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Abstract

Regulatory efforts to reduce public hazards could be undermined when agents exhibit risk com-

pensating behaviors. This paper evaluates the North American Standard Inspection Program, a

national safety regulation for commercial vehicles. I quantify changes in road safety due to this

regulation for the past two decades, analyze the causes of those changes, and suggest possible

ways of improving the regulatory design. I compile a comprehensive database on inspections

and crashes for 23 million trucks ever inspected from 1996 to 2018. Linking inspection and

crash history using each truck’s unique vehicle identification number (VIN), I implement an

event study that tracks a given truck’s crash rate shortly before and after inspection. The main

finding is a sharp, 43.5% increase in crash rate immediately following an inspection, and the

effect lasts for at least 14 days. Further analysis points to a Peltzman-style explanation: since a

truck is less likely to be re-inspected shortly after an initial inspection, the driver conducts fewer

pre-trip checks and drives more recklessly after an inspection, which leads to more crashes. The

increase of crash due to drivers’ compensating behaviors costs around 1.6 billion dollars to the

society each year. Through a comparison of different regulatory designs across states, this pa-

per proposes alternative policy designs that could achieve crash reduction through randomizing

the inspection schedule.

Keywords: Enforcement and compliance; Peltzman effect; road safety; trucking industry

∗Liang: The Dyson School of Applied Economics and Management, Cornell University (email:
yl2544@cornell.edu). I am very grateful to the suggestions and guidance by my committee members, Shanjun Li,
Cathy Kling, Crocker Liu, and Andrew Waxman. I also thank Todd Gerarden, Matt Khan, Ivan Rudik, Eric Zou, and
seminar participants at the AERE 2020 Virtual Conference, the 2019 University of Colorado Boulder Environmental
Resource Economics Workshop, the 2019 National Tax Association Annual Conference, the 2019 Southern Economic
Association Annual Meetings, the Cornell Dyson School Sustainable Environment, Energy and Resource Economics
Research Seminar for helpful comments.



1 Introduction

The effectiveness of regulation relies on the design of regulatory enforcements. Enforcement mech-
anisms adopted by regulators often aim to increase the deterrent effect from either increasing the
probability of detection (Duflo et al. (2018)), or increasing sanction severity through fines or im-
prisonment (Muehlenbachs et al. (2016), Levitt and Porter (2001)). However, one overlooked di-
mension of effective enforcement is people’s learning about enforcements and abilities to respond
to regulations when the enforcement schedule is predictable. There are many examples of pre-
dictable enforcements. The police choose a fixed “hot spot” to crack down crimes (Banerjee et
al. (2019)), Environmental Protection Agency conducts more inspections on target groups (Blun-
dell et al. (2018)), and insurance companies use repeated audit strategies (Okat (2016)). In this
paper, I look at the scenario when regulators tend to avoid conducting repetitive enforcements on
recently checked agents to save regulatory efforts. Such predictability could undermine the over-
all effectiveness of the regulation if people choose to reduce compliance correspondingly. Hence,
understanding the regulatory enforcement designs and people’s compliance response is crucial for
informing policy design.

This paper provides new insights to the study of regulatory enforcement and compliance by
evaluating the effectiveness of a road safety regulation. There is an extended discussion in the
literature on how behavioral responses of drivers to automobile regulations can counteract the intent
of the policies (Peltzman (1975), Cohen and Einav (2003), Evans and Graham (1991)), namely, the
Peltzman effect. The argument was first pushed forward by Sam Peltzman in 1975 that points out
the offsetting effect of drivers’ responses to the seat belt law in reducing the highway death rate.
Since motor vehicle traffic crash is the leading cause of death in the US1, it is of vital importance
to critically evaluate the regulatory efficacy on road safety.

This paper looks at the North American Standard Inspection Program, a national safety reg-
ulation for commercial vehicles. I quantify changes in road safety due to this regulation for the
past two decades, analyze the causes of those changes, and suggest possible ways of improving the
regulatory design. In particular, this paper provides direct evidences to the existence of drivers’
offsetting responses to road safety regulations using a large scale data in the US trucking industry.

The US trucking industry represents a multi-billion sector that transports the nation’s freights
and provides essential services to passengers across the North America. The value of shipments
transported by truck accounts for 79.3% from all modes of transportation. But it is also a major
source of safety externality (Muehlenbachs et al. (2017)): every year, more than 130,000 people
are involved in large truck crash accidents, and about 5,000 people die from those accidents.2

The Department of Transportation (DOT) implemented a national safety inspection program for

1From NHTSA’s National Center for Statistics and Analysis.
2From National Highway Traffic Safety Administration (NHTSA) calculation.
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all commercial motor vehicles3 (CMV) to ensure both vehicles and drivers are safe for travel.
The inspections are random checks performed at the weigh stations along the highways by law
enforcement personnel. All trucks have to enter the weigh stations when they are open. While the
program has been in place for decades, there is a dearth of empirical study on what the program
actually does to road safety in the US.

Despite the potential benefits to road safety, the CMV safety inspection program has attracted a
lot of controversy on whether its benefits have exceeded its costs. First, the benefit of the program
is unclear due to a lack of empirical evidence in how much deaths it has prevented. Second, the
cost of enforcement by the regulators and the cost of compliance from the private trucking com-
panies are enormous. Every year, 7,000 certified roadside inspectors throughout the US conduct
approximately 3.5 million inspections. But the enforcement agencies are already questioning the
program’s efficacy as it "no longer leading to annual increases in the industry-wide level of compli-
ance with safety regulations" (GAO (2005)). In the private sector, an anecdotal evidence shows that
for each in-and-out at the inspection stations, trucks lose $2.5 per minute they spend at the stations4.
Although huge efforts have been made in conducting the inspections, without an enhancement in
safety there is no rationale for the regulation.

This paper evaluates the effectiveness of the roadside safety inspection program using the most
comprehensive data files on trucks, roadside safety inspections, and crash accidents ever complied.
The set of inspection files are obtained from the Department of Transportation’s national network
of highway weigh stations and patrol inspectors. It contains a complete inspection record of more
than 23 million trucks that ever received an inspection in all 50 states from 1996 to 2018. The
crash files are collected from the state police crash reports in the same period covering all accidents
involving CMVs. The two sets of file have an advantage over other accident analysis files (e.g.
Fatality Analysis Reporting System (FARS), NHTSA State Data System) since they record the full
vehicle identification number (VIN) for trucks involved. Linking inspection and crash history using
each truck’s unique VIN, the data allows me to identify the trucks involved in crashes with their
inspection records so that I can implement an event study research design that tracks a given truck’s
crash rate shortly before and after it receives an inspection.

The main finding of this paper is a sharp, 43.5% increase in crash rate immediately following
an inspection, and the effect lasts for at least 14 days. In the longer term, the increase in crash rate
can be detected up to 12 months after inspections. There is no compensating reduction in crash

3Section 204 of the Motor Carrier Safety Act of 1984 (MCSA) (Pub. L. 98-554, Title II, 98 Stat. 2832, at 2833)
defined a “commercial motor vehicle” as one having a gross vehicle weight rating (GVWR) of 10,001 pounds or
more; designed to transport more than 15 passengers, including the driver; or transporting hazardous materials in
quantities requiring the vehicle to be placarded.

4The estimates are reported from Doug Johnson, director of marketing for Drivewyze, which offers a pre-clearance
weigh station bypass service. The company analyzed around 13 million individual “site visits” across the US between
September and October of 2015.
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after 12 months. The current inspection design leads to 1803 additional crashes per year, costing
roughly $1.6 billion.

Why do truck inspections increase crash rates? This paper then explores potential mecha-
nisms underlying the finding. I find evidences that a truck is much less likely to be re-inspected
for at least a quarter following an initial inspection. Correspondingly, I find a larger increase in
single-vehicle crashes, such as non-collision crashes or collision with unmovable objects, which
are caused by drivers’ behaviors, comparing to multi-vehicle crashes. Moreover, the number of
crashes due to reckless driving or a lack of vehicle maintenance increases after inspections. This
suggests a Peltzman-style explanation: knowing that the truck will not be re-inspected in the near
term, the driver might conduct fewer pre-trip checks at the truck, and drive more recklessly on the
road, which offsets the potential benefits of the safety program.

To illustrate the driver’s decision making process, I develop a utility maximization model
on driver’s traffic safety behaviors following the framework developed by Peltzman (1975) and
Blomquist (1986). The main result of this model suggests that, when drivers expect zero re-
inspection probability following an inspection, they exert less private safety effort (e.g., drive faster,
do less maintenance) comparing to the case when the re-inspection probability stays the same re-
gardless of the truck’s inspection status. As a result, the total number of crashes is larger when the
re-inspection probability is zero.

Empirically, I provide several tests to the identification assumption, and discuss important con-
founding factors which I can rule-out. Throughout the analysis, the validity of the event study
framework relies on the identification assumption that, for the same truck, the trend in crash rate
should continue in the absence of an inspection5. First, I show that there is no pretrend in crash
in the 14 days preceding the inspection. Second, I perform a placebo test which randomly assigns
inspections to trucks in the sample. The test shows that the placebo inspections do not lead to an
increase in crash. So the increase in crash found in the observed sample can only be caused by
the observed inspections. Third, I can rule out that changes in weather pattern or traffic condition
explain the increase in crash after an inspection. Fourth, I indirectly test for selection of inspec-
tions based on the probability of a truck being on road. Lastly, I eliminate the possibility of reverse
causality by dropping trucks that crash 18 hours before inspection.

On the effect size, there is little heterogeneity across different inspection outcomes. I find that
the effect of an inspection on crash is 46.5% for trucks that receive at least one violation6 (41% of
all inspections) versus 42.6% for trucks that do not receive any violations (38% of all inspections).
There is also limited heterogeneity in effect sizes across different firm characteristics. The changes

5Gray and Shimshack (2011) discusses the endogeneity of selected inspections, here I resolve the issue by including
individual truck fixed effects.

6Those violations exclude the out-of-service violations, which is 20% of all inspections.
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in crash due to inspections are quite comparable for large or small firms7, firms carrying different
types of cargo, and firms doing more interstate or intrastate businesses. The similarity in effect
sizes across various dimensions shows that the compliance behaviors from drivers or firms are
comparable when the re-inspection probability is low. But I do find a strong spatial heterogeneity
in effect sizes across different commuting zones. This spatial heterogeneity is largely driven by the
differences in the enforcement strategies across regions.

This paper seeks to answer a few policy relevant questions with the data: How should the
states design the inspection strategy considering drivers’ offsetting behaviors to safety regulations?
Would it be better to inspect trucks on a random frequency? In order to answer these questions, I
explore the heterogeneity in the inspection schedules across states, and find that there is a greater
crash reduction in states with more unpredictable schedules. In addition, I explore the extent to
which the inspectors rely on time passed since last inspection to determine which trucks are chosen
for inspection today. I find that states inspect trucks on a greater randomness achieve better results
in terms of crash control8. Exploration of these questions help shed light on a better design of the
national safety inspection network.

This paper contributes to the literature in the following four ways. First, this paper contributes
to a broad literature on regulatory efficacy through periodic or random inspections beyond auto
safety regulations. This paper illustrates that predictable enforcement hinders the regulatory effect
as drivers exhibit compensating behaviors after inspections. The literature find different regulatory
designs optimal under various contexts. Blundell et al. (2018) evaluate the benefits of EPA’s dy-
namic enforcement strategy on high priority violators of Clean Air Act and Amendments, Duflo
et al. (2018) show that discretion in targeting of inspections helps enforcement of pollution regu-
lation in India, Oliva (2015) evaluates the effectiveness of vehicle emission inspections in Mexico
City and finds prevalent corruptions, Mookherjee and Png (1989) and Okat (2016) both find that an
auditor benefits from randomizing the choice of auditing methodology over time, Muehlenbachs
et al. (2016) find stricter enforcement from larger inspection teams than more inspections on oil
and gas platforms, Banerjee et al. (2019) show better effect of anti-drunk driving crackdown at ran-
dom checkpoints in India, Shimshack (2014) reviews theoretical models and empirical evidences
of environmental regulatory enforcements.

Second, this paper highlights the importance of critically evaluating road safety regulations,
which contributes to a growing literature on road safety for all motorists and pedestrians sharing
the road. Graham et al. (2015) find a 5–23% increases in crash rates with shale-gas drilling due to
increased heavy truck traffic, Muehlenbachs et al. (2017) estimate the externality of the presence

7The sizes of carrier companies are measured using their inventories, which are the total number of trucks or drivers in
the company.

8Within sample estimates of effect sizes are still positive for all states, but one could extrapolate from the estimates that
greater crash reduction could happen if states have chosen to inspect trucks on a greater randomness.
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of a truck on the road which increases the rate of accidents using car insurance rates. Beyond large
trucks, Li (2012) and Anderson and Auffhammer (2014) find that the presence of heavier vehi-
cles leads to more severe accidents. Edlin and Karaca-Mandic (2006) estimate that the correcting
Pigouvian tax for auto accident externalities is over $220 billion per year nationally between 1987
to 1995. Van Benthem (2015) discusses the optimal speed limit law, and Ashenfelter and Green-
stone (2004) evaluate the consequences of raising the speed limits which then inform the value of
statistical life.

Third, this paper builds on an extensive literature that study people’s offsetting behavioral re-
sponses to safety regulations. On road safety, the literature initially focused on theoretical works
(Peltzman (1975), Blomquist (1988)). Despite extensive empirical studies afterwards, for exam-
ple, regarding seat belt use (Cohen and Einav (2003), Evans and Graham (1991), Lv et al. (2015))
and other safety regulations like the point-record driving license (Benedettini and Nicita (2012)),
controversies remain about whether drivers’ responses offset the regulatory effect and to what ex-
tent. This paper provides direct evidence to the Peltzman effect. More broadly, the debate of the
Peltzman effect also exists in the context of product safety regulation (Viscusi (1984)), occupa-
tional health and safety regulations (Viscusi (1986)), soft drink taxes (Fletcher et al. (2010)), and
cigarette taxes (Adda and Cornaglia (2006)).

Fourth, this is the first study that looks at the impact of the CMV safety inspection program on
crash using best data available from all states during a long time frame of 1996 to 2018. Since the
DOT only collected detailed inspection record from 1989 onwards, and data in the earlier period
before 1996 was missing for many of the data entries9, this paper uses all data available at the
most granular level (individual truck level) for the research question asked. Previous studies of this
question use either data from a few states only (Loeb and Gilad (1984), Kwigizile et al. (2016)),
or less granular data at county level (Keeler (1994)), or data from longer than 10 years ago (GAO
(2005)).

The paper proceeds as follows. Section 2 reviews the institution details of the trucking indus-
try and the CMV safety inspection program. Section 3 provides a utility maximization model of
driver’s safety behaviors. Section 4 describes the data and sample used in the paper. Section 5
presents the empirical framework, main findings of the paper, and identification challenges. Sec-
tion 6 analyzes the mechanism behind the increase of crash after inspection. Section 7 examines
the heterogeneity of the impact of inspection on crashes. Section 8 discusses alternative regulatory
designs that improve safety. Section 9 concludes.

9The data requested from DOT is from 1989 to 2018, but the data quality before 1996 is significantly poorer. For
example, all records of VIN are missing for truck inspected before 1996, the record of inspection facility are also
largely missing before 1994, and all inspection records in the year 1995 was not available. So this paper uses data
starting from 1996 for consistency of data availability and quality.
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2 Regulatory framework

2.1 The trucking industry

Commercial motor vehicles (CMV), or trucks and buses for simplicity, compose a huge and im-
portant sector in the United States. It is the lifeblood of the US economy. In 2016, the total value
of shipment transported by truck within the US was $700 billion, which accounted for 79.3% from
all modes of transportation. Among the 269 million total registered vehicles, 11 million (4% of the
total) were trucks10, and 1 million (0.4% of the total) were buses. Also in 2016, there were 3,174
billion vehicle miles traveled (VMT) by all motor vehicles. Large trucks traveled 287.9 billion
miles (9.1% of the total), and buses traveled 16.3 billion miles (0.5% of the total). The trucking
industry is also important because of the significant number of employment it provides. There were
6 million truck and bus drivers, and 543,061 active motor carrier companies operating in the US in
2017.11.

