Introduction	Sorting Evidence	Model 000	Estimation	Conclusion

Sorting Out the Real Effects of Credit Supply

Briana Chang UW-Madison Matthieu Gomez Harrison Hong Columbia University Columbia University

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

July 2020

Introduction	Sorting Evidence	Model 000	Estimation	Conclusion

Sorting Out the Real Effects of Credit Supply

Briana Chang UW-Madison Matthieu Gomez Harrison Hong Columbia University Columbia University

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

July 2020

Credit supply effects on macroeconomic variables

- Bank lending channel and corporate activity
 - Bernanke and Blinder '88, Bernanke and Gertler '89, Kashyap, Stein and Wilcox '93
- Panel regression approach: compare firms of hit banks to firms of non-hit banks
 - Cross-sectional versus firm fixed effects estimators (Khwaja and Mian '08)
- Great Recession: drop in lending to corporate borrowers of hit banks
 - Hit banks co-syndicated loans with Lehman or low deposit to asset ratios (Ivashina and Scharfstein '10)
 - Investment and employment effects (Chodorow-Reich '13)

- Requires identifying variations in bank health uncorrelated with firm riskiness
 - Often hard to justify due to sorting
 - Great Recession: banks with securitization talent lent to riskiest firms pre-crisis
- Silent on how to relate the cross-sectional effect of bank health to aggregate effect on total lending
 - 4000 (pre- 2008 crisis) versus 2500 firms (during crisis-period): what fraction due to credit supply?

ション ふゆ く 山 マ チャット しょうくしゃ

- Competitive matching model of credit market to confront sorting
 - Banks with lowest holding costs lend to riskiest firms
 - Firm's ability to borrow depends on the *entire* distribution of banks' holding costs
- Estimate bank holding cost distribution
- Disentangle the effects of bank holding costs and firm riskiness on aggregate lending

(ロ) (型) (E) (E) (E) (O)

- Which type of bank gets hit matters
- Complementary to panel regression approach

Introduction	Sorting Evidence	Model 000	Estimation	Conclusion
Borrower	Characteristics			

- Keep borrowers in Dealscan that obtained loans between 2004 and 2008 or prior to 2004 but loan matured after 2007
- Exclude loans to financial firms
 - Average of all-in-drawn *loan spread*—loan credit spread over LIBOR plus annual fees to the lenders from Dealscan
 - Observe and Securities Database (FISD) and Lehman Corporate Bond Data
 - Borrower level spread is average of the spread of all outstanding bonds in January 2007 weighted by face value
 - Only available for public firms and covers 30% of the initial sample of all borrowers

1 Bank *lending growth* ΔL_{it} during the financial crisis:

$$\Delta L_{it} = \frac{L_{\rm crisis}}{L_{\rm normal}}$$

 $L_{\rm crisis}$ loans originated from 10/2008 to 06/2009 and $L_{\rm normal}$ half of loans originated in 10/2005 to 06/2006 and 10/2006 to 06/2007

- Lehman distance: fraction of a bank's syndication portfolio where Lehman Brothers has no lead role
- Satio of bank deposit to asset

Introduction	Sorting Evidence	Model 000	Estimation	Conclusion
Sorting or	n Observables			

	β	t-stat	R ²	Ν
	(1)	(2)	(3)	(4)
Panel A: Bank Lending Growth 06-09				
Borrower Loan Spread	-0.65***	3.25	0.19	43
Borrower Bond Spread	-0.70***	4.21	0.21	38
Borrower Leverage	-3.65***	3.32	0.24	43
Panel B: Bank Lehman Distance				
Borrower Loan Spread	-1.37^{***}	3.39	0.37	42
Borrower Bond Spread	-1.18^{***}	3.34	0.24	37
Borrower Leverage	-8.33***	3.99	0.52	42
Panel C: Bank Deposit				
Borrower Loan Spread	-1.24***	5.30	0.48	43
Borrower Bond Spread	-1.06***	4.07	0.32	38
Borrower Leverage	-6.15***	6.55	0.47	43

Notes: This table estimates the model $Y_i = \alpha + \beta \overline{X}_i + \epsilon_i$, where *i* denotes a bank, Y_i is alternatively the bank lending growth from 2006-2009 (Panel A), Bank Lehman Distance (Panel B), Bank Deposit (Panel C). \overline{X}_i denotes the average observable of borrowers from bank *i* in 2004-2006.WLS t-statistics in parenthesis.

