Motivation

- Different monetary theories emphasize different roles of money and equilibrium equations
 - Fiscal Theory of the Price Level (FTPL):
 - broad money (including nom. bonds) as a store of value
 - value of government debt given by discounted stream of future primary surpluses
 \[
 \frac{B_t + M_t}{P_t} = \mathbb{E}_t \left[\int_t^{\infty} \frac{\xi_s}{\xi_t} (T_s - G_s) \, ds \right] + \mathbb{E}_t \left[\int_t^{\infty} \frac{\xi_s}{\xi_t} \Delta i_s \frac{M_s}{P_s} \, ds \right]
 \]
 - The Japan critique:
 - Broader question: can a country permanently run primary deficits?
Deriving the Key Equation of the FTPL

- Nominal government flow budget constraint

\[
(\mu^B_t B_t + \mu^M_t M_t + P_t T_t) \ dt = (i_t B_t + i^m_t M_t + P_t G_t) \ dt
\]

- Multiply by nominal SDF ξ_t/P_t, integrate from t to T, and take expectations and limit $T \to \infty$
Deriving the Key Equation of the FTPL

- Nominal government flow budget constraint
 \[
 (\mu^B_t B_t + \mu^M_t M_t + P_t T_t) \, dt = (i_t B_t + i^m_t M_t + P_t G_t) \, dt
 \]
 - Multiply by nominal SDF \(\xi_t / P_t \), integrate from \(t \) to \(T \), and take expectations and limit \(T \to \infty \)
 \[\Rightarrow\] General form of the key equation of the FTPL
 ("government debt valuation equation", "intertemporal government budget constraint")
 \[
 \frac{B_t + M_t}{P_t} = E_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} (T_s - G_s) \, ds \right] + E_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} (i_s - i^m_s) \frac{M_s}{P_s} \, ds \right] + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} \frac{B_T + M_T}{P_T} \right]
 \]
 - Bubble term?
 - in literature: invoke private-sector transversality condition to conclude \(E_t \left[\frac{\xi_T}{\xi_t} \frac{B_T + M_T}{P_T} \right] \to 0 \)
 - this paper: environments in which the previous argument fails
When Can a Bubble Exist?

- Assume stationary debt-to-GDP ratio and no aggregate risk
 \[
 \frac{B_{T}+M_{T}}{P_{T}} = \frac{B_{t}+M_{t} e^{g(T-t)}}{P_{t}}
 \]
 \[
 \frac{\xi_{T}}{\xi_{t}} \propto e^{-r_{f}(T-t)}
 \]

- Then \(\mathbb{E}_{t} \left[\frac{\xi_{T} B_{T}+M_{T}}{\xi_{t} P_{T}} \right] \rightarrow 0 \iff r_{f} > g \)

 thus: bubble can exist \(\iff r_{f} \leq g \)

 more generally: \(r^{b} \leq g \) with \(r^{b} \) = risk-adjusted discount rate for gov. debt
3 Forms of Seigniorage

\[
\frac{B_t + M_t}{P_t} = \mathbb{E}_t \left[\int_t^\infty \frac{\xi_s}{\xi_t} (T_s - G_s) \, ds \right] + \mathbb{E}_t \left[\int_t^\infty \frac{\xi_s (i_s - i^m_s)}{\xi_t} \frac{M_s}{P_s} \, ds \right] + \lim_{T \to \infty} \mathbb{E}_t \left[\frac{\xi_T}{\xi_t} \frac{B_T + M_T}{P_T} \right]
\]

1. **Surprise devaluation**
 - nonrational expectations
 - likely small (Hilscher, Reis, Raviv 2014)

2. **Exploiting liquidity benefits of “narrow” cash**
 - only for “narrow” cash that provides medium-of-exchange services
 - Reis (2019): flow $\approx 0.36\%$ of GDP, PV $< 30\%$ of GDP

3. **Mining the fiscal bubble**
 - bubble is a fiscal resource that can be “mined”
 - ever-expanding Ponzi scheme generates a steady revenue flow for the government
1. Revisiting the Key Equation of the FTPL

2. Example with a Bubble: Model with Idiosyncratic Return Risk
 - Model Environment & Steady State
 - Transversality Condition and Bubble Existence
 - “Mining the Bubble”
 - Price Level Determination (Uniqueness)

3. Conclusion
Outline

1 Revisiting the Key Equation of the FTPL

2 Example with a Bubble: Model with Idiosyncratic Return Risk
 - Model Environment & Steady State
 - Transversality Condition and Bubble Existence
 - “Mining the Bubble”
 - Price Level Determination (Uniqueness)

3 Conclusion
Continuous time, infinite horizon, 1 consumption good, 1 capital good
Model Environment

- Continuous time, infinite horizon, 1 consumption good, 1 capital good
- Continuum of household-entrepreneurs (index by i), i’s preferences
 \[
 \mathbb{E} \left[\int_0^\infty e^{-\rho t} \log c_t^i dt \right]
 \]
Model Environment