2.2 CMV safety

However, despite the fact that the trucking sector promotes transport of goods and passengers, it
poses a huge cost on human lives. Every year in the US, more than 130,000 people are involved
in CMV-related accidents, more than 60,000 people injured from those accidents, and more than
5,000 people died from those crashes12. Large trucks and buses together accounted for 7% of the
total number of vehicle fatalities in the US in 2016. Over the past 10 years, the number of fatalities
involving large trucks increased 17%, while the VMT only increased 10%.13

Since truck safety has significant implications for both truck drivers and other motorists sharing
the road, safety is a major consideration for the trucking industry. The Federal Motor Carrier
Safety Administration (FMCSA) is the major regulatory agency to improve safety and prevent
CMV-related accidents. The agency was established as a separate administration within the US
DOT on January 1, 2000, pursuant to the Motor Carrier Safety Improvement Act of 1999. It
assumed almost all of the responsibilities and personnel of the Federal Highway Administration’s
Office of Motor Carriers established in 1966. The federal government spends over $600 million per
year on the truck safety program under the Fixing America’s Surface Transportation (FAST) Act.
Approximately 7,000 certified roadside inspectors throughout the United States assist the agency
by conducting approximately 3.5 million roadside inspections per year. The inspections are known

10Trucks include single-unit trucks (8.7 million) and combination trucks (2.8 million).
11From Federal Motor Carrier Safety Administration (FMCSA) 2018 Pocket Guide to Large Truck and Bus Statistics.
12From National Highway Traffic Safety Administration (NHTSA) calculation.
13Statistics sources are from NHTSA and Bureau of Transportation Statistics (BTS). The percentage increase of crash

is calculated by author.
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as the North American Standard Inspection Program.

2.3 Safety inspection program

CMV Roadside Safety Inspections are random checks performed at fixed weigh stations or mobile
locations along the major highways to ensure both vehicles and drivers are safe for travel. Approx-
imately 95% of all inspections are conducted by inspectors at each state DOT, with the remainder
conducted by federal inspectors. Although it is a federal regulation, each state DOT has its own
way of handling roadside inspections. Some mainly perform safety inspections at weigh stations
along major highways (California), some focus on border inspections (Michigan), and some have
agents patrolling the highways and can pull over any truck at any time (New York), most states
have a mixed strategy that composes all. The strategy adopted by the states also change over time,
for example, Pennsylvania used to have more pull-over inspections from before 2015, but starting
in 2016, the number of weigh station inspections increased dramatically.

2.3.1 The weigh station inspections

At weigh stations, all trucks passing by have to enter for inspections if the weigh stations are
indicated open14. I self-recorded a video showing that it is indeed the case that all trucks in sight
complied, the video can be viewed upon request. Figure A.1 shows the procedures of an inspection:
the first picture in Figure A.1 shows a line of trucks waiting at the ramp to enter the weigh station
for inspections. Once entered, all trucks drive on a scale to get weighted (Figure A.1b). While they
are weighted, the inspectors are watching and listening. If they see or hear anything wrong with
the driver or the vehicle, they will inspect the truck. The inspectors will also examine the truck’s
company Safety Measurement System (SMS) score reported on the monitors to determine whether
the trucks will receive a closer inspection or not (Figure A.1c). Therefore, all trucks have to enter
the weigh station, but only a selected number of trucks will go through the "real" inspections, others
are allowed to proceed immediately (just like the truck in the video). The inspections in the data
files used in this study include only those "real" inspections.

What is it that determines whether a truck is going to be inspected? First, as mentioned pre-
viously, if the inspector suspects any problem with the truck or the driver based on the her obser-
vations on site, the truck will get inspected. Second, trucks can also be selected if they have bad
safety histories. The SMS assesses a carrier’s performance calculated from information collected
from inspections, crash records, company reviews and violations from investigations. Carriers will
be targeted for inspections if their SMS scores exceed the intervention threshold (the higher the

14Only a small number of carriers with good safety scores are allowed to participate in Weigh Station By-Pass system.
The bypass system on board will show whether the truck need to enter into the weigh station for inspection or not.
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safety score, the worse the carrier). This scoring system implies that trucks belong to carriers that
have worse inspection and crash records will be receiving more inspections.15 Inspectors will also
focus less on vehicles recently passed an inspection so that inspection efforts are not duplicated for
trucks already inspected. The selection of truck inspection based on recent inspection histories is a
critical detail in the main mechanism behind the findings of this paper.

During the inspection (Figure A.1d), there are six types of Behavior Analysis and Safety Im-
provement Category (BASIC) inspections conducted depending on the level of scrutiny decided
on site. The inspections cover both the driver and the vehicle. On the driver’s side, inspections
cover unsafe driving behaviors, hours-of-service compliance, controlled substances/alcohol con-
sumption, and driver fitness. On the vehicle’s side, the inspections cover all aspects of vehicle
maintenance and cargo securement. For hazardous material carriers, inspections also cover the
hazmat compliance.

2.3.2 The inspection outcomes

Different violations are given for problems found during the inspections based on criteria created
by Commercial Vehicle Safety Alliance (CVSA). Multiple violations could be given for a truck
if multiple issues were found. Among all inspections conducted at weigh stations, there are 41%
that result in at least one violation but not an out-of-service violation. For those violations, 40%
are assigned to drivers, 75% are assigned to vehicles, and 1% for hazmat carriers.Driver violations
could incur a higher fine than vehicle violations in general. Driver violations could even result in
suspension of license which deters the drivers more than vehicle violations. During inspections,
trucks with violations that do not result in the vehicle to be placed out-of-service are still allowed
to proceed for operation, but any violations or defects noted at the time of inspection must be
corrected within 15 days of receiving the violation.

There are 20% of inspections result in out-of-service violations. A vehicle being placed out-
of-service (OOS) during inspections indicates that the vehicle or driver has made severe violations
which present imminent hazards to the public. Also the vehicle may not be driven again until all
necessary repairs are made and all the violations are corrected.

There are 38% inspection that do not find any violations. If during an thorough vehicle inspec-
tion, there are no critical violations assigned to the vehicle itself, then the vehicle could be issued a
CVSA decal. A decal is a colored sticker featuring the year and quarter in which the inspection was
performed. Generally, a vehicle displaying a valid CVSA decal will not be re-inspected during the
three-month time frame in which the decal is valid. Note that the CVSA decal is only valid for the
vehicle, so if the driver displays any violations, he or she could still receive an inspection. Among

15There is a recent debate on the fairness of the scoring system for small carrier companies since they have very few
records.
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all inspected vehicles, 16.6% receive a decal.
The main takeaway from looking at the inspection outcomes is the following. Since more than

60% of inspections result in some sort of violations. The inspectors have done a reasonably well
job in detecting problematic trucks for inspection. However, the deterrence effect of the inspection
is likely to be weak. The intervention threshold on SMS score is around 70-80%, which means
that only the worse 20-30% trucks in rank are going to be targeted for more inspections. Because
the OOS rate is 20%, those targeted carriers are also likely to be those that receive OOS violations
during inspections. Most trucks only receive non-OOS violations, so they are not alerted against the
violations. In section 7, I analyze the effect of inspection on crash depending on different violations
received during inspections.

3 A model of driver’s safety behaviors

In this section, I present a theoretical model on driver’s traffic safety behaviors following the frame-
work developed by Peltzman (1975) and Blomquist (1986). I extend their models by incorporating
driver’s expectations on the probability of getting another inspection following an initial one, which
is the driving mechanism for the theoretical results. In this model, a driver balances between re-
duced risk and increased cost from private safety expenditures and the compliance costs to the
inspection regulation. Drivers can increase private safety effort through adopting safer driving be-
haviors, moderate traveling speed, and vehicle maintenance. Compliance costs to the inspection
regulation includes fines received from violations and time spent at the inspection stations.

In particular, I compare driver’s safety behaviors under two inspection designs that vary in
their re-inspection probability: in the first design, inspectors tend to choose trucks that are not
inspected for a long time for inspection, so the re-inspection probability drops to zero for trucks
recently inspected; in the second design, the re-inspection probability stays the same regardless of
the trucks inspection history. Drivers form different expectations on the re-inspection probability
depending on the inspection designs16.

The main result of this model suggests that, when drivers expect zero re-inspection probability
following an initial inspection, they exert less private safety effort comparing to the counterfac-
tual scenario when the re-inspection probability stays the same regardless of the truck’s inspection
status. As a result, the total number of crashes is larger when the re-inspection rate is zero.

16Here I frame the question as having inspectors choose trucks for inspections based on different criteria under two
types of inspections designs, which makes drivers form different expectations on their own probability of getting
an inspection. In other words, in this model I assume that drivers’ expectations about their probability of getting
inspections are consistent with the true probability.
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3.1 Model setup

The model simplifies the driver’s problem in the following ways: first, drivers are assumed to
receive no direct utility from driving itself; second, drivers are risk neutral so that utility maximizing
drivers maximize their expected income; third, this model presents driver’s optimal choices and
ignores the resulting effects on non-drivers.

In the model, drivers maximize their expected income by choosing the optimal private effort e

in reducing accident loss and avoiding regulatory fines.

max
e

E = βS1 +(1−β )S2, (1)

where E = the expected income for a given driving mileage, β = probability of inspection, and S1,
S2 = net income when encountering an inspection and no inspection, respectively. If the driver gets
an inspection then the driver’s net income is

S1 = p(e,v)(I−D(e,v)−L)+(1− p(e,v))(I−D(e,v)), (2)

where I = gross income for driving a given mileage in the limit where the effort devoted is zero
and no inspection happens. p = p(e,v) is the probability of crash, which is defined as a function
of private effort e and the inspection v. The inspection v is specified by v = v(e), which can be
thought as the compliance cost to inspections that depends on private effort e. D(e,v) represents
the cost from private effort e, like vehicle maintenance costs and longer traveling time due to slower
speed, as well as the compliance costs to inspection v. Examples of the compliance costs include
direct monetary losses from fines, and indirect losses from wages forgone due to time spent at the
inspection stations because the majority of truck drivers earn per-mileage wages. For simplicity, I
define D(e,v) = e+ v. L = the driver’s loss from a crash.

If the driver does not get an inspection, the driver’s net income is

S2 = p(e,0)(I−D(e,0)−L)+(1− p(e,0))(I−D(e,0)), (3)

The difference between S1 and S2 is the probability of crash and the compliance costs to inspection.
In S2, since there is no inspection, p = p(e,0) and D(e,v) = D(e,0) = e.

Combining equation 1, 2, 3 and rearranging terms, the expected income is the following:

E = β [I− e− v− p(e,v)L]+ (1−β )[I− e− p(e,0)L] (4)

The analysis below is framed by comparing two scenarios corresponding to the two inspection
designs mentioned previously: in the first scenario, a truck driver receives an inspection which
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significantly lowers the probability that the driver gets another inspection within a long time. The
empirical evidence found in section 6.1 suggests that the re-inspection probability within 1-week
after inspection is only 1.3%. So here I assume that the re-inspection probability drops to zero
after an initial inspection. In the second scenario, a truck driver receives an inspection which does
not affect the probability that the driver gets another inspection, in other words, the probability of
getting an inspection is the same for all drivers regardless of their recent inspection status.

In the first scenario, the first order condition for optimal private safety effort can be simplified
to:

∂ p
∂e

∣∣∣∣
e0

=−1
L

(5)

where e0 is the driver’s optimal private effort when the re-inspection rate is zero for trucks recently
inspected.

In the second scenario, the first order condition becomes

∂ p
∂e

∣∣∣∣
e1

=−1
L
−β

∂v
∂e

(
1
L
+

∂ p
∂v

) (6)

where e1 is the driver’s optimal private effort when the re-inspection rate stays constant.

Assumption.

1. The probability of crash is bounded between 0 and 1, and decreases in driver’s private effort e

and inspection v: ∂ p
∂e < 0, ∂ p

∂v < 0, ∂ 2 p
∂e2 > 0, ∂ 2 p

∂v2 > 0, ∂ 2 p
∂e∂v > 0. In addition, value of inspection

v = v(e) (or violations from inspections) decreases in private effort e: ∂v
∂e < 0.

2. Since optimal fines are determined by incorporating loss from accidents to both the truck
driver and the other vehicle involved. Drivers prefer not to be inspected because the benefits
of inspection in reducing the expected private loss from accident is smaller than the cost of
compliance on the margin: −∂ p

∂v L < 1.

Proposition. Under the assumptions, I derive the following two results from comparing the two

scenarios,

1. Drivers exert less private efforts when the re-inspection rate drops to zero following an initial

inspection (first scenario) comparing to the case when the re-inspection rate stays the same

regardless of the truck’s inspection status (second scenario).

2. As a result, the total loss from crashes (or the total number of crashes) is larger under the

first scenario comparing to the second scenario.

Proof. See Appendix A for the proof of the propositions.
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3.2 The empirical design according to the theoretical model

The optimal testing design of the propositions would involve a comparison of the number of crashes
and drivers’ private efforts when drivers expect the re-inspection rate to drop to zero after an initial
inspection versus a counterfactual state when drivers expect the inspection (or re-inspection) rate
to stay constant. The empirical analysis in this paper provides tests by comparing crash rate in the
pre-inspection period with that in the post-inspection period.

In the pre-inspection period, which is the 14 days before an inspection, since the truck has not
yet received an inspection, the driver expects the probability of getting an inspection in the next
few days to be positive and constant. This is consistent with the counterfactual scenario in the
theoretical model where the inspection rate stays constant. In the post-inspection period, which
is the 14 days after an inspection, since the truck just gets an inspection, the driver expects no
inspection in the near term so the re-inspection rate drops to 0.

The empirical analysis below indeed shows that the re-inspection probability drops significantly
after an initial inspection. The number of crashes due to reckless driving behaviors increases sig-
nificantly in the post-inspection period relative to the pre-inspection period. This is consistent with
the two predictions of the theoretical model, when drivers expect the re-inspection probability to
drop significantly, they exert less private efforts (adopting risky driving behaviors) which then lead
to more crashes.

4 Data description

In this research, I compile a comprehensive database on trucks, roadside safety inspections, and
crash accidents in every state across the U.S. from 1989 to 2018. The set of files are requested
from the Federal Motor Carrier Safety Administration (FMCSA). FMCSA maintains a complete
record of inspection and crash accidents for commercial motor carriers (truck & bus) and hazardous
material shippers. The records are electronically transmitted from the states to the FMCSA using
a crash reporting system (SAFETYNET). I also observe the firm characteristics of the currently
active carriers in the company census data. In addition to the data files obtained from FMCSA, I
use fatal crash data from Fatality Analysis Reporting System (FARS), and accident data directly
from the Texas DOT. Other supplementary data sets I use to create the crash external condition
covariates include highway traffic volume and weather records.

Inspection files The inspection records are collected by state and federal inspectors at the
highway weigh stations and roadside pull-over inspections. The inspection files contain informa-
tion on the time, location, inspection facility, outcome of inspections for more than 63 million
inspections from 1989 to 2018. There are 23 million trucks recorded that received inspections.
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Figure A.4 shows the total number of inspections and the average number of inspections per truck
across years. Figure A.5 in the appendix shows the number of trucks and buses grow at a rate of
3% and 2% respectively per year. As the total number of CMV increases, the total number of in-
spections conducted has been relatively constant in the recent decade. So the number of inspections
that any given truck could receive decreases. For weigh station inspections, Figure A.2 and A.3 in
the appendix show that the inspection program covers the whole U.S., but the states vary a lot in
their inspection intensities.

