The Fiscal Theory of the Price Level with a Bubble

Markus Brunnermeier Princeton University Sebastian Merkel Princeton University Yuliy Sannikov Stanford University

1

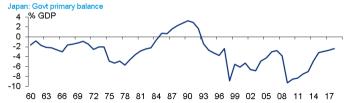
July 2020

Motivation

- Different monetary theories emphasize different roles of money and equilibrium equations
- Fiscal Theory of the Price Level (FTPL):
 - broad money (including nom. bonds) as a store of value
 - value of government debt given by discounted stream of future primary surpluses

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{P}_t} = \mathbb{E}_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} \left(\mathcal{T}_s - \mathcal{G}_s \right) ds \right] \quad \left[+ \quad \mathbb{E}_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{P}_s} ds \right] \right]$$

• The Japan critique:



• Broader question: can a country permanently run primary deficits?

Deriving the Key Equation of the FTPL

• Nominal government flow budget constraint

$$(\mu_t^{\mathcal{B}}\mathcal{B}_t + \mu_t^{\mathcal{M}}\mathcal{M}_t + \mathcal{P}_t T_t) dt = (i_t \mathcal{B}_t + i_t^m \mathcal{M}_t + \mathcal{P}_t G_t) dt$$

• Multiply by nominal SDF ξ_t/\mathcal{P}_t , integrate from t to T, and take expectations and limit $T \to \infty$

Deriving the Key Equation of the FTPL

• Nominal government flow budget constraint

$$(\mu_t^{\mathcal{B}}\mathcal{B}_t + \mu_t^{\mathcal{M}}\mathcal{M}_t + \mathcal{P}_t T_t) dt = (i_t \mathcal{B}_t + i_t^m \mathcal{M}_t + \mathcal{P}_t G_t) dt$$

- Multiply by nominal SDF ξ_t/\mathcal{P}_t , integrate from t to T, and take expectations and limit $T \to \infty$
- ⇒ General form of the key equation of the FTPL ("government debt valuation equation", "intertemporal government budget constraint")

$$\frac{\mathcal{B}_{t} + \mathcal{M}_{t}}{\mathcal{P}_{t}} = \underbrace{\mathbb{E}_{t} \left[\int_{t}^{\infty} \frac{\xi_{s}}{\xi_{t}} \left(\mathcal{T}_{s} - \mathcal{G}_{s} \right) ds \right]}_{\text{PV of primary surpluses}} + \underbrace{\mathbb{E}_{t} \left[\int_{t}^{\infty} \frac{\xi_{s}}{\xi_{t}} (i_{s} - i_{s}^{m}) \frac{\mathcal{M}_{s}}{\mathcal{P}_{s}} ds \right]}_{\text{PV of future transaction services}} + \underbrace{\lim_{T \to \infty} \mathbb{E}_{t} \left[\frac{\xi_{T}}{\xi_{t}} \frac{\mathcal{B}_{T} + \mathcal{M}_{T}}{\mathcal{P}_{T}} \right]}_{\text{bubble}}$$

- Bubble term?
 - in literature: invoke private-sector transversality condition to conclude $\mathbb{E}_t \left[\frac{\xi_T}{\xi_r} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T} \right] \to 0$
 - this paper: environments in which the previous argument fails

• Assume stationary debt-to-GDP ratio and no aggregate risk

•
$$\frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T} = \frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{P}_t} e^{g(T-t)}$$

• $\frac{\xi_T}{\xi_t} \propto e^{-r^f(T-t)}$

• Then
$$\mathbb{E}_t \left[\frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T} \right] \to 0 \Leftrightarrow r^f > g$$

- thus: bubble can exist \Leftrightarrow $r^f \leq g$
- more generally: $r^b \leq g$ with $r^b = risk-adjusted$ discount rate for gov. debt

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{P}_t} = \mathbb{E}_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} \left(\mathcal{T}_s - \mathcal{G}_s \right) ds \right] + \mathbb{E}_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} (i_s - i_s^m) \frac{\mathcal{M}_s}{\mathcal{P}_s} ds \right] + \lim_{T \to \infty} \mathbb{E}_t \left[\frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T} \right]$$