- Continuous time, infinite horizon, 1 consumption good, 1 capital good
- Continuum of household-entrepreneurs (index by i), i’s preferences
 \[\mathbb{E} \left[\int_0^\infty e^{-\rho t} \log c^i_t \, dt \right] \]
- Agent i manages one firm operating capital k^i_t
 - output $y^i_t = ak^i_t$, capital investment $\iota^i_t k^i_t$
 - capital evolution (absent market transactions):
 \[\frac{dk^i_t}{k^i_t} = \left(\Phi(\iota^i_t) - \delta \right) dt + \sigma d\tilde{Z}^i_t \]
 (\tilde{Z}^i_i idiosyncratic Brownian motion)
- Friction: agents cannot trade idiosyncratic risk (only physical capital and bonds)
Model Environment

- Continuous time, infinite horizon, 1 consumption good, 1 capital good
- Continuum of household-entrepreneurs (index by i), i’s preferences
 \[\mathbb{E} \left[\int_0^\infty e^{-\rho t} \log c^i_t dt \right] \]
- Agent i manages one firm operating capital k^i_t
 - output $y^i_t = a k^i_t$, capital investment $\nu^i_t k^i_t$
 - capital evolution (absent market transactions): $dk^i_t / k^i_t = (\Phi(\nu^i_t) - \delta) dt + \sigma d\tilde{Z}^i_t$
 (\tilde{Z}^i idiosyncratic Brownian motion)
- Friction: agents cannot trade idiosyncratic risk (only physical capital and bonds)
- Government:
 - proportional output tax τ_t
 - nominal bonds:
 - nominal aggregate supply: $dB_t / B_t = \mu^B_t dt$
 - pays (floating) nominal interest i_t
 - policy choices: τ_t, μ^B_t, i_t s.t. flow budget constraint $\left(\mu^B_t - i_t \right) B_t + \mathcal{P} \tau_t a K_t = 0$
- Aggregate resource constraint: $C_t + \nu_t K_t = a K_t$

\[=:\bar{\mu}^B_t \]
Agent Problem

Agent i's problem: choose consumption c^i, investment ι^i, bond portfolio weight θ^i to maximize

$$E \left[\int_0^\infty e^{-\rho t} \log c^i_t \, dt \right]$$

subject to

- net worth evolution

$$\frac{dn^i_t}{n^i_t} = -c^i_t/n^i_t \, dt + \theta^i_t \, dr^B_t + (1 - \theta^i_t) \, dr^{K,i}_t (\iota^i_t)$$

- return processes $dr^{K,i}_t (\iota^i_t)$, dr^B_t
Stationary Equilibria

- Assume constant policies $\tilde{\mu}^B$, τ
 (index policies by $\tilde{\mu}^B$, τ implied by gov. budget constraint)

- Two steady states

<table>
<thead>
<tr>
<th>non-monetary</th>
<th>monetary</th>
</tr>
</thead>
<tbody>
<tr>
<td>gov. bonds worthless exists for all $\tilde{\mu}^B$</td>
<td>gov. bonds have pos. value exists only if $\tilde{\sigma} \geq \sqrt{\rho + \tilde{\mu}^B}$</td>
</tr>
</tbody>
</table>
r^f versus g for Different Policies (Monetary Steady State)
Outline

1 Revisiting the Key Equation of the FTPL

2 Example with a Bubble: Model with Idiosyncratic Return Risk
 - Model Environment & Steady State
 - Transversality Condition and Bubble Existence
 - “Mining the Bubble”
 - Price Level Determination (Uniqueness)

3 Conclusion
Government debt is a bubble: provides risk-free store of value

Bonds allow for self-insurance through trading

\[d\tilde{Z}_t^i < 0 \Rightarrow \text{buy capital, sell bonds} \]
\[d\tilde{Z}_t^i > 0 \Rightarrow \text{sell capital, buy bonds} \]

\[\Rightarrow \text{lowers volatility of total wealth } n_t^i, \text{ but increases volatility of bond wealth } n_{t}^{b,i} := \theta_t^i n_t^i. \]
Government debt is a bubble: provides risk-free store of value

Bonds allow for self-insurance through trading

- \(d\tilde{Z}_t^i < 0 \Rightarrow \) buy capital, sell bonds
- \(d\tilde{Z}_t^i > 0 \Rightarrow \) sell capital, buy bonds

\[d\tilde{Z}_t^i < 0 \Rightarrow \text{buy capital, sell bonds} \]
\[d\tilde{Z}_t^i > 0 \Rightarrow \text{sell capital, buy bonds} \]

\[\Rightarrow \text{lowers volatility of total wealth } n_t^i, \text{but increases volatility of bond wealth } n_t^{b,i} := \theta_t^i n_t^i. \]

Why does the transversality condition (TVC) not rule out the bubble?