The inspection data files also contain information of each truck’s unique VIN, license plate
number and the carrier company that the truck belongs to. Those information allow me to link each
truck’s inspection record with other records of the same truck or the same company17.

Crash files The main crash files I use from FMCSA are collected from state police crash
reports. The crash files contain information on the time, location, number of injuries and fatalities,
accident event type, VIN, carrier company ID for all trucks ever involved in crash accidents from
1989 to 2018. Figure 1 shows the annual total number of CMV crash accidents increases over time,
and the trend is procyclical to the general economy. While the vehicle miles travelled by CMVs18

exhibits a much mild increase.
The crash files also record the number of vehicles involved as well as the circumstances of

the crashes, which allows me to infer the factors contributing to a crash accident. This is the key
information that allows me to tease out the mechanism of the findings in the paper.

Other sources of crash records In addition to the crash files from FMCSA, I explore two
other sources of crash records. One is the Fatality Analysis Reporting System (FARS) which in-
clude all fatal crash records maintained by NHTSA, the other one is the crash records directly
obtained from Texas DOT.

The FARS data used in the paper covers from 2000 to 2017. There were in total 472 fatal
crashes identified for the same trucks inspected within 14 days before and after the inspection. In
addition to the same record entries in FMCSA, FARS also have records for the factors contributed
to the accidents, travel speed prior to the accident, driver demographics, and driver’s previous traffic
convictions. The crash data maintained by Texas Department of Transportation is available from
2010 to 2017 to the public. There were 1,487,842 inspections conducted in Texas. During the
28-day event window around those inspections, 756 crashes occurred in Texas for the trucks that
received inspections.

There are both advantages and disadvantages for using the crash data set maintained by FMCSA
over the other two sources of crash records. The advantages are two folds: First, FARS data set
only contains the first 12-digit of VIN for privacy purposes, but the FMCSA has access to the

17In case that the VIN is missing for a vehicle, I use the license plate number as the identifier.
18The vehicle miles travelled by CMVs is obtained from the Bureau of Transportation Statistics.
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full (17-digit) VIN, which is critical to link to the truck inspection data files19. So I can directly
compare the crash rate for the same truck before and after it receives an inspection, which is the
key of identification. Second, the FMCSA crash files contain all truck crash accidents including
non-injury or non-fatal ones. Since I am interested in road safety in general, crashes that result in
property damage or/and life loss are both my focuses. As for Texas DOT crash data, although it
has full record on all types of crashes, the limitation is that it only records own state crashes.

The disadvantage of using FMCSA crash records alone is that they do not contain detailed en-
tries on the factors contributing to each crash accident, such as driver-related factors, like, speeding,
changing lanes recklessly or driving while intoxicated; or vehicle-related factors, like, no brake or
malfunctioning lights; or in cases that truck drivers are not at fault. Both FARS crash data and Texas
crash data contain detailed information on those crash contributing factors. Therefore, I use them
as supplementary data sets that allow me to examine the causes of accidents. They also provide
more robustness to my findings with multiple sources of data.

Carrier census data I also request the carrier company census file from FMCSA. This data
file is a snapshot of all active operating carrier companies in the U.S. at the time of my request
in October 2018. The company census file contains information on the address, registration, type
of cargo transports, number of vehicles owned and drivers employed. This data file is useful in
particular to look at the heterogeneity analysis among different carrier companies. In section 7, I
compare the impact of an inspection on crashes for large versus small companies defined by their
inventories: the power units and drivers, as well as for companies carrying different cargo types and
doing interstate or intrastate businesses. Table 1 panel D shows that there were 1,669,661 active
companies registered as of October 2018. On average, each carrier company employs 5 drivers
and possess 21 trucks. Note that a median size carrier company only have 1 driver and 1 truck,
so half of the carrier companies are very small, but there are also a small number of giant carrier
companies in the industry.

Other data sets Supplementary data sets that I put together for the analysis include the
traffic monitoring and traffic volume data from Federal Highway Administration (FHWA), the daily
weather records from Global Historical Climate Network Daily (GHCN-Daily). Traffic monitoring
data contains the traffic volume records by vehicle class at hourly frequency for the participating
states from 2012 to 2018. This data set allows me to directly observe truck traffic volume, and use
traffic volume of other types of vehicles as controls for the analysis. GHCN-Daily weather data
provides weather records including maximum and minimum temperature, total daily precipitation,
snowfall, and snow depth. I use this data set to test whether adverse weather conditions lead to
more crashes after inspections.

19The last 6 digits of VIN are the serial number of a vehicle. So they are critical in identifying a vehicle.
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4.1 Sample construction

I summarize the key variables used in the paper in Table 1. Panel A of Table 1 shows the summary
statistics of inspection files. There are 69,549,512 inspections recorded for 23 million trucks in
total from 1996 to 2018 across the whole U.S. Among them, nearly half of the inspections are
conducted at fixed weigh stations. The weigh station inspections are my main focus of this paper.
On average, a truck is inspected 3 times in its lifetime, but only 32% of all trucks get a re-inspection.
On average, there are 790 trucks passing through a given inspection county at the inspection hour.

The inspection and crash files are the two main data sets combined to create an inspection-truck-
crash daily panel, tracing all crashes happened to the same truck inspected within the time frame of
interest. More specifically, since there are 11 million trucks inspected at the fixed weigh stations,
it would involve too much computational burden to create a balanced panel for each truck at the
daily level for 23 years. The number of observations would be larger than 50 billion20. Instead, I
construct a 28-day event window around each inspection for any given truck so that I could compare
the 14 days before with the 14 days after the inspection. Then for each inspection, I find all crash
accidents for the same truck that receives the inspection within the 28-day event window using
the VIN in both files21. As shown in panel B of Table 1, there are 842,830,408 observations in the
panel constructed. There are on average 6.39 crashes per 100,000 trucks inspected in a day. Among
those crashes, there are 58.5% crashes result in any injuries, and 3.8% result in fatalities. For all
trucks in the sample, a truck on average experiences 0.005 crashes in its lifetime.

In addition to the daily event panel I described in the previous paragraph, I also construct a
monthly event panel in order to analyze the long term impact of inspections. The monthly event
panel is constructed similarly as the daily panel, but the unit of observation is a month. The time
frame of interest here is 12 months before to 24 months after inspection. Table 1 panel C shows
the summary statistics of the monthly event panel. There are on average 160 crashes per 100,000
trucks inspected in a month.

5 The impact of inspection on truck crashes

5.1 The econometric framework

This section describes two econometric specifications and the identification assumption required
to consistently estimate the effects of an inspection on crash. The first specification is an event
study, which allows for the effect of an inspection to vary over the 14 days afterwards and tests the
zero-pretend assumption. In the second specification, I estimate the effect using a post-inspection

20A truck appears in my sample for 10 years on average.
21In case that the VIN is missing for a vehicle, I use the license plate number as the identifier for matching.
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indicator for time after the inspection to test for differences in crash 14 days before and after the
inspection, which efficiently estimates the average effect size of one inspection on crashes up to 14
days later.

In the event study framework, I regress the number of crashes for the same truck that receives
the inspection on a set of inspection indicators from 14 days before to 14 days after inspection,
controlling for individual truck fixed effects, year, month, and day-of-week fixed effects. I further
control for whether there are other inspections happened before or after the event window using
two indicators.

Specifically, the regression equation I use to estimate the impact of an inspection on crash is the
following:

Crashit =
13

∑
τ=−14,τ 6=−1

βτ Inspτ
it +β−15Insp−15

it +β14Insp14
it +ui +ηt + εit , (7)

where Crashit is the number of crashes made by truck i at time t22. Inspτ
it is an inspection indicator,

Inspτ
it = 1 if as of time t, truck i experiences an inspection τ days ago. Since inspection happens

at event day 0 (τ = 0), the 28 days event window is between event day τ = [-14,13]. Insp−15
it and

Insp14
it are indicators equal to 1 if there is any inspection for truck i that happens before or after the

28-day event window, respectively, and 0 otherwise. ui is the individual truck fixed effect. Each
truck is identified using its VIN primarily, or using the license plate number if VIN is missing 23.
ηt includes year, month and day-of-week fixed effects. It is important to control for the day-of-
week fixed effects because the inspection schedules largely follow a day-of-week pattern that more
inspections are conducted during weekdays, which is consistent with truck traffic being the most
during weekdays and less during weekends. I combine the daily inspection indicators into 2-day
bins to increase the power of estimation, such as (-14,-13), (-12,-11), ..., (-2,-1), (0,1), (2,3), ...,
(12,13) relative to the day of inspection at day 0. The effect of an inspection on crash accidents
happening in the two-day bin (-2,-1) is normalized to 0.

In order to estimate the average effect of an inspection on crash throughout the 14 days after
the inspection, I use the following econometric framework which regress the number of crashes on
a post-inspection indicator, also controlling for outside event window inspections, individual truck
fixed effects, year, month, and day-of-week fixed effects. The estimation equation is the following:

22Most of the values of Crashit are 0 or 1 at the daily level because a truck normally only crash once in any given day
in the estimation sample.

23The sample period of this paper is from 1996 to 2018, some trucks may change license plate number in between, so
VIN is the best identifier for the same vehicle. However, VIN is missing for many inspection records from 1996 to
2009, so license plate numbers are used to identify a truck if VIN is missing. After 2010, 90% of the inspections
have VIN records.
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Crashit = γpost-inspit +β−15Insp−15
it +β14Insp14

it +ui +ηt + εit , (8)

where post-inspit is a post-inspection indicator, it equals to 0 before an inspection happen on truck
i, and it equals to 1 on and after the inspection. The other variables used in this framework is the
same as in equation 7.

Throughout the analysis, both econometric frameworks rely on the identification assumption
that, for the same truck, the trend in crash should continue in the absence of an inspection. Under
this assumption, any difference in crash accidents is caused by the inspection alone. We could then
compare the crash rate before and after the inspection to estimate the impact of an inspection on
crash. In section 5.3, I discuss why this assumption holds by addressing all potential confounders
in this event study framework. It is important to explicitly discuss the confounders here because
inspections do not happen randomly at any given time or among all trucks, nor are the inspections
distributed identically and independently for a truck each time it enters a weigh station.

5.2 Changes in crash after inspections

The event study framework described above allows me to flexibly estimate the effect of an inspec-
tion on crash beginning with the 14th day prior to the inspection and ending with the 14th day after
the inspection.

The result is summarized in Figure 2. I find that crashes involving trucks increase by 43.5%
immediately following an inspection relative to a mean of 6.4 crashes per 100,000 trucks inspected
per day, and the increase lasts for at least 2 weeks after the inspection. I illustrate the level shift
in the number of crashes before and after the inspection in Figure ?? by fitting two horizontal
lines using the average of percentage changes respectively. The standard errors are clustered at the
truck level. The figure also shows that there is almost no pre-trend during the 14 days before the
inspection which proves that the identification assumption is valid.

In order to gauge the effect of an inspection on crash more concisely, I estimate equation 8
using 1 post-inspection indicator instead of 14 leads and lags indicators. Table 2 column 1 shows
the regression result which confirms the finding from the event study. It shows that the increase
represents 2.8 more crashes per 100,000 trucks inspected in a day comparing to the pre-inspection
level, which is 43.5% relative to the daily average crash rate (6.4 crashes per 100,000 trucks).

5.3 Tests for identification

The identification assumption for both econometric frameworks is that, for the same truck, the
trend in crash should continue in the absence of an inspection. In this section, I will discuss how I

18



rule out all potential confounders to identification. There are three concerns regarding the identifi-
cation assumption: first, omitted variables that are correlated to both inspection and crash, in this
case, weather conditions and traffic conditions; second, possibility of reverse causality between
inspection and crash; third, sample selection issues. Lastly, I implement a placebo test in order to
eliminate concerns regarding unobserved covariates for which I cannot test directly.

5.3.1 Potential confounders: weather and traffic

I can rule out weather and traffic conditions as confounders to the identification. Since the inspec-
tion schedule is likely to be planned ahead by the inspection personnel, the confounders are factors
that could potentially affect the inspection schedule and are also correlated with the probability of
crash. Weather conditions, or traffic conditions, are potential confounders because adverse weather
conditions, or high traffic volume, are going to cause more crash accidents. At the same time, if
inspections are also scheduled at times when crash probability is high in the local area to guarantee
that trucks on the road are safer after inspections, then the observed increase of crash following
inspections might be caused by inspections scheduled right before heavy rains or rush hours. The
direct way of dealing with those two potential confounders is to include them as covariates in the
regressions for all 28 days in the event window following each truck’s travel path. However, since
I do not observe the exact location of the trucks except for the time of inspections and the time of
crash if any, I cannot directly control for the weather and traffic. Instead, I use the following ways
to rule out the two confounders.

I rule out that weather conditions are confounders by showing that the inspections are not cho-
sen at times of worse weather conditions (rain, or snow), on the contrary, the inspections are chosen
at days with better weather conditions. Therefore, even if adverse weather conditions do lead to
higher probabilities of crash accidents, the observed increase in crash after an inspection are not
caused by adverse weather conditions. More specifically, imagine that the inspectors operating a
weigh station at Tompkins county in New York state are deciding on what day they are going to
do inspections according to the weather forecast for the entire next week.24 I test if inspections
are chosen at worse weather conditions by looking at an event study of inspections on weather
conditions of the county where the weigh station is located at, for instance, a rain indicator for
Tompkins county. Figure A.6 in the appendix shows the relationship between inspections and the
probability of raining. There is a 1.5% drop in the probability of raining on the day of the inspec-
tion (t = 0) comparing to days before or after. Since it is certain that inspections do not cause
rains, the relationship has to be the other way round, that inspections are chosen at days with less

24In this exercise, I pre-assume that weather conditions are going to affect the inspection schedules. If the assumption
does not hold, which means that inspection schedules are set as stone so weather conditions are not correlated with
inspection schedules, then the weather confounders can be ruled out as well.
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raining probabilities. The slightly positive coefficients on days before inspection also suggest that
inspectors choose to do inspections on a sunny day following rainy days. The results are similar
when looking at snowy days. I do not find that temperatures affect the inspection schedule.

I can also rule out that higher traffic volume is the leading cause of the increase in crash after an
inspection in the following ways. First, I control for the traffic conditions in the inspection county at
the inspection hour as shown in Table B.1. The first column of Table B.1 in the appendix prints the
baseline estimation using equation 8 for the sample period 2012-2018.25 In order to measure traffic
conditions more comprehensively, I look at both the truck counts (in column 2) and the percentage
of trucks out of all motor vehicles (in column 3). The post-inspection coefficients in column 2 and
3 are almost the same as in column 1, which indicates that the effect of inspection on crash stays
the same after controlling for traffic volume. It is consistent with our priori that the coefficient on
percentage of truck (pct_truck) is significantly positive in column 3, which indicates that higher
truck traffic does lead to more crash accidents, but higher traffic is not correlated with inspections.
Second, I interact traffic conditions with the post-inspection indicator to see whether the effect size
depends on traffic volume or not. Column 4 and 5 use the truck counts and the percentage of truck
traffic to measure traffic condition, respectively. Neither of the coefficients on the interaction term
is significant at 5% level. 26 Thus, we can also rule out that traffic conditions affect the effect of
inspection on crash.

5.3.2 Eliminate the reverse causality

In order for the identification assumption to hold, inspections induced by crashes should be ex-
cluded in the estimation sample, in other words, there has to be no reverse causality. The reason to
consider this particular case is because that it is not uncommon that after a truck crashes, the police
officer would call an inspector nearby to come also inspect the truck. In this case, there is reverse
causality since it is the crash that invites the inspection. I drop all inspections that happen within
18 hours after crashes to eliminate that concern.