O Surprise devaluation

- nonrational expectations
- likely small (Hilscher, Reis, Raviv 2014)
- Section 2018 Exploiting liquidity benefits of "narrow" cash
 - only for "narrow" cash that provides medium-of-exchange services
 - Reis (2019): flow $\approx 0.36\%$ of GDP, PV < 30% of GDP

In Mining the fiscal bubble

- bubble is a fiscal resource that can be "mined"
- ever-expanding Ponzi scheme generates a steady revenue flow for the government

2 Example with a Bubble: Model with Idiosyncratic Return Risk

- Model Environment & Steady State
- Transversality Condition and Bubble Existence
- "Mining the Bubble"
- Price Level Determination (Uniqueness)

2 Example with a Bubble: Model with Idiosyncratic Return Risk

- Model Environment & Steady State
- Transversality Condition and Bubble Existence
- "Mining the Bubble"
- Price Level Determination (Uniqueness)

• Continuous time, infinite horizon, 1 consumption good, 1 capital good

- Continuous time, infinite horizon, 1 consumption good, 1 capital good
- Continuum of household-entrepreneurs (index by *i*), *i*'s preferences

$$\mathbb{E}\left[\int_{0}^{\infty}e^{-
ho t}\log c_{t}^{i}dt
ight]$$

- Continuous time, infinite horizon, 1 consumption good, 1 capital good
- Continuum of household-entrepreneurs (index by i), i's preferences

 $\mathbb{E}\left[\int_0^\infty e^{-\rho t} \log c_t^i dt\right]$

- Agent *i* manages one firm operating capital k_t^i
 - output $y_t^i = ak_t^i$, capital investment $\iota_t^i k_t^i$
 - capital evolution (absent market transactions): $dk_t^i/k_t^i = \left(\Phi(\iota_t^i) \delta\right) dt + \tilde{\sigma} d\tilde{Z}_t^i$
 - $(\tilde{Z}^i$ idiosyncratic Brownian motion)
- Friction: agents cannot trade idiosyncratic risk (only physical capital and bonds)

- Continuous time, infinite horizon, 1 consumption good, 1 capital good
- Continuum of household-entrepreneurs (index by i), i's preferences

 $\mathbb{E}\left[\int_0^\infty e^{-\rho t} \log c_t^i dt\right]$

- Agent *i* manages one firm operating capital k_t^i
 - output $y_t^i = ak_t^i$, capital investment $\iota_t^i k_t^i$
 - capital evolution (absent market transactions): $dk_t^i/k_t^i = \left(\Phi(\iota_t^i) \delta\right) dt + \tilde{\sigma} d\tilde{Z}_t^i$
 - $(\tilde{Z}^i$ idiosyncratic Brownian motion)
- Friction: agents cannot trade idiosyncratic risk (only physical capital and bonds)
- Government:
 - proportional output tax τ_t
 - nominal bonds:
 - nominal aggregate supply: $d\mathcal{B}_t/\mathcal{B}_t = \mu_t^\mathcal{B} dt$
 - pays (floating) nominal interest i_t
 - policy choices: τ_t , $\mu_t^{\mathcal{B}}$, i_t s.t. flow budget constraint $(\mu_t^{\mathcal{B}} i_t) \mathcal{B}_t + \mathcal{P}_t \tau_t a K_t = 0$

• Aggregate resource constraint: $C_t + \iota_t K_t = aK_t$

Agent *i*'s problem: choose consumption c^i , investment ι^i , bond portfolio weight θ^i to maximize

$$\mathbb{E}\left[\int_0^\infty e^{-\rho t} \log c_t^i dt\right]$$

subject to

• net worth evolution

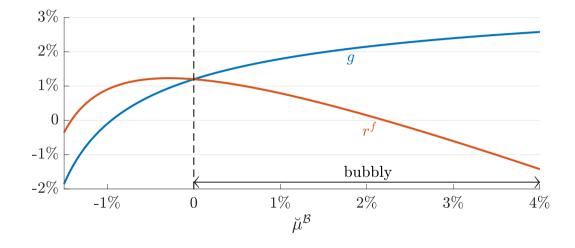
$$dn_t^i/n_t^i = -c_t^i/n_t^i dt + heta_t^i dr_t^{\mathcal{B}} + \left(1- heta_t^i
ight) dr_t^{\mathcal{K},i}\left(\iota_t^i
ight)$$