- TVC for bond wealth: \(\lim_{T \to \infty} \mathbb{E}[\xi^i_T n_T^{b,i}] = 0 \)
- Effective discount rate in TVC = discount rate for stochastic bond portfolio \(n_t^{b,i} \)
 \[= \text{risk-free rate } r^f + (\text{risk premium for idiosyncratic } n_t^{b,i}-\text{fluctuations}) \]
Government debt is a bubble: provides risk-free store of value

Bonds allow for self-insurance through trading

- $d\tilde{Z}_t^i < 0 \Rightarrow$ buy capital, sell bonds
- $d\tilde{Z}_t^i > 0 \Rightarrow$ sell capital, buy bonds

\Rightarrow lowers volatility of total wealth n_t^i, but increases volatility of bond wealth $n_t^{b,i} := \theta_t^i n_t^i$

Why does the transversality condition (TVC) not rule out the bubble?

- TVC for bond wealth: $\lim_{T \to \infty} \mathbb{E}[\xi_T^i n_T^{b,i}] = 0$
- Effective discount rate in TVC = discount rate for stochastic bond portfolio $n^{b,i}$
 $= \text{risk-free rate } r^f + (\text{risk premium for idiosyncratic } n^{b,i}-\text{fluctuations})$
- Discount rate for individual bond = discount rate for aggregate bond stock $\int n^{b,i} \, di$
 $= \text{risk-free rate } r^f$
- Risk premium: (self-insurance) service flow from re trading bonds (like a convenience yield)

More general point: beneficial equilibrium trades are essential feature of (rational) bubbles
Outline

1. Revisiting the Key Equation of the FTPL

2. Example with a Bubble: Model with Idiosyncratic Return Risk
 - Model Environment & Steady State
 - Transversality Condition and Bubble Existence
 - “Mining the Bubble”
 - Price Level Determination (Uniqueness)

3. Conclusion
Primary surplus $sK_t = \tau aK_t$

Debt valuation equation ($K_0 \equiv 1$):

$$\frac{B_0}{P_0} = \lim_{T \to \infty} \left(\int_0^T e^{-(r^f - g)t} s dt + e^{-(r^f - g)T} \frac{B_0}{P_0} \right)$$

Risk-free rate $r^f = g - \tilde{\mu}^B$

\[\begin{array}{ccc}
s > 0 & s = 0 & s < 0 \\
\hline
r^f > g & r^f = g & r^f < g \\
PVS > 0 & PVS = 0 & PVS < 0 \\
\text{no bubble} & \text{bubble} > 0 & \text{bubble} > 0
\end{array}\]
In all three cases, the bubble – or its mere possibility – grants government some leeway:

- **s < 0**: perpetual deficits are funded out of the bubble, never have to raise taxes (“bubble mining”)
- **s = 0**: government debt enjoys positive value despite zero surpluses (debt “backed” by the bubble)
- **s > 0**: no equilibrium bubble, yet possibility of bubble makes debt more sustainable
 - unexpected (persistent) drop in surpluses below zero
 - ⇒ bubble emerges instead of collapse of the value of debt
Bubble Mining Laffer Curve

see Brunnermeier, Merkel, Sannikov (2020): “The Limits of Modern Monetary Theory”
Outline

1. Revisiting the Key Equation of the FTPL

2. Example with a Bubble: Model with Idiosyncratic Return Risk
 - Model Environment & Steady State
 - Transversality Condition and Bubble Existence
 - “Mining the Bubble”
 - Price Level Determination (Uniqueness)

3. Conclusion
In particular equilibrium:

- with a bubble, FTPL equation is no longer a one-to-one relationship between PV of surpluses and price level P_t
- FTPL equation alone no longer determines P_t
 ... because the size of the bubble is not determined (by that equation)
- economic mechanism emphasized by FTPL still valid:
 - government debt generates a wealth effect, goods market clearing “determines” the price level
 - given the price level, the FTPL equation determines the size of the bubble
 (i.e. how much of government debt is net wealth)

Multiple equilibria (FTPL as a selection device):

- off-equilibrium fiscal backing is sufficient
- but requires credibility and fiscal capacity to promise off-equilibrium surpluses
 (otherwise: vulnerability to bubble crashes)
FTPL: Resolving Equilibrium Multiplicity

- If $\tau > 0$ along equilibrium path:
 - standard FTPL argument applies: unique P_t consistent with equilibrium, if surpluses (τ_s) do not react (too strongly) to the price level
 - but then $r^f > g$ and there is no bubble in equilibrium

- Resolving multiplicity with an equilibrium bubble:
 - more challenging: continuum of bubble values consistent with the same surplus path
 \Rightarrow exogenous surplus sequence insufficient for uniqueness
 - contingent policy can select the bubble equilibrium
 - primary deficits on the equilibrium path (bubble mining)
 - switch to $\tau > 0$ if inflation breaks out

- Difference to Bassetto, Cui (2018):
 (their conclusion: “the FTPL breaks down in [a dynamically inefficient] OLG economy”)
 - contingent policy versus constant taxes
 - government lending to private sector
Integrate the “missing” bubble term into the FTPL

3 forms of seigniorage including “mining the bubble”

Model with idiosyncratic risk and \(r^f \leq g \)
 - bubble can exist despite transversality condition
 - bond trading allows self-insurance

Price level determination
 - goods market clearing condition (through bubble wealth effect)
 - uniqueness: off-equilibrium tax backing