In Figure A.7 in the appendix, the increase in crash on day -1 without dropping any inspections
reveals the fact that a crash could invite an inspection, which causes a reverse causality problem.
The rationale of solving the problem by dropping inspections right after crashes is the following.
In principle, an inspection happening on day 0 should not have any differential effect on crash
accidents one day or two days before. Even if the truck drivers anticipate that an inspection is
going to happen in the near term, they would not be able to know for sure whether there will be
an inspection 1 or 2 or 3 days later. Thus their behaviors in the days approaching the inspection

25Since The traffic volume data is available from 2012 onwards, so the event study period is 2012-2018 in this case.
26The interaction term in column 4 is significant at the 10% level. But considering the large sample size in this study,

5% or 1% level is a better benchmark for significant relationships.
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should be similar. I vary the length of the time interval during which the inspections are dropped
after crashes to see what is the proper time frame, and decided to use 18-hour as the proper time
frame since the coefficient on the (-2,-1) bin is consistent with that on (-4,-3) bin. Figure A.7 shows
that no other coefficients are affected when varying the length of the time interval except for the
coefficients on day (-2, -1) and (0, 1) that drop as the length gets longer.27.

5.3.3 Sample selection issues

I address several concerns related to sample selections. One concern is about whether the truck is
equally likely to be on the road at any given day during the time frame of interest. Since I only see
the truck when it receives an inspection on event day 0 but not on any other days, I am assuming
that the truck is equally likely to be on the road before and after the inspection. Here is an example
that challenges this assumption. If a truck had a serious crash 10 days before inspection, then it
probably has to be off the road for repairing for a week after the accident, so it is less likely to be
on the road before inspection. If the probability of crash is mean reverting, then I would see an
increase of crash after inspection caused by mean reversion.

In order to address this concern, I perform a robustness test that only looks at no-injury or
nonfatal crash accidents so trucks who have a serious crash then stop operating for a while are
dropped. Table B.2 in the appendix shows that, for this subsample of trucks, there is still a 43.9%
increase in crash after inspection. Therefore, the truck selection issue or the mean reversion concern
here does not bias the main result.

Another concern related to sample selection is regarding the inspection selection process that
determines which truck gets inspected when all enter the weigh station. In order to increase the
probability of detection, the design of the regulation indicates that trucks appear to be problematic
or have worse histories (inspection, crash, company review records) will receive more inspections.
As a result, trucks appear more often in my sample are likely to be those having potentially higher
probability of crash. It is not a threat to identification since all analysis in this paper focus on
comparing the same truck before and after inspection, not across trucks with different baseline
crash rates or other unobserved characteristics. The correct way of interpreting the estimation
result is how inspections affect crashes for those trucks inspected, not for any given truck on the
highway. Nevertheless, since this study looks at the effect of the current inspection program, the
result from this analysis is still the relevant margin to focus on.

27In Figure A.7, I normalize the coefficient on day (-14,-13) to be 0 in order to compare across samples
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5.3.4 The placebo test

In order to provide additional evidence supporting the identification assumption and eliminate other
unobservable confounders for which I cannot test directly, I perform a placebo test that reshuffles
the inspections for a randomly selected group representing 0.2% of all trucks ever inspected.28 The
placebo test illustrates that no other confounders could generate such an increase of crash after
inspection except for the inspections themselves, which is exactly the identification assumption of
the event study.

I randomly selected 20,311 trucks from all trucks inspected from 1996 to 2018. For each truck
selected, I reshuffle the inspections it receives during its operating years for 500 times. Then I esti-
mate 500 event studies using the same framework described in equation 7 and equation 8, and com-
pare the estimated effect sizes in the 500 placebo tests with the observed effect size using the real
sample. The results are shown in Figure 3 and 4. Figure 3 shows that the observed post-inspection
coefficient lies outside of the 95% confidence interval of the distribution of the coefficients from
the 500 placebo tests. Figure 4 compares each lead and lag coefficient in the 28-day event window
between the observed real sample and the daily average of the 500 placebo tests, which is almost a
flat line. So Figure 4 shows that the samples in the placebo tests would not generate an increase of
crash right after inspections. Only the observed inspections could lead to such an increase in crash.

6 The mechanism

After eliminating several potential confounders, this section discusses the mechanism behind the
finding, which suggests a Peltzman-style explanation for the increase of crash accidents after in-
spection: knowing that the truck will not be re-inspected in the near term, right after receiving an
inspection, the driver conducts risky driving behaviors that offset the potential benefits of the safety
inspection program. Section 6.1 describe two pieces of evidence linked to the mechanism. Section
6.2 provide important supporting evidences of changes in drivers’ behaviors that contribute to more
crashes.

6.1 Peltzman effect

6.1.1 Re-inspection probability

First, I find evidences that a truck is much less likely to be re-inspected for at least a quarter
following an initial inspection. Figure 5 shows that the re-inspection probability for a given truck

28There are a large number of trucks in the full sample, so I randomly select a smaller but sufficient sample to save the
computation time.
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is only 1.3% within the first week after receiving an inspection, and the probability is only 8.9%
within the first quarter (13-weeks).29 As mentioned in section 2, when a truck enters the weigh
station for inspection, the inspectors will review its inspection and crash history to look for trucks
that have a bad history or have not been inspected for a long time. Therefore trucks recently
inspected with relatively good records are not going to get another inspection, which is reasonable
for the regulators to save efforts on trucks not yet inspected. The re-inspection probability shown in
Figure 5 also reflects that trucks recently inspected are indeed inspected with much less probability.
Thus, for a truck driver, he or she learns that they are very less likely to get another inspection once
they pass the current inspection.

6.1.2 Multi- vs single-vehicle crashes

Correspondingly, I find a larger increase in single-vehicle crashes following an inspection compar-
ing to multi-vehicle crashes. It suggests that the reason for the increase of crash is attributable to
the truck drivers. Single-vehicle crashes include all noncollision crashes (18.2%), collision involv-
ing parked motor vehicle (2.06%), fixed object (6.8%), and all other crash types involving only the
truck itself. Together, they account for 34.9% of all crashes. Multi-vehicle crashes are collisions
with other motor vehicles in transport (63.6% of all crashes).

As shown in Figure 6, by estimating the same framework using equation 7 with different crash
categories, single-vehicle crashes increased by 74.4% following an inspection, and multi-vehicle
crashes increased by 26.8%. Both effects occur immediately on the day of inspection and last
for at least 2 weeks after the inspection. There is no pre-trend in both cases. Table 2 column 2
and 3 prints the regression results by estimating equation 8 for single- and multi-vehicle crashes.
There are on average 2.23 single-vehicle crashes and 4.06 multi-vehicle crashes per 100,000 trucks
inspected in a day. So the baseline probability of a single-vehicle crash is smaller than that of a
multi-vehicle crash. In order to compare the size of the inspection effects between the two types
of crashes, in Figure 6, I plot the percentage change in each type of crash using the change in the
number of crashes with respect to the average number of the corresponding crash accidents. Figure
A.8 in the appendix breaks down the single-vehicle crash categories into non-collision ran-off road,
non-collision overturn (rollover), non-collision cargo loss or shift, non-collision equipment failure
(brake failure, blown tires, etc.), and collision involving fixed objects. The figure shows that, for
most single-vehicle crash categories, the increase of crash are all larger than the multi-vehicle
crashes.

29For all trucks inspected in the sample, I generate a list of inspection history for each one of them. I then calculate
the time interval between the current inspection and the closest next inspection in the future for a given truck. If the
truck is not re-inspected after the last inspection observed in the sample, I replace the time interval to be longer than
1 year. Then for all trucks in the sample, I calculate the percentage of them that were re-inspected within 1 to 13
weeks to draw Figure 5.
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I compare the difference in the factors contributing to the single-vehicle crashes versus the
multi-vehicle crashes. The factors contributing to a single-vehicle crash can only be related to the
drivers’ driving behaviors, or equipment failures of the trucks which are also due to low mainte-
nance efforts of the drivers. While factors contributing to a multi-vehicle crash is either related to
the truck side or the side of the other vehicle involved in the accident. Thus, a larger percentage
increase in single-vehicle crashes following an inspection indicates that the reason for the increase
of crash accidents is attributable to driver’s behaviors following an inspection.

Furthermore, I find that the increase in single-vehicle crashes is even higher when the external
conditions are worse. It manifests that the increase is caused by drivers paying less attention to
external conditions. Crash external conditions include road surface conditions, weather conditions
and light conditions. Table B.3 in the appendix compares the regression results estimated using
crashes under normal conditions (40%) versus crash under adverse conditions (55.8%). Column 2
shows that crashes under normal conditions increase by 61.2% following an inspection, and column
3 shows that crashes under adverse conditions increase by 84.7% following an inspection. Since
when external conditions are bad, drivers need to pay more attention to the traffic than usual in
order to prevent an accident. The larger increase in single-vehicle crash accidents under adverse
conditions reveals that drivers are driving less carefully after they have had an inspection, which
then leads to even more crashes when the external conditions are worse.

To summarize, first, I find evidence that a truck is much less likely to be re-inspected for at
least a quarter following an initial inspection. Correspondingly, I find a larger increase in single-
vehicle crashes, which is more likely to be related to driver’s behavior, comparing to multi-vehicle
crashes. Among single-vehicle crashes, I find an even larger an increase for crashes under adverse
external conditions, which highlights the drivers’ change of behaviors. All evidences indicate that,
knowing that the truck will not be re-inspected in the near term, the driver might conduct fewer
pre-trip checks at the vehicle, and drive more recklessly on the road for longer hours, which offset
the potential benefits of the safety program.

6.2 Factors contributing to crashes from other crash data sources

Using two supplementary crash data sets, I find several supporting evidences to the argument of the
Peltzman effect. Section brings in FARS (Fatality Analysis Reporting System) data maintained by
NHTSA, and section brings in crash data maintained directly by the Texas Department of Trans-
portation (TxDOT). Both data sets have the advantage of identifying the exact factors contributing
to crashes, which allows me to tease out what causes the increase of crash after inspections. In
addition, I find very comparable results to the main findings using these two separately maintained
data sources, so that it further provides robustness to my main findings.
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6.2.1 FARS

FARS data contains information on the exact factors contributing to fatal crashes, as well as the
demographics of the drivers involved in the accidents, which are not included in the FMCSA crash
files. Therefore, using FARS data from 2000 to 2017, I can analyze the different factors contributing
to fatal crash accidents involving CMVs, for example, whether the truck driver was speeding, or
the lights of the vehicles were not functioning, or the truck driver was not at fault at all.

First, Figure 7 shows that there is a large increase in the number of fatal crashes involving
CMVs after inspections. Since crashes resulting in fatalities are rare events, there are in total 472
fatal crashes identified within the time frame of interest around inspections30. I present the analytic
data using bar charts instead of performing event study regressions. Figure 7 shows that there are
on average 15 fatal crashes for each two-day bin before inspections. The number increases to 52
after inspections.

Second, when analyzing the factors contributing to the fatal crashes, I find that, post inspec-
tions, there are increases in crashes for which the truck analyzing is having violation convictions.
Generally speaking, the contributing factors to crashes could be related to either the truck or the
other vehicle/pedestrian in the accident, or sometimes, both. On the truck side, it could be related
to the driver, or any equipment failures, or other factors including the passengers in the vehicle.
Figure 8 shows that there are increases in crashes due to drivers’ reckless driving behaviors, includ-
ing speeding and driving while intoxicated, and due to a lack of vehicle maintenance. Furthermore,
Figure A.9 in the appendix shows suggestive evidence that there is an increase in the travel speed
prior to the accidents for crashes happen after inspections, from 30.5 mph before inspections to 54
mph after inspections31.

Third, Table B.4 in the appendix compares driver demographics for those involved in fatal
crashes 14 days before and after an inspection. The table shows that the average age, sex, and
previous moving violation convictions for the truck drivers are similar before and after, only the
percentage of drivers that do not have a valid CDL (Commercial Driver’s License) is slightly higher
for crashes happen after inspection. It suggests that the type of drivers operating the trucks are quite
comparable before and after inspections.

30There are 472 fatal crashes identified in FARS data within (-14,13) days of an inspection for the same truck. Since
FARS data only report 12-digit VIN, the matching of trucks in FARS and the inspection file is done by using the
characteristics of fatal crashes in the FMCSA crash file.

31Only 52% of crashes have records on the travel speed prior to the occurrence of the crashes. The shaded area of
Figure A.9 shows 25 to 75 percentile of the distribution of travel speed within each 2-day bin. The dots are the
median of the travel speed. There are even fewer fatal crashes happening before inspections that have travel speed
recorded, so the confidence interval is wider.
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6.2.2 Texas DOT crash data

In this section, I provide additional supporting evidences using data containing all types of crashes
obtained from the Texas Department of Transportation (TxDOT). TxDOT maintains a set of crash
files under the Crash Records Information System collected from the Texas Peace Officer’s crash
reports from 2010, to present. The benefits of using this set of files for supplementary analysis
are three-fold: first, CRIS includes non-injury, injury and fatal crashes; second, there are detailed
description of the factors contributed to each crash accident; third, the crash records contain the
VIN. In order to match the federal recordable32 crash accidents in FMCSA, which is used in the
main finding, I use the VIN and date of crash to find crash records in CRIS that matches up with
those in FMCSA.

Figure 9 shows that there is a 39% increase in truck crashes after inspections relative to the
baseline crash rate, which is comparable to the average effect size using the data from the whole
US. Here I use the exact same framework in equation 7 for all inspections and crashes happening in
Texas. There are 1,487,842 inspections used in this analysis. Note that the effect size is attenuated
due to the reason that I can only observe crashes happened within Texas for trucks inspected in
Texas, therefore, crashes happened outside of Texas for the trucks inspected within Texas are not
included in the analysis.

Figure 10 shows that there is an increase in crashes due to driver-related factors after inspec-
tions. Among those crashes, those having a speeding violation also exhibit a significant increase.
Figure 11 serves as a falsification test which shows that there is no increase [1.63e-06 (P = 0.063)]
in the number of crashes that are not due to truck related factors.

In summary, the FARS data and the TxDOT data provide additional evidences of drivers’ off-
setting behaviors to the safety regulation. First, from FARS, the driver demographics do not change
for crashes happen before and after the inspections. It validates the identification assumption that
drivers who operate the truck do not switch, so controlling for individual truck fixed effect is suffi-
cient. Second, from both data sets, there is an increase in the number of crashes due to inspections,
which supports the main finding of this paper. Since FARS data analyzes fatal crashes, the finding
also makes the current study even more imperative. Third, from analyzing the factors contribut-
ing to crashes in both data sets, I find that, after inspections, drivers indeed drive more recklessly
(speeding, DWI) and perform fewer vehicle maintenance checks. So the mechanism presented in
the previous section is validated with facts in this section.

32According to the crash file documentation by FMSCA, a federal "recordable" crash has occurred when at least one
person dies, or at least one person experiences bodily injury which requires immediate medical treatment away from
the scene of the crash, or a vehicle is towed away.
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7 Heterogeneity in effects of inspections on crashes

The findings reported above in section 5 show that, on average, for a truck, there is a 43.5% increase
of crash accidents after an inspection. I then illustrate in section 6 that the increase of crash is due
to drivers’ compensating behaviors after inspections since they do not expect to get re-inspected
for a long time after an initial inspection. In this section, I discuss how the effects vary when
trucks receive different inspection outcomes, or have different firm characteristics, or get inspected
in different states which implement heterogeneous inspection strategies.