• return processes $dr_t^{K,i}\left(\iota_t^i\right)$, $dr_t^{\mathcal{B}}$

- Assume constant policies μ
 ^B, τ
 (index policies by μ
 ^B, τ implied by gov. budget constraint)
- Two steady states

non-monetary	monetary
gov. bonds worthless	gov. bonds have pos. value
exists for all $\breve{\mu}^{\mathcal{B}}$	exists only if $ ilde{\sigma} \geq \sqrt{ ho + reve{\mu}^{\mathcal{B}}}$

r^f versus g for Different Policies (Monetary Steady State)



Example with a Bubble: Model with Idiosyncratic Return Risk Model Environment & Steady State

- Transversality Condition and Bubble Existence
- "Mining the Bubble"
- Price Level Determination (Uniqueness)

Bubble and Transversality

- Government debt is a bubble: provides risk-free store of value
- Bonds allow for self-insurance through trading
 - $d ilde{Z}^i_t < 0 \Rightarrow$ buy capital, sell bonds
 - $d ilde{Z}^i_t > 0 \Rightarrow$ sell capital, buy bonds

 \Rightarrow lowers volatility of total wealth n_t^i , but increases volatility of bond wealth $n_t^{b,i} := \theta_t^i n_t^i$

Bubble and Transversality

- Government debt is a bubble: provides risk-free store of value
- Bonds allow for self-insurance through trading
 - $d ilde{Z}^i_t < 0 \Rightarrow$ buy capital, sell bonds
 - $d ilde{Z}^i_t > 0 \Rightarrow$ sell capital, buy bonds

 \Rightarrow lowers volatility of total wealth n_t^i , but increases volatility of bond wealth $n_t^{b,i} := \theta_t^i n_t^i$

- Why does the transversality condition (TVC) not rule out the bubble?
 - TVC for bond wealth: $\lim_{T\to\infty} \mathbb{E}[\xi^i_T n^{b,i}_T] = 0$
 - effective discount rate in TVC = discount rate for stochastic bond portfolio $n^{b,i}$

= risk-free rate r^{f} + (risk premium for idiosyncratic $n^{b,i}$ -fluctuations)

Bubble and Transversality

- Government debt is a bubble: provides risk-free store of value
- Bonds allow for self-insurance through trading
 - $d ilde{Z}^i_t < 0 \Rightarrow$ buy capital, sell bonds
 - $d\widetilde{Z}^i_t > 0 \Rightarrow$ sell capital, buy bonds
 - \Rightarrow lowers volatility of total wealth n_t^i , but increases volatility of bond wealth $n_t^{b,i} := \theta_t^i n_t^i$
- Why does the transversality condition (TVC) not rule out the bubble?
 - TVC for bond wealth: $\lim_{T\to\infty} \mathbb{E}[\xi^i_T n^{b,i}_T] = 0$
 - effective discount rate in TVC = discount rate for stochastic bond portfolio $n^{b,i}$

= risk-free rate r^{f} + (risk premium for idiosyncratic $n^{b,i}$ -fluctuations)

• discount rate for individual bond = discount rate for aggregate bond stock $\int n^{b,i} di$

$$=$$
 risk-free rate r^{f}

- risk premium: (self-insurance) service flow from retrading bonds (like a convenience yield)
- More general point: beneficial equilibrium trades are essential feature of (rational) bubbles

2 Example with a Bubble: Model with Idiosyncratic Return Risk

- Model Environment & Steady State
- Transversality Condition and Bubble Existence
- "Mining the Bubble"
- Price Level Determination (Uniqueness)