Introdu	uction	Sorting Ev	idence	Model 000	Estimation	Conclusion

Bank Lending Growth 2006-2009 and Firm Loan Spread

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

_					
Introduction	Sortir	g Evidence	Model 000	Estimation	Conclusion

Downside Risk and CAPX Growth during the Financial Crisis

		Borrower CAPX Growth 06-09					
	(1)	(2)	(3)	(4)	(5)	(6)	
Borrower Loan Spread	05***	05***					
	(-3)	(-2.7)					
Borrower Bond Spread			049***	048***			
			(-2.8)	(-2.6)			
Borrower Leverage					13**	18***	
					(-2.3)	(-3.1)	
Bank FE	No	Yes	No	Yes	No	Yes	
R ²	.0087	.04	.024	.098	.01	.042	
Ν	1913	1912	599	592	1709	1708	

Notes: This table estimates the model $\triangle CAPX_i = \alpha + \beta X_i + \epsilon_i$, where *i* denotes a firm, X_i is alternatively its loan spread, bond spread, and market leverage. OLS t-statistics in parenthesis.

Introduction	Sorting Evidence	Model ०००	Estimation	Conclusion
Model				

- Heterogeneous firms $i \in [0, N]$, w/ one project
 - requires 1 unit investment w/ NPV (extensive margin)

$$y = (1 - \delta[i])y_{H}[i] + \delta[i]y_{L}[i] - (1 + r_{f})$$

- Assumption A1. defaults if project fails $y_H[i] \ge 1 + r_f > y_L[i]$
- Assumption A2. NPV y constant so firms ranked by their default probability $\delta'[i] > 0$
- Heterogeneous risk-neutral banks (managers) $j \in [0, N]$
 - holding cost C(i,j): $C_1(i,j) \ge 0$
 - ranked by their risk management ability $C_2(i,j) \leq 0$

• Joint surplus between a matching pair:

$$s(i,j) \equiv w(i,j|d) + u(i,j|d) = y - C(i,j)$$

where d is specified repayment of a debt contract within match (i, j)

• Banks' payoff

$$w(i,j|d) = (1 - \delta[i])d + \delta[i]y_L[i] - C(i,j) - (1 + r_f).$$

• The payoff of the firm

$$u(i,j|d) = (1-\delta[i])(y_H[i]-d).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction	Sorting Evidence	Model ०००	Estimation	Conclusion
Equilibrium				

• Bank choosing firm taking equilibrium utility U[i] as given:

$$W(j) = \max_{i} \{y - C(i,j) - U[i]\}$$

- Fixing firm utility, lending to riskier firms leads to higher holding costs
- All banks prefer to match with safer firms
- U[i] must decrease in i
- Matching outcome determined by which bank more willing to absorb risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- When $C_{12}(i,j) < 0$, the equilibrium consists of a cutoff type i^* s.t.
- For all i ≤ i*, matching bank is given by j*(i) = N i* + i
 better banks hold riskier firms
- 2 Firm's equilibrium payoff U[i] satisfies

$$U'[i] = -C_1(i, j^*(i)) < 0,$$

with $U[i^*] = 0$

• U'[i] is the marginal contribution to the surplus given $j^*(i)$

• pin down $D^*[i]$ repayment for firm i

• Equilibrium condition for the marginal type *i**

$$y - C(i^*, N) = -\int_{N-i^*}^N C_2(i^*(j'), j')dj' > 0$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- the riskiest firm must be managed by the best bank N
- benefit: positive surplus of marginal project
- cost: worse banks for other firms
 - the cost is zero iff banks homogeneous
- can be understood from social planner's view

- $C(i,j) = c(\delta[i],\kappa[j])$, where $\kappa'[j] < 0$
- Talent scarcity: Fixing κ[N], but κ'[j] becomes steeper (less talented banks)
 - Adding a riskier firm is now more costly
 - The marginal firm can't borrow, despite his matching bank's ability remains the same