7.1 Effects on crash by inspection outcomes

In order to see how the effects vary when trucks receive different inspection outcomes, I separate
the full sample into subgroups of inspections with heterogeneous violations. I first split the inspec-
tion sample into two groups: those that do not find any violation (38%), and those that result in
violations but not out-of-service violations (41%). I do not include trucks that receive OOS vio-
lations (20%) in either group because those trucks have to be either repaired at scene or parked
immediately, they cannot have any crashes after inspections in principle.33 In Table 3, column 1
and 2 show that the two groups exhibit similar increase in crashes after inspections. The effect of
an inspection on crashes for trucks that do not receive any violations is 42.6%, while the effect
for trucks that receive some violations is 46.5%. The average crash rate for the two groups are
also similar. The result indicates that truck drivers are not responding differently after inspections
depending on whether or not they receive violations, which result in similar increases in crash acci-
dents. In other words, as long as the violations do not put the truck out-of-service, the driver would
continue to drive the truck. However, the driver would drive less carefully since the truck was just
inspected and would not be inspected again in a very long time.

Next, for inspections that result in violations, I further split the sample into trucks that receive
driver violations (40%) and trucks that receive vehicle violations (75%)34. Examples of driver vio-
lations are false log book, noncompliance with hours-of-service regulation, consumption of alcohol
or controlled substances, and speeding. Examples of vehicle violations are brake or tires violations.
Column 3 and 4 of Table 3 compare the impact of an inspection on crashes for those two violation
categories. The effect size for trucks that receive driver violations is 52.9%, while the effect for
trucks that receive vehicle violations is 42.8%. The average crash rate for trucks that receive driver
violations is also larger than those receive vehicle violations. The result indicates that inspections
are useful in detecting worse behaving drivers and giving them citations, however, inspections fail

33It is the regulation that trucks receive out-of-service violations have to stop service, however, in my data, I still
observe a large number of crashes for those trucks after inspections. So they probably disregard the OOS citation
and continue to operate, which is a serious crime.

34Some inspections issue both driver and vehicle violations.
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to deter future reckless driving behaviors and lead to a lower re-inspection probability for trucks
already inspected, which contributes to more crashes.

7.2 Effects on crash by firm characteristics

Depending on the management practices adopted by different firms, truck drivers are likely to be
facing different constraints and motivations when driving on the road. In order to examine how
the effect of an inspection varies by firm characteristics, I perform a heterogeneity analysis by
estimating equation 8 using different firms. The carrier/shipper census file contains information on
the type of cargo transports, number of vehicles owned and drivers employed for 1.6 million active
firms as of October 2018. I look at the firm characteristics in the following four facets.

7.2.1 Firm size

First, I look at how trucks belong to large versus small firms respond differently to inspections.
The firm characteristics in terms of the driver and vehicle inventory are shown in Table 1 panel D.
There is a lot of heterogeneity in firm size in the trucking industry. The largest carrier firm owns
more than 500,000 power units and more than 100,000 drivers. But 50% of carriers only have 1
power unit and 1 driver. I define a large firm as one having more than the median number of power
units (or drivers) among all inspected firms, and small firm are the rest of the sample. So I can
split the full sample into two equally sized sub-samples. A large firm has more than 48 power units
(or more than 47 drivers)35. Panel A in Table 4 compares the effect of an inspection on crashes for
trucks belong to firms with large or small number of power units. The result shows that the increase
in crash from smaller firms is slightly smaller: the effect size for large firms is 43.68%, for small
firms is 38.68%. The average crash rate for the two types of firms are almost the same. Panel B in
Table 4 shows that defining firm sizes using the number of drivers instead of power units gives a
similar result. In addition, I look at the 1-truck-1-driver firms in column 3 of Panel A. It shows that
drivers in this type of firms respond in the same way. The reason to highlight this group is because,
throughout the paper, I cannot identify the driver-vehicle pair as I have no information on drivers’
identities. So I cannot see if drivers switch after inspections. If drivers do switch, it would not
be the same driver before and after the inspection which creates problem for identification. Since
1-truck-1-driver firms cannot switch drivers, and I find that the effect size of this group is similar
to that of the full sample. The concern could be eliminated.

Overall, the impact of an inspection on crash across different firms sizes are quite comparable.
However, it does not suggest that large and small firms are responding same to the safety regulation.

35This number is larger than the number of power units for a median firm in the carrier census file is because large
firms with more power units are more likely to receive inspections.
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There are as many reasons why large firms exhibit compensating behaviors as small firms. For 1-
truck-1-driver carriers, the drivers’ earning are tied with how much work they choose to finish. So
they have more incentive to drive longer once their perceived inspection probability is lower. Since
they are often self-operated, their behaviors are entirely unmonitored. Moreover, small companies
have less resources to spend on driver training, vehicle maintenance, and efficiency enhancing
technology adoption in general. On the other hand, a large carrier, like Fedex, would potentially
have the principal-agent problem (Baker and Hubbard (2004)) that suggests the drivers would not
drive in the best manner to preserve the truck’s value. Thus, drivers in large versus small firms are
living in quite different worlds with different profit structure as well as liabilities, which then affect
their risk preferences of driving. In this paper, since my ability to tease out the different constraints
firms are facing is limited, I do not find the effect size from the two types of firms to be quite
different, but that does not suggest that they are the same when facing inspections.

7.2.2 Firm business – inter- vs. intra-state

Second, I look at how carrier firms respond differently to inspections depending on their major
business types, that is, whether they hire interstate or intrastate drivers. Drivers on interstate versus
intrastate routes are of particular interest in this paper because, depending on the route, they face
different time constraints. More specifically, if an interstate driver encounters an inspection which
could take from 20 minutes to 1 hour plus the time waiting in the queue of entering the weigh
station, although it delays the schedule on the day of inspection, the driver could still manage to
make up for the time loss on the following days before the delivery time. On the other hand, long-
haul drivers could respond by driving for long hours. They could then violate the hour-of-service
regulation that mandates the 60/70-hour limit which says drivers may not drive after 60/70 hours
on duty in 7/8 consecutive days. If an intrastate driver who is on a tight delivery schedule within
the day since it is shorter distance, the delay caused by the inspection could possibly result in the
driver speeding in order to be on time for delivery. Panel C in Table 4 compares firms that hire
drivers only for interstate routes, only for intrastate routes, and for both. The result shows that the
effect for interstate only firms is 41.96%, for intrastate only firms is 38.02%, and for firms do both
business is 38.13%. The average crash rate for intrastate only firms is slightly smaller probably
because they are familiar with local routes they operate.

7.2.3 Firm type – truck or bus

Third, I look at how carrier firms respond differently to inspections depending on whether their
main inventory is trucks or buses. Both trucks and buses are commercial motor vehicles regulated
under the same safety inspection program. However, since trucks transport cargo while buses
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transport human, the protocol that binds each type of carriers is different. Examples include the
hours-of-service regulation for bus drivers is stricter than that for truck drivers, and most of the bus
drivers do not run long-distance route across the U.S., but long-distance route can be very common
for inter-state truck drivers. There are in total 1.4 million carrier firms that only have trucks, and
41,000 that only have buses. Panel D in Table 4 compares between firms that only operate trucks
and firms that only operate buses. The result shows that the effect of an inspection on crashes
for truck-only firms is 40.67%, while for bus-only firms is 41.90%. Both type of firms respond
similarly to inspections except that bus-only firms have a slightly smaller average crash rate.

7.2.4 Cargo carried

Fourth, I look at how carrier firms respond differently to inspections depending on the type of
cargo they transport. I summarize the 30 types of cargo into general freight, chemicals, food and
beverage, paper product, building materials, metal sheet, heavy duty commodities, and passengers
and livestock. Such categorization makes sure that there are enough observations within each
category. The result is shown in Table B.5. In general, trucks transport different types of cargo
exhibit very comparable effects of inspection on crashes.

To summarize, all the findings reported above show that there is very little heterogeneity in the
effect sizes in terms of different firm characteristics, including the firm size, interstate or intrastate
commerce, and transported cargo. This result indicates that driver’s compensating behaviors exist
for all types of drivers after they receive an inspection. Although drivers could potentially face
different constraints and incentives, they all face a small re-inspection probability following the
current inspection, so they tend to be less careful afterwards which resulted in an increase of acci-
dents.

7.3 Spatial distribution of effect sizes

There is a large variation in the effect of an inspection on crashes across different geographical
areas of the U.S. The spatial heterogeneity in effect sizes reveals differences in the regulatory
designs across the states. Although the inspection program is conducted across the whole nation,
each state DOT chooses its own way of handling the enforcement strategy. The differences lie
in the intensity and the type of inspections, the trucks selected, the inspection schedules, and the
location of inspections. For example, Figure A.3 shows that Wisconsin, Illinois, and Missouri focus
more on the state borders, while New York and Pennsylvania have inspections more spread out.
The inspection strategy also varies across time. Figure A.10 shows that California implemented
many roadside inspections during 2009 to 2015, but more fixed station inspections in other years.
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While Pennsylvania used to have small number of fixed station inspections before 2015, but made
a significant shift in the type of inspections conducted with very little change in the total number
of inspections in 2015. In section 8, I illustrate in detail how differences in inspection schedule and
truck selection across states affect the effect sizes.

Moreover, the vehicle miles traveled (VMT) by truck in each state varies a lot. For example, the
VMT by truck in 2017 in Texas is around 27,000 million miles; while it is 1,200 million miles in
Montana. So 1 more crash due to drivers’ behavioral responses to inspection shows up as a greater
concern in Montana where the truck traffic is much lighter than that in Texas.

Therefore, in order to compare the effect of an inspection on crash across space, I calculate the
VMT adjusted effect size for each commuting zone, then draw a map in Figure 12. There are in total
709 commuting zones that delineate the local economies for the whole nation. The VMT adjusted
effect sizes are computed in the following way. I first estimate the effect size of an inspection on
crash using subsamples of inspections conducted in each commuting zone. Next, I weigh the effect
size in each commuting zone by the standardized annual VMT by trucks in the corresponding state.
I standardize the annual VMT of states to be mean one and standard deviation one. So the mean
and standard deviation of the weighted effect sizes are still the same as the unweighted ones.

The spatial heterogeneity analysis presented in Figure 12 shows a large variation of the effects
on crash from different inspection policy designs across the states. Most areas in the map exhibit
positive effect sizes, indicating that there is an increase of crash after inspections. In the next setion,
I explore several factors in the regulatory design that may have resulted in this spatial difference in
effect sizes.

8 Policy recommendation

The econometric evidence described in the previous section shows that drivers’ compensating be-
haviors to the safety inspection regulation result in an increase of crash after inspections. The
effect size of the increase in crash is 43.5% relative to the baseline crash rate in 14 days after an
inspection, and it is statistically significant and robust.

In this section, I explore whether the impact of inspection is economically significant by quan-
tifying the magnitude of the cost of crash due to behavioral responses to the regulation. In order to
estimate the total increase in crash following an inspection, I look at the overall effect of inspec-
tion on crashes in the longer term, which is 24 months after inspections. Next, I explore several
alternative inspection policy options that could reduce the increase of crash or even achieve crash
reduction. Specifically, I look at the choices made by the inspectors in conducting inspections
across different states. I show that if the inspections are designed to be less predictable for the
truck drivers, the inspection program could achieve better results in crash prevention.
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8.1 Quantify the overall effect on crash

In this section, I implement a monthly event study that enables me to estimate the impact of an
inspection on truck crashes in the longer term.

In the monthly event study, I use a similar framework as in equation 7 and 8 while changing the
unit of time from 1 day to 1 month. The event window is from 12 months before to 24 months after
an inspection (or inspections) in month 0 for any given truck. Again, I control for individual truck
fixed effects, year and month fixed effects. The specific estimation equation is the following:

Crashit =
24

∑
τ=−12,τ 6=−1

βτ Inspτ
it +ui +ηt + εit , (9)

In order to compare crash rate before and after an inspection using the estimation equation above,
an implicit assumption is that the truck has to be operating during the 36-month time window.
Otherwise, I might observe a reduction in crash a few months after inspection which was just
caused by truck exiting the market. In this event study, I use only the inspections that happen in
the middle of any given truck’s life. Specifically, only inspections that occurred 12 months after
the first inspection and 24 months before the last inspection for any given truck are included in the
estimation sample. So the estimation result will not be affected by trucks enter or exit the market.

The result of the monthly event study is shown in the top panel of Figure 13. There is a signifi-
cant increase of crash during the first two months after an inspection/inspections in event month 0.
After month 2, the increase of crash gradually declines. In the longer term, the increase of crash
can be detected up to the 12th month after the inspection. The crash rate goes back to the baseline
level after 12 months and remains at the baseline until the 24th months, which is the end of the
event window. In the lower panel of Figure 13, I plot the probability of re-inspection for any given
truck from month 1 to 24 after the inspection. The probability of re-inspection is only 4.0% in
the first month after inspection, and it grows over time. The probability of re-inspection within 24
months after inspection is 25.1%. The correspondence between the top and lower panel of Figure
13 shows that as the re-inspection probability increases over time, which means that drivers face
higher probability of inspection, the increase of crash due to driver’s compensating behaviors to the
inspection regulation decreases.

The total effect of one inspection on crash is calculated by adding up the first 12 lag coefficients
estimated from equation 9. Since the crash rate goes back to the baseline after the 12th month,
variation in crash after month 12 are mostly noise that should not be counted. The total effect is
0.00103 additional crashes. There are on average 1.75 million inspections conducted at the weigh
stations every year. Therefore, the total number of crashes caused by the behavioral responses
of the inspection program is roughly 1803 (=0.00103*1.75 million). According to the National
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Safety Council’s cost calculation of motor vehicle injuries in 2018, the weighted average cost of a
motor vehicle accident was around $0.9 million. Hence, the total loss due to drivers’ compensating
responses to the current inspection regulatory design is roughly $1.6 billion per year.

In order to prevent the huge loss resulting from the imperfect design of the inspection program,
I provide two alternative policy options both aiming to increase drivers’ expected re-inspection
probability from increasing the randomness in inspections.

8.2 Predictability in inspection schedule

In the first alternative inspection policy, I explore how the predictability in inspection time sched-
ule affects drivers’ behavioral responses. On this margin, I find that states with most unpredictable
inspection schedules could achieve crash reduction after inspections; while states with very pre-
dictable schedule have large increases in crash after inspection.

More specifically, I look at the variation in the day-of-week inspection schedule across states.
In the example given in Figure 14, I compare the number of inspections done in each day of the
four weeks in county A and B. The average number of inspections per day is the same (mean = 58)
for both counties. County A has a fixed day-of-week inspection schedule, meaning that county A
is conducting 10 inspections every Sunday, 60 every Monday, 80 every Tuesday, etc.; while county
B has a random day-of-week inspection schedule so that the number of inspection done on Sunday
this week is different from the next Sunday, this Monday is different from the next Monday, etc.
Therefore, in county A, it would be very easy for truck drivers who travel the same route frequently
to predict whether they will receive an inspection on a given day of the week. But it would be
hard for them to predict in county B. As a result, drivers would always be cautious when driving
in county B since they are uncertain of the inspection intensity on a particular day, but they could
driver more recklessly or maintain their vehicles less carefully in county A if they know that they
are very less likely to get an inspection today, or even for the rest of the week.

In order to measure the predictability of the day-of-week inspection schedule, I develop a pre-
dictability index for each state in the following way. I first demean the number of inspections con-
ducted (Inspct) in a county c at a given day t using an interactive fixed effects estimator that controls
for variations within in county×day-of-week, county×year, day-of-week×year, and county×day-
of-week×year as shown in the following equation.