FTPL Equation with a Bubble

- Primary surplus $sK_t = \tau aK_t$
- Debt valuation equation ($K_0 \equiv 1$):

$$\frac{\mathcal{B}_{0}}{\mathcal{P}_{0}} = \lim_{T \to \infty} \left(\underbrace{\int_{0}^{T} e^{-(r^{f} - g)t} s dt}_{=:PVS_{0,T}} + e^{-(r^{f} - g)T} \frac{\mathcal{B}_{0}}{\mathcal{P}_{0}} \right)$$

$$ullet$$
 risk-free rate $r^f=g-reve L^{\mathcal B}$

<i>s</i> > 0	s=0	s < 0	、
$r^{f} > g$	$r^f = g$	$r^f < g$	$\check{\mu}^{\mathcal{B}}$
PVS > 0 no bubble	PVS = 0 bubble > 0	PVS < 0 bubble > 0	

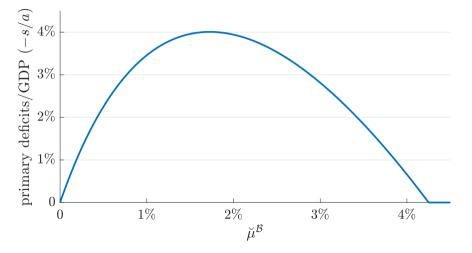
"Mining the Fiscal Bubble"

s > 0	s = 0	s < 0	
$r^{f} > g$	$r^f = g$	$r^f < g$	$\breve{\mu}^{\mathcal{B}}$
PVS > 0	PVS = 0	PVS < 0	
no bubble	bubble > 0	bubble > 0	

In all three cases, the bubble – or its mere possibility – grants government some leeway:

- s < 0: perpetual deficits are funded out of the bubble, never have to raise taxes ("bubble mining")
- s = 0: government debt enjoys positive value despite zero surpluses (debt "backed" by the bubble)
- s > 0: no equilibrium bubble, yet possibility of bubble makes debt more sustainable unexpected (persistent) drop in surpluses below zero
 - $\Rightarrow\,$ bubble emerges instead of collapse of the value of debt

Bubble Mining Laffer Curve



see Brunnermeier, Merkel, Sannikov (2020): "The Limits of Modern Monetary Theory"

2 Example with a Bubble: Model with Idiosyncratic Return Risk

- Model Environment & Steady State
- Transversality Condition and Bubble Existence
- "Mining the Bubble"
- Price Level Determination (Uniqueness)

In particular equilibrium:

- with a bubble, FTPL equation is no longer a one-to-one relationship between PV of surpluses and price level \mathcal{P}_t
- \Rightarrow FTPL equation alone no longer determines \mathcal{P}_t
 - ... because the size of the bubble is not determined (by that equation)
- economic mechanism emphasized by FTPL still valid:
 - government debt generates a wealth effect, goods market clearing "determines" the price level
 - given the price level, the FTPL equation determines the size of the bubble (i.e. how much of government debt is net wealth)
- Ø Multiple equilibria (FTPL as a selection device):
 - off-equilibrium fiscal backing is sufficient
 - but requires credibility and fiscal capacity to promise off-equilibrium surpluses (otherwise: vulnerability to bubble crashes)

- If $\tau > 0$ along equilibrium path:
 - standard FTPL argument applies: unique \mathcal{P}_t consistent with equilibrium, if surpluses (τ_s) do not react (too strongly) to the price level
 - but then $r^{f} > g$ and there is no bubble in equilibrium
- Resolving multiplicity with an equilibrium bubble:
 - more challenging: continuum of bubble values consistent with the same surplus path
 - \Rightarrow exogenous surplus sequence insufficient for uniqueness
 - contingent policy can select the bubble equilibrium
 - primary deficits on the equilibrium path (bubble mining)
 - $\bullet~$ switch to $\tau>0$ if inflation breaks out
- Difference to Bassetto, Cui (2018):

(their conclusion: "the FTPL breaks down in [a dynamically inefficient] OLG economy")

- contingent policy versus constant taxes
- government lending to private sector

- Integrate the "missing" bubble term into the FTPL
- 3 forms of seigniorage including "mining the bubble"
- \bullet Model with idiosyncratic risk and $r^f \leq g$
 - bubble can exist despite transversality condition
 - bond trading allows self-insurance
- Price level determination
 - goods market clearing condition (through bubble wealth effect)
 - uniqueness: off-equilibrium tax backing