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Interest rate increases for all active firms
- Talented banks receive more rents

• Let $t \in \{c, 0\}$: crisis vs. non-crisis period

- The credit supply effect during the crisis:
 - Change in the supply if firms remain the same $\phi \equiv \frac{i^*(\delta_0[i], y_0, \kappa_0[i]) - i^*(\delta_0[i], y_0, \kappa_c[i])}{i^*(\delta_0[i], y_0, \kappa_0[i]) - i^*(\delta_c[i], y_c, \kappa_c[i])},$
 - denominator = change in volume when both banks/firms change (observable)

- Assumption A3. $c(\delta[i], \kappa[j]) = \delta[i]\kappa[j]$
 - $\bullet\,$ Need to condition on $\delta[i]$ for more general cost function
- Holding cost estimate given by

$$\frac{L'[i]}{\delta'[i]} = \kappa[j^*(i)] = \kappa([N - (i^* - i)]),$$
(1)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where the loan payoff to a bank when lending to firm i

$$L[i] = (1 - \delta[i])D^*[i] + \delta[i]y_L[i]$$

Introduction Sorting Evidence Model Estimation Conclusion

Firm Probability of Default by Credit Rating Rankings

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

Introduction	Sorting Evidence	Model	Estimation	Conclusion

Bank Holding Cost by Firm Credit Rating Rankings

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

Figure: Distribution Effects on Loan supply: $y = -\int_0^{i^*} \delta[i]\kappa'[j^*(i)]di$

- Given that $h_0^b\simeq h_c^b\Rightarrow i_0^*-i^*\simeq n_0^b-n_c^b$
- If firms stay the same, change in loan supply = change measure of good banks

$$\phi = \frac{i_0^* - i^*}{i_0^* - i_c^*} = \frac{(0.38 - 0.15)^* 4000}{4000 - 2500} = 0.613$$

• Optimal loan size between (i, j) maximizes

$$s(\delta[i],\kappa[j]) = \max_{q} y(q) - qC(\delta[i],\kappa[j]),$$

where y'(q) > 0 and y''(q) < 0.

• Adjusted κ estimate:

$$\frac{\left(\frac{L'[i]}{Q[i]}\right) - \left(\frac{y'(Q[i])}{Q[i]}\right)\frac{dQ[i]}{di}}{\delta'[i]} = \kappa[j^*(i)]$$

where

$$Q[i] = q^*(\delta[i], \kappa[j^*(i)])$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• In the data $\frac{dQ[i]}{di}$ is approx zero

• Sorting test comparing with and without firm fixed effects too easily discounts selection bias

۲

۲

$$\Delta \ln Q_{ij} = \underbrace{-\chi \Delta \ln r_{ij}}_{\text{Bank Component}} - \underbrace{(\alpha - \chi) \Delta \ln \overline{r}_i + \alpha \Delta \ln A_i}_{\text{Firm Component}}$$

 Regress Δ ln Q_{ij} on change in bank health δ_j with firm fixed effects:

$$\beta^{FE} = \chi \frac{\operatorname{Cov}(-\Delta \ln r_{ij}, \delta_j)}{\operatorname{Var}(\delta_j)}$$

$$\beta^{\mathsf{OLS}} = \beta^{\mathsf{FE}} + \underbrace{\alpha \frac{\operatorname{Cov}(\Delta \ln A_i, \delta_j)}{\operatorname{Var}(\delta_j)}}_{\text{sorting term}} + \underbrace{(\alpha - \chi) \frac{\operatorname{Cov}(-\Delta \ln \overline{r}_i, \delta_j)}{\operatorname{Var}(\delta_j)}}_{\text{cross elasticity term}} \xrightarrow{\circ} \infty$$

Introduction	Sorting Evidence	Model 000	Estimation	Conclusion
Conclusion				

- Sorting between risky firms and banks first-order concern that cannot be addressed using current methods
- Propose a new method using a competitive matching model to back out bank holding cost distribution
- Data on credit ratings and historical default rates to estimate bank holding cost distributions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()