Inspct = αc + γdow +ηyear +θc×dow +µc×yr +λdow×yr +ωc×dow×yr + εct , (10)

where αc, γdow, ηyear are the county, day-of-week, and year fixed effects, θc×dow,µc×yr,λdow×yr are
the corresponding three-way fixed effects, and ωc×dow×yr is the fully interactive fixed effect. I then
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define the predictability index as the variance of the residual, εct , at the state×year level. So

preds,yr = var(εct) (11)

In the 2-county example in Figure 14, county A and B both have 58 inspections per week in total.
Using the predictability index defined above, county A has a predictability index of 0, county B
has a predictability index of 32. The lower pred_index, the easier the drivers could forecast an
inspection. The state×year predictability index is the average for all county indices in the given
state. Figure 15 shows the yearly average of the state×year predictability index across all states.

I estimate the effect of inspection on crash depending on the differences in inspection schedule
predictability in the following way.

Crashit =β post_inspit + γ post_inspit× std_preds,yr +θstd_preds,yr (12)

+β−15Insp−15
it +β14Insp14

it +ui +ηt + εit

where std_preds,yr is the standardized predictability index for state s in year yr. std_preds,yr is
mean 0, standard deviation 1. Note that equation 12 is a variation of equation 8 by adding the inter-
action term post_inspit × std_preds,yr and the main effect of std_preds,yr. Thus the coefficient of
interest that estimates the effect of inspection by different inspection schedule is γ . The estimation
result of equation 12 is in Panel A of Table 6.

Using the coefficient estimates from Table 6, Panel A of Table 7 shows that for states with
highly predictable inspection schedule, or lower predictability index, the effect of inspection on
crash is 51%; for states with highly unpredictable inspection schedule, or higher predictability
index, the effect of inspection on crash is -7%. One standard deviation increase in the predictability
index drops the effect size by 9%. In other words, states who have adopted highly unpredictable
inspection schedules do achieve crash reduction after the inspections. Note that estimated effect
sizes in Table 7 are based on the current sample, hence one could extrapolate from the estimates
that greater crash reduction could be achieved if states have adopted inspection schedules with even
more unpredictability than the states now.

8.3 Randomness in inspection selection

Another policy variation I explore is the extent to which the inspectors rely on past inspection
records to determine which trucks are chosen for inspections, in other words, whether trucks re-
cently inspected are still getting inspections as if they were selected randomly. In section 6.1, I
highlight the fact that, on average, the probability of re-inspection is very low for trucks recently
inspected in the current situation (see Figure 5), therefore, drivers not expecting to receive another
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inspection in the near future tend to drive more recklessly on the road, which creates more crash ac-
cidents. Therefore, I compare states with longer versus shorter time interval to previous inspection
see if this variation in inspection selection changes the impact of the inspection program.

More specifically, in order to find out the variation in inspection selection based on past in-
spection records across different states, I calculate the average number of days passed since last
inspection (in any state) for any given truck inspected in state s in year yr. I call that number the
re-inspection time interval, Dtimes,yr. Figure 16 shows that states vary a lot in this aspect: Texas
has an average re-inspection interval of 3-months, but Michigan has an average re-inspection inter-
val longer than 1 year. Therefore, trucks recently inspected now travelling in Michigan today can
almost be assured that they are not going to be re-inspected this time, but trucks travelling in Texas
still face a large chance of re-inspection even if they were just inspected. As a result, the increase
in crash due to drivers’ offsetting behaviors after inspections could be less severe in Texas than in
Michigan.

I estimate the effect of inspection on crash by different re-inspection time interval using equa-
tion 13,

Crashit =β post_inspit + γ post_inspit× std_Dtimes,yr +θstd_Dtimes,yr (13)

+β−15Insp−15
it +β14Insp14

it +ui +ηt + εit

where std_Dtimes,yr is the re-inspection time interval calculated for state s in year yr, standard-
ized to mean 0 and standard deviation 1. In this equation, the interaction term post_inspit ×
std_Dtimes,yr estimates the effect of inspection depending on the length of the re-inspection time
interval. The estimated result is in Panel B of Table 6.

Panel B in Table 7 shows that for states with very short re-inspection time intervals which are
less than 1 month, the average effect size is 25%; and for states whose re-inspection time intervals
are longer than 1 year, the average effect size is 58%. One standard deviation increase in the interval
(5-month) rises the effect size by 10%. Again, all above estimations of effect sizes are based on the
current sample, hence one could extrapolate from the estimates that greater crash reduction could
happen if states could have chosen to inspect trucks at greater randomness.

9 Conclusion

This paper evaluates the effectiveness of the CMV roadside safety inspection program using the
most comprehensive data files on trucks, inspections, and crashes ever complied from 1996 to
2018. Linking inspection and crash history using each truck’s unique VIN, the data allows me to
implement an event study research design that tracks a given truck’s crash rate shortly before and
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after it receives an inspection.
I find that there is a sharp, 43.5% increase in crash rate immediately following an inspection,

and the effect lasts for at least 14 days. In the longer term, the increase in crash persists for 12
months after inspections, so the inspection program accounts for 1803 additional crashes in a year.
On the effect size, there is little heterogeneity across different inspection outcomes, such as having
violation convictions or no violations at all. There is also little heterogeneity in effect sizes between
large and small carriers/shippers, or interstate and intrastate firms. But I do find a strong spatial
heterogeneity in effect sizes across different commuting zones due to regional differences in the
inspection program designs.

The increase in crash rates after inspections is attributable to the truck drivers’ risk compen-
sating behaviors to safety regulations. I find evidences that a truck is much less likely to be re-
inspected for at least a quarter following an initial inspection. Correspondingly, I find a larger in-
crease in single-vehicle crashes, which is related to driver’s behaviors, comparing to multi-vehicle
crashes. Moreover, the number of crashes due to speeding or reckless driving increases after in-
spections. So knowing that the truck will not be re-inspected in the near term, the driver might
conduct fewer pre-trip checks at the truck, and drive more recklessly on the road, which offset the
potential benefits of the safety program.

This paper makes several suggestions to the implementation of the inspection program accord-
ing to the findings. First, states should adopt a more random inspection schedule so that drivers
cannot anticipate on which day they will get an inspection. Second, states should assign same
inspection probability to trucks recently inspected with trucks that have not been inspected in a
while. Third, since perfect monitoring is impossible from enforcement actions on the regulators’
side, self-monitoring through the carrier companies needs to be promoted at the same time. The
on-board computer system (Baker and Hubbard (2004)) is widely adopted by carrier companies to
communicate with the truck drivers. It can also be used to monitor the truck’s driving behaviors,
such as the speed, driving hours, etc., which can be used as a self-monitoring mechanism to enforce
better driving behaviors both before and after inspections. I would be interested in conducting a
field experiment, like what Gosnell et al. (2020) did for commercial airline captains, to explore the
effectiveness of several management practices on truck drivers’ performances.

Overall, this paper provides a compelling evidence for drivers’ compensating behaviors under
predictable enforcements by evaluating the effectiveness of the CMV safety inspection regulation
in improving road safety. However, this paper is not concluding on the notion that the inspection
program should be abandoned as it leads to more crashes. After all, it is worth mentioning that there
are 20% of CMVs put out-of-service after the inspections. Without the inspection program, those
20% CMVs, potentially more dangerous, would remain on the road and lead to more serious safety
problems. Therefore, the findings of the paper show that the current enforcement mechanism of
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CMV inspections is sub-optimal, and needs to be improved. The paper hopes to call upon attentions
from the public on this nationwide safety program.
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Tables & Figures

Figure 1: The number of CMV crashes vs. VMT over time
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Note: The left y-axis is the number of truck crashes in thousands. The number of crashes for the
whole US are aggregated using the FMCSA crash data for all commercial motor vehicles, which
is the same data used in the analysis. The right y-axis is the annual vehicle miles traveled (VMT)
by CMVs, which is obtained from the Bureau of Transportation Statistics.
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Figure 2: Event study: the impact of an inspection on truck crashes
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Note: The coefficients plotted in this figure are estimated using equation 7 where I regress the
number of crash accidents for the same truck that receives the inspection on a set of inspection
indicators from 14 days before an inspection to 14 days after inspection, controlling for individual
truck fixed effects, year, month, and day-of-week fixed effects. The shaded area is the 95%
confidence interval for the estimates. The standard errors are clustered at the truck level. I
combine the daily inspection indicators into 2-day bins to increase the power of estimation, such
as (-14,-13), (-12,-11), ..., (-2,-1), (0,1), (2,3), ..., (12,13) relative to the day of inspection at day 0.
The effect of an inspection on crash accidents happening in the two-day bin (-2,-1) is normalized
to 0.
This figure shows that the number of crash accidents involving trucks increases immediately
following an inspection, and the increase lasts for at least 2 weeks after the inspection within the
event window studied. I illustrate the level shift in crash accidents before and after the inspection
in Figure 2 by fitting two horizontal lines using the average of percentage changes respectively.
The level difference between the two dashed lines represents the increase in the crash accidents.
The increase in crash accidents is 43.5% relative to the daily average crash rate (6.4 crashes per
100,000 trucks). The figure also shows that there is almost no pre-trend during the 14 days before
the inspection which proves that the identification assumption is valid.
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Figure 3: Placebo test: the effect sizes

Figure 4: Placebo test: compare 14 days before and after an inspection
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Note: This two figures show the results of a placebo test that conducts 500 random re-shuffling of
inspections for each of the randomly selected 20,311 trucks, which represents 0.2% of all trucks
ever inspected from 1996 to 2018. Using the subsample, I compare the estimated effect sizes in
the 500 placebo tests with the observed effect size using the real sample. Figure 3 shows that the
observed post-inspection coefficient lies outside of the 95% confidence interval of the distribution
of the coefficients from the 500 placebo tests. Figure 4 compares each lead and lag coefficient in
the 28-day event window between the observed real sample and the daily average of the 500
placebo tests, which is almost a flat line. The results show that the samples in the placebo tests
would not generate an increase of crash right after inspections. Only the observed inspections
could lead to such an increase in crash.
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Figure 5: Mechanism: re-inspection probability
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Note: This figure shows that the re-inspection probability for a given truck is only 1.3% within the
first week after receiving an inspection, and the probability is only 8.9% within the first quarter
(13-weeks). It grows up to 19.9% within a year after an inspection. For all trucks inspected in the
sample, I generate a list of inspection history for each one of them. I then calculate the time
interval between the current inspection and the closest next inspection in the future for a given
truck. If the truck is not re-inspected after the last inspection observed in the sample, I replace the
time interval to be longer than 1 year. Then for all trucks in the sample, I calculate the percentage
of them that were re-inspected within 1 to 52 weeks to plot this graph.
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Figure 6: Mechanism: comparing effect sizes in single- vs multi-vehicle crashes
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Note: This figure shows that, by estimating equation 7 with different crash variables,
single-vehicle crashes increased by 74.4% following an inspection, and multi-vehicle crashes
increased by 26.8%. Both effects occur immediately on the day of inspection and last for at least 2
weeks after the inspection. There is no pre-trend for both cases. The standard errors are clustered
at the truck level.
Multi-vehicle crashes include collision with motor vehicles in transport (63.6% of all crashes).
Single-vehicle crashes include all noncollision crashes (18.2%), collision involving parked motor
vehicle (2.06%), fixed object (6.8%), and all other crash types involving only the truck itself.
Together, single-vehicle crashes account for 34.9% of all crashes. There are on average 2.23
single- vehicle crashes versus 4.06 multi-vehicle crashes per 100,000 trucks inspected in a day. In
order to compare the effect size of an inspection between those two types of crash accidents, I plot
the percentage change in both types of crash accidents using the change in the number of crashes
with respect to the corresponding average number of crashes.
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Figure 7: Additional evidence: increase in fatal crashes

Note: In this figure, I plot the raw number of fatal crashes involving CMVs around inspection
days normalized at event time 0. In the FARS sample, there are on average 15 fatal crashes happen
for each 2-day bin before inspections (average 7.5 crashes per day). After inspections, there are on
average 52 fatal crashes happen for each 2-day bin (average 26 crashes per day).
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Figure 8: Additional evidence: increase in fatal crashes due to truck violations
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Note: This figure looks at the number of fatal accidents for which the truck crashing is having
violation convictions. I plot the number of crashes for each two-day bin around the inspection day
normalized at day 0. It shows that, post inspections, there are increase in crashes due to drivers’
reckless driving behaviors, including speeding and driving while intoxicated, and due to lack of
vehicle maintenance.
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Figure 9: Additional evidence: the impact of an inspection on crashes in Texas
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Note: This figure uses crash data obtained from the Texas Department of Transportation (TxDOT)
from 2010 to 2018. This set of crash files contain all types of crash, including non-injury and
nonfatal crashes. This figure uses the exact same econometric framework in equation 7 for all
inspections and crashes happening in Texas. There are 1,487,842 inspections in this analysis. It
shows that there is a 39% increase in truck crashes after inspections in Texas, which is almost the
same as the average effect size using the data from the whole US.
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Figure 10: Additional evidence: increase in driver-related crashes
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Figure 11: Additional evidence: no effect on other crashes (not driver related)

0
10

20
30

40
50

60
N

um
be

r o
f c

ra
sh

es
, n

ot
 d

riv
er

/tr
uc

k-
re

la
te

d

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Note: Figure 10 shows that, before inspections, there are on average 21 crashes due to
driver-related factors for each 2-day bin, while 37 after inspections. Among those crashes, crashes
that have a speeding violation also exhibit a significant increase. Figure 11 shows that there is no
increase in the number of crashes which are not due to driver behavior related factors. Test for
difference in average crash before and after inspection: 1.63e-06 (P = 0.063).
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Figure 12: Heterogeneity in effect sizes across commuting zones
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Note: This figure presents the spatial heterogeneity on the effect size of an inspection on crashes
for all commuting zones in the US. The effect sizes plotted on the map are the VMT adjusted
effect sizes. The VMT adjusted effect sizes are computed in the following way. I first estimate the
effect size of an inspection on crash using subsamples of inspections conducted in each
commuting zone. Next, I weigh the effect size in each commuting zone by the standardized
annual VMT by trucks in the corresponding state. The annual VMT of states are standardized to
mean one and standard deviation one.
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Figure 13: In longer term: the impact of an inspection on truck crashes
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Note: In the upper panel, this plot shows the estimation result of the monthly event study that
looks at the impact of inspections on truck crashes in the 12 months before to 24 months after an
inspection (or inspections) in month 0 for any given truck. Here I use the same research
framework as in equation 7 while changing the unit of time from 1 day to 1 month. It shows that,
in the longer term, the increase of crash can be detected up to the 12th month after the inspection.
The crash rate goes back to the baseline level after 12 months and remains at the baseline until the
24th months, which is the end of the event window.
In the lower panel, I plot the probability of re-inspection for any given truck from month 1 to 24
after the inspection. The correspondence between the top and lower panel shows that as the
re-inspection probability increases over time, which means that drivers face higher probability of
inspection, the increase of crash due to driver’s compensating behaviors to the inspection
regulation decreases.
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Figure 14: Policy option 1: the variation in the day-of-week inspection schedule
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Note: This set of figures shows an example of two counties that have very different day-of-week
inspection schedule. In particular, the figures compares the the number of inspections done in each
day of the four weeks in county A and B. The average number of inspections per day is 58 for
both counties. County A has a fixed day-of-week inspection schedule, meaning that county A is
conducting 10 inspections every Sunday, 60 every Monday, 80 every Tuesday, etc.; while county
B has a random day-of-week inspection schedule so that the number of inspection done on Sunday
this week is different from the next Sunday, this Monday is different from the next Monday, etc.
In order to measure the different predictability of the day-of-week inspection schedule, as in
county A and B, I develop a predictability index for each state, called pred_index following
equation 10 and 11. So the lower pred_index, the easier the drivers could forecast an inspection.
Therefore, in county A, it would be very easy for truck drivers who travel the same route
frequently to predict whether they will receive an inspection on a given day of the week. But it
would be hard for them to predict in county B. As a result, drivers would always be cautious when
driving in county B since they are uncertain of the inspection intensity on a particular day, but they
could behave more recklessly when driving or maintain their vehicles less carefully in county A if
they know that they are very less likely to get an inspection today, or even for the rest of the week.
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Figure 15: Policy option 1: the variation in the predictability index
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Note: This figure shows the yearly average of the state×year predictability index (pred_index)
across all states. The pred_index measures the different predictability of the day-of-week
inspection schedule, as shown in the example of county A and B in Figure 14. The index is
estimated following equation 10 and 11. The lower pred_index, the easier the drivers could
forecast an inspection. In this figure, warmer colors indicate a lower pred_index and a higher
predictability in inspection schedule, while cooler colors indicate a higher pred_index and a lower
predictability.
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Figure 16: Policy option 2: the time interval between consecutive inspections
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Note: This figure shows the variation of the average re-inspection time interval for trucks
inspected in a state. More specifically, for each truck inspected in state s in year yr, I calculate the
number of days passed since the last inspection received for the same truck, then take the average
for all trucks that were inspected in state s in year yr. Cooler colors in this figure indicate a shorter
re-inspection interval, and warmer colors indicate a longer re-inspection interval. For example,
Texas has an average re-inspection interval of 3-months, but Michigan has an average
re-inspection interval that is longer than 1 year.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5) (6)
Observations Mean SD Min. Med. Max.

