calibrating the model

In this section, I outline the data used to bring the model in Section 2. The data used, the sources as well
as the mapping to the theory are outlined in Table 1.

3.1 Text-based Product Similarity

The key input required to bring my model to the data is the matrix of product cosine similarities A

0
A.

The empirical counterpart to this object is provided by (Hoberg and Phillips, 2016, henceforth HP) who
computed product cosine similarities for firms in COMPUSTAT by performing text-analysis of their 10-K
forms.

The 10-K form is a regulatory form that every publicly-traded firm in the United States has to submit
to the Securities Exchange Commission (SEC); it contains a product description section, which is the target
of the algorithm devised by HP. Using computational linguistics methods, they build a vocabulary of 61,146
words which firms use to describe their products. Based on this vocabulary they produce, for each firm i,
a vector of word occurrences oi . Once normalized, this vector produces our empirical proxy for the vector
ai 2 R61146 that contains firm i’s coordinates in the product characteristics space:

oi =

2

666664

oi,1

oi,2
...

oi,61146

3

777775
, ai =

1

koik
· oi (32)

HP then use these vectors to compute a matrix of cosine similarities, which is what I use to estimate
of A

0
A. The fact that all publicly-traded firms in the USA are required to file a 10-K form makes the

HP dataset unique in that it is the only dataset of this kind that covers the near entirety (97.8%) of the
CRSP-COMPUSTAT universe.

This dataset was partly developed by HP in order to remedy two of the most well-known shortcomings of
the traditional industry classifications: 1) the inability to capture imperfect substitutability between prod-
ucts, which is the most salient feature of my model; 2) the fact that commonly used industry classifications,
such as SIC and NAICS, are based on similarity in production processes, rather than in product character-
istics - in other words, they are appropriate for production function estimation, but unsuitable to measure
the elasticity of substitution between different products.

There are some other datasets that have network structure that I could potentially utilize to estimate
A

0
A - most notably that which was developed by Bloom et al. (2013). Unfortunately, they all have following

shortcomings; A) they are all directly or indirectly based on industry classifications; B) they fail to meet the
data coverage requirements for my empirical exercise by a large margin.

3.2 Firm financials and output volume normalization

The main source of data on firms’ financials and performance measures is the CRSP-COMPUSTAT merged
database. From this database I extract information on firm revenues, operating costs (costs of goods sold
+ SG&A), market capitalization, stock price, common shares outstanding, book and redemption value of

12
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Both my paper and the original HP paper validate the
text data extensively (for more details see the papers)

Outline of calibration:

• Δ : matches average markups estimated by De
Loecker, Eeckhout and Unger (2020)

• α : matches micro-econometric estimates of cross-
price demand elasticity from I.O. studies

Validation / Calibration
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Total Surplus and its Distribution
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Pareto Efficiency

Figure 5: Deadweight Losses from Oligopoly (1997-2017)

The following figure plots the estimated deadweight loss (DWL) from oligopoly, between 1997 and 2017.
The lighter line is the traditionally-defined DWL - the % difference in total surplus between the Cournot
equilibrium and the First-Best scenario, while the darker line is the % difference between the Cournot
equilibrium and the Second-Best scenario as defined in Section 2. Top panel (A) estimates are based on
surplus measures from which fixed costs (F ) have not been subtracted. Bottom panel (B) presents estimates
based on surplus measures from which fixed costs (F ) have been subtracted.
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Robustness

• Inclusion/exclusion of foreign and private firms

• Fixed costs

• Intangible capital

• Multi-product firms (requires additional assumptions
which I clarify in the paper).

• Common ownership (in a separate Paper not out yet)
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What can account for these trends?

• Fact: the increase in concentration among Compustat
firms is not driven by mergers between incumbents or
increase in the rate of exit (bankruptcies and de-listings).

• Instead, it’s driven by a well-documented secular decline in
the rate of Initial Public Offers (IPOs) that began in the
mid/late 90s (Gao, Ritter and Zhu, 2013).

• However, the problem is not a dearth of startups…
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Venture capital exits by year and type
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Startup Acquisitions

• Counterfactual: IPO rate constant. For each firm appearing after
1997, I spawn a number N of additional entrants with the same
fundamentals, where N keeps the IPO rate constant after 1997.

• Caveats:

1. Acquisitions have increased also for non VC-backed startups,
which are not counted (conservative)

2. On the other hand, we are not modelling synergies in
acquisitions. Only “killer” acquisitions (most likely aggressive)

3. “Mechanical” exercise (does not say why IPOs declined)
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Consumer Surplus, as % of First best
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These findings adds to a recent micro/IO literature on the
implications of startup acquisitions for competition policy:

• Stealth Consolidation (Wollmann, 2019)

• Killer Acquisitions (Cunningham, Ederer & Ma, 2019)
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Network Centrality as a Measure of Oligopoly

Figure 11: Cumulative average change in inverse centrality (2002-2017)

The following figure plots the evolution, between 1997 and 2017, of the Inverse Centrality Score �i, a firm-
level metric of oligopoly power, for different groups of companies. This measure is distributed roughly
uniformly over the interval (0, 1). Big 5 Tech = {Alphabet, Amazon, Apple, Facebook, Microsoft}. Other
Tech refers to GICs code 45. The computation of inverse centrality is based only on the firms’ similarity in
the product characteristics space (see model in section 2) and does not involve the use of any measure of
firm size).
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Taking Stock

• A new GE model of oligopoly with hedonic demand
system with granular and atomistic firms.

• 10-K text data to estimate the demand system for
the universe of public firms.

• Rising Oligopoly Power measured as increasing
deadweight loss and lower consumer surplus share.

• Startup Acquisitions are likely to have at least
contributed to these trends.

(ending note: paper soon to be updated)
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thank you