Panel A: Inspection file, 1996 to 2018
Total inspections 69,549,512 - - - - -
Weigh stations inspections 30,101,086 - - - - -
Trucks ever inspected 23,078,901 - - - - -
OOS violations 6,158,151 1.45 1.02 1 1 56
Driver violations (not OOS) 4,953,818 1.43 0.94 1 1 80
Vehicle violations (not OOS) 9,322,306 2.34 2.05 1 2 85
Truck volume 3,354,901 790.98 1957.23 1 410 1,280,036

Panel B: Daily event study panel: (-14,13) days of inspection
Crashes 842,830,408 6.39E-05 0.008 0 0 2
Injuries 842,830,408 3.74E-05 0.024 0 0 630
Fatalities 842,830,408 2.41E-06 0.002 0 0 10
Inspections per truck 11,017,905 2.73 34.99 1 1 114,360
Crashes per truck 11,017,905 0.005 0.133 0 0 204

Panel C: Monthly event study panel: (-12,24) months of inspection
Crashes 191,668,177 0.0016 0.058 0 0 32
Injuries 191,668,177 0.0009 0.0508 0 0 49
Fatalities 191,668,177 0.00005 0.008 0 0 11

Panel D: Carrier companies
No. of trucks 1,669,661 20.91 3420.75 0 1 2,699,990
No. of drivers 1,669,661 5.15 225.72 0 1 110,690

Note: In Panel A, Total inspections is the total number of inspections conducted in the whole sample
from 1996 to 2018; Weigh station inspections are those conducted at the weigh stations, as opposed
to at roadside. Trucks ever inspected is the number of trucks that ever receive an inspection. OOS
violations is the number of out-of-service (OOS) violations found in inspections that result in at
least one out-of-service (OOS) violation. Driver violations (not OOS) is the number of driver
violations (but not OOS violations) found in inspections that result in at least one driver violation,
similarly with Vehicle violations (not OOS). Truck volume is the total number of trucks that pass
through the inspection county at the inspection hour.
In Panel B, crashes are the number of crashes for a given truck in a day within the event window,
similarly with injuries and fatalities. Inspections per truck is the number of weigh station inspec-
tions received for each truck in the sample. The number of observations is the number of trucks
ever inspected at weigh stations. Crashes per truck is the number of crashes involving those trucks.
In Panel C, crashes are the number of crashes for a given truck in a month within the event window,
similarly with injuries and fatalities.
In Panel D, No. of trucks is the number of trucks owned by each carrier company recorded in
the company census file, which is a snapshot of all active carrier (and shipper) companies as of
October 2018, similarly with No. of drivers. It also shows that there are 1,669,661 active companies
registered as of October 2018.
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Table 2: The impact of an inspection on truck crashes

(1) (2) (3)
Baseline (all crashes) Single-vehicle crashes Multi-vehicle crashes
(per 100,000 trucks) (per 100,000 trucks) (per 100,000 trucks)

post_insp 2.78∗∗∗ 1.66∗∗∗ 1.09∗∗∗

(0.05) (0.03) (0.04)

Average crash rate 6.39 2.23 4.06

Effect size 43.50% 74.44% 26.85%

Observations 842,830,408 842,830,408 842,830,408

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All three columns use the
same estimation framework following equation 8, which looks at the impact of an inspection on crashes by
comparing 14 days before to 14 days after inspection. post_insp is a post-inspection indicator, it equals to 0
before an inspection happen on truck i, and it equals to 1 on and after the inspection. All regressions include
dummies for inspection happened outside of the time window of interest, as well as individual truck, year,
month, and day-of-week fixed effects. Standard errors are clustered at the truck level. Column 1 looks at the
impact of an inspection on all kinds of crashes. Column 2 looks at single-vehicle crashes only, other crashes
are dropped in the estimation. Column 3 looks at multi-vehicle crashes only, other crashes are dropped in the
estimation. The average crash rate is calculated using the number of any kinds of crashes, or only single-, or
multi-vehicle crashes per 100,000 trucks inspected. All regressions dropped inspections that happen within
18 hours after crashes.

56



Table 3: The impact of an inspection on crashes by inspection outcomes

Dependent var:
number of crashes (1) (2) (3) (4)
(per 100,000 trucks) No violation Any violation Driver violation Vehicle violation

post_insp 2.78∗∗∗ 2.90∗∗∗ 4.04∗∗∗ 2.42∗∗∗

(0.09) (0.08) (0.15) (0.09)

Average crash rate 6.52 6.23 7.64 5.65

Effect size 42.64% 46.55% 52.88% 42.83%

Observations 323,231,972 347,170,208 138,706,904 261,024,568

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All columns use the same esti-
mation framework following equation 8, which looks at the impact of an inspection on crashes by comparing
14-days before and after. post_insp is a post-inspection indicator, it equals to 0 before an inspection happen
on truck i, and it equals to 1 on and after the inspection. All regressions include dummies for inspection
happened outside of the time window of interest, as well as individual truck, year, month, and day-of-week
fixed effects. All regressions dropped inspections that happen within 18 hours after crashes. Standard errors
are clustered at the truck level. Column 1 looks at the impact of an inspection on crashes for trucks that do
not receive any violation from the inspection, which accounts for 38% of all inspections. Column 2 looks
at trucks that do receive violations but not out-of-service violations (41%). Among trucks that receive vio-
lations, column 3 and 4 further break down to driver-related violations and vehicle-related violations. Note
that there are trucks that receive both driver and vehicle violations in one inspection.
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Table 4: The impact of an inspection on crashes by firm characteristics

Number of crashes
(per 100,000 trucks) (1) (2) (3)

Panel A: Firms size, measured by the number of vehicles
Large Small 1-truck-1-driver

post_insp 3.35∗∗∗ 2.82∗∗∗ 2.88∗∗∗

(0.11) (0.11) (0.26)
Average crash rate 7.67 7.29 6.87
Effect size 43.68% 38.68% 41.92%
Observations 236,224,044 240,011,464 39,294,248

Panel B: Firms size, measured by the number of drivers
Large Small

post_insp 3.33∗∗∗ 2.84∗∗∗

(0.11) (0.11)
Average crash rate 7.68 7.29
Effect size 43.36% 38.96%
Observations 237,548,472 238,687,064

Panel C: Firms type, measured by inter- or intra-state business
Interstate only Intrastate only Both inter- & intrastate

post_insp 3.29∗∗∗ 2.30∗∗∗ 2.49∗∗∗

(0.09) (0.26) (0.17)
Average crash rate 7.84 6.05 6.53
Effect size 41.96% 38.02% 38.13%
Observations 357,311,780 33,435,220 84,399,140

Panel D: Firms type, measured by the number of trucks or buses
Truck only Bus only

post_insp 3.03∗∗∗ 2.51∗∗∗

(0.08) (0.62)
Average crash rate 7.45 5.99
Effect size 40.67% 41.90%
Observations 450,253,664 6,089,860
Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All four panels use the same estimation
framework following equation 8, which looks at the impact of an inspection on crashes by comparing 14-days before
and after. post_insp is a post-inspection indicator, it equals to 0 before an inspection happen on truck i, and it equals
to 1 on and after the inspection. All regressions include dummies for inspection happened outside of the time window
of interest, as well as individual truck, year, month, and day-of-week fixed effects. All regressions dropped inspections
that happen within 18 hours after crashes. Panel A and B both compare large firms with small firms. I measure
company sizes according to their inventories in two ways: the number of vehicles and the number of drivers. I define
a large company as one having more than the median number of power units (or drivers) among all companies in the
inspection sample, and small company are the rest of the sample. The median is 48 power units or 47 drivers. I also
look at firms with 1 truck and 1 driver only. Panel C compares firms that hire drivers to drive interstate, or intrastate,
or both routes. Panel D compares firms that own trucks or buses as their main inventory.
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Table 5: The impact of an inspection on crashes by carrier’s cargo types

post_insp
Type of Cargo (per 100,000 trucks) S.E. Avg crash rate Effect size No. of Obs

General freight 3.27∗∗∗ (0.10) 7.71 42.41% 336,706,076

Chemicals 3.49∗∗∗ (0.18) 7.72 45.21% 95,883,424

Food and beverage 3.38∗∗∗ (0.13) 7.87 42.95% 185,007,088

Paper products 3.34∗∗∗ (0.14) 7.84 42.60% 151,570,972

Building materials 3.04∗∗∗ (0.14) 7.49 40.59% 143,361,876

Metal: sheets, coils, rolls 3.15∗∗∗ (0.17) 7.81 40.33% 109,749,304

Heavy duty commodities 2.93∗∗∗ (0.11) 7.25 40.41% 236,750,864

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All columns use the same esti-
mation framework following equation 8, which looks at the impact of an inspection on crashes by comparing
14-days before and after. post_insp is a post-inspection indicator, it equals to 0 before an inspection happen
on truck i, and it equals to 1 on and after the inspection. All regressions include dummies for inspection hap-
pened outside of the time window of interest, as well as individual truck, year, month, and day-of-week fixed
effects. All regressions dropped inspections that happen within 18 hours after crashes. This table looks at the
impact of inspections on crashes of different carrier companies depending on the type of cargo they trans-
port. I summarized the 30 types of cargo that the carrier/shipper companies transport into general freight,
chemicals, food and beverage, paper product, building materials, metal sheet, and heavy duty commodities.
Such categorization makes sure that there are enough observations within each category.
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Table 6: The impact of an inspection on crashes under two alternative regulatory designs

Panel A: Inspection schedule, equation 12
post_insp 2.78∗∗∗

(0.05)

std. preds,yr -0.09
(0.06)

post_insp × std. preds,yr -0.58∗∗∗

(0.05)

Average crash rate 6.39

Observations 842,160,116

Panel B: Randomness in selection, equation 13
post_insp 2.78∗∗∗

(0.05)

std. Dtimes,yr -0.14∗∗

(0.07)

post_insp × std. Dtimes,yr 0.66∗∗∗

(0.05)

Average crash rate 6.39

Observations 842,158,632

Note: Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Both panels use the same
estimation framework following equation 8, which looks at the impact of an inspection on crashes by
comparing 14-days before and after. post_insp is a post-inspection indicator, it equals to 0 before an
inspection happen on truck i, and it equals to 1 on and after the inspection. std_preds,yr is the predictability
index of inspection schedule for state s in year yr, standardized to mean 0 and standard deviation 1.
std_Dtimes,yr is the average re-inspection time interval calculated for state s in year yr, standardized to
mean 0 and standard deviation 1. All regressions include dummies for inspection happened outside of the
time window of interest, as well as individual truck, year, month, and day-of-week fixed effects. All
regressions dropped inspections that happen within 18 hours after crashes.

60



Table 7: Policy counterfactuals by two regulation designs

Panel A: Inspection schedule Effect size

Highly predictable (low preds,yr) 51%

Highly Unpredictable (high preds,yr) -7%

1 S.D. increase in preds,yr -9%

Panel B: Randomness in selection Effect size

Short re-inspection interval (1-month) 25%

Long re-inspection interval (> 1 year) 62%

1 S.D. (5-month) increase in the interval 10%

Notes: The effect sizes in this table are inferred from the estimates in Table 6. preds,yr is the predictability
index of inspection schedule for state s in year yr. Dtimes,yr is the average re-inspection time interval
calculated for state s in year yr. In the first row of Panel A, to calculate the effect size for states with highly
predictable inspection schedule, I use the lowest 1st percentile in the distribution of preds,yr. In the second
row of Panel A, for the case of highly unpredictable inspection schedule, I use the 99th percentile in the
distribution of preds,yr. In the first row of Panel B, to calculate the effect size for states with shortest
re-inspection interval, I use 1-month as the re-inspection interval, which is the lowest 1st percentile in the
distribution. In the second row of Panel B, I use 1-year as the long re-inspection interval, which is the 95th

percentile in the distribution.
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Appendices

Figure A.1: An inspection at a weigh station

(a) step1: enter the weigh station (b) step2: get weighted

(c) step3: the inspector chooses (d) step4: closer inspection
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Figure A.2: The days of inspection per year by commuting zone

Note: From author’s calculation based on the inspections conducted at the fixed weigh stations,
excluding the roadside inspections. Data are aggregated to the 709 commuting zones in the US.

Figure A.3: The number of weigh stations by commuting zone

Note: From author’s calculation based on the inspections conducted at the fixed weigh stations.
Data are aggregated to the 709 commuting zones in the US.
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Figure A.4: The number of inspections over time

Note: From author’s calculation based on all inspection records, including fixed weigh station
inspections and roadside inspections. The y-axis on the left shows the total number of inspections
in the US per year, while the y-axis on the right shows the number of inspections per truck. The
number of inspections per truck declines over time despite the increase in the total number of
inspections since the number of vehicles increase much faster.
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Figure A.5: The number of trucks and buses over time

Note: The number of trucks and buses are collected from the Bureau of Transportation Statistics.
Data for 2007-17 were calculated using a new methodology developed by FHWA. Data for these
years are based on new categories and are not comparable to previous years. So the rate of
increase are calculated separately for years before 2007 and after 2007 and then taken the mean.
They average at 3% per year over the period.
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Figure A.6: Ruling out weather condition as a confounder
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Note: This figure shows the relationship between inspections and a rain indicator in the county
where the inspections take place. I rule out that weather conditions are confounders by showing
that the inspections are not chosen at times of worse weather conditions (rain), on the contrary, the
inspections are chosen at days with better weather conditions. The coefficients plotted in this
figure are estimated using equation 7 where I regress a rain indicator of the county where the
inspection takes place on a set of inspection indicators from 14 days before an inspection to 14
days after inspection, controlling for individual truck fixed effects, year, month, and day-of-week
fixed effects. The shaded area is the 95% confidence interval for the estimates. The effect of an
inspection on crash accidents happening in the two-day bin (-2,-1) is normalized to 0.
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Figure A.7: Eliminating the reverse causality
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Note: This figure shows that by varying the length of the time interval during which the
inspections are dropped after crash accidents, the coefficients on two-day bin (-2, -1) and (0, 1)
drop as the length gets longer, but it does not affect any other coefficients. The first line marked as
"all" is the full sample without dropping an inspections. Then I look at the choice of dropping
inspections within 3, 6, 12, 18, and 24 hours of crash. I decide to use 18-hour as the proper time
frame since the coefficient on the (-2,-1) bin is consistent with that on (-4,-3) bin. I normalize the
effect of an inspection on crashes on day (-14,-13) to be 0 in order to compare across samples.
The coefficients plotted in this figure are estimated using equation 7 where I regress the number of
crash accidents for the same truck that receives the inspection on a set of inspection indicators
from 14 days before an inspection to 14 days after inspection, controlling for individual truck
fixed effects, year, month, and day-of-week fixed effects.
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Figure A.8: Comparing effect sizes in different crash categories
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Note: This figure complements figure 6 by further breaking down the single-vehicle crash group
into detailed crash categories. First 5 categories in the figure are all single-vehicle crashes: truck
run off the road, truck rollover, cargo loss, equipment failure, and collision with fixed objects.
Multi-vehicle crashes include all collisions with moving motor vehicles. The vertical axis is the
percentage change relative to each of the mean crash rate. The coefficients plotted in this figure
are estimated using equation 7 where I regress the number of crash accidents for the same truck
that receives the inspection on a set of inspection indicators from 14 days before an inspection to
14 days after inspection, controlling for individual truck fixed effects, year, month, and
day-of-week fixed effects. The effect of an inspection on crash accidents happening in the two-day
bin (-2,-1) is normalized to 0.
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Figure A.9: Travel speed prior to the occurrence of the fatal crashes
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Note: In the FARS sample, there are 472 fatal crashes that occur [-14,13] days for trucks that
receive inspections. Only 246 of those crashes have records on the travel speed prior to the
occurrence of the crashes. The dots in the plot are the median of the travel speed for all crashes
happen each day within the time frame of interest. The shaded area of the plot shows 25 to 75
percentile of the distribution of travel speed within each 2-day bin. Since there are even fewer
fatal crashes that have travel speed recorded and happen before inspections, so the confidence
interval is wider. This figure gives suggestive evidence that there is an increase in the travel speed
for crashes happen after inspections, from 30.5 mph before to 54 mph after inspections.
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Figure A.10: Number of fixed vs roadside inspections across years

California Pennsylvania

Note: This figure compares the different inspection strategies between California and
Pennsylvania, highlighting the difference in the number of fixed vs roadside inspections. It shows
that California implemented many roadside inspections during 2009 to 2015, but more fixed
station inspections in other years. While Pennsylvania used to have small number of fixed station
inspections, but made a significant shift in the type of inspections conducted at year 2015.
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Table B.1: The impact of an inspection on crashes, controlling for the traffic volume

Dependent var:
number of crashes (1) (2) (3) (4) (5)
(per 100,000 trucks)
post_insp 2.96∗∗∗ 2.96∗∗∗ 2.96∗∗∗ 3.70∗∗∗ 3.07∗∗∗

(0.193) (0.194) (0.193) (0.269) (0.396)

truck_count -.00002 .0014∗∗∗

(.00006) (.0001)

pct_truck 2.20∗∗ .935
(1.07) (1.62)

post_insp×truck_count -.0003∗

(.0002)

post_insp×pct_truck -2.69
(1.81)

Observations 96,320,300 96,462,478 96,329,947 96,441,835 96,309,902

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All columns use the same esti-
mation framework following equation 8, which looks at the impact of an inspection on crashes by comparing
14 days before to 14 days after inspection. post_insp is a post-inspection indicator, it equals to 0 before an
inspection happen on truck i, and it equals to 1 on and after the inspection. truck_count is the number of
trucks passed by in the same hour and county as when the inspection happened. pct_truck is the percentage
of truck volume out of all motor vehicles in the same hour and county as the inspection. The sample period in
this exercise is from 2012-2018 since the traffic volume data is available from 2012 onwards. All regressions
include dummies for inspection happened outside of the time window of interest, as well as individual truck,
year, month, and day-of-week fixed effects. Standard errors are clustered at the truck level. All regressions
dropped inspections that happen within 18 hours after crashes.
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Table B.2: The impact of an inspection on no-injury truck crashes

(1) (2)
Baseline (all crashes) No-injury & nonfatal crashes
(per 100,000 trucks) (per 100,000 trucks)

post_insp 2.78∗∗∗ 1.56∗∗∗

(0.05) (0.04)

Average crash rate 6.39 3.55

Effect size 43.50% 43.94%

Observations 842,830,408 842,185,848

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Both columns use the same
estimation framework following equation 8, which looks at the impact of an inspection on crashes by com-
paring 14-days before to 14 days after inspection. post_insp is a post-inspection indicator, it equals to 0
before an inspection happen on truck i, and it equals to 1 on and after the inspection. All regressions in-
clude dummies for inspection happened outside of the time window of interest, as well as individual truck,
year, month, and day-of-week fixed effects. Standard errors are clustered at the truck level. All regressions
dropped inspections that happen within 18 hours after crashes. Column 1 is the baseline estimation using all
kinds of crashes. Column 2 only looks at no-injury and nonfatal crashes, other crashes are dropped in the
estimation. The average crash rate is calculated using the number of crashes per 100,000 trucks inspected.
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Table B.3: The impact of an inspection on crashes under different crash external conditions

Dependent var:
number of crashes (1) (2) (3)
(per 100,000 trucks) All single-vehicle crashes Normal conditions Adverse conditions
post_insp 1.66∗∗∗ 0.55∗∗∗ 1.05∗∗∗

(0.03) (0.02) (0.02)

Average crash rate 2.23 0.89 1.24

Effect size 74.44% 61.21% 84.68%

Observations 842,830,408 842,830,408 842,830,408

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All three columns use the
same estimation framework following equation 8, which looks at the impact of an inspection on crashes by
comparing 14-days before to 14 days after inspection. post_insp is a post-inspection indicator, it equals
to 0 before an inspection happen on truck i, and it equals to 1 on and after the inspection. All regressions
include dummies for inspection happened outside of the time window of interest, as well as individual truck,
year, month, and day-of-week fixed effects. Standard errors are clustered at the truck level. All regressions
dropped inspections that happen within 18 hours after crashes. Crash external conditions include road surface
conditions, weather conditions and light conditions. Column 1 prints the baseline estimation using all single-
vehicle crashes. Column 2 selects single-vehicle crashes under normal external conditions (all three external
conditions are normal). Column 3 selects single-vehicle crashes under adverse external conditions (any one
of the three external conditions is worse).
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Table B.4: Demographics for drivers involved in fatal crashes

(1) (2)
before inspections after inspections

Sex (% male) 97.15% 96.87%
(.0459) (.0341)

Age 44.63 43.17
(11.45) (12.32)

No valid CDL (%) 10.59% 15.03%
(.12) (.06)

No. of prev. convictions 0.86 0.86
(1.07) (1.27)

Note: This table summarizes the characteristics for drivers involved in the fatal crashes 14 days before and
after an inspection. Standard deviations in parentheses. In the FARS sample, there are on average 7.5 crashes
per day before inspections. After inspections, there are on average 26 crashes per day. Sex is the percentage
of male drivers involved. Age is the average age for all drivers involved. No valid CDL is the percentage
of drivers involved with invalid commercial driver license (CDL). No. of prev. convictions is the average
number of previous moving convictions for drivers involved.
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Table B.5: The impact of an inspection on crashes by carrier’s cargo types

post_insp
Type of Cargo (per 100,000 trucks) S.E. Avg crash rate Effect size No. of Obs

General freight 3.27∗∗∗ (0.10) 7.71 42.41% 336,706,076

Chemicals 3.49∗∗∗ (0.18) 7.72 45.21% 95,883,424

Food and beverage 3.38∗∗∗ (0.13) 7.87 42.95% 185,007,088

Paper products 3.34∗∗∗ (0.14) 7.84 42.60% 151,570,972

Building materials 3.04∗∗∗ (0.14) 7.49 40.59% 143,361,876

Metal: sheets, coils, rolls 3.15∗∗∗ (0.17) 7.81 40.33% 109,749,304

Heavy duty commodities 2.93∗∗∗ (0.11) 7.25 40.41% 236,750,864

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All columns use the same esti-
mation framework following equation 8, which looks at the impact of an inspection on crashes by comparing
14-days before and after. post_insp is a post-inspection indicator, it equals to 0 before an inspection happen
on truck i, and it equals to 1 on and after the inspection. All regressions include dummies for inspection hap-
pened outside of the time window of interest, as well as individual truck, year, month, and day-of-week fixed
effects. All regressions dropped inspections that happen within 18 hours after crashes. This table looks at the
impact of inspections on crashes of different carrier companies depending on the type of cargo they trans-
port. I summarized the 30 types of cargo that the carrier/shipper companies transport into general freight,
chemicals, food and beverage, paper product, building materials, metal sheet, and heavy duty commodities.
Such categorization makes sure that there are enough observations within each category.
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A Appendix c. Proof of Proposition

In this section, I present a theoretical model on driver’s traffic safety behaviors following the frame-
work developed by Peltzman (1975) and Blomquist (1986). I use the model to demonstrate that
drivers exert less private safety effort when they expect the re-inspection probability drops to zero
following an initial inspection comparing to the case when the re-inspection probability stays the
same regardless of the truck’s inspection status. As a result, the total number of crashes is larger.

In the model, drivers maximize their expected income by choosing the optimal private effort e

in reducing accident loss.
max

e
E = βS1 +(1−β )S2, (14)

where E = the expected income for a given driving mileage, β = probability of inspections, and S1,
S2 = net income when encountering an inspection and no inspection, respectively. If the driver gets
an inspection then the driver’s net income is

S1 = p(e,v)(I−D(e,v)−L)+(1− p(e,v))(I−D(e,v)), (15)

where I = gross income in the limit where the effort devoted to driving a given mileage is zero
and no inspection happens. p = p(e,v) is the probability of a crash accident, which is defined as a
function of private effort e and the inspection v. The inspection v is specified by v= v(e), which can
be treated as the compliance cost to inspections that depends on private effort e. D(e,v) represents
the cost from private effort e and the compliance costs to inspection v. For simplicity, I define
D(e,v) = e+ v. L = the loss from an accident.

If the driver does not get an inspection, the driver’s net income is

S2 = p(e,0)(I−D(e,0)−L)+(1− p(e,0))(I−D(e,0)), (16)

In S2, since there is no inspection, p = p(e,0) and D(e,v) = D(e,0) = e.
Combining equation 14, 15, 16 and rearranging terms, the expected income is the following:

E = β [I− e− v− p(e,v)L]+ (1−β )[I− e− p(e,0)L] (17)

The first order condition for optimal private safety effort can be simplified to:

∂E
∂e

=−1−β
∂v
∂e
−L[

∂ p
∂e

+β
∂ p
∂v

∂v
∂e

] = 0 (18)

Assumption.

1. The probability of an accident is bounded between 0 and 1, and decreases in driver’s private
effort e and inspection v: ∂ p

∂e < 0, ∂ p
∂v < 0, ∂ 2 p

∂e2 > 0, ∂ 2 p
∂v2 > 0, ∂ 2 p

∂e∂v > 0. In addition, value of
inspection v = v(e) (or violations from inspections) decreases in private effort e: ∂v

∂e < 0.
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2. Drivers prefer not to be inspected because the reduction in expected loss from accident is
smaller than the increase in compliance costs on the margin: −∂ p

∂v L < 1.

Consider two scenarios: in the first scenario, a truck driver receives an inspection which sig-
nificantly lowers the probability that the driver gets another inspection within a long time. Here
I assume that the re-inspection probability drops to zero. In the second scenario, a truck driver
receives an inspection which does not affect the probability that the driver gets another inspection,
in other words, the probability of getting an inspection is the same for all drivers regardless of their
recent inspection status.

Proposition. Under the assumptions, we can derive the following two results from comparing the
two scenarios,

1. Drivers exert less private effort when the re-inspection rate drops to zero following an initial
inspection (first scenario) comparing to the case when the re-inspection rate stays the same
regardless of the truck’s inspection status (second scenario).

2. As a result, the total loss (or the total number of crashes) is larger under the first scenario
comparing to the second scenario.

Proof. In the first scenario, the first order condition in equation 18 becomes

∂ p
∂e

∣∣∣∣
e0

=−1
L

(19)

where e0 is the driver’s optimal private effort when the re-inspection rate is zero for trucks recently
inspected.

In the second scenario, the first order condition in equation 18 becomes

∂ p
∂e

∣∣∣∣
e1

=−1
L
−β

∂v
∂e

(
1
L
+

∂ p
∂v

) (20)

Under assumption 1, we know that ∂v
∂e < 0. Therefore, the relative magnitude of ∂ p

∂e

∣∣∣∣
e0

and ∂ p
∂e

∣∣∣∣
e1

depends on the sign of 1
L +

∂ p
∂v .

Under assumption 2, drivers prefer not to be inspected because the reduction in expected loss
from accident is smaller than the increase in compliance costs on the margin: −∂ p

∂v L< 1. Therefore,

we have 1
L + ∂ p

∂v > 0. It implies that ∂ p
∂e

∣∣∣∣
e0

< ∂ p
∂e

∣∣∣∣
e1

. Also from assumption 1, we know ∂ 2 p
∂e2 > 0,

therefore, e0 < e1.
So far, we prove proposition 1 that says when the inspection is not effective in reducing the

probability of crashes, then if driver does not expect to receive another inspection following an
initial inspection, then the driver’s private effort e0 is going to be smaller than e1, which is the
private effort exerted if the driver knows that the rate of inspection is constant and does not depend
on recent inspection status.
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Now we go on to derive proposition 2. Suppose there are in total n truck drivers in the society,
the total loss from crash accidents, or equivalently, the total number of crashes depends on driver’s
private effort in reducing crashes e, and the inspection v. Since v = v(e) is a function of driver’s
private effort, the total number of crashes then depends on private efforts exerted by all the truck
drivers in the society. From proposition 1, we know that drivers’ efforts depend on their believes
on the re-inspection rate. Therefore, the total number of crashes depends on drivers’ believes on
the re-inspection rate.

In order to compare the total number of crashes under the two scenarios discussed above, we
assume that the inspectors are always choosing βn out of n trucks for inspection, the difference lies
in what kind of trucks they choose to inspect.

In particular, in the first scenario, if inspectors are always choosing trucks that have not received
an inspection in a long time for inspections, then drivers who have recently received an inspection
expect the re-inspection rate to be zero immediately following an inspection. Therefore, their
private effort is e0. Those drivers compose βn out of n drivers in total. The total number of crashes
made by those drivers is

nβ p(e0,0)L

There are (1−β )n trucks that have not received an inspection recently. For them, the probability
of getting an inspection is therefore β

1−β
. Therefore, their private effort is e1. The total number of

crashes made by those drivers is

n(1−β )[
β

1−β
p(e1,v(e1))L+(1− β

1−β
)p(e1,0)L]

Adding up the number of crashes made by the two types of drivers, the total number of crashes is

n(1−β )[
β

1−β
p(e1,v(e1))L+(1− β

1−β
)p(e1,0)L]+nβ p(e0,0)L (21)

In the second scenario, the inspector chooses trucks randomly regardless of their recent inspec-
tion status, then all drivers face the same probability of getting an inspection, hence all of them
exert private effort e1. The total number of crashes is

n[β p(e1,v(e1))L+(1−β )p(e1,0)L] (22)

Taking the difference between equation 21 and 22,

nL[β p(e1,v(e1))+(1−2β )p(e1,0)+β p(e0,0)−β p(e1,v(e1))− (1−β )p(e1,0)]
=nL[(1−2β −1+β )p(e1,0)+β p(e0,0)]
=nLβ [p(e0,0)− p(e1,0)]> 0

From the assumption, we know that ∂ p
∂e < 0, since e0 < e1, p(e0,0)− p(e1,0)> 0. The difference

between equation 21 and 22 is unambiguously positive given e0 < e1. The result implies that if
driver does not expect to receive another inspection following an initial inspection, the driver’s
private effort e0 is smaller than e1, which is the private effort exerted if the driver knows that the
rate of inspection is constant and does not depend on recent inspection status, then the total number
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of crashes in the society is larger. So we prove proposition 2.
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